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Abstract

This paper discusses the results of the LifeCLEF 2014 multimedia
identification challenges with regards to the requirements of real-world
ecological surveillance systems. In particular, we study the identification
performances of the evaluated systems as a function of the ordinariness or
rarity of the species in the dataset. This allows us to assess the ability of
the underlying methods to be robust to heavily tailed distributions such as
the ones encountered in real-world collections of life observations. Results
show that all methods are more or less affected by the long-tail curse but
that the best methods making use of classifiers with good discrimination
capacities do resist the phenomenon pretty well.

1 Introduction

LifeCLEF [14]1 is one of the labs of the CLEF2 evaluation forum dedicated to
the evaluation of multimedia-oriented life species identification systems. Us-
ing multimedia identification tools is considered as one of the most promis-
ing solutions to help bridge the taxonomic gap and build accurate knowledge
of the identity, the geographic distribution and the evolution of living species
[16, 3, 21, 18, 1, 20, 12]. Unfortunately, the performance of the state-of-the-art
multimedia analysis techniques on such data is still not well understood and
we are far from reaching the real world’s requirements in terms of identification
tools. The LifeCLEF lab evaluates these challenges around 3 tasks related to
multimedia information retrieval and fine-grained classification problems in 3
subdomains. Each task is based on large and real-world data and the measured
challenges are defined in collaboration with biologists and environmental stake-
holders in order to reflect realistic usage scenarios. As the purpose of this paper

1www.lifeclef.org
2www.clef-initiative.eu
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is to focus on a deeper analysis of the raw results of the 2014 campaign, we refer
reader to the complete overview of the lab [14] for the details about each of the
tasks including the data description, the metrics, the run formats, etc. We here
only synthetise the main tasks:

PlantCLEF3: an image-based plant identification task continues the
three previous plant identification challenges of ImageCLEF in 2011 [7], 2012
[8] and 2013 [13]. The 2014 PlantCLEF dataset was composed of 60,962 pic-
tures belonging to 19,504 observations of 500 species of trees, herbs and ferns
living in a European region centered around France. This data was collected
by 1,608 members of TelaBotanica4, a French-speaking social network of 23,000
amateur and expert botanists. Each picture belongs to one of the 7 types of
view reported in the meta-data (entire plant, fruit, leaf, flower, stem, branch,
leaf scan) and is associated with a single plant observation identifier allowing to
link it with the other pictures of the same individual plant (observed the same
day by the same person).

BirdCLEF5: an audio-based bird identification task based on the
audio recordings collected by Xeno-canto6, a web-based community of bird
sound recordists worldwide with about 1,500 active contributors that have al-
ready collected more than 180,000 recordings of about 9,000 species. Nearly 500
species from Brazilian forests are used in the BirdCLEF dataset totalling about
14,000 recordings produced by hundreds of users. As a comparison, the previ-
ous largest bird species bioacoustic classification was the NIPS4B 2013 challenge
with (only) 80 species from French Provence [11].

FishCLEF: a video-based fish identification task based on the
Fish4Knowledge7 underwater video repository, which contains about 700k 10-
minutes video clips that were taken in the past five years to monitor Taiwan’s
coral reefs. More specifically, the FishCLEF dataset consists of about 3,000
videos with several tens of thousands of detected fish instances that were iden-
tified for the 10 most common species.

127 research groups worldwide registered to at least one task of the lab, of which
22 crossed the finish line by submitting runs (27 runs for the plant task, 29 runs

3supported by Agropolis fundation through the Pl@ntNet project (http://www.plantnet-
project.org/)

4http://www.tela-botanica.org/
5supported by CNRS MASTODONS SABIOD project (http://sabiod.org)
6http://www.xeno-canto.org/
7www.fish4knowledge.eu
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for the bird task, 6 runs for the fish task). Details on the methods used in
the runs and the results achieved by all teams are synthesised in the overview
working notes of each task [10, 9, 5]. Overall, quite impressive identification
rates are achieved by the best runs of each task with mean average precision
scores close to 0.5 for the hundreds of species of the bird or the plant task, and
up to 0.95 for the 10 species of the fish task.

2 The big problem with data

Building effective multimedia analysis and machine learning techniques is un-
fortunately not the only side of the taxonomic gap problem. Whatever the
used algorithms, the availability of rich and appropriate training data is actu-
ally equally challenging towards setting up powerful identification tools at large
scales. If we look at the popular ImageNet dataset [6], widely used for the eval-
uation of large-scale image classification methods, it is essential to notice that
the average number of training images per category is in the range 600-1200.
And this is actually several orders of magnitude richer than most existing col-
lections of multimedia life observations. Even the Encyclopedia Of Life8, which
is the world’s largest data centralization effort concerning multimedia data for
life on Earth, does not have more than few images per class of interest for the
vast majority of species. Thanks to the integration of hundreds of large expert
collections built in the past, the global plant index is for instance now approxi-
mating the 700K images, which is an outstanding number. But from a machine
learning point of view, the problem is that these images are scattered across tens
of thousands distinct taxa and across tens of distinct types of views or organs
in a given taxon.

Overall, as discussed in [12], most existing multimedia collections suffer from
one or several problems preventing their easy use as training data. The long-tail
problem is one of the most common ones, particularly in the context of collab-
orative data. The symptom is that the distribution of the number of samples
per species generally follows a long-tailed distribution, with very few species
well populated, and the vast majority of species with one or few images. This
more generally reflects the heterogeneous knowledge that we have of plants and
animals, with a huge volume of information on widespread and useful species for
human beings, and very little information (in term of geographical distribution,
morphological description, etc.) on most of the plant species of a given area. A
rather good average number of multimedia documents per taxon can therefore
be misleading regarding the real coverage of all species. Figure 1 illustrates the
distribution of the Bugwood9-ForestryImages10 dataset which includes 187K im-
ages of about 18K plants species of economic concern. Similarly, Figures 3 and
4 present the long-tailed distribution of the number of observations per species

8http://eol.org/
9http://www.bugwood.org/

10http://www.forestryimages.org/
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Figure 1: Long tail distribution of Bugwood-Forestry Images dataset

within the plant and the bird datasets used for LifeCLEF 2014 challenges. The
histograms notably show that the plant dataset is more heavily tailed than the
bird dataset. This is partially due to the natural abundance distribution of
the species but also to the different characteristics of the social networks that
collected the data (less contributors to the bird dataset but with a more homo-
geneous and wider expertise). But still for the plant dataset, the set of the kept
species in LifeCLEF challenge is only the tip of the iceberg. This is illustrated
by Figure 2, which presents the distribution of the whole Pl@ntNet dataset [12]
which in itself is the largest existing dataset for the French flora. As shown on
the graph, the 500 hundred species of the PlantCLEF dataset (coloured in red)
are mainly concentrated at the head of the distribution and therefore rather fo-
cus on the most common species, regardless the rich biodiversity existing in the
country (estimated to be about 6000 plant species). If we now recall that the
vast majority of the hundreds of thousands of plant species on Earth are even
more incomplete, it gives a nice picture of the enormously challenging problem
we are facing in order to build well-balanced and well-populated training data.
The ecosystems that possess the highest plant diversity are actually also the
least studied and understood (particularly tropical and Mediterranean regions).
It is consequently very difficult to collect in these regions as much data as in
well covered areas such as France.
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Figure 2: Long tail distribution of the whole Pl@ntNet dataset (with PlantCLEF
2014 subset in red)

3 Abundance-aware evaluation of LifeCLEF runs

In order to cover sufficient biodiversity, it is therefore crucial that multimedia
identification tools also work for the species in the long tail and not only on
the most populated and popular species. In this paper, we thus propose to
analyse the results of the LifeCLEF 2014 challenge with regard to the ability
of the systems to deal with the less populated classes. For each of the three
tasks, we therefore split the species into 3 categories according to the number
of observations populating these species in the datasets. The 3 resulting splits
are illustrated in Figures 3, 4 and 5. For the three challenges, the category A
of species (blue) corresponds to the most populated species (i.e. the tip of the
distribution), the category B (red) corresponds to intermediate species with a
relatively high number of observations, the category C (green) corresponds to
the less populated species in the long tail. Note that for the fish task, as the
total number of species is very low (restricted to the 10 most common species),
we only included one species in the long tail category C. Therefore, the re-
sults will be statistically less relevant than for the bird and the plant task. For
the bird and the plant datasets, we used the same thresholds on the cumula-
tive distributions to define the categories (cat. A is represented by the first 20
percent of the observations belonging to the most populated species, cat. B by
the next 50 percent of the observations, cat. C by the least common 30 percent).

Based on these relative abundance categories A, B and C, we computed a
per-category score for all the runs submitted to LifeCLEF. This was done by
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Figure 3: Distribution of PlantCLEF 2014 dataset - split in 3 ordinariness
categories

first computing the per-species official score of each run and then averaging the
scores of the species that belong to the same category (details of the scores used
for each task can be found in their respective CLEF working notes [10, 9, 5]).
Results are displayed within Figures 7, 6 and 8 (for the fish video challenge we
only considered subtask 3). Note that the initial ranking of the runs has been
preserved in accordance to the overall official score of each run. This allows us to
analyse whether the per-category rankings of the methods differ from the global
one (and/or between each other). Furthermore, the graphs allow us to check
whether the overall performance of a given run is achieved to the detriment of
the less populated species. To further quantify this biodiversity-friendliness, we
also displayed on the graph the coefficient of variation of each run (i.e. the
standard deviation of the 3 categorical scores divided by their mean).

A first overall conclusion is that the performances of all systems degrade
with the ordinariness of the targeted species (i.e. none of the evaluated systems
has a lower score on category A than on category B and this is also the case for
category A vs. C and B vs. C). This is clearly not surprising and simply demon-
strates that all participants use common statistical machine learning strategies
whose performances are correlated with the class statistics. As it was not an
objective of the measured challenges, none of the participants specifically tried
to emphasize the less populated species or to balance the classes. This raises the
question of whether it would be meaningful to foster rare species in the evalua-
tion protocol of future LifeCLEF challenges (e.g. through a biodiversity-friendly
evaluation metric or through a balanced distribution of the queries across the
classes). On one hand, this would bias the evaluation because the natural dis-
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Figure 4: Distribution of BirdCLEF 2014 dataset - split in 3 ordinariness cate-
gories

tribution of the data somehow reflects the usage of a real-world identification
system in which the most common species attract the most user requests [12].
Maximising the average score across all the observations consequently also meets
the objective of maximizing the average user satisfaction. But on the other hand,
boosting the visibility of the less populated species in a real-world application
might help compensate for the long-tail curse in the long term. This might
degrade the brute-force performances on the most common queries. On the
other hand, when a user meets a rare plant or animal, this would give him a
better chance to identify it and consequently enrich the system with this useful
observation. In other words, this would stabilize the positive feedback loop typ-
ically observed in crowd-sourced information systems that tends to accentuate
the inequalities and put too much emphasis on the most popular items (e.g.
the distribution of user ratings in a social network tends to be more and more
heavily tailed when their number increases [17]).
Now, the most important question is whether the methods used by the different
participants are equally biodiversity-friendly or not. Let us first start with the
bird task results (cf. Figure 6). For this challenge, we can observe that the over-
all ranking of the runs remains roughly the same whatever the category (A,B
or C). This means that none of the methods is critically more affected by the
long-tail issue than the other ones. Some variations can however be observed.
The per-category scores of MNB TSA runs are notably more homogeneous than
the ones of QMUL (with a variation coefficient of 0.19 vs. 0.28 for the best run
of each team). That means that in addition to be better on average, the runs
of MNB TSA are also more biodiversity-friendly. This confirms the good skills
of the segment-probabilities features used by this group [15] as well as the good
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Figure 5: Distribution of FishCLEF 2014 dataset - split in 3 ordinariness cate-
gories

capacity of the ensemble of randomized decision trees they are using as classi-
fier. On the contrary, the per-category scores of INRIA Zenith runs are a little
bit more scattered than the others, as illustrated by the emerging blue peak of
INRIA Zenith Run 2 and the higher values of the variation coefficient (0, 38 for
Run 1). As discussed again later for the plant task, this might be due to the use
of a K-NN majority voting classifier on top of their discriminant features selec-
tion and matching scheme. Finally, the Run 1 of HLT is particularly compact
across the three categories (with a very low variation coefficient of 0.11). This is
presumably due to the local temporal pooling strategy they used exclusively in
that run. But as the overall performance of that run is rather low, its ability to
identify well the less populated species remains much lower than the best runs
of the challenge.

If we now look at the fish task results (cf. Figure 8), we can observe that
here again the ranking of the runs is preserved for the three categories but that
the variations in the homogeneity of the scores are much more accentuated.
Whereas all runs have achieved comparable performances on the category A,
the performances of the I3S runs clearly crashed on the less populated species
leading to very bad biodiversity-friendliness values (variation coefficient greater
than 1.0). As discussed in the working note of the fish task [5], the lower per-
formances of the I3S runs are mainly due to their fish detection algorithm that
has a much lower recall than the ViBe [2] background modeling approach used
in the baseline. Interestingly, we can see here that the deficit of recall is mainly
concentrated on the less populated species in the dataset that are probably also
the less visible ones in the video contents (smaller fishes and/or less numerous
ones).
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Figure 6: BirdCLEF results detailed by ordinariness categories

The results of the plant task (Figure 7) are probably the most informative ones
concerning our biodiversity-friendliness analysis. The more heavily-tailed distri-
bution of the plant dataset actually accentuates its impact on the methods that
are the most sensitive to multi-class imbalanced problems. This is typically the
case for the runs of SZTE, FINKI and PlantNet that result in high values of
the variation coefficient and low classification scores for the species belonging to
the long tail. The common point of all these runs is that they rely on instance-
based classifiers that are more directly dependent on the feature density and
thus more sensitive to imbalanced problems. The most affected runs are the
ones of SZTE and FINKI that directly use a K-NN classifier on global visual
features. The two best runs of PlantNet (2 and 3) resist better because of the
use of a Borda count to fuse the different features and organ modalities instead
of the weighted majority voting strategy used in run 1 and 4.
On the contrary, using large margin classifiers appears to be a rather good
strategy to limit the inequalities between the different categories of species.
This mainly concerns the runs of IBM AU, BME TMIT and Sanbanci Okan
whose variation coefficients values are all lower than 0, 38. But there are still
some important variations between them, meaning that other factors enter the
equation. The three first runs of IBM [4] clearly outperform all other runs in
terms of the coefficient of variation. Similarly to the bird task, this shows that
in addition to being the best runs on average, the runs of IBM AU are also the
most biodiversity-friendly. The classification score of the best of their runs on
category C is impressively better than the classification score of any other teams
on all categories. This confirms that using linear support vectors on top of high-
dimensional Fisher vectors is definitely a good strategy to reach state-of-the-art
performances on this benchmark. But as the runs of BME TMIT are based on
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Figure 7: PlantCLEF results detailed by ordinariness categories

the same strategy it also shows that the devil is in the details. The main differ-
ences inferred from the working notes of both participants [4, 19] concern the
use of (i) color moment features in addition to SIFT, (ii) power normalization of
the Fisher vectors, (iii) a 512 components GMM model instead of 256, (iv) the
use of a linear support vector machine rather than a RBF kernel in the BME
MIT runs, and (v) an observation-oriented split of the data for cross-validation.
A last interesting insight we can derive from the plant task results concerns the
last run of IBM AU (IBM AU Run 4 ) which is the only one purely based on a
deep convolutional neural network. Because of the relatively low average number
of training samples per class it actually failed in learning as good visual features
as the hand-tuned features of the PlantNet runs. But from the biodiversity-
friendliness point of view, it clearly outperformed them, presumably thanks to
the much better generalization capacity of the last fully connected layers of the
network compared to the instance-based classification scheme employed in the
PlantNet runs.

4 Conclusion and perspectives

This paper reported a complementary analysis of the raw results of the Life-
CLEF 2014 challenge with regard to the biodiversity-friendliness of the evalu-
ated methods, i.e., their capacity to classify well both the most and the least
populated species. The good news is that the best performing methods of each
task are also the most biodiversity-friendly ones. The question of whether we
should introduce a specific biodiversity-friendly evaluation metric for future Life-
CLEF campaigns is consequently less important. It appears that well-designed
discriminant classification schemes are naturally more robust to the long-tail
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Figure 8: FishCLEF results detailed by ordinariness categories

curse and finally provides relatively good performances even on the less-popul-
ated classes of the long tail. This, however, has to be mitigated by the fact that
the species used in the evaluations are still the tip of the iceberg and that the
real long tail still has to come out. For the upcoming LifeCLEF evaluations, we
will study the feasibility of providing more species as well as the feasibility of
authorizing any other external training data to further increase the biodiversity
cover of our challenges. One might also consider adding a none-of-the-above
categories that would help filter new species and focus future ground-truthing
efforts.
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baum, E. Mouysset, and M. Picard. The ImageCLEF 2011 plant images classifi-
cation task. In CLEF working notes, 2011.
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[12] A. Joly, H. Goeau, P. Bonnet, V. Bakić, J. Barbe, S. Selmi, I. Yahiaoui, J. Carré,
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