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Abstract 

Recent evidence from multiple neuroscience techniques indicates that regions within the anterior 

temporal lobes (ATLs) are a critical node in the neural network for representing conceptual knowledge, 

yet their function remains elusive. The hub-and-spoke model holds that ATL regions act as a 

transmodal conceptual hub, distilling the various sensory-motor features of objects and words into 

integrated, coherent conceptual representations. Single-cell recordings in monkeys suggest that the 

ATLs are critically involved in visual associative learning; however, investigations of this region in 

humans have focused on existing knowledge rather than learning. We studied acquisition of new 

concepts in semantic dementia patients, who have cortical damage centred on the ventrolateral aspects 

of the ATLs. Patients learned to assign abstract visual stimuli to two categories. The categories 

conformed to a family resemblance structure in which no individual stimulus features were fully 

diagnostic; thus the task required participants to form representations that integrate multiple features 

into a single concept. Patients were unable to do this, instead responding only on the basis of individual 

features. The study reveals that integrating disparate sources of information into novel coherent 

concepts is a critical computational function of the ATLs. This explains the central role of this region 

in conceptual representation and the catastrophic breakdown of concepts in semantic dementia. 

 

Keywords: conceptual knowledge; semantic memory; learning; frontotemporal dementia; anterior 

temporal lobe. 
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Introduction 

 Conceptual knowledge for objects comprises a diverse set of information about their sensory 

qualities, motor plans and verbal associations. How are these disparate sources of information linked 

to form a concept? According to one influential view, originally proposed by Wernicke (Wernicke, 

1900, as cited in Eggert, 1977), conceptual knowledge for objects arises from the co-activation of 

their sensory-motor properties within a network of modality-specific processing regions that are 

widely distributed throughout the cortex (Martin, 2007; Pulvermuller, 2001; Barsalou, 2008). This 

approach makes two key predictions concerning the breakdown of conceptual knowledge under brain 

damage. First, damage to a single, modality-specific region should give rise to knowledge deficits 

that disproportionately affect properties in that modality and, by extension, categories of objects for 

which the affected modality is particularly central (Warrington and Shallice, 1984; Capitani et al., 

2003; Mahon and Caramazza, 2009). So, for example, damage to regions of inferior parietal cortex 

involved in representing skilled actions should impair knowledge of how objects are manipulated 

and lead to a disproportionate deficit for tools (Buxbaum and Saffran, 2002). The second prediction 

concerns global, pan-modal conceptual impairments. According to Wernicke and his modern 

counterparts, these should only occur as a result of global cortical damage, because only damage to 

all of the modality-specific regions would be sufficient to produce a global impairment. This 

prediction is challenged by the neurodegenerative syndrome of semantic dementia (SD). SD patients 

suffer from a global conceptual knowledge deficit that affects all categories of object and word 

(Lambon Ralph et al., 2007; Hoffman and Lambon Ralph, 2011) and all sensory-motor modalities 

(Bozeat et al., 2000; Bozeat et al., 2002; Luzzi et al., 2007; Piwnica-Worms et al., 2010), yet the 

cerebral atrophy and hypometabolism that gives rise to this debilitating impairment is not global: it is 

focused bilaterally on the anterior ventrolateral and polar portions of the temporal lobes (Mion et al., 

2010; Galton et al., 2001). Evidence from functional neuroimaging (Binney et al., 2010; Visser and 

Lambon Ralph, 2011) and transcranial magnetic stimulation (Pobric et al., 2010, 2007) in 

neurologically-intact participants confirms that ventrolateral anterior temporal lobe (ATL) areas are 

involved in all forms of conceptual processing irrespective of the modality of the information or the 

category of object probed. The crucial role of this area in transmodal semantic representation also fits 

with recent in vivo tractography data demonstrating the convergence of multiple white-matter 

pathways into the ATL. Such results indicate that this region’s structural connectivity is ideal for 

blending different sources of verbal and nonverbal information into integrated, coherent concepts 

(Binney et al., 2012). 
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 To account for the global, pan-modal involvement of the ventrolateral ATLs in conceptual 

knowledge, we have developed an alternative framework for conceptual knowledge termed the “hub-

and-spoke” model (Lambon Ralph et al., 2010; Rogers et al., 2004; Patterson et al., 2007; Pobric et 

al., 2010). This model holds that in addition to modality-specific sources of information (“spokes”) 

and their inter-connections, representation of conceptual knowledge requires an integrative “hub”. 

The hub uses information from the modality-specific spoke regions to develop modality-invariant, 

conceptual representations that capture deeper patterns of conceptual similarity across all sensory-

motor and verbal modalities. These integrated representations are necessary because similarity in any 

particular sensory-motor domain is, at best, only a partial guide to conceptual similarity (Lambon 

Ralph et al., 2010; Smith and Medin, 1981; Dilkina and Lambon Ralph, 2013). For example, though 

apples and bananas have different shapes, colours and tactile properties and are manipulated in 

different ways, the conceptual system must be able to recognise that they are similar types of object. 

In addition, true conceptual representation requires the integration of properties that are experienced 

in different times and situations, and representation of the complex, non-linear relationships between 

the concept’s verbal and nonverbal modality-specific properties and its conceptual significance (see 

Lambon Ralph et al., 2010 for more detailed discussion of these issues). The hub-and-spoke 

framework holds that the ATL hub provides this critical aspect of conceptual representation through 

the formation of representations that integrate information from all sensory-motor-verbal domains. 

When this region is damaged, as in SD, the result is a breakdown in the complex boundaries that 

define different concepts, such that semantic decisions come to be made on the basis of superficial 

characteristics rather than their deeper conceptual properties. For example, SD patients may reject 

“emu” as an example of a bird but simultaneously over-extend the concept to accept “butterfly” 

(Lambon Ralph et al., 2010; Mayberry et al., 2011). 

 Previous work on the function of the ventrolateral ATLs has focused on their role in 

representing existing knowledge and its progressive deterioration as a result of ATL atrophy in SD 

(e.g., Rogers et al., 2004; Binney et al., 2010). The hub-and-spoke framework also predicts that the 

ATLs play a key role in the acquisition of novel concepts (Rogers and McClelland, 2004). There is 

already some support for this idea from electrophysiological studies in primates. The response 

properties of anterior inferior temporal neurons change as monkeys learn novel associations between 

visual stimuli, suggesting a role for this region in the acquisition of concepts (Albright, 2012). In the 

present study, we tested this hypothesis in humans by studying acquisition of new conceptual 

knowledge in patients with SD. The hub-and-spoke model predicts that the ATLs are critical for 

integrating the various sensory features of an object into a unified, coherent conceptual 

representation that can be generalised to new exemplars. We tested this prediction by training SD 
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patients to recognise novel visual stimuli as members of two categories. Previous research has shown 

that SD patients are able to apply well-defined rules to classify novel stimuli, when the classification 

rule is provided by the experimenter (Koenig et al., 2006). Here, we tested the patients’ ability to 

acquire more complex category structures that could not be captured by a simple rule and when no 

information about the nature of the categories was supplied by the experimenter. 

 The structure of the two categories (shown in Figure 1A) was designed such that optimal 

performance could only be achieved by acquiring integrated representations of the various typical 

characteristics of each category. When presented en masse as in Figure 1, it is easy to discern the 

features associated with each category. Members of Category A usually contained squares while 

those in B contained circles, though there were exceptions in both categories. The same was true for 

the number of shapes (members of A usually contain one shape) and the colour of the background 

square (usually blue for A). The colour of the internal shapes, though perceptually salient, was not 

diagnostic of category. This category structure, in which a number of features are associated with 

each category but no single feature is diagnostic, is termed a family resemblance structure and is 

characteristic of object categories in the real world (Rosch and Mervis, 1975; Wittgenstein, 1953; 

Smith and Medin, 1981). Within such a structure, it is impossible to classify with complete accuracy 

by learning only about a single feature dimension. Optimum performance instead requires 

participants to form integrated representations that include second-order statistical information about 

the feature conjunctions that characterise each category, allowing them, for example, to correctly 

class an exemplar with two circles as a member of Category B, even if it has a blue background. We 

predicted that forming such integrated representations is a key function of the ATLs and, therefore, 

that SD patients would be impaired in learning the categories. 

 We deliberately selected an abstract, novel set of stimuli with little perceptual similarity to 

objects in the real word, to ensure that pre-existing conceptual knowledge would not influence the 

learning process. However, the novel stimuli’s underlying family resemblance structure meant that 

they shared several important attributes with real conceptual categories. 

1. Items in a category shared a number of typical characteristics but no single feature was 

diagnostic of category membership (e.g., most creatures that fly are birds but there are also a 

number of flightless birds and some non-bird creatures that can fly). 

2. While there were no individual diagnostic features, the conjunction of a number of typical 

features was a good guide to category membership (e.g., a creature that lays eggs and has 

feathers and a beak is likely to be a bird, even if it cannot fly). 

3. Some features, though salient, were not useful in determining category membership (e.g., the 

colour of a creature is not helpful in deciding whether it is a bird or not). 
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Our hypothesis was that the computational challenges posed by these complex, natural categories are 

met by the ATLs, which form integrated conceptual representations that allow us to categorise items 

based on the overall summation of their characteristics rather than relying on a single defining 

feature. We predicted that SD patients would be impaired in their ability to acquire these integrated 

representations, leading to an over-reliance on individual features to guide their category decisions. 

 

Method 

 

 Patients and background testing: Seven patients with SD were recruited from memory clinics 

in northwest and southwest England. All met published diagnostic criteria for SD (Hodges et al., 

1992; Gorno-Tempini et al., 2011), in that they presented with pan-modal conceptual knowledge 

deficit that affected receptive and expressive tasks. Other aspects of cognition were preserved in all 

but the most severe cases: patients were well-oriented in time and space and presented with fluent, 

grammatically correct speech. However, the case-series was intended to span the full range of 

severity in semantic performance and one of the most severe cases (NH), while initially presenting 

with a selective semantic impairment, had begun to show signs of decline on other cognitive tasks at 

the time of the study. Structural neuroimaging indicated bilateral atrophy of the anterior temporal 

region in each case (see Figure 2). 

 Patients completed a battery of standard neuropsychological tests. Conceptual knowledge 

was assessed using elements of the Cambridge Semantic Battery (Bozeat et al., 2000), consisting of 

tests of picture naming, spoken word-picture matching, pictorial semantic association (the Camel and 

Cactus Test) and verbal fluency for six semantic categories. All seven patients performed below the 

normal range on all tests. As expected, there was a broad range of impairment in conceptual 

knowledge from mild to very severe (see Table 1; patients are ordered from mild to severe based on 

word-picture matching scores). General dementia severity was assessed with the Addenbrooke’s 

Cognitive Examination-Revised (Mioshi et al., 2006) and the Mini Mental State Examination 

(Folstein et al., 1975). Visuospatial processing were tested using the Rey figure copy and two 

subtests from the Visual Object and Space Perception battery (Warrington and James, 1991). Patients 

also completed tests of digit span (Wechsler, 1987) and Raven’s coloured progressive matrices 

(Raven, 1962). These tests revealed the expected pattern of relative preservation of other cognitive 

functions in most cases. The case-series included two severely impaired patients: NH and ET. At 

time of testing, NH had begun to show signs of more general cognitive decline. In contrast, ET 

performed strikingly well on the non-semantic tasks, despite severe semantic impairment. We 
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included both patients in the case-series in order to assess the effects of severe conceptual knowledge 

impairment on learning; however, it is possible that concomitant deficits may have affected NH’s 

performance. Importantly, the other six patients all demonstrated preservation of the basic perceptual 

and cognitive functions necessary to complete the category learning task. Raven’s progressive 

matrices were particularly informative in this regard. Like the experimental task described below, it 

involves abstract coloured geometric shapes. It also has a strong problem-solving element and 

requires understanding the notion of similarity relationships between stimuli. All of the patients 

except NH performed well on this test. 

 Experimental stimuli: 24 abstract visual stimuli were created based on those used by Waldron 

and Ashby (2001). Stimuli varied on four dimensions: background colour, internal shape, number of 

shapes and shape colour. Background colour, shape and number were all relevant for categorisation. 

These dimensions each had two possible values (e.g., shape: circle or square) and we refer to these as 

“features”. The shape colour dimension had three possible values (red, black and green) and was 

irrelevant for classification. A family resemblance structure was used to divide the stimuli into two 

categories, arbitrarily labelled A and B (see Figure 1A). Each of the three relevant dimensions had a 

feature reliably associated with each category, though no single dimension was fully diagnostic of 

category. Eighteen exemplars were presented during the category learning task. Three exemplars in 

each category possessed all of the three features associated with the category (i.e., the typical 

background, typical number and typical shape for their category, shown in the top row of Figure 1A). 

The remaining exemplars had two features that were typical of their category, while the remaining 

feature was more strongly associated with the opposing category. Six exemplars were not presented 

at all during the learning task but were retained to later test the participants’ ability to generalise their 

learning to novel exemplars. 

 Category learning task: Patients completed a learning task over two sessions on consecutive 

days. Each learning session consisted of 144 trials. At the beginning of the task, patients were told 

that they would see some abstract patterns and would attempt to learn which ones were “A”s and 

which were “B”s. They were told that there was no simple rule for deciding but that it was something 

they would learn over time. On each trial, they saw one of the 18 exemplars, presented in the centre 

of a laptop computer screen on a white background. The letters A and B were presented in bottom 

left and right corners of the screen and the patient was asked whether the exemplar was an A or a B. 

They were then presented with a green tick if they decided correctly or a red cross if they chose the 

wrong category. Verbal feedback was also given at first so that patients understood the significance 

of the ticks and crosses. At no point were participants told which aspects of the stimuli to attend to or 

how to make their decisions. The 144 trials were divided into 8 blocks, with each exemplar presented 
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once in each block. For the second session, the patients were told that they were continuing the task 

they started the previous day and that the identity of the A’s and B’s had not changed. 

 To determine the degree to participants were able to form integrated category representations, 

categorisation success during the second half of the second session was analysed in detail (72 trials). 

By this point, participants had completed 216 trials of the learning task, allowing them to form stable 

representations of the characteristics of each category. 

 Generalisation test: The generalisation test probed participants’ ability to apply their acquired 

knowledge of the categories to a new set of stimuli comprised of the same features but in novel 

combinations. This allowed us to rule out an alternative basis for task performance: namely, that 

participants had used an episodic memory strategy and attempted to memorise the correct category 

for each individual stimulus, rather than learning the underlying properties that characterised the two 

categories. We reasoned that knowledge of the underlying category structure would generalise to a 

new set of stimuli that participants had not seen during learning. In contrast, if participants had only 

learned the categories for the specific stimuli presented during learning, they would not be able to 

classify new stimuli at an above-chance level. 

 To test for generalisation, immediately after the second session participants were presented 

with six new exemplars, not presented during training. They were asked to classify them as before, 

though no feedback was given. Each of the six new exemplars was presented a total of four times. 

 Visual discrimination test: In a recent study, Barense et al. (2010) demonstrated that SD 

patients can have difficulty discriminating between visual objects when they have many overlapping 

features. Specifically, patients were impaired when required to discriminate stimuli based on 

conjunctions of features, even in a purely perceptual task with no learning requirement. This raises 

the possibility that apparent deficits in learning could arise because SD patients have difficulty 

perceiving the stimuli correctly. To ensure that our patients were able to discriminate between the 

stimuli in our experiment, we tested them with a demanding odd-one-out task described by Barense 

et al. (2010).  

 On each trial, patients were presented simultaneously with seven exemplars from the learning 

study. The seven stimuli consisted of three identical pairs and one “odd-one-out” and patients were 

asked to point to the odd-one-out. There were three conditions of increasing difficulty. In the 

minimum ambiguity condition, the odd-one-out could be detected on the basis of a single stimulus 

dimension (e.g., in Figure 1B, it is the only exemplar containing two shapes). In the medium 

ambiguity condition, it was necessary to perceive the conjunction of two dimensions to distinguish 

the odd-one-out (e.g., in Figure 1B, only the odd-one-out has squares on a yellow background). 

Finally, in the maximum ambiguity condition, the odd-one-out could only be detected by integrating 
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all three dimensions. The three conditions were intermixed and there were 105 trials in total. Patients 

completed the discrimination test at least two weeks after completing the learning task. 

 Control participants: Twelve healthy volunteers completed the learning and generalisation 

tests. They had a mean age of 69 years and educational level of 16.7 years, neither of which differed 

from the patients (t(17) < 1.9, p > 0.05). Six different individuals completed the stimulus 

discrimination test. Their mean age was 68 and education was 16.0 years (not significantly different 

from patients: t(11) < 1.0, p > 0.05). 

 

Results 

 Mean categorisation accuracy in the control group was 67% (standard deviation = 9.7%), 

which indicates that learning the family resemblance category structure under experimental 

conditions was challenging even for healthy participants, as expected from previous studies (Medin 

et al., 1987). SD patients also averaged 67% (standard deviation = 4.7%) and their accuracy was not 

significantly different to that of controls (t(17) = 0.15,  p = 0.88). Importantly, binomial tests 

indicated that all seven patients were significantly above chance in their categorisation performance 

(p < 0.0019). This indicates that all of the patients understood the nature of the task (i.e., they were 

not guessing) and were able to acquire some information about the novel stimuli. To determine the 

nature of the representations formed by our participants, we analysed performance on the final 72 

trials of the learning task in more detail. These analyses revealed that learning in the SD group took a 

very different form to that seen in the control group, as we describe next. 

 Learning across stimulus dimensions: Our key prediction was that SD patients would have 

difficulty forming integrated representations that included information about all three dimensions 

needed for optimal classification. To test this, we investigated how participants classified stimuli 

with each type of feature. Figure 3 shows the data from each patient and, for comparison purposes, 

from two representative controls. Each participant’s responses have been split according to the 

exemplar’s features on each of the three critical dimensions. The y-axis shows how often the 

participant responded B to stimuli with each feature, so values close to one indicate items that were 

usually classed as B’s and values close to zero show items that were usually classed as A’s. Control 

1 showed an optimal pattern of responding: she successfully acquired knowledge about the typical 

features in all three dimensions (this can be seen clearly by comparing her pattern of responses with 

the set of category members in Figure 1A; for example, she correctly classified most of the circle 

exemplars as B’s and the squares as A’s). This control participant performed at over 90% accuracy 

during the final phase of learning. Control 2 achieved much poorer learning overall (60% accuracy) 
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but showed a similar qualitative pattern. She also learned about all three dimensions equally, albeit to 

a much lesser extent. The pattern in the patients was rather different and indicates that they were 

unable to form coherent representations that combined all three dimensions. Four patients (MT, MB, 

PL and PW) learned about only one of the three critical dimensions, as indicated by strong 

differentiation and one dimension and a lack of discrimination on the other two dimensions. For 

example, PW classified all stimuli based on their shape, ignoring their number and background 

colour.1 The remaining three patients showed a more ambiguous pattern of performance, with weak 

learning on two stimulus dimensions. 

 To investigate these profiles in more detail, we calculated d’ scores for each participant. D’ is 

a signal detection measure that reflects a participant’s tendency to give a particular response when 

presented with a particular type of stimulus weighed against their propensity to make the same 

response to other stimuli. We computed d’ scores that expressed a participant’s sensitivity to the 

feature-category associations in each of the three dimensions. According to our predictions, SD 

patients should show strong learning (i.e., high d’ values) in one dimension but much weaker 

learning across the remaining dimensions. Controls were expected to display a more even pattern of 

learning across the three dimensions. Once d’ scores had been computed, an additional step was 

necessary to compare the results in the two groups. Since different participants learned about 

different aspects of the stimuli (e.g., compare patient MT with PW), a simple averaging of the d’ 

scores in each dimension would mask the true effects. Instead, we labelled the dimensions for each 

participant according to their d’ scores, with the dimension in which the greatest learning had 

occurred labelled as their strongest dimension (so MT’s strongest dimension was number, her second 

dimension was shape and her weakest dimension was background colour). We were then able to 

average d’ scores within each group based on the strongest, second and weakest dimensions of each 

individual. 

 D’ scores are shown for each patient in Figure 4A. It is important to note that interpretation of 

the d’ scores presented here is slightly different to most circumstances. In most studies, a particular 

stimulus feature is always associated with a particular response and optimum performance is 

signified by the maximum possible d’ value (typically between 3 and 4). Because of the family 

resemblance structure employed here, each feature was only associated with its typical category on 

78% of trials. As a consequence, the optimum d’ score was lower: a participant classifying with 

100% accuracy would have d’ scores of 1.52 for each dimension (indicated by the blue line in Figure 

                                                 
1 With the exception of PW, there appears to be a tendency toward classification based on number rather than the other 

two dimensions. It is not clear whether this occurred by chance or if reflects a consistent tendency for SD patients to 

focus on quantity above other perceptual features. There was no such bias towards number in the control group.  
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4A). Scores higher than this indicate an over-extension of the learning in the strongest dimension, 

such that the information in this dimension was driving classification even for exemplars where the 

other two dimensions pointed towards a different category. This over-generalisation was present in 

four of the seven patients and is similar to the over-generalisation exhibited by SD patients when 

attempting to use their impaired conceptual knowledge of real objects (see Discussion). No patients 

demonstrated much learning in their second or weakest dimensions, in line with the prediction that 

they would be unable to form category representations that integrated all of the information required 

for optimum categorisation. 

 The mean d’ scores in each group can be seen in Figure 4A. As expected, there was a large 

disparity between the strongest dimension and the remaining two dimensions in SD, with a more 

balanced pattern of learning across the three dimensions in the control group. A 3 (dimension) × 2 

(group) ANOVA was performed on these data. There was a main effect of dimension (F(2,34) = 43, 

p < 0.001). There was no effect of group but there was a highly significant interaction between 

dimension and group (F(2,34) = 6.83, p = 0.003). Post-hoc t-tests indicated that SD patients showed 

significantly less learning on their weakest dimension than controls (t(17) = 3.44, p = 0.003). There 

was also a trend toward poorer learning on the second dimension in SD patients, relative to controls 

(t(17) = 1.95, p = 0.07). 

 While the general pattern in the patient group was toward strong, single-dimension learning, 

we did observe some variation across patients, with JW, NH and ET displaying a less clear pattern 

than the other four patients. To investigate these differences, we tested whether these patients’ 

responses were influenced by the shape colour dimension, which was irrelevant for classification. 

We calculated a d’ measure of “learning” in this dimension in a similar manner to the other 

dimensions. Since this dimension was irrelevant to classification, the optimum d’ was 0. The results 

are shown in Figure 4B. The four patients who achieved the most successful learning on their 

strongest dimension showed low d’ values, indicating that they were not influenced by the irrelevant 

dimension. However, patients NH and ET, and to a lesser extent JW, had higher d’ scores, indicating 

that their responses were incorrectly influenced by this dimension. This suggests a more severe 

impairment in these individuals, since their responses were guided by stimulus features that were not 

reliably associated with either category. In line with this hypothesis, the two patients with the most 

severe semantic deficit showed the largest effects (NH and ET). D’ scores in the SD group as a 

whole were also compared with those of the control group (see Figure 4B). As a group, SD patients 

were more likely to be influenced by the irrelevant dimension than controls (t(17) = 2.26, p = 0.04). 

  Accuracy on critical “inconsistent” trials: The general picture emerging from the d’ analyses 

was that SD patients displayed relatively successful learning on their strongest dimension but were 
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less successful in learning the category associations in the other two dimensions. This suggests that 

they failed to integrate the various stimulus features into a coherent conceptual representation. As a 

strong test of this interpretation, we re-analysed categorisation accuracy but now specifically 

considered trials on which an over-reliance on learning in one dimension would cause participants to 

choose the wrong category. Trials from the final period of learning were divided into two conditions 

for each participant:  

1. Consistent trials: On most trials (78%), the feature on the strongest dimension indicated the 

correct category for the exemplar. On these trials, participants could categorise correctly even 

if they had only acquired knowledge in a single dimension.  

2. Inconsistent trials: Due to the family resemblance structure, there were a minority of trials in 

which the feature in the participant’s strongest dimension did not indicate the correct 

category. Participants could only give the correct response on these trials if they had also 

acquired some knowledge of the other two dimensions, which would direct them toward the 

correct response. Consequently, we expected SD patients to have particular difficulty on 

these trials, because it was not possible for them to select the correct category unless they had 

achieved integrated learning across multiple dimensions. 

Figure 5A shows correct responses in each condition, averaged within the two groups. The data were 

analysed with 2 × 2 mixed ANOVA that included condition and group. This revealed main effects of 

both group (F(1,17) = 10.7, p = 0.005) and condition (F(1,17) = 89,  p < 0.001). The condition effect 

indicates that both groups found the inconsistent trials more difficult. Critically, there was also a 

highly significant interaction (F(1,17) = 10.8, p = 0.004). Post-hoc tests indicated that patients 

performed as accurately as controls on consistent trials (t <1) but were substantially impaired on 

inconsistent trials (t(19)= 4.15, p = 0.001). This supports the hypothesis that patients were less able 

to form representations that included information from multiple dimensions and instead responded 

solely on the basis of their strongest dimension. 

 Generalisation test: The generalisation test probed participants’ ability to apply their acquired 

knowledge of the categories to novel stimuli. Performance on the new stimuli was above chance in 

both groups (one-tailed one-sample t-tests: SD patients: t(6) = 1.94, p = 0.05; Controls: t(11) = 3.19, 

p = 0.009). We also compared performance on the generalisation stimuli with performance in the 

final block of the learning task, to assess how successfully learning transferred to new exemplars. 

For the purposes of this comparison, we excluded the six highly prototypical stimuli from the 

training set (i.e., the stimuli on the top row of Figure 1A that possessed all three typical features for 

the category). These stimuli were considerably easier to classify because they possessed all three 
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typical features. We excluded them because there were no equivalent stimuli in the generalisation 

set: all of the generalisation had at least one feature associated with the opposing category. 

 Performance for generalisation trials and equivalent learning trials is shown in Figure 5B. A 2 

× 2 ANOVA revealed no difference between learning and generalisation (F(1,17) = 1.79, p = 0.2), no 

effect of group (F(1,17) = 0.91, p = 0.4) and no interaction (F(1,17) = 0.59, p = 0.5). Based on these 

findings, it is unlikely that either patients or controls were memorising the correct category for 

individual stimuli. Instead, they attempted to form more general representations of the characteristics 

of each category, which allowed them to generalise to new exemplars. 

 Visual discrimination test: The visual discrimination test measured participants’ ability to 

perceive the conjunctions of features present in the stimuli and to discriminate between them. 

Patients and controls performed close to ceiling, even for the most demanding trials (see Figure 5C). 

A 3 (condition) × 2 (group) mixed ANOVA comparing patients with controls revealed no main 

effect of either group (F(1,11) = 1.65, p = 0.2) or condition (F(2,22) = 0.38, p = 0.5) and no 

interaction (F(2,22) = 0.60, p = 0.6). The performance of each individual patient was compared with 

the control group using the modified t-test (Crawford and Howell, 1998). No patient showed a 

significant impairment in any of the conditions (all t < 1.4, p > 0.1), indicating that their abnormal 

performance on the learning task was not due to difficulty in discriminating visually between the 

exemplars. 

 

Discussion 

 The ATLs are thought to play a central role in the representation of conceptual knowledge 

(Patterson et al., 2007; Lambon Ralph et al., 2010). Here, we investigated how damage to the ATLs 

affects acquisition of new concepts. SD patients completed a category learning task, in which the 

category members conformed to a family resemblance structure designed to replicate the key 

computational challenges of acquiring real-world concepts. The patients were able to learn some 

information about the stimuli but did so in a sub-optimal fashion that differed from healthy controls 

in systematic and theoretically important ways. For optimal performance, it was necessary to 

integrate all three critical dimensions of the stimuli into a coherent representation. Patients were 

unable to do this and instead based all of their category judgements on a single dimension. This 

deficit is consistent with the hub-and-spoke theory of conceptual knowledge and specifically with the 

theory that the ATLs act as a pan-modal representational hub, which integrates a concept’s disparate 

sensory-motor and verbal features into a single coherent representation (Rogers et al., 2004; Lambon 

Ralph et al., 2010). With damage to the ATLs, SD patients largely retained the ability to associate 
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individual stimulus features with novel categories but were unable to acquire the integrated feature 

structure necessary for optimal discrimination between the two categories. 

 SD patients also demonstrated over-generalisation of the successful learning in their preferred 

dimension: information from one dimension dominated category decisions, even when the other 

features of the stimulus pointed towards an alternative response. This over-generalisation of 

remaining knowledge is also common when SD patients attempt to make use of their remaining 

conceptual knowledge in everyday life and in clinical assessment (Lambon Ralph and Patterson, 

2008; Lambon Ralph et al., 2010). Over the course of the disease, patients become increasingly 

likely to over-extend category boundaries on the basis of superficial characteristics (e.g., accepting a 

butterfly as a type of bird; Mayberry et al., 2011), to use a single, highly familiar concept label to 

refer to a whole class of items (e.g., all forms of fruit may be called “apples”; Hodges et al., 1995), 

and to imbue items with over-generalised, stereotypical attributes in delayed-copy drawing (e.g, the 

case of the four-legged duck; Bozeat et al., 2003; Lambon Ralph and Howard, 2000). In the present 

study, we were able to unmask one of the basic mechanisms underpinning this profound 

deterioration in conceptual representation: cerebral atrophy in SD affects integrated conceptual 

representations that bind together the various sources of information that characterise a particular set 

of items. Without these coherent concepts, classification and identification of objects comes to 

depend on superficial surface characteristics. 

 Interestingly, another study indicates that SD patients can successfully make category 

judgements about novel items when they are not required to form integrated representations. Koenig 

et al. (2006) investigated six SD patients’ ability to classify novel stimuli based on a category 

membership rule and on similarity to a prototype. Koenig et al.’s study differs from ours in that 

Koenig et al. explicitly provided patients with the appropriate rule to apply or prototype to compare 

during categorisation. In contrast, we required patients to learn the relevant category structure 

themselves through feedback. Patients in the Koenig et al. study performed similarly to controls and 

the authors attributed this good performance to intact attentional and executive processes. One 

possibility for the difference between the two studies is that the application of explicit rules to 

determine category membership depends heavily on executive and attentional processes, while the 

acquisition of multi-dimensional feature structure is a more automatic process involving implicit 

learning mechanisms in temporal regions. This assertion is supported by an investigation in healthy 

participants, on which the present learning task was based (Waldron and Ashby, 2001). As in our 

study, participants were trained to classify stimuli without being given any explicit instruction 

regarding the structure of the category. They were trained with category structures in which a single 

feature determined category membership as well ones that required integration of features. Crucially, 
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an executively-demanding concurrent task slowed learning of the single-feature categories but had 

little effect on the categories that required integration. The authors suggested that learning a single-

feature category involved using executive resources to extract an explicit rule that governs category 

membership. In contrast, learning of the feature-integration categories was assumed to be an implicit 

stimulus-driven process (see also Ashby and Ell, 2001). Relating these findings to our patient group, 

it appears that while integration of features was impaired, executively-mediated rule extraction was 

intact in most cases, hence their over-learning of a single feature dimension. However, the two most 

severe patients (NH and ET) were less successful in acquiring appropriate single-feature information, 

perhaps indicating a decline in executive processes as the disease progresses.  

 Which regions within the ATLs are critically involved in acquiring and storing coherent 

concepts? In SD, atrophy affects the entire ATL region, though it is concentrated in polar and 

ventrolateral regions (Mion et al., 2010; Gorno-Tempini et al., 2004). Converging evidence from 

other methodologies have also implicated the ventral and lateral aspects of the ATLs in the 

representation of conceptual knowledge (Binney et al., 2010; Pobric et al., 2007; Visser and Lambon 

Ralph, 2011; Marinkovic et al., 2003). A parallel line of work has implicated medial anterior 

temporal regions, particularly the perirhinal cortex, in the perception and learning of novel feature 

conjunctions, both in humans (Barense et al., 2005; Taylor et al., 2006) and non-human primates 

(Bussey et al., 2002; Murray and Richmond, 2001). Damage to this region is associated with deficits 

in discriminating between novel stimuli based on conjunctions of their features. Medial and 

ventrolateral temporal regions also appear to interact in the acquisition and representation of 

concepts. For example, neurons in both the perirhinal and ventrolateral ATLs change their response 

characteristics as monkeys learn novel visual associations, suggesting that both areas are involved 

(Messinger et al., 2001). It is likely that medial temporal regions play a critical role in the perception 

and initial encoding of new conceptual information, while ventrolateral temporal cortex is necessary 

for longer-term storage of concepts (Albright, 2012; Squire et al., 2004). Established theories of 

learning hold that this division of labour is necessary to avoid catastrophic interference between 

similar representations (McClelland et al., 1995). It is also consistent with the data observed in this 

study. SD patients were not generally amnesic for novel information, as would be expected in 

patients with medial temporal lobe dysfunction: they were able to learn single-feature information 

and maintain this between the two training sessions. Nor were they impaired in perceptual 

discriminations based on conjunctions of features (though another study has shown that SD patients 

can be impaired on such discriminations for meaningful items; Barense et al., 2010). In contrast, 

their deficits stemmed from an inability to extract the underlying patterns of feature co-occurrence 

present over many trials to form representations of the two stimulus categories. However, a great 
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deal more work is needed to determine precisely how different sub-regions within the ATLs work 

together to process complex feature conjunctions in a single experience and to integrate information 

acquired over many experiences into coherent concepts. The striatum and putamen are also involved 

in learning to classify stimuli when integration of two dimensions is required, particularly in the 

early stages of learning (Waldschmidt and Ashby, 2011). These subcortical structures are intact in 

SD (Mummery et al., 2000) but their interaction with the damaged temporal cortex has not been 

investigated. 

  In this study, we focused on the integration of stimulus features within the visual modality. 

However, it is important to note that the ATLs play an important role in integrating conceptual 

knowledge across modalities: they are equally activated during conceptual processing of visual and 

auditory stimuli, both verbally and non-verbally (Binney et al., 2010; Visser and Lambon Ralph, 

2011; Spitsyna et al., 2006). In the primate literature, the ATLs have been associated with associative 

learning both within the visual modality (Messinger et al., 2001; Albright, 2012) and across different 

sensory modalities (Parker and Gaffan, 1998; Murray and Richmond, 2001). Indeed, the ATLs are 

strongly connected to visual, auditory and other sensory cortices (Pandya and Seltzer, 1982; Moran 

et al., 1987), making this region a key area of polysensory or “transmodal” cortex (Mesulam, 1998; 

Patterson et al., 2007; Simmons and Barsalou, 2003). The hub-and-spoke model distinguishes 

between this transmodal cortex and spoke regions that are sensitive to structure in a single modality, 

though this distinction may be relative rather than absolute. Recently, we have proposed that the 

anterior temporal region acts as a graded representational space (Plaut, 2002), in which the type of 

information coded by each area of cortex is determined by the inputs it receives from sensory and 

unimodal association cortices (Binney et al., 2012). For example, the dorsolateral ATL receives 

strong input from the posterior superior temporal gyrus, leading this area to exhibit relative 

specialisation for information in auditory and verbal modalities (Visser and Lambon Ralph, 2011). 

Ventromedial ATL is strongly connected with ventral occipitotemporal cortex, leading to a 

prominent role in coding visual properties. Critically, between these extremes lies equi-modal cortex 

in the inferior temporal and fusiform gyri that responds similarly across modalities and presumably 

codes transmodal structure. In summary, the process of extracting meaning from our experience with 

objects involves the fusion of complex sets of information from sensory inputs, motor programmes 

and verbal experience. We have demonstrated that one key aspect of this process, the integration of 

individual features into coherent concepts, depend critically on the ATLs.  
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Table 1: Demographic information and background neuropsychology 

 

Test Max JW MT MB PL PW NH ET Control mean 

(range) 

Sex  F F F F M F F  

Age  63 61 61 73 73 69 80  

School-leaving age  16 16 15 15 17 16 14  

Cambridge Semantic Battery          

Picture Naming 64 43 44 32 22 8 11 0 62.3 (57-64) 

Word-picture matching 

(chance level=6/64) 

64  61 50 48 43 33 19 14 63.8 (63-64) 

Semantic association (CCT) 64 49 37 30 30 34 24 NT 59.1 (51-62) 

Category fluency (6 

categories) 

- 53 50 37 26 22 14 8 95.7 (61-134) 

General Neuropsychology          

ACE-R 100 62 67 67 56 41 29 43 93.7 (85-100) 

MMSE 30 29 27 27 23 23 17 21  

Visuospatial          

Rey figure copy 36 34 36 35 31 34 27.5 29.5 34.0 (31-36) 

VOSP number location 10 8 10 10 7 10 10 7 9.4 (7-10) 

VOSP cube analysis 10 10 10 10 9 10 8 10 9.7 (6-10) 

Attention/Executive          

Digit span forward - 6 7 6 8 5 4 7 6.8 (4-8) 

Digit span backward - 6 6 4 5 4 4 6 4.8 (3-7) 

Raven’s coloured progressive 

matrices 

36 32 34 31 31 34 13 29  

ACE-R = Addenbrookes Cognitive Examination – Revised (Mioshi et al., 2006); MMSE = Mini-

mental state examination (Folstein et al., 1975). VOSP = Visual Object and Space Perception battery 

(Warrington and James, 1991). CCT = Camel and Cactus test (Bozeat et al., 2000). 
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Figure 1: Experimental Stimuli 

 

 

 

(A) Stimuli were divided into two categories according to a family resemblance structure. The top 

row of the training set comprises exemplars that possessed all three typical features of their 

respective category. The remaining exemplars possessed two typical features of the category and one 

feature associated with the opposing category. Stimuli in the generalisation set were not presented 

during training but retained for subsequent test. (B) Perceptual discrimination test. Each trial 

comprised three identical pairs of stimuli and a lone one odd-one-out. The three levels of ambiguity 

manipulated the number of features the odd-one-out shared with the pairs. 
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Figure 2: Structural imaging 

 

  
 

Structural MR or CT images for patients, indicating anterior temporal atrophy in each case. No 

images were available for PW, though an MR scan report confirmed that this patient also had 

anterior temporal damage. 
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Figure 3: Individual performance profiles 

 

 

 

Pattern of responding for all patients and two representative controls. The y-axis shows the 

probability of responding “B” to stimuli with each feature. All three dimensions were relevant for 

classification. Control 1 displayed an optimum pattern of learning, successfully learning the 

category-feature associations in each dimension. Control 2 was less successful but still displayed 

modest learning in all three dimensions. In contrast, patients were more likely to learn the category 

structure in only a single dimension. B colour = background colour.
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Figure 4: Sensitivity to stimulus dimensions 

 

 
(A) Strength of learning (d’) on each dimension for each patient and the two groups (see text for details). The blue line indicates the optimum d’ for all three 

dimensions. Patients are arranged in descending order of semantic performance (word-picture matching). (B) D’ measure for the shape colour dimension, which 

was irrelevant for classification. The optimum d’ in this case is zero. * indicates p = 0.04; ** indicates p = 0.003 and ~ indicates p = 0.07.

A. 

B. 



 

27 

 

Figure 5: Response accuracy on each test 

 

 
 

(A) Accuracy during the final phase of learning, with trials divided according to their consistency with each participant’s most strongly learned dimension. (B) 

Accuracy in classifying generalisation stimuli introduced after the training period, compared with equivalent stimuli in the learning period. (C) Accuracy in 

perceptual discrimination at varying levels of complexity. 

Stimulus Type 

A. Learning success B. Generalisation C. Visual discrimination 


