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Abstract

Thanks to recent progress in category-level object recog-
nition, we have now come to a point where these techniques
have gained sufficient maturity and accuracy to succesfully
feed back their output to other processes. This is what we
refer to as cognitive feedback. In this paper, we study one
particular form of cognitive feedback, where the ability to
recognize objects of a given category is exploited to infer
meta-data such as depth cues, 3D points, or object decom-
position in images of previously unseen object instances.
Our approach builds on the Implicit Shape Model of Leibe
and Schiele, and extends it to transfer annotations from
training images to test images. Experimental results vali-
date the viability of our approach.

1. Introduction

Even when presented with a single image, a human ob-
server can deduce a wealth of information, including the
overall 3D scene layout, material types, or ongoing ac-
tions. This ability is only in part achieved by exploiting
low-level cues such as colors, shading patterns, textures,
or occlusions. At least equally important is the inference
coming from higher level interpretations, like object recog-
nition. Even in the absence of correct low-level cues, one is
still able to estimate depth, as illustrated by the example of
Fig. 1.

These observations are mirrored by neurophysiological
findings, as ‘low-level’ areas of the brain do not only feed
into the ‘high-level’ ones, but invariably the latter channel
their output into the former. The resulting feedback loops
over the semantic level are key for successful scene under-
standing, seee.g. Mumford’s Pattern Theory [12]. The brain
seems keen to bring all levels, from basic perception up to
cognition into unison.

These are exciting times for computer vision in that, for
the first time, we are capable of implementing such cog-
nitive feedback. Indeed, our community has made impor-
tant strides forward in the recognition of object and action
classes lately. The first examples of cognitive feedback have
in fact already been implemented [7, 4]. However, so far

Figure 1.Humans can infer depth in spite of failing low-level cues,
thanks to cognitive-feedback in the brain. Recognizing thebuild-
ings and the scene as a whole injects information about 3D struc-
ture (e.g. how street scenes are spatially organized, and that build-
ings are parallelepipeda). In turn this enables, e.g. to infer the ver-
tical edges of buildings although they do not appear in the image.
Besides, we are also able to estimate the relative depths between
buildings, from this single image.

they only coupled recognition and crude 3D scene informa-
tion (the position of the groundplane).

Here we set out to demonstrate the wider applicability
of cognitive feedback, by inferring ‘meta-data’ such as 3D
object shape, material characteristics, or the location and
extent of object parts, based on object class recognition.
Given a set of annotated training images of a particular
object class, we transfer these annotations to new images
containing previously unseen object instances of the same
class. The result can then be used to tune and robustify the
low-level feature extraction for a refined scene interpreta-
tion. Such loop closure is reminiscent of adaptive acuity
effects found in psychophysics. Here we focus on the infer-
ence from high-level recognition to low-level cues.

We present a mechanism to automatically transfer
object-oriented annotations, made explicit in training im-
ages, to test images. This mechanism is fully integrated
within the recognition system. In a way, this work is akin
to the concept ofimage analogiesintroduced by Hertzmann
et al. [3]. Given a training image, its filtered version and a
test image, a new analogously filtered image is synthesized.



In contrast to our work, such transfer is between low-level
cues, replacing pixel patterns by filtered versions. In our
setting, the differences between training and test images are
usually too large to allow for a similar approach. More-
over, their method is computationally quite demanding and
would be difficult to extend to the amount of data necessary
to train object class detectors.

Similarly, Hoiemet al. [5] estimate the coarse geometric
properties of a scene by learning appearance-based models
of surfaces at various orientations. By doing so, they are
able to obtain rough 3D geometric information from a sin-
gle image. Also there is no cognitive information involved,
but the method relies solely on the statistics of small image
patches. In [16], Sudderthet al. also combine recognition
with coarse 3D reconstruction in a single image, by learning
depth distributions for a specific type of scene from a set of
stereo training images. In the same line, Saxenaet al. [15]
are able to reconstruct coarse depth maps for an entire scene
by means of a Markov Random Field. Han and Zhu [2] ob-
tain quite detailed 3D models from a single image through
graph representations, but their method is limited to specific
classes.

As mentioned earlier, in their more recent work [4],
Hoiem et al. do exploit cognitive-level information. They
employ cars and pedestrians detected by an object class
recognition method to update estimates of simple geomet-
ric properties of the scene (position of the horizon line and
location of the ground plane). These are in turn used to re-
move false-positive object detections (e.g. those far above
the horizon line). Similar ideas can be found in the work of
Leibeet al. [7], but then for stereo images in the context of
3D city modeling. In both cases, the cognitive loop is im-
plemented at high-level, reasoning about objects as a whole,
without feedback to lower level data as we do.

In the context of object recognition, Hoiem et al. have
recently extended their Layout Conditional Random Field
framework to input a 3D model, in order to recognize cars
from multiple viewpoints [6]. Although their paper shows
results on recognition only, their method might potentially
also be applied to get an estimate of the depth for the car.

The main contribution of this paper consists in closing
the loop by providing a mechanism to go back from high
level interpretations to low-level image processing. Accu-
rate feedback of high-level recognition information to low-
level cues involves more than simply backprojecting a sin-
gle generic annotation mask. Indeed, the within-class vari-
ability needs to be taken into account. Building on the Im-
plicit Shape Model proposed by Leibe and Schiele [8], we
collect pieces of annotation from different training images
and merge them into a novel annotation mask that matches
the underlying image data.

The paper is organized as follows. First, we recapit-
ulate the Implicit Shape Model of Leibe and Schiele [8]
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Figure 2.The recognition procedure of the ISM system.

for simultaneous object recognition and segmentation (sec-
tion 2). Then follows the main contribution of this paper, as
we explain how we transfer meta-data from training images
to a previously unseen image (section 3). We demonstrate
the viability of our approach by transferring both depth in-
formation as well as object parts for cars (section 4). Sec-
tion 5 concludes the paper.

2. Object Class Detection with an Implicit
Shape Model

In this section we briefly summarize theImplicit Shape
Model (ISM) approach proposed by Leibe & Schiele [8],
which we use as the object class detection technique under-
lying our approach (see also Fig. 2).

Given a training set containing example images of sev-
eral instances of a certain category (e.g. sideviews of cars)
as well as their segmentations, the ISM approach builds a
model that generalizes over within-class variability. The
modeling stage constructs a codebook of local appearances,
i.e. of local structures that appear repeatedly on the training
instances. The codebook entries are obtained by clustering
image features sampled at interest point locations. Instead
of searching for exact correspondences between a novel test
image and candidate model views, the ISM approach maps
sampled image features onto this codebook representation.
We refer to the features in an image that are mapped onto a
codebook entry asoccurrencesof that codebook entry. The
spatial intra-class variability is captured by modeling spa-
tial occurrence distributions for each codebook entry. Those
distributions are estimated by recording all locations a code-
book entry is matched to on the training objects, relative
to the annotated object centers. Together with each occur-
rence, the approach stores a local segmentation mask, which
is later used for inferring top-down segmentations.

ISM Recognition. The ISM recognition procedure is for-
mulated as a probabilistic extension of the Hough transform
[8]. Let e be a sampled image patch observed at locationℓ.
The probability that it matches to codebook entryci can be
expressed asp(ci|e). Each matched codebook entry then
casts votes for instances of the object categoryon at dif-
ferent locations and scalesλ = (λx, λy, λs) according to



its spatial occurrence distributionP (on, λ|ci, ℓ). Thus, the
votes are weighted byP (on, λ|ci, ℓ)p(ci|e), and the total
contribution of a patch to an object hypothesis(on, λ) is
expressed by the following marginalization:

p(on, λ|e, ℓ) =
∑

i

P (on, λ|ci, ℓ)p(ci|e) (1)

The votes are collected in a continuous 3D voting space
(translation and scale), and maxima are found using Mean
Shift Mode Estimation with a scale-adaptive uniform kernel
K [8]:

p̂(on, λ) =
1

h(λ)3

∑

k

∑

j

p(on, λj |ek, ℓk)K

(

λ − λj

h(λ)

)

(2)

Each local maximum in this voting space yields an hypoth-
esis that an object instance appears in the image at a certain
location and scale.

Top-Down Segmentation. For each hypothesis, the ISM
approach then computes a probabilistic top-down segmen-
tation in order to determine the hypothesis’s support in the
image. This is achieved by backprojecting the contributing
votes to the image and using the stored local segmentation
masks to infer the per-pixel probabilities that the pixel con-
tainsfigureor groundgiven the hypothesis [8]. More pre-
cisely, the probability for a pixelp to befigure is computed
as a weighted average over the segmentation masks of the
occurrences of the codebook entries to which all features
containingp are matched. The weights correspond to the
patches’ respective contributions to the hypothesis at loca-
tion x.

p(p = figure|on, x)

=
P

p∈e

P

i
p(p = figure|e, ci, on, λ)p(e, ci|on, λ)

=
P

p∈e

P

i
p(p = figure|ci, on, λ) p(on,λ|ci)p(ci|e)p(e)

p(on,λ)
(3)

We underline here that a separate local segmentation mask
is kept for every occurrence of each codebook entry. Dif-
ferent occurrences of the same codebook entry in a test im-
age will thus contribute different segmentations, based on
their relative location with respect to the hypothesized ob-
ject center.

In early versions of their work [8], Leibe and Schiele in-
cluded another optional processing step, where the hypoth-
esis is refined by a guided search for additional matches in
the test image (see also Fig. 2). This can improve the qual-
ity of the segmentations, but at a rather high computational
cost. The procedure involved uniform sampling, which be-
came untractable once scale-invariance was introduced into
the system. We therefore implemented a more efficient re-
finement algorithm as explained in section 3.3.

MDL Verification. In a last processing stage, the com-
puted segmentations are exploited to refine the object de-
tection scores, by taking onlyfigure pixels into account.

Figure 3.Transferring (discrete) meta-data. Top row: two train-
ing images and their respective annotations. Bottom row: a test
image. The corner of the license plate matches with a codebook
entry which has occurrences on similar locations in the training
images. The annotation patches for those locations are combined
and instantiated in the output annotation (bottom right).

Besides, this last stage also disambiguates overlapping hy-
potheses. This is done by a hypothesis verification stage
based on Minimum Description Length (MDL), which
searches for the combination of hypotheses that together
best explain the image. For details, we again refer to [8, 9].

3. Transferring Meta-data

The power of the ISM approach lies in its ability to rec-
ognize novel object instances as approximate jigsaw puz-
zles built out of pieces from different training instances.
In this paper, we follow the same spirit to achieve the new
functionality of transferring meta-data to new test images.

Example meta-data is provided as annotations to the
training images. Notice how segmentation masks can be
considered as a special case of meta-data. Hence, we
transfer meta-data with a mechanism inspired by that used
above to segment objects in test images. The training meta-
data annotations are attached to the occurrences of code-
book entries, and transferred to a test image along with
each matched feature that contributed to the final hypothesis
(Fig. 3). This strategy allows us to generate novel annota-
tions tailored to the new test image, while explicitly accom-
modating for the intra-class variability.

Unlike segmentations, which are always binary, meta-
data annotations can be either binary (e.g. for delineating
a particular object part or material type), discrete (e.g. for
identifying all object parts), real-valued (e.g. depth values,
or surface reflectance characteristics), or even vector-valued
(e.g. surface orientations). We first explain how to transfer
discrete meta-data (section 3.1), and then extend the method
to the real-valued or vector-valued case (section 3.2).

3.1. Transferring Discrete Meta-data

In case of discrete meta-data, the goal is to assign to each
pixel of the detected object a labela ∈ {aj}j=1:N . We



first compute the probabilityp(p = aj) for each labelaj

separately. This is achieved in a way analogous to what is
done in eq. (3) forp(p = figure), but with some extensions
necessary to adapt to the more general case of meta-data.

p(p = aj |on, x) =
∑

p∈N(e)

∑

i p(p=aj |ci,on,λ)p(â(p)=ae(p)|e)p(e,ci|on,λ) (4)

This will be explained in detail next. One extension consists
in transferring annotations also from image patchesnearthe
pixelp, and not only from thosecontainingit. With the orig-
inal version, it is often difficult to obtain full coverage of
the object, especially when the number of training images
is limited. This is an important feature, because produc-
ing the training annotations can be labour-intensive (e.g. for
the depth estimates of the cars in section 4). Our notion of
proximity is defined relative to the size of the image patche,
and parameterized by a scalefactorsN . More precisely, let
an image patche be defined by the coordinates of its center
and its scaleeλ, i.e. e = (ex, ey, eλ). The neighbourhood
N(e) of e is defined as

N(e) = {p|p ∈ (ex, ey, sN · eλ)} (5)

A potential disadvantage of the above procedure is that
with p = (px, py) outside the actual image patch, the trans-
ferred annotation gets less reliable. Indeed, the pixel may
lie on an occluded image area, or small misalignment errors
may get magnified. Moreover, some differences between
the object instances shown in the training and test images
that were not noticeable at the local scale can now affect
the results. To compensate for these phenomena, we add a
factor to eq. (4), which indicates how probable it is that the
transferred annotationae(p) still corresponds to the ‘true’
annotationâ(p). This probability is modeled by a Gaus-
sian, decaying smoothly with the distance from the center
of the image patche, and with variance related to the size
of e by a scalefactorsG:

p
(

â(p) = ae(p) | e
)

=
1

σ
√

2π
exp(−(dx

2 + dy
2)/(2σ2))

with σ = sG · eλ

(dx, dy) = (px − λx, py − λy) (6)

Once we have computed the probabilitiesp(p = aj) for
all possible labels{aj}j=1:N , we come to the actual as-
signment: we select the most likely label for each pixel.
Note how for some applications, it might be better to keep
the whole probability distribution{p(p = aj)}j=1:N rather
than a hard assignment,e.g. when feeding back the infor-
mation as prior probabilities to low-level image processing.

An interesting possible extension to the above scheme
is to enforce spatial continuity between labels of neighbor-
ing pixels. This could be achieved either by smoothing, by

relaxation, or by representing the image pixels as a MRF.
However, whether this is applicable depends on the actual
semantic meaning of the annotations, and on the application
scenario. In the two scenarios we experimented with (infer-
ring object part labels, and 3D depth values), we achieved
good results already without enforcing spatial continuity.

The practical implementation of this algorithm requires
rescaling and resampling the annotation patches. In the
original ISM system, bilinear interpolation is used for
rescaling operations, which is justified because segmenta-
tion data can be treated as probability values. However, in-
terpolating discrete labels such as ’windshield’ or ’bumper’
does not make sense. Therefore, rescaling must be carried
out without interpolation.

3.2. Transferring Real- or Vector-valued Meta-data

In many cases, the meta-data is not discrete, but rather
real-valued or vector-valued. For example 3D depth is real-
valued, and surface orientation is vector-valued. Ideally,
we should extend the method from the previous paragraph
to work with real-valued data in all phases of the process.
However, we can also approximate the real-valued case by
using a large number of quantization steps. This has the ad-
vantage that we can re-use most of the same system as for
the discrete case. Additionally, it avoids problems inherent
with some types of real-valued data, for instance continuity
constraints. The following approach, which produces con-
tinuous annotations by passing through a discrete approxi-
mation first, delivers good results (section 4.1).

First, we discretize the annotations into a fixed set of
‘value labels’ (e.g. ‘depth 1’, ‘depth 2’, etc.). This allows
to proceed in a way analogous to eq. (4) to infer for each
pixel a probability for each discrete value. In the second
step, we select for each pixel the discrete value label with
the highest probability, as before. Next, we refine the esti-
mated annotation value by fitting a parabola to the proba-
bility scores for the maximum value label and the two im-
mediate neighbouring value labels, and selecting the value
corresponding to the maximum of the parabola. This is a
similar method as used in interest point detectors ([1, 10])
to determine continuous scale coordinates and orientations
from discrete values. Thanks to this interpolation proce-
dure, we obtain real-valued annotations. In our 3D depth
estimation experiments this makes a significant difference
in the quality of the results (section 4). In the case of vector
valued meta-data, the same procedure can be followed, only
now with a(D + 1)-dimensional paraboloid.

3.3. Refining Hypotheses

When large areas of the object are insufficiently covered
by interest points, no meta-data can be assigned to these
areas. Using a large value forsN will only partly solve



this problem, because there is a limit as to how far infor-
mation from neighboring points can be reliably extrapo-
lated. A better solution is to actively search for additional
codebook matches in these areas. The refinement proce-
dure in early versions of the ISM system [8] achieved this
by means of uniform sampling, which is untractable in the
scale-invariant case. Therefore we implemented a more effi-
cient refinement algorithm which only searches for matches
in the most promising locations.

For each initial hypothesis, new candidate points are gen-
erated by backprojecting all occurrences in the codebook,
according to the location and scale of the hypothesis. Points
nearby existing interest points are omitted. When the fea-
ture descriptor for a new point matches with the codebook
cluster(s) that backprojected it, an additional vote is cast for
the hypothesis. The confidence for this new vote can be re-
duced by a penalty factor to reflect the fact that it was not
generated by an actual interest point. The additional votes
enable the meta-data transfer to cover those areas that were
initially missed by the interest point detector.

This refinement step can either be performed on the final
hypotheses that result from the MDL verification, or on all
hypotheses that result from the initial voting. In the latter
case, it will improve MDL verification by enabling it to ob-
tain better figure area estimates of each hypothesis [8, 9].
This makes the refinement procedure part of a small cogni-
tive loop within the recognition system.

4. Experimental evaluation

We evaluate our approach on two different scenarios for
the object class car. In the first, we recover a 3D depth
map, indicating for each pixel the distance from the cam-
era (a real-valued labeling problem). We stress that this is
achieved from a single image of a previously unseen car. In
the second scenario, we aim at decomposing the car in its
most important parts (wheels, windshield, etc.), which is a
discrete labeling problem.

Our dataset is a subset of that used in [7]. It was obtained
from the LabelMe website [14], by extracting images la-
beled as ‘car’ and sorting them according to their pose. For
our experiments, we only use the ‘az300deg’ pose, which is
a semi-profile view. In this pose both the front (windscreen,
headlights, license plate) and side (wheels, windows) are
visible. This allows for more interesting depth maps and
part annotations compared to pure frontal or side views. The
dataset contains a total of 139 images. We randomly chose
79 for training, and 60 for testing.

4.1. Inferring Depth Information

In our first experiment, the idea is to infer approximate
3D information from recognized cars. A possible scenario
is an automated car wash. Even though most automated

Figure 4.Obtaining depth maps for the car images. Left shows
the original image, middle the image with the most suitable 3D
model superimposed (notice how the model for the second car is a
completely different brand, but still fits fairly well). Therightmost
images show the depth maps obtained from the 3D model.

car wash systems are equipped with sensors to measure the
distance to the car, they are only used locally while the ma-
chine is already running. It could be useful to optimize the
washing process beforehand, based on the global shape of
the car.

Training We trained an ISM system on the 79 training
images, using a Hessian-Laplace interest point detector and
Shape Context descriptors. These have been shown to yield
superior performance in previous evaluations [11].

In our cognitive-feedback approach, we input a depth
map as meta-data for each training image. In general,
any applicable method like structure-from-motion or a laser
scanner could be used to automatically obtain depth maps.
In order to reuse an existing dataset for which training depth
maps are not available, we used a custom approach which
consists in manually aligning a 3D car model on top of each
image. The depth map is then derived from the aligned 3D
models. This method produces maps which are more ac-
curate and smooth than when using SFM, which could be
hampered by the specularities on typical cars.

We collected a set of 223 3D models from the web-
site “DMI car 3D models”1, and converted them to a stan-
dard format (VRML97). A custom OpenGL application
was written to align the models with the images. It al-
lows to superimpose the 3D model over the image semi-
transparantly, and manipulate its pose and camera param-
eters until it matches sufficiently. An accurate depth map
can easily be obtained by extracting the OpenGL Z-buffer
(Fig. 4).

Unfortunately, the 3D models are not designed to match
the ordinary cars present in the LabelMe images. Most

1http://dmi.chez-alice.fr/models1.html



3D models cover high-range, but unfortunately uncommon,
cars such as the Bugatti Veyron. Nevertheless, for nearly
all training images we could pick a 3D model with a shape
similar to the car in the image. For a few exceptional im-
ages, we assembled a custom 3D model by combining parts
from other 3D models.

A second problem is ensuring that the depth maps are
consistent with each other, which is required for our method
to produce correct annotations on new test images. We nor-
malize the depth maps, based on the fact that cars have ap-
proximately the same widthw. We define the minimum
and maximum depth for each 3D model asdmin = zc − r,
dmax = zc + r respectively, withzc the Z-coordinate of the
model’s center. The radiusr is calculated as the model’s ac-
tual width, multiplied by a factor1.75. This ensures no part
of the 3D model lies outside the allowed depth range, in any
pose. By rescaling all depth values within a range from0
for dmin to 1 for dmax, the depth maps are effectively nor-
malized. An approximate real-world depth (relative to the
car’s center, which has depth0.5) can be estimated from the
normalized values by multiplication by3.5w.

We quantize the normalized depth maps to20 discrete
values and use our method of section 3.2 to transfer the
depth maps.

Testing The recognition part of this experiment is only
moderately challenging because each image contains ex-
actly one car at a similar scale as the training data. How-
ever, our goal is not to demonstrate the recognition perfor-
mance of ISM (which was thoroughly investigated in previ-
ous works [8, 9]). Instead, we want to evaluate depth map
annotations generated by our extension to the system (sec-
tion 3.2). Hence we run the standard recognition procedure
of section 2 on each image, and select the detection with
highest score for meta-data transfer. The refinement proce-
dure of section 3.3 was performed on all initial hypotheses.

A few of the resulting depth maps are shown in Fig. 5.
The results look good, especially considering the limitations
of our training data. Note how the depth maps adapt to the
actual shape of the car, which would be impossible when
fitting a generic car model to the detection.

To evaluate the experiment quantitatively, we calculate a
set of scores based on statistics gathered over all images.
We defineleakageas the percentage of background pix-
els in the ground-truth annotation that were labeled as non-
background by the system. The leakage for this experiment,
averaged over all test images, is4.79%. We also define
a coveragemeasure, as the percentage of non-background
pixels in the ground-truth image labeled non-background
by the system. The coverage obtained by our algorithm is
94.6%. This means our method is able to reliably segment
the car from the background.

To evaluate the error in depth reconstruction, we con-

Figure 5.Results for the depth map experiment. The left column
shows the test images, the middle column ground truth depth maps,
and the right column the output of our system. The light blue areas
are unlabeled and can be considered background.

sider the average absolute value of depth differences. Be-
cause the background is the largest area in all images and
its depth value is arbitrary, it would be unfair to calcu-
late the average error over the entire image. The system’s
figure-background separation ability is already captured in
the coverage and leakage measures. Therefore we only con-
sider the pixels that are labeled ‘object’ in both the training
and test images. The average error measure over this area
is 0.042. To convert this error to a real-world value, we
measured the average widthw of a car (side mirrors in-
cluded) to be approximately 1.8m. Multiplying the depth
error by3.5w yields an approximate real-world distance, as
explained in the ‘Training’ paragraph, of0.27m.

The resulting depth maps are of course not absolute, but
relative to the object’s centers. In an application where an



Figure 6.Example training object decompositions.

absolute depth is required, the distance from the camera to
the object should be estimated,e.g. based on the scale of the
detection and camera parameters, or obtained from a system
like [15], and added to the relative depth values.

4.2. Object Decomposition

Another scenario where cognitive feedback is desirable,
is traffic surveillance. A traffic control system may auto-
matically detect and attempt to identify each individual car,
in order to track it across multiple, active cameras. The
first stage in this process is the detection of each car. Next,
some kind of unique identifier, such as the license plate, is
required. To facilitate the reading of the license plate on
an unknown image of an arbitrary car, it would be useful
to know where to look in the image. Humans know imme-
diately where the plate is located, because they recognize
the car. Actually, the license plate itself might even have
contributed to the recognition. In contrast, classic computer
vision approaches typically search the whole image. This
is slow and unreliable. Due to its small scale and unchar-
acteristic shape, many image areas look like license plates,
resulting in many false-positive detections.

In this experiment, we use a different type of meta-data
on the same dataset. It illustrates how the recognition of
the car can go hand-in-hand with identifying its subparts
(among which, the license plate). In our system, the li-
cense plate provides cues for recognizing the car (local im-
age patches fed into the ISM), and in turn recognizing the
car gives very strong information about the location of the
license plate (through meta-data transfer).

Training The ISM system was trained as in the previous
experiment, this time with discrete meta-data. We anno-
tated each car image by labeling the following parts: chas-
sis (body), bumpers, headlights, wheels, license plate, and
windows (including windshield). The rest of the image
is labeled ‘background’. Only visible parts are annotated.
Occluded parts and parts that can’t be discerned from the
shadow, are labeled ‘background’. Figure 6 shows a few

Figure 7.Results for the object parts annotation experiment. The
left column shows the test images, the middle column the ground-
truth annotations, and the right column the output of our system.
The light grey areas are unlabeled and considered background.
Note how the system successfully detects the lack of a license plate
for the fourth car.

example annotations. The segmentations required for train-
ing the ISM system are obtained by mapping all car part
labels to ‘foreground’.

Testing The same type of test as for the previous experi-
ment is run, but this time we apply the discrete method from
section 3.1, with the annotation maps as meta-data. Exam-
ples of resulting annotations are shown in Fig. 7.

We evaluate the annotations quantitatively by a confu-
sion matrix between the ground-truth annotations and those
produced by the system. For each image, we count how
many pixels of each partaj are labeled as each of the possi-
ble parts (body, bumpers,etc.), or remain unlabeled (which



bkgnd body bumpr headl windw wheel licen unlab
bkgnd 23.56 2.49 1.03 0.14 1.25 1.88 0.04 69.61
body 4.47 72.15 4.64 1.81 8.78 1.86 0.24 6.05

bumpr 7.20 4.54 73.76 1.57 0.00 7.85 2.43 2.64
headl 1.51 36.90 23.5434.75 0.01 0.65 0.23 2.41

windw 3.15 13.55 0.00 0.0080.47 0.00 0.00 2.82
wheel 11.38 6.85 8.51 0.00 0.0063.59 0.01 9.65
licen 2.57 1.07 39.07 0.00 0.00 1.0456.25 0.00

Table 1.Confusion matrix for the object parts annotation experi-
ment. The rows represent the annotation parts in the ground-truth
maps, while the columns represent the output of our system. The
last column shows how much of each class was left unlabeled by
our algorithm (light grey in the images). For most evaluations,
unlabeled areas can be considered equivalent to ‘background’.

can be considered background in most cases). This score is
normalized by the total number of pixels in the ground-truth
âj. We average the confusion table entries over all images,
resulting in table 1.

The diagonal elements in the table show how well each
part was recovered in the test images. The system performs
well as it labels correctly between56% and80% of pixels
(except for the headlights), depending on the part. We con-
sider this a very encouraging result, especially considering
the high challenge presented by the task, owing to intra-
class variability, remaining viewpoint and scale changes,
specular reflections, and the diverse material nature and size
of parts to be labeled. As expected, confusion is high-
est between parts covering a small area (e.g. headlights, li-
cense plate) and the larger parts in which they are embedded
(body, bumper, respectively).

We can also calculate the leakage and coverage as in the
previous experiment. The leakage is6.83% and coverage
is 95.2%. To get an idea of the overall quality of labeling
itself, we can calculate the percentage of mislabeled pix-
els. However, similarly to the depth map experiment, it
would be unfair to include the background due to its large
area. Therefore we only consider pixels that are both la-
beled non-background in the reference annotation and the
system’s output. This yields an average error of20.8%.

5. Conclusions

We have developed a method to transfer meta-data anno-
tations from training images to test images, based on a high-
level interpretation of the scene. Instead of using an inde-
pendent (post-)processing step for inferring the meta-data,
it is deeply intertwined with the actual recognition process.
Low-level cues in an image can lead to the detection of an
object (in our experiments, cars), and the detection of the
object itself causes a better understanding of the low-level
cues from which it originated. The resulting meta-data in-
ferred from the recognition can be used in several ways,

among which a further verification of the detection itself.
The latter would close the cognitive loop for the recogni-
tion system.

Future research includes both investigating such cogni-
tive loops, and further improving the performance of the
meta-data transfer. Next, we will implement support for
fully real-valued meta-data. Finally, we will explore us-
ing our system output as a shape prior to drive shape-from-
shading approaches, such as [13].
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