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We introduce dlow conditionon open graph states (graph states with inputs and outphish\guarantees
globally deterministic behavior of a class of measuremexttepns defined over them. Dependent Pauli cor-
rections are derived for all such patterns, which equalizecamputation branches, and only depend on the
underlying entanglement graph and its choice of inputs amplubs.

The class of patterns having flow is stable under compos#imhtensorization, and has unitary embeddings
as realizations. The restricted class of patterns havirly fhiow and reverse flow, supports an operation of
adjunction, and has all and only unitaries as realizations.

PACS numbers: 03.67.Lx, 03.67.-a, 03.67.Mn

I. INTRODUCTION ation of adjunction, corresponding to time-reversal otanyi
operations. This smaller class implements all and onlyaupit

The recent one-way quantum computing model[ 1,12, 3]transformati9ns. Moreover, for open grap_h states with_ ro_w,
has already drawn considerable attention, because it stayge ©n€ can derive a dwectgcedure for realization of urétari
different physical realizations of quantum computirld [465 @S measurements patterns [16].

4, B,E‘B,lfbhllle]. However, whether this fundamentally
different model may also suggest new insights in quantum in-
formation processing still stands as an open question. IIl. MEASUREMENT PATTERNS

Computation in this model, consists of a first phase of
preparation and entanglement, followed by 1-qubit measure We briefly recall the definition of measurement patterns and
ments and a final round of corrections. Making measurementérious notions of determinism. More detailed introduatio
an integral part of computation will in general induce non-can be found in[[17[ 1€, 19]. In this paper, we will em-
deterministic behaviors. To counter this, both measurésnenploy an algebraic approach called, thteasurement Calcu-
and corrections are allowed to depend on the outcomes &#s [13]. Computations in a pattern involve a combination
previous measurements. This mechanism of feed-forwardingf 1-qubit preparationsvy*, 2-qubit entanglement operators
classical observations is known to be a necessary requitemeli; := AZ;; (controlleds?), 1-qubit measuremente/s*, and
for the model to be universdl [iL3]. Whether and how a givenl-qubit Pauli correctionsy;, Z;, wherei, j represent the
pattern can be controlled so as to obtain a globally determindubits on which each of these operations apply, and a
istic behavior is the question we address in this paper. parameter ir0, 2r).

A variety of methods for constructing measurement pat- PreparationV;* prepares qubitin state|+,);, where|+,)
terns have been already proposed [3,[14, 15] that guaranté&and for—=(|0) & e'*[1)). Measuremend/;* is defined by
determinism by construction. We introduce a direct conditi orthogonal projections+,){(+.|;, applied at qubiti, with
on open graph states (graph states with inputs and output#)e convention thatt, ) (+.|; corresponds to the outcorfie
which guarantees a strong form of deterministic behavior fowhile |—,,) (—.|; corresponds td. Note that we consider here
a class of one-way measurement patterns defined over thenly destructive measurement.a projection|y)(v| is al-
Remarkably, our condition bears only on the geometric strucways followed by a trace out operator and hence we might
ture of the entangled graph states. This condition singlés o write it as(i)|.

a class of patterns with flow, which is stable under sequientia Qubits are measured at most once, therefore we may rep-
and parallel compositions and is large enough to realize allesent unambiguously the outcome of the measurement done
unitary and unitary embedding maps. at qubitj by s;. Dependent corrections, used to control non-

Patterns with flow have interesting additional propertiesdeterminism, will be writtenX;” and Z;”, with X? = 79 =
First, they are uniformly deterministic, in the sense that n 7, X} = X,, andZ} = Z,.
matter what the measurements angles are, the obtained setA measurement patteyior simply a pattern, is defined by
of corrections, which depends only on the underlying geomthe choice of/” a finite set of qubits, two possibly overlapping
etry, will make the global behavior deterministic. Secoaltl, subsets and O determining the pattern inputs and outputs,
computation branches have equal probabilities, which mearand a finite sequence of commands acting/on
in particular these probabilities are independent of tipeiis, Such a pattern is said to ennableif it satisfies the fol-
and as a consequence, one can show that all such patterns itowing: (R0O) no command depends on an outcome not yet
plement unitary embeddings. Third, a more restricted @éss measured, (R1) no command acts on a qubit already measured
patterns having both flow and reverse flow supports an opepr not yet prepared (except preparation commands), and (R2)
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a qubiti is measured (prepared) if and only i not an output  inputs and outputs. We writ& for the set of nodes i/, I¢,

(input). andOe for the complements af andO in V, G (i) for the set
Write 91 (o) for the Hilbert space spanned by the inputsof neighbors of in G, andE¢q = H(i,j)eG E;; for the global

(outputs). The run of a runnable pattern consists simply irentanglement operator associated:to

executing each command in sequencen 1§ the number of One may think of an open graph state as the beginning of

measurements (which by (R2) is also the number of non outthe definition of a pattern, where one has already decided

puts) then the run may follow™ different branches. Each how many qubits will be used{), how they will be entan-

branch is associated with a unique binary stringf length  gled (£;), and which will be inputs and which output$ (

n, representing the classical outcomes of the measuremengad O). To complete the definition of the pattern it remains

along that branch, and a unigbeanch mapAs representing to decide which angles will be used to prepare qubitg<in

the linear transformation fromMy; to $o along that branch.  (qubitsinI are given in an arbitrary states) which angles will
Branch maps decompose ds = CillsU, whereCs is  be used to measure qubits @F, and most importantly, if

a unitary map ovefo collecting all corrections on outputs, one is interested in determinism, which dependent cooesti

Il is a projection fron®y to $Ho representing the particular will be used. Conversely, any pattern has a unique undeylyin

measurements performed along the branch[aigla unitary  open graph state, obtained by forgetting preparations; mea

embedding fronf); to $Hy, collecting the branch preparations, surements and corrections.

and entanglements. Therefore For instance, the open graph state associated to the example
above is the grapltr with nodes{1, 2}, inputs and outputs
Y AlA =Y UTILU =1 {1}, andE¢ = Ei,. To complete the definition, one has to
- _ choose the angles of the measurement and preparations done
andT(p) = Y, AspAl is a trace-preserving completely- at qubit2, and define the dependent corrections.
positive map (cptp-map), explicitly given as a Kraus decom- \ye give a condition bearing on the geometry of open graph
position. One says that the patteealizesT'. states, under which one can construct a set of dependent cor-

A pattern is said to beleterministicif it realizes a cptp-  rections such that the obtained pattern is strongly and uni-
map that sends pure states to pure states. This is equit@lentformly deterministic.

saying that branch maps are proportional, that is to sag|lfor
q € 9 and allsy, sy € Zjy, As,(q) and Ay, (q) differ only  Definition 2 An open graph statéG, I, 0) hasflow if there
up to a scalar. A pattern is said to b#ongly deterministic  exists a magf : O¢ — I¢ (from measured qubits to prepared

when branch maps are equia,, for all s;, s; € Z3, A, =  qubits) and a partial order> overV such that for al € O°:
As,. A pattern is said to beniformly deterministidf itis ~ — (F0) (i, f(4)) € G
deterministic for all values of its measurement angles. — (F1) f(i) >

S ] ) — (F2) for all neighbours of (i) except (k € G(f(i))~{i}),
Lemma 1 Strongly deterministic patterns realize unitary em- e also havé: > i

bedding maps.

] o ) As one can see, a flow consists of two structures: a func-
Proof. If a pattern is strongly deterministic and realizes thetjon ¢ over vertices and a matching partial order over vertices.
mapT then In order to obtain a deterministic pattern for an open graph

B i state with flow, dependent corrections will be defined based
T(p) = ApA on functionf. The order of the execution of the commands is

given by the partial order induced by the flow. The matching
properties between the functignand the partial order will
make the obtained pattern runnable.

Figure[1 shows an open graph state together with a flow,
where functionf represented as arrows fro@r (measured
fibits, black circles) tol® (prepared qubits, non boxed
nodes). The associated partial order is given by the labeled
sets of vertices. The coarsest ordesuch that (F1) and (F2)
holds is called thelependency ordénduced by the flow, and
Rhe number of the partition sets (4 in Figlide 1) is called the
depthof the flow. In general flows may or may not exist, and
are not unique either.

with A := 27/2 A,, and A must be a unitary embedding, be-
causey .  AlA; = ATA = I. In such cases, one says that the
pattern realizes the unitary embeddihgO

Example. Not all deterministic patterns are uniformly
or strongly so. To see this, choose as command sequen
X2PMYE;5 NS, with V = {1,2}, andI = O = {1}. The
two branch maps are given by, = |0)(0|, andA; = |0)(1],
so they are proportional, but distinct, and the pattern is de
terministic, but not strongly so. The associated cptp-ma
T(|¢){(v]) = (¥, 1)|0)(0| projects any state ontd) and does
not correspond to a unitary transformation. This patternois
uniformly deterministic either, since = 0 is the only angle

value forM§ which makes it deterministic. Theorem 1 Suppose the open graph Stét. . O) has flow
(f,>), then the pattern:

. > EN Si N o
PBrasa = HiGOC(Xf(i) erG(f(i))\{i} 2y M; )EGN?C

An open graph state$G, I, O) consists of an undirected where the product follows the dependency order is
graphG together with two subsets of nodésand O, called  runnable, uniformly and strongly deterministic, and reak

Ill. GEOMETRIES AND FLOWS



Condition (FO) is used in the third step. Finally:

HieOC<+a|‘iEGN0c = ‘ » 0
(ILicoe X5 Ukearay~qi e )M;" ) EaNre

By conditions (F1) and (F2) the obtained pattern is runnable
since the product can always be ordered according-to
Moreover, by the last equation, all branch maps are equdl, an
therefore the pattern is strongly deterministic. Finadipce
the proof uses nowhere the particular values of the measure-
ment anglesy;, it is also uniformly sod

The intuition of the proof is that Equatidd 2 converts an
FIG. 1: An open graph state with flow. The boxed qubits are theanachronical correction at, given in the term\/*Z?*, into
inputs and white circles are the outputs. All the non-oufpuhits,  a pair of a ‘future’X correction, the one sent tf(i) (so in
black circles, will be measured during the run of the pattethe  the future, by condition (F1)) and a ‘past’ correction, sent
flow function is represented as arrows and the partial ordethe  to the past, until it reaches a preparation, where it is dfesbr
vertices are given by the 4 partition sets. because of Equatidn 5.

Note that the unitary embedding associateditp. (we
dropa’ and>, for simplicity) does not depend on the flow. Yet,
the choice of f, >) determines the structure of the corrections
used by the pattern and the order of the execution, and has

Uc.r.0a = ([Licoe(+ali) EGNS therefore an influence on its depth complexity, which is the
’ depth of the flow.
Proof. The proof is based on the following equations, where  Another thing worth naticing, is that using the graph stabi-
stands for any arbitrary;: lizer [14,120] ati, defined ask (i) := Xi([T;cq ) Zi), the
pattern3 ; ¢ can be equivalently written as:

the unitary embedding:

(tali = MPZ7 1)
ZiEij = X;E; X 2) Prc = [lico- (M Z3 K i) EaNTe
XEiyj = Ei;Z; X7 3)
s _ 10 s and the above proof can be reread in terms of stabilizers. In
Z;Eij = EijZ; 4) . . ;
<0 o another word, for cancelling an anachroniZatorrection at
XiNi = N; ®)  itis enough to apply the dependent stablizer at qyibi},

Kg(f(i)) and again condition§F'1) and(F2) guarantee that

Equation amounts to saying thai|+-,.); = ;; notice i .
d Q) ying thall£a); = [ Fa); the obtained pattern is runnable.

also that this property uniquely defings Equations[(R) [{3),
and [4) come from the fact that” is in the normalizer of the
Pauli group, and are easy to verify. Equatibh (5) is obvious.
From [) we obtain: A. Pauli Measurements
[ — Qi r7S; 0
icoe {+aliEaNre —@ (Iicoe Mi™ 27) EcNye As we saw before, not all open graph states have flow. Fig-
ure[2 shows such an example, Jebe a candidate flow func-
tion, then the only choice fof (a) is nodec, same is true for
f(b). Now from condition (F2) nodé must be in the future
of nodea and vice versa. Hence we reach a causality conflict.

so the right hand side is clearly a deterministic patterri, bu
just as clearly it violates condition (RO), sinZg‘ depends on
a measurement which has not been done yet. At that poin
entanglement comes to rescue. Writg)¢ for the graph ob-
tained by removing= (i) from G. Then we can rewrite the
above pattern as follows, where boxes represent the part to

which we apply the rewriting equations: a

Z7 EgNY. = c
7} Ec(i)Ec(ie Ny =

ZisiEif(i) (erG(f(i))\{i})Ef(i)kEG(f(i))cN?C %) b

Xt Biro| X560 UMrearin~qiy Bran DEaraneNie =@

o P 5 FIG. 2: An open graph state with no flow, since for any candidat
i i i 0 _
X0y Easay (Ureacsay~a Zx') X Eeuan=Nie =@ function f we havef(a) = f(b) = c and therefore there exists no

si si si _ matching partial order asshould be in future ob andb in future of
Xito Ukeasan~tay Ze ) EBe| X5 Nie =B .

S Sq 0
X5y Ukearan~y 20 VEcNT.




However, one can still obtain a deterministic pattern fer th 7T 7T
open graph state in Figuté 2 by fixing the angle of the mea- ‘a Vb v /C
surement of nodé to bex /2. To see why, recall that Condi- | SN gl ;
tion (F1) forbidsf (i) = 4, yet, in the special case where qubit
i is measured with anglg (PauliyY” measurement), choosing 1 2 3
f (@) to bei will work, since:
MEXs = M? 73 FIG. 5: An open graph sate where ndgwill be measured with”

., with a corresponding flow without any loop.
Hence to correct th&” measurement at qubitone can ap-

ply the dependent stabilize(Z; ([ [;c(;) Z;))**, at the same

qubiti instead of a neighboring qubit, Figure 3. However the

obtained pattern is deterministic only if qubiis measured The special cases of Pauli measurements can be related to
with angleZ, and is therefore not uniformly deterministic. ~ the fact that Pauli measurements transform one graph state t
another on€ [14]. Hence one can observe that for open graph
states without flow, there might exists a set of Pauli measure
ments that transform it to one with flow.

) B. Circuit Decomposition

Flow also provides a decomposition into simple building
blocks, calledstar patternsfrom which one can derive a cor-
responding circuit implementation of the pattern. Define th
star patterr&(n, «) as:

X3 MPEyoEys--- By

where 1 is the only input ang, - - - | n are the outputs, for

n > 2. The underlying graph has a simple flow function with
f(1) = 2 and atwo level partial order (see Figlife 6). Itis easy
to verify that the Star pattern implements the unitary gibgn
the circuit in Figurélr.

FIG. 3: An open graph state where the node with a Idomust be
measured with a Pauli measurement. The matching partial order
has two levels given by the doted partitions.

Note that in the above example we fixgth) = b but con-
dition F'(3) still need to be verified. And this is indeed the
case since in the given partial order the quhithich is neigh-
bour of qubitb is in the next level. To make this point clear
consider the open graph state in Figulre 4.

a‘ b' CO

FIG. 4: An open graph sate where nddwill be measured with”
measurement however one cannot apply the special casebaescr
above.

The only choice forf(a) is b and hence:r < b but then
letting f(b) = b will violate the F'(3) condition. Therefore
the only solution is to considéf measurement as an arbitrary

measurement then we o_btaln a flow, F!dgre 5. . FIG. 6: Star patteri® (n, o) with one input, the boxed circle, and
Another special case is when quifiti) is measured with 45,15, white circles. The input qubit will be measurechvéngle

angIeO '(Pauli X measurement). Again the requirement that,, and one of the outputs receives a dependent corredfion The
f(2) > i can be dropped because: flow is given by the single arrow from the input to one of thepuit$
MOX: = MP and two level partial order.

Therefore in the flow construction where the neighboring

qubit f (i) receivesX i, if it is measured with angle this Every pattern such that the underlying open graph state has
correction can be ignored. flow can be decomposed into star patterns. The construction



Input ----- - W P-HE N
[+> \

l LR
AN

[+> <--% Output

l+> 2 FIG. 8: An open graph state with bi-flow.

FIG. 7: The circuit implementation of Star pattern in FigGrewith

controlledZ, phaseP’(—«) and Hadamard? gates. o _ )
Patterns with bi-flows realize unitary operators. Indesd, b

(F2), a flow(f, >) is one-to-one. Therefore the orbjf§ (:)

fori € I define an injection frond into O. In the case of a bi-
starts by picking a qubit in the first level of the partial arde flow, 7 andO are therefore in bijection, and since one knows
exhausts all qubits in the first level before going to the nex@lready that patterns with flows realize unitary embeddiitgs
level. Each time a qubitis picked the associated star patternfollows that patterns with bi-flow implement unitaries.
Si is taken to have as input, and all its remaining current  |nterestingly, one can define directly the adjoint of a pat-
neighbours as outputs. Then we remove this qubit from thgern in the subcategory of patterns with bi-flows. Specifjcal
graph and carry on the construction till we reach to the finakjiven (f, >) a flow for (G, I, 0), and angleg ;i € I} for
sequential and tensor composition of the obtained steesitt B .45 for the pattern obtained as in the extension to gen-

with the final/\Z between the output qubits: eral preparations of Theordth 1. Suppose a reverse(flow)
B =1L nco Emn eroc S, is given on(G, O, I), one can define:

Now each Start pattern can be replaced by its corresponding ;BT =B
circuit to give a circuit decomposition for the pattefh In f,G.ap 9.G.6,a
the obtained circuit each wire represents either an inphit qu
or an auxillary one prepared ir-) state, where the case is
determined during the above construction. This constncti
can be easily formalized.

There are two things to note here: first, for this definition to
make sense, one needs to have general preparations as we
described above; second, this adjunction operation depend
on the choice of a reverse flofy, >). It is easy to see that
‘B}Gﬂﬁ and’B s ¢ s, realize adjoint unitaries.

IV. ALGEBRAIC STRUCTURE An example is the patterf) := X;* MY E12 N9 with I =
{1} andO = {2}. It has a unique bi-flow, and is self-adjoint

As yet, Theorerfll1 is only valid when preparations are allin the sense thag’ = ), therefore it must realize a self-
of the form N since Equation({5) in the proof is valid only adjoint_ operator, and indeed it realizes the Hadamard trans
for such preparations. Defin&® = Z*X,Z <, with z>  formation.
the phase operator with angheapplied ati. One hasZ; =
ZT. To handle general phase preparations, one only needs the
analog of equation§](2).1(3) arld (5): V. CONCLUSION

ZiE; = (XP)Ei;(X7)°

(XOVEy = EyZs(Xe)s . Whereas the one—waylmodel_haq been mostly thought of

(X0 N® = N& in relation with the traditional circuit model, we have pro-

] 3 3 H'H H H H
posed here a flow condition, which is clearly divorced from

and now Theorerhl1 works as before. Note that we had tthe circuit model, and guarantees the existence of a set of
extend the set of corrections to includ&*. This extension Pauli corrections obtaining a (strongly and uniformly)etet
will prove natural below, when we deal with adjunction. ministic behavior. In essence, while dealing with pattevitb

Say an open graph statg”, I, 0) has bi-flow, if both  flow, one can wholly forget about corrections, and think of
(G,1,0) and its dual statéGG, O, ) have flow. Say a pat- measurements as being simply projections. This in turn may
tern has flow (bi-flow) if its underlying open graph state does help in revealing the new perspective on quantum comput-

The class of patterns with flows (bi-flows) is closed undering which is implicit in measurement based models. Follow-
composition and tensorization. Itis also universal, indkiese  ing this work, a polynomiual time algorithm for finding flow
that all unitaries can be realised within this class. Thilefes ~ was proposed ifl [22] which then extended to an algorithmic
from the existence of a set of generating patterns having bimethod for circuit design for unitaries thoroughly based on
flow [21]. the one-way model [16]. Furthermore one can see that given

Figurd 8 shows the open graph state corresponding to a paan open graph state as a resource for computation, flow con-
tern realizingAU (controlledd/), for U an arbitrary 1-qubit dition characterizes the set of all unitaries implemereatil
unitary [21]. that given state.



If one is ready to lose uniform determinism, this condition condition to deal withX — Z andY — Z plane measurements,
can be somewhat extended when dealing with Pauli measure#ich are the topics of our future work.
ments. It may be however that strong and uniform determin-
ism is an interesting property, when it comes to fault-tater
computing in the one-way model.

Another point worth making is that the notion of flow gives
a better understanding of wh¥*, Z corrections andV®
preparations are needed. From the point of view of our de-
terminism theorem (Theorenh 1), they represent a natural and The authors wish to thank Niel de Beaudrap, Anne Broad-
universal way to control the non deterministic evolutions i bent, Ignacio Cirac, Paul Dumais, Damian Markham, Keiji
duced by 1-qubiX’ — Y measurements on a graph state. Matsumoto for useful comments and discussions. EK was

Finally, although the obtained class of patterns with flow ispartially supported by the ARDA, MITACS, ORDCF, and CFlI
universal, it remains to be seen whether this conditionse al projects during her stay at Institute for Quantum Computing
necessary for determinism. One also need to extend the float University of Waterloo.
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