
Exploiting spatial overlap to efficiently compute
appearance distances between image windows

Bogdan Alexe
ETH Zurich

Viviana Petrescu
ETH Zurich

Vittorio Ferrari
ETH Zurich

Abstract

We present a computationally efficient technique to compute the distance of high-
dimensional appearance descriptor vectors between image windows. The method
exploits the relation between appearance distance and spatial overlap. We derive
an upper bound on appearance distance given the spatial overlap of two windows
in an image, and use it to bound the distances of many pairs between two images.
We propose algorithms that build on these basic operations to efficiently solve
tasks relevant to many computer vision applications, such as finding all pairs of
windows between two images with distance smaller than a threshold, or finding
the single pair with the smallest distance. In experiments on the PASCAL VOC 07
dataset, our algorithms accurately solve these problems while greatly reducing the
number of appearance distances computed, and achieve larger speedups than ap-
proximate nearest neighbour algorithms based on trees [18] and on hashing [21].
For example, our algorithm finds the most similar pair of windows between two
images while computing only 1% of all distances on average.

1 Introduction
Computing the appearance distance between two windows is a fundamental operation in a wide
variety of computer vision techniques. Algorithms for weakly supervised learning of object
classes [7, 11, 16] typically compare large sets of windows between images trying to find recurring
patterns of appearance. Sliding-window object detectors based on kernel SVMs [13, 24] compute
appearance distances between the support vectors and a large number of windows in the test image.
In human pose estimation, [22] computes the color histogram dissimilarity between many candidate
windows for lower and upper arms. In image retrieval the user can search a large image database for
a query object specified by an image window [20]. Finally, many tracking algorithms [4, 5] compare
a window around the target object in the current frame to all windows in a surrounding region of the
next frame.

In most cases one is not interested in computing the distance between all pairs of windows from two
sets, but in a small subset of low distances, such as all pairs below a given threshold, or the single
best pair. Because of this, computer vision researchers often rely on efficient nearest neighbour
algorithms [2, 6, 10, 17, 18, 21]. Exact nearest neighbour algorithms organize the appearance
descriptors into trees which can be efficiently searched [17]. However, these methods work well only
for descriptors of small dimensionality n (typically n < 20), and their speedup vanishes for larger
n (e.g. the popular GIST descriptor [19] has n = 960). Locality sensitive hashing (LSH [2, 10, 21])
techniques hash the descriptors into bins, so that similar descritors are mapped to the same bins with
high probability. LSH is typically used for efficiently finding approximate nearest neighbours in
high dimensions [2, 6].

All the above methods consider windows only as points in appearance space. However, windows
exist also as points in the geometric space defined as their 4D coordinates in the image they lie in. In
this geometric space, a natural distance between two windows is their spatial overlap (fig. 1). In this
paper we propose to take advantage of an important relation between the geometric and appearance
spaces: the apparance distance between two windows decreases as their spatial overlap increases.
We derive an upper bound on the appearance distance between two windows in the same image,

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979211?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1: Relation between spatial overlap and appearance distance. Windows w1, w2 in an image I are
embedded in geometric space and in appearance space. All windows overlapping more than r with w1 are at
most at distance B(r) in appearance space. The bound B(r) decreases as overlap increases (i.e. r decreases).

given their spatial overlap (sec. 2). We then use this bound in conjuction with the triangle inequality
to bound the appearance distances of many pairs of windows between two images, given the distance
of just one pair. Building on these basic operations, we design algorithms to efficiently find all pairs
with distance smaller than a threshold (sec. 3) and to find the single pair with the smallest distance
(sec. 4).

The techniques we propose reduce computation by minimizing the number of times appearance
distances are computed. They are complementary to methods for reducing the cost of computing
one distance, such as dimensionality reduction [15] or Hamming embeddings [14, 23].

We experimentally demonstrate in sec. 5 that the proposed algorithms accurately solve the above
problems while greatly reducing the number of appearance distances computed. We compare to
approximate nearest neighbour algorithms based on trees [18], as well as on the recent LSH tech-
nique [21]. The results show our techniques outperform them in the setting we consider, where the
datapoints are embedded in a space with additional overlap structure.

2 Relation between spatial overlap and appearance distance
Windows w in an image I are emdebbed in two spaces at the same time (fig. 1). In geometric
space, w is represented by its 4 spatial coordinates (e.g. x, y center, width, height). The distance
between two windows is defined based on their spatial overlap o(w1, w2) = |w1∩w2|

|w1∪w2| ∈ [0, 1],
where ∩ denotes the area of the intersection and ∪ the area of the union. In appearance space, w
is represented by a high dimensional vector describing the pixel pattern inside it, as computed by
a function fapp(w) : I → Rn (e.g. the GIST descriptor has n = 960 dimensions). In appearance
space, two windows are compared using a distance d(fapp(w1), fapp(w2)).

Two overlapping windows w1, w2 in an image I share the pixels contained in their intersection
(fig. 1). The spatial overlap of the two windows correlates with the proportion of common pixels
input to fapp when computing the descriptor for each window. In general, fapp varies smoothly with
the geometry of w, so that windows of similar geometry are close in appearance space. Conse-
quently, the spatial overlap o and appearance distance d are related. In this paper we exploit this
relation to derive an upper bound B(o(w1, w2)) on the appearance distance between two overlapping
windows.

We present here the general form of the bound B, its main properties and explain why it is useful. In
subsections 2.1 and 2.2 we derive the actual bound itself. To simplify the notation we use d(w1, w2)
to denote the appearance distance d(fapp(w1), fapp(w2)). We refer to it simply as distance and we
say overlap for spatial overlap. The upper bound B is a function of the overlap o(w1, w2), and has
the following property

d(w1, w2) ≤ B(o(w1, w2)) ∀w1, w2 (1)

Moreover, B is a monotonic decreasing function

B(o1) ≤ B(o2) ∀o1 ≥ o2 (2)

2

(a) (b) (c)

Fig. 2: Triangle inequality in appearance space. The triangle inequality (4) holds for any three
points fapp(w1), fapp(w2) and fapp(w3) in appearance space. (a) General case; (b) Lower bound case:
|d(w1, w2)− d(w2, w3)| = d(w1, w3); (c) Upper bound case: d(w1, w3) = d(w1, w2) + d(w2, w3).

This property means B continuously decreases as overlap increases. Therefore, all pairs of windows
within an overlap radius r (i.e. o(w1, w2) ≥ r) have distance below B(r) (fig. 1)

d(w1, w2) ≤ B(o(w1, w2)) ≤ B(r) ∀w1, w2, o(w1, w2) ≥ r (3)

As defined above, B bounds the appearance distance between two windows in the same image.
Now we show how it can be used to derive a bound on the distances between windows in two
different images I1, I2. Given two windows w1, w2 in I1 and a window w3 in I2, we use the
triangle inequality to derive (fig. 2)

|d(w1, w2)− d(w2, w3)| ≤ d(w1, w3) ≤ d(w1, w2) + d(w2, w3) (4)

Using the bound B in eq. (4) we obtain

max(0, d(w2, w3)− B(o(w1, w2))) ≤ d(w1, w3) ≤ B(o(w1, w2)) + d(w2, w3) (5)

Eq. (5) delivers lower and upper bounds for d(w1, w3) without explicitly computing it (given that
d(w2, w3) and o(w1, w2) are known). These bounds will form the basis of our algorithms for reduc-
ing the number of times the appearance distance is computed when solving two classic tasks (sec. 3
and 4).

In the next subsection we estimate B for arbitrary window descriptors (e.g. color histograms, bag of
visual words, GIST [19], HOG [8]) from a set of images (no human annotation required). In sub-
section 2.2 we derive exact bounds in closed form for histogram descriptors (e.g. color histograms,
bag of visual words [25]).

2.1 Statistical bounds for arbitrary window descriptors

We estimate Bα from training data so that eq. (1) holds with probability α

P (d(w1, w2) ≤ Bα(o(w1, w2))) = α ∀w1, w2 (6)

Bα is estimated from a set of M training images I = {Im}. For each image Im we sample N
windows {wmi }, and then compute for all window pairs their overlap omij = o(wmi , w

m
j) and distance

dmij = d(wmi , w
m
j). The overall training dataset D is composed of (omij , d

m
ij) for every window pair

D = { (omij , d
m
ij) | k ∈ {1,M} , i, j ∈ {1, N}} (7)

We now quantize the overlap values into 100 bins and estimate Bα(o) for each bin o separately. For
a bin o, we consider the set Do of all distances dmij for which omij is in the bin. We choose Bα(o) as
the α-quantile of D(o) (fig. 3a)

Bα(o) = qα(Do) (8)

B1(o) is the largest distance dmij for which omij is in bin o. Fig. 3a shows the binned distance-
overlap pairs and the bound B0.95 for GIST descriptors [19]. The data comes from 100 windows
sampled from more than 1000 images (details in sec. 5). Each column of this matrix is roughly
Gaussian distributed, and its mean continuously decreases with increasing overlap, confirming our
assumptions about the relation between overlap and distance (sec. 2). In particular, note how the
mean distance decrease fastest for 50% to 80% overlap.

3

(a) (b)

Fig. 3: Estimating B0.95(o) and omin(ε). (a) The estimated B0.95(o) (white line) for the GIST [19] appear-
ance descriptor. (b) Using B0.95(o) we derive omin(ε).

Given a window w1 and a distance ε we can use Bα to find windows w2 overlapping with w1

that are at most distance ε from w1. This will be used extensively by our algorithms presented in
secs. 3 and 4. From Bα we can derive what is the smallest overlap omin(ε) so that all pairs of
windows overlapping more than omin(ε) have distance smaller than ε (with probability more than
α). Formally

P (d(w1, w2) ≤ ε) ≥ α ∀w1, w2, o(w1, w2) ≥ omin(ε) (9)

and omin(ε) is defined as the smallest overlap o for which the bound is smaller than ε (fig. 3b)

omin(ε) = min{o | Bα(o) ≤ ε} (10)

2.2 Exact bounds for histogram descriptors

The statistical bounds of the previous subsection can be estimated from images for any appearance
descriptor. In contrast, in this subsection we derive exact bounds in closed form for histogram de-
scriptors (e.g. color histograms, bag of visual words [25]). Our derivation applies to L1-normalized
histograms and the χ2 distance. For simplicity of presentation, we assume every pixel contributes
one feature to the histogram of the window (as in color histograms). The derivation is very similar
for features computed on another regular grid (e.g. dense SURF bag-of-words [11]). We present
here the main idea behind the bound and give the full derivation in the supplementary material [1].

The upper bound B for two windows w1 and w2 corresponds to the limit case where the three
regions w1 ∩ w2, w1 \ w2 and w2 \ w1 contain three disjoint sets of colors (or visual word in
general). Therefore, the upper bound B is

B(w1, w2) =
|w1 \ w2|
|w1|

+
|w2 \ w1|
|w2|

+ |w1 ∩ w2| ·

(
1
|w1| −

1
|w2|

)2

1
|w1| +

1
|w2|

(11)

Expressing the terms in (11) based on the windows overlap o = o(w1, w2) = |w1∩w2|
|w1∪w2| , we obtain a

closed form for the upper bound B that depends only on o

B(w1, w2) = B(o(w1, w2)) = B(o) = 2− 4 · o

o+ 1
(12)

In practice, this exact bound is typically much looser than its corresponding statistical bound learned
from data (sec. 2.1). Therefore, we use the statistical bound for the experiments in sec. 5.

3 Efficiently computing all window pairs with distance smaller than ε

In this section we present an algorithm to efficiently find all pairs of windows with distance smaller
than a threshold ε between two images I1, I2. Formally, given an input set of windowsW1 = {w1

i }
in image I1 and a set W2 = {w2

j} in image I2, the algorithm should return the set of pairs Pε =
{ (w1

i , w
2
j) | d(w1

i , w
2
j) ≤ ε }.

Algorithm overview. Algorithm 1 summarizes our technique. Block 1 randomly samples a small
set of seed pairs, for which it explicly computes distances. The core of the algorithm (Block 3)
explores pairs overlapping with a seed, looking for all appearance distances smaller than ε. When

4

Algorithm 1 Efficiently computing all distances smaller than ε
Input: windowsWm = {wmi }, threshold ε, lookup table omin, number of initial samples F
Output: set Pε of all pairs p with d(p) ≤ ε

1. Compute seed pairs PF
(a) sample F random pairs pij = (w1

i , w
2
j) from P =W1 ×W2, giving PF

(b) compute dij = d(w1
i , w

2
j), ∀pij ∈ PF

2. Determine a sequence S of all pairs from P (gives schedule of block 3 below)
(a) sort the seed pairs in PF in order of decreasing distance
(b) set S(1 : F) = PF
(c) fill S((F + 1) : end) with random pairs from P \ PF

3. For pc = S(1 : end) (explore the pairs in the S order)
(a) compute d(pc)
(b) if d(pc) ≤ ε

i. let r = omin(ε− d(pc))
ii. let N = overlap neighborhood(pc, r)

iii. for all pairs p ∈ N : compute d(p)
iv. update Pε ← Pε ∪ {p ∈ N | d(p) ≤ ε}

(c) else
i. let r = omin(d(pc)− ε)

ii. let N = overlap neighborhood(pc, r)
iii. discard all pairs in N from S: S ← S \ N

overlap neighborhood
Input: pair pij = (w1

i , w
2
j), overlap radius r

Output: overlap neighborhood N of pij

N = { (w1
i , w

2
v) | o(w2

j , w
2
v) ≥ r } ∪ {(w1

u, w
2
j) | o(w1

i , w
1
u) ≥ r }

compute
Input: pair pij
Output: If d(w1

i , w
2
j) was never computed before, then compute it and store it in a table D. If

d(w1
i , w

2
j) is already in D, then directly return it.

exploring a seed, the algorithm can decide to discard many pairs overlapping with it, as the bound
predicts that their distance cannot be lower than ε. This causes the computational saving (step 3.c).
Before starting Block 3, Block 2 establishes the sequence in which to explore the seeds, i.e. in order
of decreasing distance. The remaining pairs are appended in random order afterwards.

Algorithm core. Block 3 takes one of two actions based on the distance of the pair pc currently
being explored. If d(pc) ≤ ε, then all pairs in the overlap neighborhood N of pc have distance
smaller than ε. This overlap neighborhood has a radius r = omin(ε − d(pc)) predicted by the
bound lookup table omin (fig. 4a). Therefore, Block 3 computes the distance of all pairs in N
(step 3.b). Instead, if d(pc) > ε, Block 3 determines the radius r = omin(d(pc)− ε) of the overlap
neighborhood containing pairs with distance greater than ε, and then discards all pairs in it (step 3.c).

Overlap neighborhood. The overlap neighborhood of a pair pij = (w1
i , w

2
j) with radius r con-

tains all pairs (w1
i , w

2
v) such that o(w2

j , w
2
v) ≥ r, and all pairs (w1

u, w
2
j) such that o(w1

i , w
1
u) ≥ r

(fig. 4a).

4 Efficiently computing the single window pair with the smallest distance
We give an algorithm to efficiently find the single pair of windows with the smallest appearance
distance between two images. Given as input the two sets of windows W1,W2, the algorithm
should return the pair p∗ = (w1

i∗ , w
2
j∗) with the smallest distance: d(w1

i∗ , w
2
j∗) = minij d(w1

i , w
2
j).

5

(a) (b)

Fig. 4: Overlap neighborhoods. (a) The overlap neighborhood of radius r of a pair (w1
i , w

2
j) contains all

blue pairs. (b) The joint overlap neighborhood of radius s of a pair (w1
i , w

2
j) contains all blue and green pairs.

Algorithm overview. Algorithm 2 is analog to Algorithm 1. Block 1 computes distances for the
seed pairs and it selectes the pair with the smallest distance as initial approximation to p∗. Block 3
explores pairs overlapping with a seed, looking for a distance smaller than d(p∗). When exploring a
seed, the algorithm can decide to discard many pairs overlapping with it, as the bound predicts they
cannot be better than p∗. Block 2 organizes the seeds in order of increasing distance. In this way,
the algorithm can rapidly refine p∗ towards smaller and smaller values. This is useful because in
step 3.c, the amount of discarded pairs is greater as d(p∗) gets smaller. Therefore, this seed ordering
maximises the number of discarded pairs (i.e. minimizes the number of distances computed).
Algorithm core. Block 3 takes one of two actions based on d(pc). If d(pc) ≤ d(p∗) + Bα(s),
then there might be a better pair than d(p∗) within radius s in the joint overlap neighborhood of
pc. Therefore, the algorithm computes the distance of all pairs in this neighborhood (step 3.b). The
radius s is an input parameter. Instead, if d(pc) > d(p∗) + Bα(s), the algorithm determines the
radius r = omin(d(pc)− d(p∗)) of the overlap neighborhood that contains only pairs with distance
greater than d(p∗), and then discards all pairs in it (step 3.c).
Joint overlap neighborhood. The joint overlap neighborhood of a pair pij = (w1

i , w
2
j) with

radius s contains all pairs (w1
u, w

2
v) such that o(w1

i , w
1
u) ≥ s and o(w2

j , w
2
v) ≥ s.

5 Experiments and conclusions
We present experiments on a test set composed of 1000 image pairs from the PASCAL VOC 07
dataset [12], randomly sampled under the constraint that two images in a pair contain at least one
object of the same class (out of 6 classes: aeroplane, bicycle, bus, boat, horse, motorbike). This
setting is relevant for various applications, such as object detection [13, 24], and ensures a balanced
distribution of appearance distances in each image pair (some pairs of windows will have a low
distance while others high distances). We experiment with three appearance descriptors: GIST [19]
(960D), color histograms (CHIST, 4000D), and bag-of-words [11, 25] on the dense SURF descrip-
tor [3] (BOW, 2000D). As appearance distances we use the Euclidean for GIST, and χ2 for CHIST
and SURF BOW. The bound tables Bα for each descriptor were estimated beforehand from a sepa-
rate set of 1300 images of other classes (sec. 2.1).
Task 1: all pairs of windows with distance smaller than ε. The task is to find all pairs of win-
dows with distance smaller than a user-defined threshold ε between two images I1, I2 (sec. 3). This
task occurs in weakly supervised learning of object classes [7, 11, 16], where algorithms search for
recurring patterns over training images containing thousands of overlapping windows, and in human
pose estimation [22], which compares many overlapping candidate body part locations.

We random sample 3000 windows in each image (|W1| = |W2| = 3000) and set ε so that 10%
of all distances are below it. This makes the task meaningful for any image pair, regardless of the
range of distances it contains. For each image pair we quantify performance with two measures: (i)
cost: the number of computed distances divided by the total number of window pairs (9 millions);
(i) accuracy:

P
p∈Pε (ε−d(p))P

{p∈W1×W2|d(p)≤ε}(ε−d(p)) , where Pε is the set of window pairs returned by the algo-
rithm, and the denominator sums over all distances truly below ε. The lowest possible cost while
still achieving 100% accuracy is 10%.

We compare to LSH [2, 6, 10] using [21] as a hash function. It maps descriptors to binary strings,
such that the Hamming distance between two strings is related to the value of a Gaussian kernel
between the original descriptors [21]. As recommended in [6, 10], we generate T separate (random)
encodings and build T hash tables, each with 2C bins, whereC is the number of bits in the encoding.

6

Algorithm 2 Efficiently computing the smallest distance
Input: windows Wm = {wmi }, lookup table omin, search radius s, number of initial samples F
Output: pair p∗ with the smallest distance

1. Compute seed pairs PF (as Block 1 of Algorithm 1) and
estimate current best pair: p∗ = arg minpij∈PF dij

2. Determine a sequence S of all pairs (as Block 2 of Algorithm 1)
3. For pc = S(1 : end) (explore the pairs in the S order)

(a) compute d(pc)
(b) if d(pc) ≤ d(p∗) + Bα(s)

i. let N = joint overlap neighborhood(pc, s)
ii. for all pairs p ∈ N : compute d(p)

iii. update p∗ ← arg min {{d(p∗)} ∪ {d(p) | p ∈ N}}
(c) else

i. let r = omin(d(pc)− d(p∗))
ii. let N = overlap neighborhood(pc, r)

iii. discard all pairs in N from S: S ← S \ N

joint overlap neighborhood
Input pair pij = (w1

i , w
2
j), overlap radius s

Output: joint overlap neighborhood N of pij

N = { (w1
u, w

2
v) | o(w1

i , w
1
u) ≥ s, o(w2

j , w
2
v) ≥ s }

To perform Task 1, we loop over each table t and do: (H1) hash all w2
j ∈ W2 into table t; (H2) for

each w1
i ∈ W1 do: (H2.1) hash w1

i into its bin b1t,i; (H2.2) compute all distances d in the original
space between w1

i and all windows w2
j ∈ b1t,i (unless already computed when inspecting a previous

table); (H3) return all computed d(w1
i , w

2
j) ≤ ε.

We also compare to approximate nearest-neighbors based on kd-trees, using the ANN library [18].
To perform Task 1, we do: (A1) for each w1

i ∈ W1 do: (A1.1) compute the ε-NN between w1
i

and all windows w2
j ∈ W2 and return them all. The notion of cost above is not defined for ANN

methods based on trees. Instead, we measure wall clock runtime. Instead, we report as cost the ratio
of the runtime of approximate NN over the runtime of exact NN (also computed using the ANN
library [18]). This gives a meaningful indication of speedup, which can be compared to the cost we
report for our method and LSH. As the ANN library supports only the Euclidean distance, we report
results only for GIST.

The results table reports cost and accuracy averaged over the test set. Our method from sec. 3
performs very well for all three descriptors. On average it achieves 98% accuracy at 16% cost. This
is a considerable speedup over exhaustive search, as it means only 7% of the 90% distances greater
than ε have been computed. The behavior of LSH depends on T and C. The higher the T , the
higher the accuracy, but also the cost (because there are more collisions; the same holds for lower
C). To compare fairly, we evaluate LSH over T ∈ {1, 20} and C ∈ {2, 30} and report results for
the T,C that deliver the closest accuracy to our method. As the table shows, on average over the
three descriptors, for same accuracy LSH has cost 92%, substantially worse than our method. The
behavior of ANN depends on the degree of approximation which we set so as to get accuracy closest
to our method. At 92% accuracy, ANN has 72% of the runtime of exact NN. This shows that, if high
accuracy is desired, ANN offers only a modest speedup (compared to our 18% cost for GIST).

Task 2: all windows closer than ε to a query. This is a special case of Task 1, whereW1 contains
just one window. Hence, this becomes a ε-nearest-neighbours task where W1 acts as a query and
W2 as the retrieval database. This task occurs in many applications, e.g. object detectors based
on kernel SVMs compare a support vector (query) to a large set of overlapping windows in the test
image [13, 24]. As this is expensive, many detectors resort to linear kernels [9]. Our algorithms

7

Task 1
GIST + Euclidean distance CHIST + χ2 distance SURF BOW + χ2 distance

method cost accuracy method cost accuracy method cost accuracy
our 18.0% 97.3% our 15.7% 97.7% our 15.2% 98.5%

LSH 86.2% 95.4% LSH 93.7% 97.2% LSH 96.8% 98.5%
ANN 71.8% 91.9% ANN - - ANN - -

Task 2
method cost accuracy method cost accuracy method cost accuracy

our 30.2% 87.1% our 30.3% 96.2% our 28.6% 94.0%
LSH 73.4% 83.5% LSH 96.9% 95.1% LSH 88.7% 92.1%
ANN 72.6% 87.7% ANN - - ANN - -

Task 3
method cost ratio rank method cost ratio rank method cost ratio rank

our 2.3% 1.02 1.39 our 0.4% 1.01 1.12 our 0.7% 1.01 1.19
LSH 16.4% 1.03 2.72 LSH 37.5% 1.02 33.5 LSH 46.5% 1.01 9.62
ANN 58.6% 1.01 1.48 ANN - - - ANN - - -

offer the option to use more complex kernels while retaining a practical speed. Other applications
include tracking in video [4, 5] and image retrieval [20] (see beginning of sec. 1).

As the table shows, our method is somewhat less efficient than on Task 1. This makes sense, as it
can only exploit overlap structure in one of the two input sets. Yet, for a similar accuracy it offers
greater speedup than LSH and ANN.

Task 3: single pair of windows with smallest distance. The task is to find the single pair of
windows with the smallest distance between I1 and I2, out of 3000 windows in each image (sec. 4),
and has similar applications as Task 1.

We quantify performance with three measures: (i) cost: as in all other tasks. (ii) distance ratio: the
ratio between the smallest distance returned by the algorithm and the true smallest distance. The
best possible value is 1, and higher values are worse; (iii) rank: the rank of the returned distance
among all 9 million.

To perform Task 3 with LSH, we simply modify step (H3) of the procedure given for Task 1 to:
return the smallest distance among all those computed. To perform Task 3 with ANN we replace
step (A1.1) with: compute the NN of w1

i inW2. At the end of loop (A1) return the smallest distance
among all those computed.

As the table shows, on average over the three descriptors, our method from sec. 4 achieves a distance
ratio of 1.01 at 1.1% cost, which is almost a 100× faster than exhaustive search. The average rank of
the returned distance is 1.25 out of 9 millions, which is almost a perfect result. When compared at a
similar distance ratio, our method is considerably more efficient than LSH and ANN. LSH computes
33.3% of all distances, while ANN brings only a speedup of factor 2 over exact NN.

Runtime considerations. While we have measured only the number of computed appearance dis-
tances, our algorithms also compute spatial overlaps. Crucially, spatial overlaps are computed in the
4D geometric space, compared to 1000+ dimensions for the appearance space. Therefore, comput-
ing spatial overlaps has negligible impact on the total runtime of the algorithms. In practice, when
using 5000 windows per image with 4000D dense SURF BOW descriptors, the total runtime of our
algorithms is 71s for Task 1 or 16s for Task 3, compared to 335s for exhaustive search. Impor-
tantly, the cost of computing the descriptors is small compared to the cost of evaluating distances,
as it is roughly linear in the number of windows and can be implemented very rapidly. In practice,
computing dense SURF BOW for 5000 windows in two images takes 5 seconds.

Conclusions. We have proposed efficient algorithms for computing distances of appearance de-
scriptors between two sets of image windows, by taking advantage of the overlap structure in the
sets. Our experiments demonstrate that these algorithms greatly reduce the number of appearance
distances computed when solving several tasks relevant to computer vision and outperform LSH
and ANN for these tasks. Our algorithms could be useful in various applications. For example,
improving the spatial accuracy of weakly supervised learners [7, 11] by using thousands of win-
dows per image, using more complex kernels and detecting more classes in kernel SVM object
detectors [13, 24], and enabling image retrieval systems to search at the window level with any de-
scriptor, rather than returning entire images or be constrained to bag-of-words descriptors [20]. To
encourage these applications, we release our source code at http://www.vision.ee.ethz.ch/˜calvin.

8

References
[1] B. Alexe, V. Petrescu, and V. Ferrari. Exploiting spatial overlap to efficiently compute ap-

pearance distances between image windows - supplementary material. In NIPS, 2011. Also
available at http://www.vision.ee.ethz.ch/ calvin/publications.html.

[2] A. Andoni and P. Indyk. Near-optimal hashing algorithms for approximate nearest neighbor in
high dimensions. In Communications of the ACM, 2008.

[3] H. Bay, A. Ess, T. Tuytelaars, and L. van Gool. SURF: Speeded up robust features. CVIU,
110(3):346–359, 2008.

[4] C. Bibby and I. Reid. Robust real-time visual tracking using pixel-wise posteriors. In ECCV,
2008.

[5] S. Birchfield. Elliptical head tracking using intensity gradients and color histograms. In CVPR,
1998.

[6] O. Chum, J. Philbin, M. Isard, and A. Zisserman. Scalable near identical image and shot
detection. In CIVR, 2007.

[7] O. Chum and A. Zisserman. An exemplar model for learning object classes. In CVPR, 2007.
[8] N. Dalal and B. Triggs. Histogram of Oriented Gradients for Human Detection. In CVPR,

volume 2, pages 886–893, 2005.
[9] N. Dalal and B. Triggs. Histogram of oriented gradients for human detection. In CVPR, 2005.

[10] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni. Locality-sensitive hashing scheme based
on p-stable distributions. In SCG, 2004.

[11] T. Deselaers, B. Alexe, and V. Ferrari. Localizing objects while learning their appearance. In
ECCV, 2010.

[12] M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The PASCAL Visual
Object Classes Challenge 2007 Results, 2007.

[13] H. Harzallah, F. Jurie, and C. Schmid. Combining efficient object localization and image
classification. In ICCV, 2009.

[14] H. Jegou, M. Douze, and C. Schmid. Hamming embedding and weak geometric consistency
for large-scale image search. In ECCV, 2008.

[15] Y. Ke and R. Sukthankar. Pca-sift: A more distinctive representation for local image descrip-
tors. In CVPR, 2004.

[16] G. Kim and A. Torralba. Unsupervised detection of regions of interest using iterative link
analysis. In NIPS, 2009.

[17] N. Kumar, L. Zhang, and S. Nayar. What is a good nearest neighbors algorithm for finding
similar patches in images? In ECCV, 2008.

[18] D. M. Mount and S. Arya. Ann: A library for approximate nearest neighbor searching, August
2006.

[19] A. Oliva and A. Torralba. Modeling the shape of the scene: a holistic representation of the
spatial envelope. IJCV, 42(3):145–175, 2001.

[20] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman. Object retrieval with large vocabu-
laries and fast spatial matching. In CVPR, 2007.

[21] M. Raginski and S. Lazebnik. Locality sensitive binary codes from shift-invariant kernels. In
NIPS, 2009.

[22] B. Sapp, A. Toshev, and B. Taskar. Cascaded models for articulated pose estimation. In ECCV,
2010.

[23] A. Torralba, R. Fergus, and Y. Weiss. Small codes and large image databases for recognition.
In CVPR, 2008.

[24] A. Vedaldi, V. Gulshan, M. Varma, and A. Zisserman. Multiple kernels for object detection.
In ICCV, 2009.

[25] J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels for classifi-
cation of texture and object categories: a comprehensive study. IJCV, 2007.

9

