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Using Dialogue to Learn Math
in the LeActiveMath Project

Charles Callaway and Myroslava Dzikovska and Colin Matheson and Johanna Moore1 and Claus Zinn2

Abstract.
We describe a tutorial dialogue system under development that as-

sists students in learning how to differentiate equations. The system
uses deep natural language understanding and generation to both in-
terpret students’ utterances and automatically generate a response
that is both mathematically correct and adapted pedagogically and
linguistically to the local dialogue context. A domain reasoner pro-
vides the necessary knowledge about how students should approach
math problems as well as their (in)correctness, while a dialogue man-
ager directs pedagogical strategies and keeps track of what needs to
be done to keep the dialogue moving along.

1 Overview

One-on-one tutoring is known to be better in helping students learn
when compared with reading textbooks. Human tutors typically pro-
duce effect sizes of up to two standard deviations [2] compared to
unsupervised reading. Tutorial systems, in particular cognitive tutors
which model the inner state of a student’s knowledge, improve over
reading alone but still result in only up to 1 standard deviation ef-
fect size [1]. One potential reason for this difference is the use of
interactive dialogue, which allows students to freely ask questions
and tutors to adapt their direct feedback and presentation style to the
individual student’s needs.

Adding natural language dialogue to a tutorial system is a complex
task. Many existing tutorial dialogue systems rely on pre-authored
curriculum scripts [15] or finite-state machines [16] without detailed
knowledge representations. These systems are easy to design for cur-
riculum providers, but offer limited flexibility because the writer has
to predict all possible student questions and answers. Representations
of domain knowledge and reasoning, along with a record of past stu-
dent mistakes and misconceptions, is vital for adaptively interacting
with students via natural language.

We describe a tutorial system for solving differential equations
which uses a custom-built domain reasoner, named SLOPERT, ca-
pable of determining whether a student’s answer is correct or not,
and if not, what the most likely explanation for the mistake or
misconception would be. Our approach relies on using an exist-
ing wide-coverage parser for domain-independent syntactic parsing
and semantic interpretation, a dialogue manager (DM) using the
information-update approach [14], the SLOPERTdomain reasoner for
the domain of differential equations, and a wide-coverage deep gen-
eration system for adaptively generating tutor utterances. We hope
to show that despite the significant effort involved in representing

1 University of Edinburgh, HCRC email: ccallawa@inf.ed.ac.uk,
{m.dzikovska,Colin.Matheson,J.Moore}@ed.ac.uk

2 DFKI, zinn@dfki.de

knowledge and integrating it with deep natural language compo-
nents, students will learn more because the dialogue they engage in
will be more similar to that with a human tutor.

The tutorial dialogue system presented here is one component of
the LeActiveMath project, a sixth European Framework project for
developing eLearning systems for high school and college or univer-
sity level classrooms which can be used in informal contexts for self
learning. The core system provides lessons customized to the learner
by combining hand-written text and exercises, adapts to the learner
and learning context, and also contains functionality for open learner
modeling, the personalization of the lesson material, and interactiv-
ity for active and exploratory learning. Our tutorial dialogue system
receives requests to help a student solve particular problems and re-
ports any mistakes (in the form of misconceptions diagnosed) to the
learner model.

A typical interaction with the tutorial dialogue system consists of
solving a series of problems proposed by either tutor or student, cen-
tering around differentiation based on the chain rule. The student pro-
ceeds to solve each problem one by one, and can directly ask the tutor
for help or receive help proactively when the tutor detects errors in
the student’s intermediate steps. The use of a domain reasoner al-
lows us to know exactly what errors a student is likely making at any
point in time, which can be used as a basis for adaptive feedback by
the generation system. The types of feedback available and methods
for selecting what to say at any stage are informed by a corpus of 19
collected human-human tutorial interactions [7].

2 Dialogue System Architecture

A student interacting with the prototype of our intelligent tutor-
ing system for differential equations sees the graphical user interface
shown in Fig. 1. It consists of a mixed text and math formula entry
area, a set of buttons indicating the purpose of the student’s input, the
current problem under discussion, a large area for holding the history
of the dialogue up to this point (both tutor’s and student’s utterances),
and an area for holding the previous term entered as a cut-and-paste
convenience for students. The two text fields allow students to type
text both before and after a mathematical formula (entering only a
mathematical formula with no text is usually indicative of an inter-
mediate substep or the final solution).

The architecture of the tutorial dialogue system with respect to
the overall LeActiveMath system is shown in Fig. 2. There are three
main parts: (i) the server-side dialogue system described here, (ii)
a client-side Java-based GUI applet supporting student interaction
(Fig. 1) calledG(LE)2AM, and (iii) the LeActiveMath core system
described above. Communication betweenG(LE)2AM and the dia-
logue manager (DM) as well as between the DM and the LeActive-



Figure 1. TheG(LE)2AM user interface for the tutorial dialogue component.
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Figure 2. Architecture of the tutorial dialogue component in relation to other LeActiveMath components.



Math core system is established via XML-RPC. Problems to solve
can be proposed by either the student or the LeActiveMath core sys-
tem. Information about students’ capabilities in problem solving is
exchanged with the learner modeling component of LeActiveMath
to allow adaptive advice to be given for both the current and future
math problems.

3 Natural Language Understanding

Understanding the sentences typed in by the student places a num-
ber of requirements on the NLU components involved in tutorial di-
alogue: dealing with complex and varied syntactic constructs pro-
duced by the students, as well as fragmentary utterances; pars-
ing mathematical expressions interleaved with English; determining
what is in the common ground, and particularly interpreting referring
expressions; and handling referring expressions with math elements.

Our BEET natural language interpretation component consists of:

• The TRIPS parser and grammar [8] with extensions to handle in-
terleaved natural language and mathematical expressions;

• A spelling corrector to deal with typed input;
• A dialogue move identification algorithm, currently capable of

identifying student help requests and statements of confusion.

The TRIPS parser is a bottom-up chart parser using a feature-
based unification grammar formalism It comes with a wide-coverage
grammar that is geared specifically for dialogue interpretation and a
domain-independent lexicon, and produces semantic interpretations
in parallel with syntactic analysis. The TRIPS grammar contains 381
grammar rules which provide wide coverage of various syntactic
constructs. In addition to handling complex syntactic phenomena,
TRIPS provides good coverage for fragments found in spoken dia-
logue.

BEET also contains an initial implementation of a reference res-
olution algorithm capable of identifying expressions to resolve, and
querying the reasoners for the necessary information.

3.1 Parsing Interleaved Symbolic and Natural
Language

The design of the multimodal interface (Figure 1) gives the student
the option to enter math expressions in the formula editor window to-
gether with free natural language input. While lack of accompanying
text often indicates a substep or final solution to the problem, there
are many possible motives for the students to add text: explaining
their reasoning or knowledge of the domain to the tutor, asking for
help, editing previous problem steps, asking clarification questions,
and hedging when proposing the next substep to name a few.

Our corpus contains 19 human-human dialogues on solving dif-
ferentiation problems for a total of 1010 turns and 53.16 turns per
dialogue. 54% of student turns consisted of only a term or formula
entered in the equation editor window. BEET does not perform anal-
ysis of the mathematical input; it marks this language-free input as a
potential contribution to the current problem solution, and delegates
its analysis to the domain reasoner, which decides whether the stu-
dent’s math expression fits the given task context.

When students chose to use the free text field for input, in
63% of the cases they did not use any mathematical expressions,
but in 36% of cases the student contribution contained both text
and mathematical terms. If the student entered both language and
mathematical expressions, they were frequently integrated tightly:

(a) (Speechact V1 WH-Question :Content E2)
(F E2 (:* LF::Happen happen) :Patient V3 :Theme V4

:TMA ((Tense pres)
(Modality (:* LF::Conditional would))))

(THE V3 LF::Term :refers-to-external term295)
(WH-TERM V4 (:* LF::Referential-sem what)

:Context-rel what)

(b) <OMOBJ id="term295" >
<OMS cd="arith1" name="power"/ >

<OMV name="x"/ >
<OMI>3</OMI >

</OMS></OMOBJ>

Figure 3. The representation forWhat would happen to thex3: (a) the
TRIPS LF representation usingrefers-to-external to refer to math

input; (b) the OpenMath representation for the math termx3.

(1) What would happen to thex3

(2) I know thatsin′(x) = cos(x)

Here, the mathematical expressions serve as parts of utterances
(such as noun or verb phrases), which would not be complete without
them. Thus the interpretater has to handle interleaved language and
mathematical expressions, which presents a technical problem.

The TRIPS domain-independent representation necessary to rep-
resent natural language content is a flattened semantic representa-
tion using semantic types and roles and is not suitable for represent-
ing the details of mathematical expressions. In contrast, OpenMath
(http://www.openmath.org ) is an XML format built specifi-
cally for representing mathematical expressions, but which offers no
support for representing natural language.

In BEET, we tackle this problem through a loose coupling between
TRIPS and OpenMath representations. Like [18], the TRIPS parser
only needs to know whether a given expression is a term or a formula.
We do not more tightly integrate language as our domain contains
very little quantificational language of the type found in set theory
(e.g., “no X is in Y”). Terms are expressions that linguistically serve
as noun phrases or̄N constituents in sentences, for examplex3 in
(1). Formulas are statements which can serve as clauses in sentences,
for example,sin′(x) = cos(x) in (2). Thus, we store OpenMath and
TRIPS LF representations separately, passing on to TRIPS only the
expression type (term or formula), and integrate the representations
in interfacing to the dialogue manager.

An example representation for utterance (1) is shown in Figure 3.
To be interpreted by the TRIPS parser, the input is pre-processed
and the mathematical expressions are replaced with special constants
which encode term types and IDs. Thus, the TRIPS parser receives as
input the stringwhat would happen to the ˜term˜term295. The special
constant at the end indicates that it stands in for the mathematical
term with ID term295 , shown in Figure 3(b). We implemented an
extension to the TRIPS tokenization algorithm which identifies these
special constants and creates the corresponding LF representations in
the parse, with references to the ID specified, as shown in Figure 3(a).

The example above illustrates mixing symbolic and natural lan-
guage in a single utterance. In some cases, if a formula is used as
part of student input, it will not be integrated with the rest of the
sentence. In (1) and (2) each sentence would not be complete if the
formula or term is not included. In contrast, consider the student turn
z = x2 + 6x − 1 i’m not sure about what y isIn this case, the turn
presents two separate contributions to dialogue: a partial solution
(z = x2 + 6x− 1) which by itself does not contain natural language
and a separate, although related, request for help (i’m not sure about
what y is). It is the task of the TRIPS parser to decide whether the
mathematical expression is integrated with the surrounding language,



or makes a stand-alone contribution to the student turn. This decision
can be made because in the latter case there is no unique parse tree
covering the whole utterance. If this is the case, the parser outputs
a structure labeledCOMPOUND-COMMUNICATION-ACTwith indi-
vidual representations for different statements in the formula. The
representation forYes,F ′(sin x) = cos x is shown here:

(COMPOUND-COMMUNICATION-ACT :ACTS (V11949 V11961)
(LF::SPEECHACT V11949 W::SA RESPONSE :CONTENT

(W::POS :CONTENT W::YES))
(LF::SPEECHACT V11961 W::SA IDENTIFY :CONTENT V11945)

(LF::THE V11945 LF::FORMULA :REFERS-TO-EXTERNAL
W::FML 1))

3.2 Coverage and Error Analysis

We evaluated the accuracy of the TRIPS parser on 18 human-human
tutorial dialogues we had collected in the domain of symbolic dif-
ferentiation. Both student and tutor utterances were parsed, because
they both contained mathematical expressions and other language
students may be expected to generate. The dialogues were hand-
checked using the standard TRIPS corpus methodology [17]. The
accuracy results for individual dialogues are presented in Table 1.
The table presents two accuracy measures: the overall accuracy mea-
sure calculated using all sentences in the dialogue, and the accuracy
measure over sentences with 2 or more words. The former is a more
direct reflection of expected parser performance in dialogue; but the
latter is also important because one-word utterances often consist of
simple acknowledgments or rejections, and excluding them repre-
sents the parser coverage on utterances where relationships between
words are important.

Log # Overall 2 or more words
Total Good Bad Acc. Total Good Bad Acc.

1 105 64 41 61% 74 34 40 46%
2 72 53 19 74% 41 23 18 56%
3 78 49 29 63% 45 16 29 36%
4 81 54 27 67% 46 20 26 43%
5 97 57 40 59% 69 29 40 42%
6 99 69 30 70% 54 24 30 44%
7 77 63 14 82% 32 18 14 56%
8 56 39 17 70% 26 9 17 35%
9 52 26 26 50% 34 8 26 24%
10 43 22 21 51% 26 6 20 23%
11 121 76 45 63% 63 19 44 30%
12 78 57 21 73% 37 16 21 43%
13 98 50 48 51% 70 24 46 34%
14 108 77 31 71% 65 34 31 52%
15 81 51 30 63% 46 16 30 35%
16 78 52 26 67% 46 20 26 43%
17 119 89 30 75% 63 33 30 52%
18 74 48 26 65% 48 22 26 46%
19 71 39 32 55% 49 17 32 35%
Total 1588 1035 553 65% 934 388 546 42%

Table 1. Accuracy results broken by dialogue in the LeActiveMath corpus
evaluation. Good, Bad - counts of utterances marked good and bad; Acc -

parsing accuracy, percentage of correctly parsed utterances.

Overall, 65% of utterances in the corpus, and 42% of utterances
with 2 or more words were assigned complete and correct parses by
the TRIPS parser. For utterances which are ungrammatical, the parser
returns a set of fragment parses, which can be ranked according to the
current dialogue context by the dialogue manager, but which are not
yet handled by the current version of the system.

We also conducted an error analysis to identify causes of parse
failures in our corpus. Lexical failures accounted for 27% of all parse

failures, and remedying the coverage gaps is a necessary goal for
parser improvement. The next most common problem in the corpus,
accounting for 20% of all parse failures, is the presence of spelling
mistakes and abbreviations such as writingex instead ofexample.
We estimated the number of spelling errors in our corpus by count-
ing the number of utterances in the corpus which contained words
unknown to the parser.Overall, 7% of the utterances in the corpus
contained spelling mistakes as represented by unknown words. Once
these are removed, the accuracy figures for the corpus containing
known words only were 71% overall and 48% for utterances with
two or more words. Thus dealing with spelling mistakes and abbre-
viations appropriately is likely to improve system performance.

3.3 Spell-checking

Robustness is a major concern when free student input is allowed
as students do not always follow the normal rules for grammar and
spelling, especially in dialogue. To address misspelling we added a
spelling corrector based on minimum edit distance [9, 12]. For every
misspelled word, it returns a list of possible corrected spellings for
words in the TRIPS lexicon. To enable the TRIPS parser to process
the alternatives we used a speech lattice parsing mechanism.

The TRIPS parser can parse speech lattices which in speech appli-
cations represent uncertainty from the speech recognizer about the
words recognized. This is well suited to dealing with spell-corrected
output which is uncertain with respect to the appropriate correction
among the possible alternative spellings . Therefore, we implemented
an algorithm to convert the output of the spelling corrector into a lat-
tice, using the number of disagreements as a score for different mis-
spelling variants. A sample spell-corrected lattice to be sent to the
TRIPS parser is shown in Figure 4.

could

0.55

$$IIIIIIIII

couldn′t
0.25 // you 1 // help

1 // me
1 // ?

cool

0.2

::uuuuuuuuu

Figure 4. A lattice generated by the spelling corrector forCoud you help
me?. Numbers on arcs indicate scores assigned to alternatives.

The TRIPS parser uses built-in word sense preferences and syn-
tactic rules to choose the word from the lattice which best fits with
the rest of the input. We evaluated the parser and spelling corrector
together, with the evaluation results presented in Table 2. The table
shows that spell-checking improves parsing accuracy, but that the
current version of the spell-checker is not yet capable of dealing with
all possible spelling mistakes, because for utterances which didn’t
contain typos, the parsing accuracy is significantly higher.

One reason for this difference is the weak domain model. Con-
sider a misspelled word “oower”. In absence of other information,
the possible corrections are “power” or “tower”, and the parser may
not have sufficient evidence from the domain-independent informa-
tion in the lexicon to make the right choice. Here we need a mapping
which will identify words likepowerin the power is negativeas do-
main concepts, and map them to corresponding concepts or symbols
in the SLOPERTdomain reasoner, thus excluding “tower” from con-
sideration as it is outside the domain.



Dataset Overall >= 2 words
# of utter-
ances

Accuracy # of utter-
ances

Accuracy

Raw 1588 65% 934 41%
With spell-checker 1588 66% 934 43%
Typos removed 1472 71 % 823 48%

Table 2. Evaluation summary. Raw — the original collected data; with
spell-checker — raw dataset parsed with spell-checker; typos removed —

accuracy on sentences with only known words.

4 Operationalizing Tutorial Dialogue Strategies

Although the information state update approach to dialogue man-
agement has been used frequently for information seeking dialogues
such as searching for flights, it has less often been applied to and eval-
uated with intelligent tutoring systems that use deep linguistic repre-
sentations. Exceptions include the BEETLE system [19] for teaching
electronics which used a deep parser but not a deep generator, and
the DIALOG project [3, 13] for teaching set-theoretic proofs which
has not yet been evaluated.

The dialogue manager is a central component in a tutorial dialogue
system and must tie together elements of domain knowledge and rea-
soning, pedagogical strategies, and language from other components,
while still being prepared to put the current goals on hold in order to
communicate with the student about basic dialogues issues such as
acknowledgements, corrections, and clarification questions.

We have implemented our dialogue manager using the TRINDIK IT

system [14]. The high-level generation of system feedback is per-
formed by two key components:UPDATE and SELECT(Fig. 2).
The UPDATE algorithm updates the current dialogue context (aka
information state, or IS) with the dialogue moves identified by the
BEET interpretation component; The SELECT algorithm then ex-
ploits the updated IS to generate high-level feedback in the form of
system dialogue moves, which are then passed to the BUG genera-
tion component along with the diagnosis from the domain reasoner
for verbalization.

4.1 UPDATE

The UPDATE component’s task is to maintain the information state,
which is the main source of combined information for all compo-
nents in BEEDIFF. UPDATE’s task can be described as follows:

• For each dialogue move in the sequence of moves identified by
BEET, update the information state appropriately (with the stu-
dent’s contribution).

• For each dialogue move in the sequence of moves identified by
SELECT, update the information state appropriately (with the tu-
tor’s contribution).

The dialogue manager can currently deal with three types of
student moves, namely,proposetask(SomeTask), requesthelp()and
give answer(SomeAnswer), and three types of tutor moves,
namely, accepttask(SomeTask), give hint(SomeHint) and
give diagnosis(SomeDiagnosis).

As an example of managing the IS variables “latestmoves” and
“latest speaker”, which are set by the interpretation component when
the latest speaker is the student, consider the following:

rule( getLatestMoves,
[ $latest_moves = M,

$latest_speaker = DP ],
[ set( /shared/lu/moves, M ),

set( /shared/lu/speaker, DP ) ] ).

This update rule has two preconditions, which serve to retrieve the
values of the IS slots “latestmoves” and “latestspeaker”. In the
rule’s action list, this information is then stored in the “shared” part
of the information state.

The next update rule example shows the interaction between a stu-
dent input (student requested help) and the learner model. Note the
access of the IS location “$/shared/lu/moves”, which has been writ-
ten by the previous rule.

rule( generateExerciseHelpRequestEvent,
[ $/shared/lu/speaker == usr,

in( $/shared/lu/moves, request_help ),
in( $/shard/uid, UID ),
in( $/shared/sid, SID ) ],

[ % check Domain Reasoner for next step
! ( $(domain)) :: get_next_step( Step ) ] ).

The rule’s preconditions check whether the student’s latest move
was indeed a help request, and retrieve both user and session ID from
the information state. In the rule’s action list, a query is sent to the
SLOPERT domain reasoner. In addition, the update rules for student
moves generate an “obligation” for the tutorial system to address the
student’s contribution. How the system then addresses these “obliga-
tions” is determined by SELECT, which we describe next.

4.2 SELECT

In a dialogue system, the tutor’s utterances are often produced ad-
hoc by a canned-text generator. Our system instead generates the tu-
tor’s output via a deep natural language generation (NLG) system,
which typically consists of a set of smaller, specialized modules that
produce linguistically-based textual output by iteratively refining the
current dialogue move. In NLG adialogue plannerselects and orga-
nizes the content of the text, asentence planner(or micro-planner)
determines appropriate semantic roles for each element in the dia-
logue plan, and asurface realizerassigns syntactic roles for each
semantic role, ensures each sentence is grammatical, and uses lin-
earization (word ordering), morphology rules and lexemes to pro-
duce the final surface text. The DM’s SELECT module implements
the dialogue planner; the other two modules are realized in the text
generation system described in Section 5.

A dialogue planner for tutorial dialogue converts tutorial strategies
into turn-by-turn utterance decisions. Unlike discourse, the entire di-
alogue cannot be planned in advance, but must follow both an overall
strategy that enforces the educational goal and a more local strategy
that responds to students’ answers and interruptions. In LeActive-
Math, students are assumed to be working on particular problems, so
there are no explicitly represented, overarching pedagogical goals,
but rather smaller scoped pedagogical rules that derive directly from
the domain model. We thus have both active and reactive strategies:
active strategies structure the flow of the dialogue to achieve local
pedagogical aims, such as teaching which derivative rule to apply in
a particular situation. Reactive strategies allow for adaptive dialogue,
whether by customizing the content of text to match the remedial
needs of a student in a particular context, or the necessity of gen-
erating utterances whose sole purpose is to respond to obligations
imposed by other participants of the dialogue (such as needing to
respond to questions).

The selection and instantiation of tutorial strategies is informed by
the contents of the information state, the SLOPERT domain reason-
ing and diagnosis engine, and the learner model. Tutorial feedback
thus takes into account the context of the ongoing dialogue (in par-
ticular, the need to respond to obligations as created by UPDATE
following a student contribution), the task context (as maintained by



SLOPERT), and the system’s beliefs about the learner (as maintained
by the learner model).

System utterances serve many pedagogical functions, including
feedback for previous student answers, cues to elicit new informa-
tion, explanations to eliminate student misconceptions, or even moti-
vation to keep students on track. They are also important for redirect-
ing the dialogue via backoff strategies when the parser fails, although
as of now we have not yet implemented such strategies.

The dialogue planner must then map these diverse intentions to a
sequence of dialogue moves (type and propositional content) whose
surface text realizes these goals.

In the initial version of SELECT, we have implemented three sim-
ple feedback strategies:

• Accept a task whenever the learner proposes one.
• Give a hint whenever help is requested, guiding the learner

through a solution graph.
• Give a diagnosis of input whenever the learner proposes a term as

a solution or intermediary step.

An encoding of the latter two types of SELECT rules is given below:

rule( giveHint,
[ $/shared/lu/speaker == usr,

in($/shared/lu/moves, request_help) ],
[ % check SLOPERT for specific hint

! ($(domain)) :: get_next_step( Step ),
% make the tutor give the hint
add(next_moves, give_hint( Step )) ] ).

rule( giveDiagnosis,
[ $/shared/lu/speaker == usr,

in($/shared/lu/moves,
give_answer(StudentAnswer)) ],

[ % check availability of diagnosis
! ($(domain)) ::

get_diagnosis(StudentAnswer, Diagnosis),
add(next_moves,

give_diagnosis(Diagnosis)) ] ).

When a hint is needed, SLOPERT produces a set of possible hints
which the SELECT module has the responsibility to convert into
a context-sensitive hint. Note that the specificity of the hint can
be influenced by the contents of the learner/situational model. If
the learner’s general aptitude or prior performance, for instance, is
“good”, then the SELECT module may generate a hint of low speci-
ficity, say by giving the name of the next differentiation rule to apply.
If the system judges the learner as “weak”, then hints could be more
informative, say, by telling the learner the name of the rule as well as
its symbolic representation.

Note also that both rules add dialogue moves to the IS slot
“next moves”. Upon activation by TRINDIK IT, the BUG verbalisa-
tion component retrieves the value of this IS slot, processes it to pro-
duce the text for the dialogue moves, and writes the result of ver-
balisation to the IS slot where it can be read by theG(LE)2AMuser
interface to show to the student.

5 Generating Tutorial Utterances

We have implemented an initial version of the text generation compo-
nent (named BUG) that can produce utterances for the computer in its
role as tutor. BUG can generate a variety of verbalizations for system
feedback within the current context and automatically revise small
chunks of these written dialogue segments into connected, natural
prose. Tasked with producing tutor utterances, the generation sys-
tem must correctly handle linguistic phenomena both at and above
the sentence level and that originates on the part of either the stu-
dent or tutor. These linguistic phenomena are independent of domain
(mathematics, flight reservations, systems control, etc.) and include

correctly pronominalizing concrete references in a natural way, how
to appropriately combine multiple dialogue moves (sentences) into a
single turn, and deciding which elements can be elided.

5.1 Linguistic Phenomena in Dialogue:
Pronominalization, Revision and Ellipsis

Like discourse generation [5], creating text for use in a dialog re-
quires linguistic rules for correctly generating pronouns, revising
small sentences into larger sentences, lexically marking relations be-
tween sentences, and generating ellipsis.
Pronouns: Dialogue situations require some modification to rules
that have been previously applied in discourse-only applications.
For instance, tutors refer to the student as “you”, both participants as
“we”, and students refer to themselves as “I”:

Tutor: In that last one did you mean dx/dw?
Tutor: Last week we solvedsin(6x− 2)3.

Other discourse elements are typically marked with neuter gender:

Student: The answer is18cos(sin(6x− 2))2.
Tutor: Almost, try to tidy it up.

This means that both dialogue participants and content must be
explicitly represented in each utterance to be correctly realized.

We have adapted a previous, discourse-based pronominalization
solution [6] to serve as the pronominalization module in LeAc-
tiveMath. The principal difference is the generation component is
only responsible for tutor utterances, and thus when the student
produces referring expressions during their turn, the interpreter
component must pass these along (via the information state) to the
generation component. We thus had to provide a mechanism to
communicate shared ID’s between the interpreter and generator via
the information state. For example:

Student: Did I leave out the minus sign?
References: ”I”: student001, ”minus sign”: minus-sign001

Tutor: Yes, it should be there.
References: ”it”: minus-sign001

In this case, without knowing that the student had just mentioned
the concept “minus sign”, the generation component would not have
known it should make it a pronoun.

This process must also work in reverse; namely, the generation
system must inform the interpretation component which concrete
references have been produced for the tutor’s utterance, so that it
may update its dialogue context and be more likely to correctly re-
solve pronouns uttered by the student. Again, the information state
serves as a container or blackboard for the interpretation and genera-
tion components. This requires both a common lexicon and common
set of mentionable entities in the knowledge representation.
Revision: Another dialogue-level linguistic phenomena required
for high-quality text is that ofrevision, which can consist of either
text plan rearrangementor clause aggregation. Revision is important
not only because it makes the text more readable, but it has also been
shown to improve learning gains compared to non-revised text [11].
In general, SELECT will generate a sequence of dialogue moves to
BUG for verbalisation within a single turn. For instance, here a set
of three dialogue moves should be aggregated for readability, as the
collected corpus has shown:

Tutor: Ok. [SignalUnderstanding]
Tutor: Exactly. [Correctness]
Tutor: Go on to the next step. [ActionDirective]

Tutor: Ok, exactly, now go on to the next step.



At other times, an explicit discourse relation might exist between
multiple moves, as with “but” in this example:

Tutor: You got the answer mostly right. [Partial-Correctness]
Tutor: [Incompleteness-Relation]
Tutor: You didn’t tidy it up. [Assert]

Tutor: You got the answer mostly right, but you didn’t tidy it up.

Ellipsis: Finally, the language of dialogue, and our corpus in
particular, is full of syntactically incomplete utterances where
missing elements can be filled in by previous elements of the
dialogue [4, 10]. For instance:

Student: Should the minus signs be on the inside or the outside?
Tutor:<The minus signs should be> On the outside.

requires that the generator recognize that overlap in syntactic forms
is occurring and that only the newest information need be presented.
Like pronominalization, this requires a degree of communication
with the interpreter. Although we have not fully specified the for-
mat of this communication, it should be necessary to include high-
level (e.g., chunked) syntax. We have however tested the generation
system on such examples to ensure that it can produce appropriate
ellipsis when the appropriate mechanism is fully defined.

5.2 Generation System Architecture

Rather than create an entire text generation system from scratch, we
have modified the STORYBOOK system [5] originally intended for
discourse to generate tutorial utterances for dialogue. STORYBOOK

takes speech-act-like representations and brings to bear a lexicon,
grammar, and rules for determining pronouns, clause aggregations
and discourse markers to produce fluent text. BUG retrieves dialogue
moves from the IS and also accesses other parts of the dialogue con-
text (say, for references or past student performance). Examples of
simple utterances and the dialogue moves for producing them are:

Let’s differentiate<expression1>
accept task(diff( <expression1 >))

If you apply<rule> to <expr1>, you obtain<expr2>.
give hint(apply rule( <rule >, <expr1 >, <expr2 >))

You should identify the form of the statement.
give hint(identify form( <expression >))

You need to perform a substitution.
give hint(substitute( <input >, <subst >, <output >))

You missed the inner layer.
give diagnosis(applied rule(buggy, <rule >, <expr1 >,

<expr2 >,error(missing inner layer)))

Unlike the interpreter, we have a great degree of control over
the language we would like to produce for the system’s tutorial
utterances, and thus we do not need as many new vocabulary items
or grammar rules. We can also ensure the coverage of the utterance
generator by testing that it could successfully generate all utterances
in several of the dialogues from our corpus. The following are
examples of typical tutor utterances from our human-human corpus
that the system is capable of producing:

Tutor: Trysin(x4 − 2x).
Tutor: Can you tidy up the minus signs?
Tutor: Try cos(7− x3) where cos differentiates to -sin.

The final result is a text string that represents an appropriate sys-
tem tutorial utterance that corresponds to the dialogue obligations
and content as specified by SELECT, with optional multi-modal ef-
fects for theG(LE)2AM graphical user interface, such as red high-
lights around sections of algebraic expressions currently under the
focus of tutor and student. The generated string is stored in the IS
whereG(LE)2AMcan retrieve it to display to the student.

6 An Example Interaction

In this section, we briefly describe the flow of control between the
various DM components for typical dialogue interactions.

A learner is first engaged in exploring lessons on differentiation
with the LeActiveMath system, and at some point clicks on a link
that has been generated by the Tutorial Component for her. This
link points to an interactive exercise on symbolic differentiation with
support for natural-language enhanced tutorial dialogue. The system
is currently set to allow the student to propose problems using the
G(LE)2AM editor rather than the LeActiveMath system, although in
the future either will be able to do so.

Suppose the learner first enters the phrase “Let’s differentiate”
and composes the math termsin(x2), then clicks on the “Submit”
button shown in Figure 1. The term is first displayed in the Previous
Term window (for subsequent Copy&Paste) and the dialogue history
window is updated with her contribution. The applet then sends her
input to the dialogue manager, which causes UPDATE to augment
the information state with:

latest moves=propose task(diff( sin(x2))) and
latest speaker=learner

SELECT then computes the tutorial system’s feedback by finding
a rule that can accept the new problem definition and checking with
the user model to determine that the problem is not too difficult:

next moves=accept task(diff( sin(x2)))

UPDATE again augments the information state with the tutor’s
dialogue move, the SLOPERT domain reasoner initializes itself
for the new differentiation task, and BUG is activated, whereupon
it retrieves the dialogue move from the IS and verbalizes it into
English, say with the following string that is itself added to the IS:

Okay, let’s differentiatesin(x2).

UPDATE then adds this string to the IS’soutput slot, copies
the value of thenext moves slot into latest moves, and sets
the latest speaker slot totutor . The string is now sent to the
G(LE)2AM applet, where it is added to the dialogue history window,
allowing the learner to read it. The “Current Problem” window is
then updated with the (now proposed and accepted) task.

The applet then waits for the student to begin solving the problem.
When the student composes a math term, saycos(x2), and clicks
the “Submit” button, BEET is called to parse the learner’s input. In
this case, it only contains a term, and BEET thus updates the IS with:

latest moves=give answer( cos(x2)) and
latest speaker=learner

In the dialogue manager, a SELECT rule fires which generates the
system’s intention to diagnose the student’s answer. The IS is thus
updated with:

next moves=give diagnosis(SomeDiagnosis)

where SomeDiagnosis is being computed by SLOPERT, in this
case as MISSINGINNER LAYER. BUG is now activated, takes
the dialogue move(s) representing the tutorial utterance, and pro-
duces the utterance for the new diagnosis,e.g.: “You missed the
inner layer”. The process above continues, where the IS variables
latest moves, latest speaker , etc. are constantly updated
as the dialogue turn is exchanged between tutor and student.

Supposing the student types “I need help, please”, BEET is again
called to parse the learner’s English input. A successful parse will
update the IS with:



latest moves=help request and
latest speaker=learner

A SELECT rule fires which generates the system’s intention to
address the learner’s help request with a hint, causing the IS to be
updated with:

next moves=give hint(SomeHint)

where SomeHint is computed by a call to the domain reasoner (since
it has a representation of the problem-solving state and the appropri-
ate next step). BUG is then activated again, and generates a textual
hint based on SLOPERT’s high-level conceptual hint, such as “Apply
the chain rule.” This process continues until the learner eventually
arrives at the correct answer, whereupon the tutorial system congrat-
ulates her and she is allowed to return to the LeActiveMath main
system or else to continue solving differentiation problems.

7 Evaluation Plans and Future Work

The BEEDIFF system will be a platform for evaluating many aspects
of tutoring mathematics with natural language dialogue. Our first
evaluation will focus on whether students learn more when given
a chance to interact via natural language dialogue compared with a
button-based GUI that allows highly restricted interaction. We ex-
pect that a dialogue-style interaction allowing students to use written
text to hold an in-domain dialogue will improve learning gain. Such
a study would necessitate a great degree of robustness, which forces
us to also focus on engineering issues such as spelling correction, as
a system which could handle only a fraction of student input would
not be a fair evaluation of the language hypothesis.

A second evaluation would center around the effects of adaptivity
of the generated tutor utterances on student performance. This would
require a working system with two versions of the BUG component:
one that is not adaptive and produces identical utterances given iden-
tical tutoring states, and a fully adaptive version that also looks into
for instance the student model, recent errors and misconceptions, and
number of hints needed to date to produce tailored utterances that
would be more helpful in a given situation. Finally, we are also inter-
ested in dynamically adjusting the pedagogical strategy to see if we
can provide evidence for various tutoring theories.

8 Conclusions

We have described the design and preliminary implementation of
several components for natural-language enhanced tutorial dialogue
in the tutoring domain of symbolic differentiation. We have imple-
mented initial versions for interpretation (BEET), information state
update (UPDATE), feedback selection (SELECT), and generation
(BUG), plus the SLOPERT domain reasoner. The input and output
components have been realised as theG(LE)2AMgraphical user in-
terface. As a whole, the system allows learners to conduct basic dia-
logues while solving differential equations where the tutoring system
can distinguish correct from incorrect answers, provide diagnoses
when it detects common misconceptions, and respond intelligently to
help requests. We expect to continue to develop the system to achieve
human-level tutorial proficiency for differential equations.
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[16] Carolyn Rośe, Pamela Jordan, Michael Ringenberg, Stephanie Siler,
Kurt VanLehn, and Anders Weinstein, ‘Interactive conceptual tutoring
in atlas-andes’, inProceedings of AI in Education 2001 Conference,
(2001).

[17] Joel Tetreault, Mary Swift, Preethum Prithviraj, Myroslava Dzikovska,
and James Allen, ‘Discourse annotation in the monroe corpus’, inACL
workshop on Discourse Annotation, Barcelona, Spain, (July 2004).

[18] Magdalena Wolska and Ivana Kruijff-Korbayová, ‘Analysis of mixed
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