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Formal punctuality analysis of frequent bus
services using headway data

Daniël Reijsbergen? and Stephen Gilmore

Laboratory for Foundations of Computer Science
The University of Edinburgh

Edinburgh, Scotland

Abstract. We evaluate the performance of frequent bus services in Ed-
inburgh using the punctuality metrics identified by the Scottish Govern-
ment. We describe a methodology for evaluating each of these metrics
that only requires measurements of bus ‘headways’ — the time between
subsequent bus arrivals. Our methodology includes Monte Carlo simu-
lation and time series analysis. Since one metric is given in ambiguous
language, we provide a formal description of the two most plausible inter-
pretations. The automated nature of our method allows public transport
operators to continuously assess whether the performance of their net-
work meets the targets set by government regulators. We carry out a
case study using Automatic Vehicle Location (AVL) data involving two
frequent services, including the AirLink service to and from Edinburgh
airport.

Keywords: Public transportation, punctuality, headways.

1 Introduction

A key feature of a sustainable city is a well-run public transportation network.
This is witnessed, among other reasons, by the fact that satisfaction with public
transport quality is included as an indicator for a ‘smart’ city [4]. One important
measure for the performance of a public transport network is its punctuality,
as this has been observed to be a major factor in passenger satisfaction and
perceived service quality [3]. However, a formal definition of punctuality is not
straightforward to give, partially because passenger perception of punctuality
may depend on the nature of the service. In particular, for a non-frequent service
(e.g., one bus departure every 30 minutes) strict timetable adherence is the main
factor for punctuality. However, strict timetable adherence is less relevant for
frequent services, which are defined as those with one bus departure every ten
minutes or less. Punctuality metrics for frequent services are primarily dependent
on the probability distribution of the times between departures — the so-called
‘headways’. In general, less headway variance means better punctuality.

? This work is supported by the EU project QUANTICOL, 600708. Corresponding
author: dreijsbe@inf.ed.ac.uk
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Several punctuality metrics have been proposed in the scientific literature;
[9] and [11] are two recent papers that present an overview. In this paper, we
focus on the three punctuality metrics for frequent services identified in the guid-
ance document on Bus Punctuality Improvement Partnerships by the Scottish
Government [12]; all of these depend on the headways. Two of these metrics
coincide with the metrics identified in [9] and [11].1 The third metric does not;
furthermore, it is ambiguously worded, so we formalise the two most plausible
interpretations, resulting in a total of four metrics. We then provide a formal
methodology for the evaluation of the four metrics that only requires headway
measurements. The methodology is statistical in nature, so we particularly focus
on providing approximate confidence intervals for the estimates of the metrics.
This is a challenge because the probability distributions of some of the quanti-
ties under consideration are unclear. The evaluation of the two new metrics in
particular is non-trivial, and we apply a range of statistical techniques including
time series analysis, bootstrapping [6] and Monte Carlo simulation. Finally, we
apply our methodology to a real-world set of headway measurements obtained
using low-frequency Automatic Vehicle Location (AVL) data provided to us by
the Lothian Buses company, based in Scotland and operating an extensive bus
network in Edinburgh.

The outline of the paper is as follows. In Section 2, we discuss the routes
considered and the datasets used. In Section 3, we formally define the three
bus punctuality metrics used by the Scottish Government. We discuss a time
series model for sequences of headway measurements in Section 4, and discuss
the bootstrapping method for constructing approximate confidence intervals in
Section 5. In Section 6, we evaluate the performance of two services operated by
Lothian Buses using the punctuality metrics of Section 3. Section 7 concludes
the paper.

2 Description and Visualisation of Routes and Data

In this section we explain the data processing that was applied to the raw AVL
data before using it to compute the punctuality measures of interest. We had
six datasets available: three for Route 100 (the AirLink service) and three for
Route 31. For Route 100, three bus stops are of interest: the airport, the zoo, and
George Street in Edinburgh city centre. For Route 31, the bus stops of interest
are East Craigs, the zoo, and the Scott Monument on Princes Street in the city
centre. The number of observations in each dataset is specified in Table 1.

The AVL data records the position of each bus in the fleet. Each bus has a
unique identifier called a fleet number, and the assignment of buses to routes
is captured in a schedule which is drawn up before the bus service begins for
the day. The bus schedule maps buses by fleet number to routes but it can

1 In particular, the metric of Section 6.1 is also mentioned in [9], while the related
notion of the headway coefficient of variation is preferred in [11]. The metric of
Section 6.2 is related to what is identified as an “Extreme-Value based” waiting time
measure in [9]; it is also related to the Earliness Index of [11].
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Table 1: Overview of the dataset sizes n1, . . . , n6. Measurements were collected
between 28th January 2014 at 11:31:14 and 30th January 2014 at 12:38:31.

Route 100 (AirLink) 31

Stop Airport Zoo George St East Craigs Zoo Princes St

# measurements 127 126 128 102 102 105

change dynamically during the day in response to unpredictable problems such
as mechanical failures of vehicles, or unexpectedly high or low levels of passenger
demand. Thus the bus schedule serves as a guide for interpreting the AVL data
but is not always accurate because it has not always been updated to record all
unexpected events which occurred during the day. To address this problem, we
use our custom visualisation tool [16] to plot buses on a map of Edinburgh. This
allows us to check that they are serving the routes which we believe they are. If
this was not done, incorrectly assigned buses would invalidate the computation
of headway on routes. One Route 31 bus had to be identified manually. Fur-
thermore, we suspect that one or two of the measurements in the Princes Street
dataset correspond to wrongly assigned buses, but we have no evidence of this.

The schedule changes which make headway computation more difficult tend
to occur at the start and the end of the day, when bus services have low frequency
and the same bus is being used to serve several different routes. To eliminate
this potential source of error in our interpretation of the data we restricted our
observations to lie only between 9:00 and 17:00, when buses are frequent and
rarely subject to route reassignments.

We linearly interpolate the AVL measurement data down to a granularity of
one second between data points, and we detect departures from stops by dividing
bus routes into zones and counting a departure as occurring when a bus moves
from a zone containing a stop to the subsequent zone, using interpolated data.
The bus stop zones were chosen such that they did not contain traffic lights.

3 Punctuality Measures

As mentioned in the introduction, we focus on the punctuality metrics set out by
the Scottish government in [12]; we formalise these metrics in this section. Since
buses are subject to a variety of unpredictable influences such as the number
of passengers at bus stops and road congestion, the requirements are inherently
stochastic. The randomness of the system is modelled through the headway,
denoted by a random variable Y which takes values from R+ and is measured
in seconds. The kth dataset, k = 1, . . . , 6, is then a sequence (yk1, yk2, . . . , yknk

)
of realisations of Yk, where nk is as given in Table 1 (in the paper, we often
leave out the dataset index k for brevity). Let µ = E(Y ) and σ2 = Var(Y ). The
requirements are then as follows.

In §2.13 of [12], which is under the header “Starting point of the journey”,
we find the following. “For frequent services it is expected that on at least 95%
of occasions:
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(a) Realisation of the Z−process, airport bus stop
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(b) Realisation of the Z−process, Princes Street
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Fig. 1: Realisations of the process Z on 29th January 2014 for the airport bus
stop dataset (left) and the Princes Street dataset (right).

– Six or more buses will depart within any period of 60 minutes; and
– The interval between consecutive buses will not exceed 15 minutes.”

Using seconds as the granularity, the latter requirement can be expressed as
P(Y ≤ 900) ≥ 95%. We will call the probability P(Y ≤ 900) the Extreme-Value
Waiting Time (EVWT).

The former requirement is more intricate: given a sequence of headway mea-
surements (y1, y2, . . . , ynk

), define for t ∈ R+

u(t) = max

{
j :

j∑
i=1

yi ≤ t

}
and d(t) = max

{
j :

j∑
i=1

yi ≤ t− 3600

}
.

Let z(t) = u(t) − d(t), then z(t) denotes the number of buses that departed in
the hour prior to t. By construction, u(t) ≥ d(t) for all t so z is defined on R+.
Figure 1 depicts the evolution of z for two of the six datasets.

The requirement that on 95% of “occasions” there must be six or more buses
departures “within any period of 60 minutes” is slightly ambiguous; we will
consider two interpretations. First, if we focus on the word “any”, we could say
that an “occasion” represents a time interval [a, b] (a reasonable assumption
would be that a denotes an hour after the departure of the first bus and b
the departure of the last bus in a single day), and that z(t) needs to be at
least 6 at “any” point t ∈ [a, b]. The full requirement can then be expressed as:
P(∀t ∈ [a, b] : z(t) ≥ 6) ≥ 0.95. We will call this requirement the Day-Long
Buses-per-Hour Requirement (DLBHR).

The second interpretation is in terms of steady-state probabilities: for any
measurement (assumed to be conducted when z is in steady-state) the probability
that z is at least 6 needs to be at least 95%. To express this formally, define for
any Boolean expression A

1(A) =

{
1 if A,

0 otherwise,
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and

πz(j) = lim
t→∞

1

t

∫ t

0

1(z(τ) = j)dτ, ∀j ∈ N,

assuming that this distribution exists and is independent from z(0). Then the
latter requirement could be read as

∑∞
j=6 πz(j) ≥ 95%. We will call this require-

ment the Steady-State Buses-per-Hour Requirement (SSBHR).
Both the DLBHR and the SSBHR are hard to evaluate numerically, so we use

simulation. To do this, we assume that the observations of z are realisations of a
stochastic process Z; we then draw samples from Z to get probability estimates.

The final requirement is in §2.14 of [12], which is under the header ‘Subsequent
timing points’. It reads as follows. “For frequent services, measurement will be
based upon Transport for London’s concept of Excess Waiting Time (EWT). This
is the difference between the average waiting time expected from the timetable,
and what is actually experienced by passengers on the street. TC standards specify
that EWT should not exceed 1.25 minutes.”

The “average waiting time expected from the timetable” is assumed to be 1
2µ,2

while the average waiting that “is actually experienced by passengers on the
street” is given by 1

2 (µ2 + σ2)/µ (see [7] or [14]). Hence, the Excess Waiting
Time equals 1

2σ
2/µ. The maximum, according to the standards of the Traffic

Commissioner (TC), is 1.25 minutes, or, equivalently, 75 seconds.
In summary, the EVWT, SSBHR and DLBHR are relevant only at journey

starting points (which in our case study refers to the airport for Route 100 and
to East Craigs for Route 31), while the EWT is relevant at all subsequent timing
points. However, the former three metrics are also evaluated at the other timing
points in Section 6 ; this is done for illustrative purposes.

4 Time Series Modelling

As we discussed in the previous section, the stochasticity of the headway be-
tween frequent buses is modelled using the random variable Y . To investigate
whether the four requirements are satisfied, varying degrees of knowledge of the
distribution of Y are needed. To calculate the EWT, we only need to know the
expectation and variance of Y . To calculate whether the requirement on the time
between subsequent bus departures is valid, we need to know the 95th percentile
(i.e., the value x such that P(Y < x) = 95%; the requirement is satisfied if x is
below 900). This is known if we know the quantiles and, hence, the entire prob-
ability distribution. To evaluate the requirements on the Z-process, we need to
know the distribution of vectors (Y1, Y2, . . .) of measurements. This would be as
hard as knowing the distribution of individual samples from Y if the samples
that make up the vector were mutually independent. We will argue later in this
section that they are not.

2 There is no official scheduled headway for the AirLink service because the timetable
for this service only says: “at least every 10 minutes”. For Route 31, the difference
between the timetabled and average observed headway is negligible (600 vs. roughly
580 seconds).
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Fig. 2: Normal distribution Q-Q plots for the Princes Street dataset (left) and
the East Craigs dataset (right).

In this paper, we assume that individual samples drawn from Y have a normal
(Gaussian) distribution. To visualise whether the normality assumption is valid,
we use normal Q-Q plots, i.e., plots of the quantiles of the empirical distribution
against those of the normal distribution. This is done in Figure 2 for two datasets.
A formal measure of the resemblance of an empirical distribution to the normal
distribution is the Shapiro-Wilk test statistic, which assigns a value between 0
and 1 to an empirical distribution such that high values of the statistic represent
close resemblance to the normal distribution. As the name suggests, it is used for
the Shapiro-Wilk test [5] in which the null hypothesis that the sample has been
drawn from the normal distribution is evaluated. The key result of the test is
its p-value, which is the confidence in the validity of the null hypothesis. Values
below 5% imply that the null hypothesis can be rejected at the 95% level. As we
can see in Table 2, this only happens for the East Craigs dataset because of its fat
(compared to the normal distribution) tails, especially on the left. Assuming that
Y is normally distributed, the probability of interest can be computed using the
normal cumulative distribution function, which is implemented in the statistical
package R [13].

To generate a sample (y1, y2, . . .), we need to incorporate the correlation
between measurements. Figure 3(a) depicts an Autocorrelation Function (ACF)
plot for the dataset for the airport bus stop. The lag one autocorrelation is
especially visible. The correlation is due to at least three sources:

1. Dependence by construction. Consider three buses with µ time units between
departures; if the second is ε time units late, then the first headway will be
µ+ ε and the second headway µ− ε (negative correlation). This affects the
lag one AC.

2. If a bus is late, then the number of passengers at the stop will be greater
than normal, causing an additional delay. The next bus will need to pick
up fewer passengers and may start to run early (negative correlation). This
phenomenon is also mentioned in [1], and affects the lag one AC.
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(a) Headway process ACF, airport bus stop
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(b) Headway residual process ACF, airport bus stop

Fig. 3: ACF plots for the headway process (y1, . . . , yn) of the airport bus stop
dataset (left) and its residual process (ε̂1, . . . , ε̂n) after MA(1) fitting (right). The
blue lines represent the levels at which the ACs are significant at the 5% level.
Note that with 20 ACs plotted, the expected number of false positives at the 5%
level is 1 (this could explain the seemingly significant lag 9 AC in both graphs.)

3. Factors that cause headway variation may persist: if one bus is late due to
heavy traffic, then this traffic may have an influence on the next bus as well
(positive correlation). This affects all ACs, in a decreasing fashion as the lag
becomes bigger.

The lag one autocorrelation between the headways can be modelled using a
Moving Average MA(1) time series model:

Yi = µ+ εi + θεi−1, where εi ∼ N(0, σ2
ε ) ∀i = 1, . . . , n.

The parameter θ captures the three forms of lag one correlation. The estimates
of θ — denoted by θ̂ — for each of the six datasets are displayed in Table 2.
Since the values θ̂ are estimates, we include the confidence in the null hypothesis
that the true value θ equals 0. In each case, this is below 5%. Low values indicate
that the time series model has a low explanatory power.

The ε’s are commonly termed the error terms; the estimates ε̂1, . . . , ε̂n of
these error terms based on a time series fit are called the residuals. We display
an ACF plot for the residuals of the MA(1) model in Figure 3(b); as we can see,
the lag one autocorrelation observed in Figure 3(a) is not present here. MA(1)
models are part of the wider class of Autoregressive Moving Average ARMA(p,q)
models. In general, these can be expressed as

Yi = µ+

p∑
j=1

φjYi−j +

q∑
j=0

θjεi−j , where εi ∼ N(0, σ2
ε ) ∀i = 1, . . . , n,

with θ0 = 1. The autoregressive terms (i.e., the ones that depend on the φj ’s) are
well-suited to capture the effect of the third source of correlation on the higher
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lag ACs. However, if the higher lag ACs are small then little explanatory power
is added while the effect of the MA-terms becomes harder to isolate, so the net
effect of adding these terms need not be positive. We have observed that MA(1)
provides the best fit for all datasets, except the Princes Street dataset for Route
31. In this case the Autoregressive AR(1) process is best, although the differ-
ence is rather small (in terms of the Akaike Infomation Criterion). The MA(1)
parameters θ and σε can be estimated using methods of the tseries package in
R. Given estimates of θ and σε, we can draw realisations of (Y1, Y2, . . .) by draw-
ing realisations of ε; methods for drawing standard normal random variables are
implemented in R and the SSJ package in Java.3 Realisations of Z can then be
drawn analogously.

Table 2: Estimates of θ. Note that the values for θ̂ are negative because the first
two sources of correlation mentioned in Section 4 apparently outweigh the third.
The p-values of the t-test for θ = 0 and the Shapiro-Wilk normality test for Y
are given in the final two columns.

# Stop θ̂ t-test p-value SW p-value

100

Airport -0.74903 < 2·10−16 0.1615

Zoo -0.68416 < 2·10−16 0.0912

George St -0.56441 2.22·10−16 0.4436

31

East Craigs -0.21045 2.07·10−2 0.0047

Zoo -0.36521 6.24·10−5 0.3439

Princes St -0.24497 2.62·10−3 0.1783

5 The bootstrapping method for confidence intervals

In the previous section, we described how to estimate the punctuality metrics
used by the Scottish government. The estimates are based on realisations of
(Y1, . . . , Yn), and will typically be different when the experiment is repeated. To
account for the variation in the estimates, the estimates are given in the form of
an interval estimate called the confidence interval. The interpretation of a (1−α)
confidence interval for a statistic is as follows: if the experiment is repeated N
times, then the number of confidence intervals that do not contain the true value
of the statistic is expected to be αN . Throughout this paper we use α = 5%.

Whether a confidence interval for a statistic can be computed analytically
(or approximated numerically) depends on how easy it is to express the proba-
bility distribution of the statistic. For some commonly-used test statistics their
distribution is known explicitly, which means that confidence intervals can be
constructed using methods implemented in common statistical tools such as R.
However, even when nothing is known about the probability distribution of the

3 www.iro.umontreal.ca/~simardr/ssj/indexe.html

www.iro.umontreal.ca/~simardr/ssj/indexe.html
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test statistic, one can construct approximate confidence intervals using the boot-
strapping method. A broad variety of bootstrapping methods exist; we use two
of them, namely the non-parametric method of case resampling (through Monte
Carlo simulation) and parametric bootstrapping.

5.1 Case resampling (Monte Carlo)

Case resampling is one of the most general forms of bootstrapping; given a
sample x = (x1, . . . , xn) of independent and identically distributed realisations
of some random variable X, and a test statistic f that is a function of x, the
approach is as follows. Let b be some positive integer. For each j ∈ {1, . . . , b},
randomly draw n elements of x with replacement; let the new sample be xj and
fj = f(xj). Let f (i) be the ith smallest element obtained this way; an (1 − α)
confidence interval is then given by

[f (bα/2)+1, f (b(1−α/2))], (1)

assuming that bα/2 and b(1 − α/2) are integers (we would use the floor and
ceiling functions otherwise). The approximation gets better when the sample
(empirical) distribution more closely resembles the true distribution of X.

5.2 Parametric Bootstrap

Parametric bootstrapping works the same way as case resampling, with the
exception that we now have a stochastic model that allows us to draw random
samples from X. The bootstrapping samples xj , j = 1, . . . , n, are then obtained
directly from the distribution of X. We still use (1) as the confidence interval.

6 Results

In this section, we discuss the results for the four performance metrics and re-
quirements discussed in the previous sections: the Excess Waiting Time (EWT),
the Extreme-Value Waiting Time (EVWT), the Steady-State Buses-per-Hour
Requirement (SSBHR) and the Day-Long Buses-per-Hour Requirement (DLBHR).
Each of these has its own subsection.

6.1 Excess Waiting Time

The Excess Waiting Time is relatively easy to evaluate: its computation only
requires knowledge of µ and σ. These basic statistics are displayed for each of
the six datasets in Table 3. Note that AirLink buses depart roughly every eight
minutes, whereas Route 31 buses depart roughly every 10 minutes. We note that
despite difference in means, the headway variance in related stops is very close.
Consequently, the EWT is higher for the AirLink service than for Route 31. We
further observe that the variance increases as the buses complete a larger part of
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Table 3: EWT for each dataset, together with estimates of µ and σ. Confidence
intervals were obtained using a parametric bootstrap with b = 10 000.

# Stop µ̂ σ̂ EWT EWT c.i.

100

Airport 477.2047 87.2564 7.9773 [5.182, 9.417]

Zoo 475.2381 129.0810 17.5301 [12.261, 22.226]

George St 473.5781 183.5627 35.5752 [26.087, 46.722]

31

East Craigs 585.7255 88.2538 6.6488 [5.261, 9.350]

Zoo 588.7157 119.5863 12.1458 [9.231, 16.954]

Princes St 568.8952 170.6736 25.6018 [19.156, 34.388]

the route, and with it the excess waiting time, which is what one would expect
(as a bus completes its route it is increasingly subjected to sources of journey
time variation, e.g., passenger numbers at stops).

In each dataset, the EWT is below the 75 second threshold. However, as men-
tioned in Section 5, the EWT estimates are subject to uncertainty because they
are based on random samples. The empirical EWT can be computed from the
sample variance and sample mean of a set of headway measurements (Y1, . . . , Yn).
However, to generate a bootstrapped confidence interval for this statistic, we can-
not use case resampling, as the measurements are correlated (although the effect
of the correlation would vanish in larger samples). To remedy this, we conduct
a parametric bootstrap using the time series model. The error terms ε are as-
sumed not to have autocorrelation, so we could either use case resampling using
the empirical dataset or draw samples directly from the normal distribution. The
confidence intervals in Table 3 were obtained using the latter approach. In all
datasets, the EWT is well below the 75 second mark with 95% confidence.

6.2 Extreme-Value Waiting Time

Table 4 summarises the results for the EVWT, i.e., the probability of a headway
of over 900 seconds. As with the EWT, an estimate for the EVWT is easy to
obtain; we only have to count the number of times this event occurred in the
empirical dataset. Since this number is approximately binomially distributed,
we can construct Clopper-Pearson confidence intervals [6] for the true probabil-
ity. These intervals are very broad, owing to the small number of samples. For
example, the upper bound of the confidence interval for the airport dataset is
2.863%, even though one would expect a much smaller probability based on the
fact that the variance of Y is very small (as can be seen in Table 3). Using the
assumption that Y is normally distributed, we can construct an estimate of the
EVWT by using the normal distribution function combined with the estimates
for µ and σ of Table 3. The results are in the ‘P(Y > 900)’ column of Table 4.
Note that for East Craigs, the probability will be underestimated because this
dataset differs so much from one with a normal distribution because it contains
many more extreme values than one would expect.
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Table 4: Probability of over 15 minute headway for each dataset. The first two
numerical columns contain empirical estimates of these probabilities and exact
(binomial / Clopper-Pearson) confidence intervals. In the final column we display
the exact probabilities based on the normal distribution.

# Stop EVWT EVWT c.i. P(Y > 900)

100

Airport 0 [0, 2.863] ·10−2 6.3166·10−7

Zoo 0 [0, 2.885] ·10−2 4.9976·10−4

George St 2.344·10−2 [0.486, 6.697] ·10−2 1.0089·10−2

31

East Craigs 0 [0, 3.552] ·10−2 1.8470·10−4

Zoo 0 [0, 3.552] ·10−2 4.6205·10−3

Princes St 0 [0, 3.452] ·10−2 2.6191·10−2

Based on the binomial confidence intervals, we can conclude that for all
datasets except George Street, the requirement on the EVWT is met with more
than 95% confidence. Based on the assumption of normality, the requirement is
met for all datasets.

6.3 Steady-State Buses-per-Hour Requirement

An empirical estimate of the SSBHR for a given service is easy to obtain; in the
realisation of z in this dataset (as is visualised in Figure 1), count the amount of
time that z is lower than 6 and divide this by the total time. Formally, given a
realisation of z on [0, t], this means that the estimate π̂z(k) for the steady-state
probability of being in state k can be computed as

π̂z(k) =
1

t

∫ t

0

1(z(τ) = k)dτ. (2)

The results are given in Table 5; instead of just the percentage of time that
z spends below 6, the entire empirical steady-state distribution is given. For a
given day, we start observing z one hour after the first bus departure (we assume
that the process has approximately reached steady-state by then), and stop at
the final bus departure.

Table 5: Empirical steady-state distributions of z for each of the six datasets.
# Stop π̂z(5) π̂z(6) π̂z(7) π̂z(8) π̂z(9)

100

Airport 0 3.431·10−4 0.460 0.540 0

Zoo 0 1.292·10−3 0.472 0.525 1.702·10−3

George St 0 3.336·10−2 0.483 0.454 2.927·10−2

31

East Craigs 3.001·10−2 0.753 0.215 1.573·10−3 0

Zoo 5.540·10−2 0.705 0.240 0 0

Princes St 8.765·10−2 0.675 0.233 5.167·10−3 0
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Again, the empirical steady-state distribution is subject to variation, so we
want to construct confidence intervals for these values. We have two options.
First, we can use the time series model to generate long-run realisations of Z
and use this to construct a parametric bootstrapping interval. Unfortunately,
we have found that the parametric model is not well-suited for estimating the
relatively small steady-state probabilities of low values of Z. Reaching the lower
values of Z is particularly influenced by tail behaviour that is not captured
well by the time series model, which tries to capture the dependence between
subsequent headways in a single parameter (even though this dependence may
vary throughout the day).

0 5 10 15 20−
0.

4
0.

0
0.

4
0.

8

Lag

A
C

F

Interval process ACF, airport bus stop

Fig. 4: ACF plot (see also Figure 3)
for the series (Ij1, . . . , Ijm) for j = 7
for the airport bus stop.

Therefore, we aim to use case resam-
pling to construct a bootstrapping con-
fidence interval. The question is what
values to resample; obviously, sampling
from the realisations (y1, . . . , yn) directly
cannot be expected to work well be-
cause this would ignore the correlation
between these realisations and the be-
haviour of Z depends on the behaviour
of sequences of realisations of Y . Hence,
we apply a renewal-like argument to
estimate πz(j). Given a realisation of
Z on [0, t] and m, l ∈ N, we parti-
tion [0, t] into intervals (Ij1, . . . , Ijm) =
([Ij1, Ij1], . . . , [Ijm, Ijm]), when z equals

j, and intervals [Jj1, Jj1], . . . , [Jjl, Jjl],
when z does not equal j. It follows triv-
ially from (2) that

π̂z(j) =
1

t

m∑
i=1

(Iji − Iji).

The idea is then to resample from the vector (Ij1, . . . , Ijm) to construct a
bootstrapping confidence interval. The key observation is that the intervals
(Ij1, . . . , Ijm) do have autocorrelation, but 1) that this is significantly less than
for the headways and that 2) the effect of the correlation vanishes in large samples
while the autocorrelation between the headways has an impact on the probabil-
ity distribution of Z. The autocorrelation between the intervals for j = 7 for the
airport dataset is displayed in Figure 4.

The results of the bootstrapping procedure are displayed in Table 6. Note
that we have also resampled the values for [Jj1, Jj1], . . . , [Jjl, Jjl], to obtain the
total times; again the correlation between measurements of I and J vanishes
asymptotically. The confidence intervals for different values of j are not inde-
pendent because they are implicitly based on the same samples. We observe
that the AirLink seems to always satisfy the SSBHR. However, based on the
confidence intervals for z = 5, we cannot conclude with 95% confidence for the
Route 31 that the requirement will be satisfied. In fact, for Princes Street we



Formal punctuality analysis of frequent bus services using headway data 13

can conclude with 95% confidence that the requirement will not be satisfied. We
note that this is not necessarily a problem, as the SSBHR is only imposed on
the starting points of the routes.

Table 6: Confidence intervals for steady-state distributions of z for each of the six
datasets, generated using bootstrapping with case resampling with b = 1 000 000.

# Stop π̂z(5) π̂z(6) π̂z(7) π̂z(8) π̂z(9)

100

Airport 0

[
2.875·10−4,

4.253·10−4

] [
0.434,

0.485

] [
0.513,

0.566

]
0

Zoo 0

[
7.660·10−4,

2.921·10−3

] [
0.439,

0.505

] [
0.493,

0.557

] [
6.200·10−4,

4.298·10−3

]

George St 0

[
1.524·10−2,

8.018·10−2

] [
0.437,

0.53

] [
0.374,

0.528

] [
1.450·10−2,

9.070·10−2

]

31

East Craigs

[
1.819·10−2,

5.060·10−2

] [
0.698,

0.807

] [
0.157,

0.288

] [
4.511·10−4,

3.502·10−3

]
0

Zoo

[
3.294·10−2,

0.101

] [
0.662,

0.747

] [
0.186,

0.32

]
0 0

Princes St

[
6.044·10−2,

0.13

] [
0.631,

0.717

] [
0.184,

0.291

] [
1.547·10−3,

1.580·10−2

]
0

6.4 Day-Long Buses-per-Hour Requirement

Table 7 summarises the results for the DLBHR. Note that it is impossible to
estimate this measure from our current dataset without assuming an underlying
time series model, as we only have a single measurement of an entire day (29th
January). Hence, we draw realisations from Z by simulating the underlying time
series model despite the weaknesses of this approach discussed in Section 6.3.

Confidence intervals are easy to generate because in a sample of day-long
executions of Z, the number of days in which the process did not drop below 6
is binomially distributed. Hence, we can construct Clopper-Pearson confidence
intervals using R. We conclude that, assuming that our time series model is
correct, the requirement is met for all the AirLink stops with over 95% confidence
(although it just barely holds for George Street), and the requirement is met at
none of the Route 31 stops. This is not surprising; because the Route 31 service
operates slightly over six buses per hour, even small deviations from the schedule
cause a violation. The AirLink service, which runs about 7.5 buses per hour, is
much more robust in terms of the DLBHR.

To construct the Clopper-Pearson confidence intervals for Table 7, it is nec-
essary to fix a sample size beforehand. We have used 100 000 samples for the
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Table 7: Whole day probability estimates, based on 100 000 samples. We also
include Clopper-Pearson confidence intervals and the sample sizes N needed by
the SPRT to reach a conclusion (which was correct in all of our experiments).

# Stop p̂ 95% C.I. SPRT N

100

Airport 1 [0.9999631, 1] 1399

Zoo 0.99999 [0.9999443, 0.9999997] 1399

George St 0.95256 [0.9512243, 0.9538694] 12701

31

East Craigs 0.00159 [1.352615, 1.857001] ·10−3 75

Zoo 0.00022 [1.378778, 3.330638] ·10−4 74

Princes St 0.00229 [2.003263, 2.606186] ·10−3 75

results in Table 7, but this choice is typically non-trivial; to evaluate whether
the true probability is smaller than or greater than 95%, larger sample sizes
are needed when the true probability is closer to 95%. A solution is to use the
conceptual framework of hypothesis testing for statistical model checking [8]. In
particular, we can use sequential tests that are able to terminate the simulation
procedure as soon as enough evidence has been collected to make a statement
about whether the requirement has been satisfied. We use the Sequential Proba-
bility Ratio Test (SPRT) [15] with indifference level δ = 0.001 and β = α = 5%.4

As we can see in the table, the requirement is the hardest to check for George
Street; in all other cases, fewer than 10 000 samples were needed.

7 Conclusions

In this paper we have formalised the bus punctuality metrics used by the Scottish
government. We investigated the performance of two services operated by Loth-
ian Buses using these metrics. To do this, we have applied a number of statistical
techniques such as time series modelling, bootstrapping and the sequential test-
ing framework that is also employed in statistical model checking. Route 31,
which operates six buses per hour, does better in terms of Excess Waiting Time,
while the AirLink service, which runs over seven buses per hour, does better in
terms of the Steady-State and Day-Long Buses-per-Hour Requirement.

A key feature of our methodology is its automated nature. Currently, when
bus networks are subjected to a formal review by traffic regulators, the headway
data is gathered manually by inspectors who are physically sent to the selected
bus stops. Since AVL data is gathered systematically to aid live bus arrival time
prediction at bus stops, an automated methodology for using the data to evaluate
punctuality allows the traffic operator to detect potential shortcomings prior to
the review, meaning that a fine can be avoided. This is of particular interest to
Lothian Buses, which has been fined by regulators in the past [2].

4 Note that the SPRT’s assumptions with δ = 0.001 are only just valid for the George
Street dataset; for a discussion of the effect of the parameter choice on the test’s
output, see [10].
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As part of further research, we aim to improve our model by incorporating
the non-Gaussian tail behaviour of the East Craigs dataset. We also hope to
investigate possible time dependence (within the day) of θ and the error terms.
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