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Abstract

A promising approach to constructing more effective com-
puter tutors is implementing tutorial strategies that extend
over multiple turns. This means that computer tutors must
deal with (1) failure, (2) interruptions, (3) the need to revise
their tactics, and (4) basic dialogue phenomena such as ac-
knowledgment. To deal with these issues, we need to com-
bine ITS technology with advances from robotics and compu-
tational linguistics. We can use reactive planning techniques
from robotics to allow us to modify tutorial plans, adapting
them to student input. Computational linguistics will give us
guidance in handling communication management as well as
building a reusable architecture for tutorial dialogue systems.
A modular and reusable architecture is critical given the diffi-
culty in constructing tutorial dialogue systems and the many
domains to which we would like to apply them. In this pa-
per, we propose such an architecture and discuss how a reac-
tive planner in the context of this architecture can implement
multi-turn tutorial strategies.

Motivation
Research on student learning has shown that students must
construct knowledge themselves to learn most effectively
(Chi et al. 1989; 1994). Studies also show that one-
on-one human tutoring is more effective than other modes
of instruction. Tutoring raises students’ performance as
measured by pre and post-tests by 0.40 standard devia-
tions with peer tutors (Cohen, Kulik, & Kulik 1982) and
by 2.0 standard deviations with experienced tutors (Bloom
1984). What is it about human tutoring that facilitates this
learning? Many researchers argue that it is the collab-
orative dialogue between student and tutor that promotes
the learning (Merrill, Reiser, & Landes 1992; Fox 1993;
Graesser, Person, & Magliano 1995). Through collabora-
tive dialogue, tutors can intervene to ensure that errors are
detected and repaired and that students can work around im-
passes (Merrill et al. 1992). The consensus from these stud-
ies is that experienced human tutors maintain a delicate bal-
ance, allowing students to do as much of the work as pos-
sible and to maintain a feeling of control, while providing
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students with enough guidance to keep them from becoming
too frustrated or confused.

For an intelligent tutoring system (ITS) to imitate these
successful tutors, it must support:

1. unconstrained natural language input — other modes of
input (menus, fill-in-the-blank forms) change the task
from knowledge construction to correct answer recogni-
tion.

2. extended tutoring strategies (i.e., strategies that unfold
over multiple dialogue turns) — allowing tutors and stu-
dents to co-construct explanations and allowing tutors to
lead students through a line of reasoning point by point.

To support unconstrained natural language and multi-turn
teaching strategies, a computer tutor must be able to deal
with:

1. failure — (i) the tutor may not understand a student re-
sponse; (ii) the student may answer a tutor question in
an unexpected manner; and (iii) the tutor’s teaching tactic
may not be working.

2. interruption — the student may interrupt with a question.

3. the need to revise tactics — a student may skip steps in an
explanation.

4. the need to disambiguate student meaning.

To test our ideas about building such tutors, we have
been investigating tutoring basic electricity and electronics
(BE&E). Our starting point is a course on BE&E developed
with the VIVIDS authoring tool (Munro 1994). Students
read textbook-style lessons written in HTML and then per-
form labs using the graphical user interface shown in Fig. 1.
(Rosé et al. 2000) describes an experiment where students
went through these lessons and labs with the guidance of a
human tutor. The student and tutor communicated through
a chat interface. We will refer to the logs of this chat inter-
face as the BE&E dialogues. We use the BE&E dialogues to
identify teaching strategies to be used by our tutor and plan
to use them to train our system.

Our goal is to design a modular and reusable architecture
that facilitates effective tutorial dialogue. The architecture
must separate high-level tutorial planning (e.g., teach proce-
dure step-by-step) from low-level communication manage-
ment (e.g., all utterances must be acknowledged), allow the



Figure 1: BE&E Graphical User Interface

design of a rich repertoire of domain-independent (portable)
teaching strategies, define the knowledge sources involved
in tutorial planning, and define a control strategy that sepa-
rates the maintenance of knowledge sources from the plan-
ning process.

Previous Work
We evaluate the following four tutorial dialogue systems that
support constructive learning: AutoTutor (Graesser et al.
1999) (domain: computer literacy), the CIRCSIM tutor with
the APE dialogue planner (Freedman 2000) (domain: teach-
ing doctors about the circulatory system), the Miss Lindquist
algebra tutor (Heffernan & Koedinger 2000), and the EDGE
system (Cawsey 1989) (domain: explaining various electric
circuits). We evaluate these systems along three dimensions:
(1) What type of tutorial strategies does the system contain?
(2) What type of planner is used to combine these strategies
into a plan? (3) Is low-level communication management
separated from high-level tutorial dialogue planning?

Type of tutorial strategies used
We analyze the use of teaching strategies in the aforemen-
tioned tutorial dialogue systems along three dimensions: ex-
tent, generality, and representation. By extent, we mean: do
the tutorial strategies extend solely over single turns, mul-
tiple turns, or both? A teaching strategy is specific to a
domain if it does not separate tutorial knowledge from do-
main knowledge (i.e., it contains hard-coded domain knowl-
edge). A teaching strategy is general if its body contains
abstract domain references that can be informed and instan-
tiated by a domain reasoning mechanism. Unlike domain
specific teaching strategies, general teaching strategies can
be easily ported to another domain provided that the new
domain provides similar domain reasoning mechanisms. A
third dimension of teaching strategies is their representation,
e.g., as production rules, or action descriptions (operators).

AutoTutor contains only single-turn teaching strategies
called dialogue moves. AutoTutor has ten dialogue moves:
three short feedback moves for providing positive, neutral

and negative feedback; and more substantive moves such as:
“pumping”, “prompting”, and “hinting”.

To discuss the generality and representation of the teach-
ing strategies we need to introduce the notion of curriculum
script. The curriculum script is a sequence of topic formats,
each of which contains a main focal question, and an ideal
complete answer hard coded in English. The ideal complete
answer consists of several sub-answers, called aspects. Each
aspect has the following slots: a list of anticipated bad an-
swers corresponding to misconceptions and bugs that need
correction (with splicing/correcting moves); lists of prompts
and hints that can be used to get the learner to contribute
information; and elaboration and summary moves that can
be used to provide the learner with additional or summariz-
ing information. Note, all of the moves are hard coded in
English.

APE provides single-turn (e.g., “primary-vbl-incorrect-
3”) and multi-turn (e.g., “do-neural-DLR”) teaching strate-
gies. These example strategies are representative of APE’s
domain dependent library of strategies. It is therefore diffi-
cult (in contrast to AutoTutor) to cluster them into classes.

In APE, a teaching strategy is represented as a data struc-
ture called an operator which consists of several slots. The
goal slot is achieved if the operator is successfully executed;
the precond slot contains a number of constraints that must
be true for an operator to be applicable; and the recipe slot
contains a number of sub-goals that are generated by apply-
ing the operator.

EDGE is an explanation system in which students are pe-
riodically tested as well as allowed to ask questions at pre-
defined points during explanations. EDGE has single turn
teaching strategies as well as strategies that can unfold over
multiple turns (e.g., “explain how-it-works”) and remedia-
tion plans that can deal with specific types of wrong an-
swers.

EDGE provide two types of (STRIPS-like) operators:
content and discourse operators. Content operators spec-
ify how to explain something. For example, “to describe
a device: explain its function, its structure, and its behav-



ior”. Discourse operators are used for communication man-
agement and will be explained below. EDGE’s content op-
erators are quite general; their bodies contain abstract do-
main references that interface with a knowledge representa-
tion module.

Miss Lindquist provides single-turn strategies (e.g.,
hints), and multi-turn strategies (e.g., “concrete articula-
tion”, “substitution with decomposition”). For defining
complex strategies, Miss Lindquist introduces tutorial ques-
tions of different kinds, for example, “Q compute” (find a
numerical answer), “Q explain” (write a symbolization for
a given arithmetic quantity), and “Q generalize” (use the re-
sult of Q explain abstractly). The concrete articulation strat-
egy consists of the sequence: Q compute, Q explain, and
Q generalize. Naturally, some question types are specific to
the domain, e.g., “Q order of ops” or “Q substitute”. Also,
there is a strategy exclusively dealing with parentheses er-
rors.

Hint chains are associated with questions and represented
as lists of hard coded rephrasings of the question in English.
A complex strategy is represented as a list of question types
to be asked. At the time of writing, it is unclear how ques-
tions are represented.

Type of planner used
Planning tutorial dialogue is complex. When a tutor con-
structs a plan it does not have an accurate model of the stu-
dent. The tutor may plan to teach a student some information
but later find out that the student knows it. In examining the
BE&E dialogues we have seen that the human tutor is care-
ful not to perform steps of a teaching strategy that are un-
necessary. For example, when the dialogue begins, the tutor
may ask the student to define an electrical source and load,
and then ask them if the leads span a source or load. Later in
the dialogue, the tutor generally only asks if the leads span
a source or load and does not ask for any definitions. The
difficulty in implementing such behavior is making sure the
resulting discourse is coherent when parts are left out.

Other occasions where a plan may need to be modified
occur when a student asks a question, gives an incorrect an-
swer, or gives a correct answer with minor errors unrelated
to the main point of the question. If the student gives an in-
correct answer, the tutor must immediately get the student
“back on track”. The two other cases introduce tangential
goals (answer student question and correct minor errors).
The planner must decide whether to deal with these tangen-
tial goals immediately, deal with them later, or dismiss them
as irrelevant. Evidence from our corpus shows that tutors
do not always deal with tangential goals immediately, and
instead choose to focus on more serious errors first. In gen-
eral, always dealing with tangential goals as they arise could
lead to an unfocused dialogue with many digressions. Many
digressions could also mean that the tutor does not meet its
teaching goals (it runs out of time) and the student gets frus-
trated (if the tutor constantly corrects small errors).

Before discussing AutoTutor, APE, EDGE, and Miss
Lindquist, it is worth considering the three-level planning
architecture used in robotics (Bonasso et al. 1997). The first
level consists of executing physical skills such as grasping

a handle. The second level consists of executing sequences
and monitoring their success. Despite their name, sequences
can be more than lists of skills and can contain conditional
statements, loops, and other sequences. The third level, de-
liberative planning, decides what sequences to pass to the
second level.

From the perspective of tutorial systems, deliberative
planning takes tutorial goals and develops plans (sequences)
from its library of tutoring strategies. The second level exe-
cutes these plans and monitors plan execution. Actions are
executed by passing control to the skill level where, for ex-
ample, a feedback generator decides how to realize a tutor
move in natural language. If the second level detects that
the plan has been interrupted or has failed then it calls the
deliberative planner to modify the plan to deal with the dis-
ruption. We will now describe specifically how this three
level architecture relates to AutoTutor, APE, EDGE and
Miss Lindquist.

AutoTutor operates on the first and second planning lev-
els. After having asked a question, AutoTutor evaluates the
student’s answer against all the aspects of the ideal complete
answer, and the anticipated bad answers. AutoTutor gives
immediate feedback based on the student’s answer, and then
executes dialogue moves that get the learner to contribute
information until all answer aspects are sufficiently covered.
Selecting these dialogue moves is the task of the dialogue
move generator which takes into account: (1) the quality of
the student’s assertion in the preceding turn; (2) global pa-
rameters like student ability, verbosity and initiative; and (3)
the extent to which the good answer aspects have already
been covered. A set of 20 fuzzy production rules determines
the category of the dialogue move to be selected. The con-
tent of the dialogue move is computed by an algorithm that
selects the next good answer aspect to focus on.

In terms of the 3-level robotics architecture, AutoTutor’s
mechanism could be described as a complex sequence being
executed in the second level. The content computation could
also be viewed as an elementary tutorial skill, and be placed
in the first level. Having no multi-turn strategies (and the
complexities they add to tutorial dialogue planning), Auto-
Tutor does not (need to) act on the third planning level.

Miss Lindquist also has a predefined second level of
sequences. Sequences such as concrete articulation con-
sist of skills (tutorial questions), in this case: Q compute,
Q explain, and Q generalize. The questions appear to be
implemented in the skill level as simple templates; The se-
quence interpreter is more sophisticated, and handles cases
where the student gives more information than requested,
and answers a question that was due to be asked.

EDGE incrementally builds and executes new sequences.
Before each tutor turn, the deliberative planner expands the
current unfinished sequence by adding new sequences until
it adds a skill. The first level then executes this skill using
simple template driven generation. Thus, planning is de-
layed as much as possible so that the most current student
model can be consulted. The sequences of EDGE can con-
sist of subsequences as well as conditional statements: if a
student does not know X, then teach X.

APE also incrementally constructs and executes se-



quences, and uses simple template driven generation in its
skills level. However, APE conflates the second and third
levels by embedding control in operators, unlike traditional
planners, where control is separated from action descriptions
(operators). This makes writing operators difficult and puts
an additional burden on the planner. Thus, we advocate not
allowing sequences to make control decisions.

Separation of communication management and
tutorial planning
Communication management refers to actions that explicitly
help maintain contact, perception, and understanding during
the dialogue (e.g, acknowledgments, clarifications, confir-
mations). It includes basic conversational principles for co-
operative dialogue partners: questions have to be answered;
answers have to be acknowledged. Tutorial planning is con-
cerned with constructing effective tutorial dialogue from a
set of teaching strategies.

AutoTutor uses its three feedback moves to handle low-
level communication management. After each student turn,
the tutor gives immediate feedback (positive: “That’s right,”,
“Yeah.”; neutral: “Uh-huh”; negative: “Not quite,”, “No.”)
preceding its more substantive dialogue moves.

APE conflates low-level communication management
and high-level dialogue management into its operators.
They can contain canned text schemas like

‘No, actually’ ?max ‘controls’ ?partial ‘.’

containing negative feedback, the discourse cue “actually”,
and a hint or answer move.

The authors of Miss Lindquist regard communication
management operations (e.g., generating English discourse
cues) as tutorial operations.

EDGE makes a step towards separation by encoding tu-
torial knowledge in content operators and communication
management knowledge in discourse operators. EDGE uses
Sinclair and Coulthard’s 4-level hierarchical model of class-
room instruction (Sinclair & Coulthard 1975):

transactions - teaching exchanges - moves - acts.

Discourse operators are used for implementing both high-
level structure and low-level communication management
acts. They control interactions with the user and define how
to enrich the discourse at the transaction level with meta-
comments (“I will now explain to you how X works”), and
on the move level with discourse markers (“Right”, “OK”).

Discussion
To summarize, some previous and ongoing work in tutorial
dialogue systems has striven to support unconstrained nat-
ural language input and extended tutorial strategies but this
work has had the following limitations: teaching strategies
are domain-specific (APE, AutoTutor); the set of tutorial
strategies is small (EDGE, Miss Lindquist); some systems
embed control in plan operators (APE); all current tutorial
dialogue systems except EDGE mix high-level tutorial plan-
ning with low-level communication management; and plan-
ning is conflated with student modeling and maintenance of
the dialogue context (APE, EDGE). These limitations can
make a system less maintainable, extensible, and portable.

It is also worth considering dialogue systems not designed
for tutoring (Allen et al. 2000; Pieraccini, Levin, & Eckert
1997; Lewin 1998; Larsson et al. 2000; Rudnicky & Xu
1999; Chu-Carroll 1999). These systems do not allow for
conversational moves extending over multiple turns and the
resulting need to abandon, suspend, or modify these moves.
However, these systems aim for dialogue strategies that are
independent of dialogue context management and commu-
nication management concerns. These strategies contain no
domain knowledge; they query domain reasoners to fill in
necessary details. Furthermore, in systems explicitly per-
forming dialogue planning, control is never embedded in
plan operators.

Our goal is to combine these beneficial features (modular-
ity and reusability) with the flexibility and educational value
of tutorial systems with reactive planners. In the next sec-
tion, we present a modular tutorial dialogue system archi-
tecture and show at a high level how this architecture and
its reactive planner would handle a human-human tutorial
dialogue.

Proposed Architecture
The appendix depicts the start of a BE&E dialogue. Utter-
ances labeled GUI are text displayed as part of the graphi-
cal user interface while utterances labeled S (Student) and
T (Tutor) were produced by the human student and tutor.
In this dialogue, the student is supposed to be measuring
current; the plan for measuring current is also shown in the
appendix. Preconditions are depicted as lines connecting ac-
tions.

The BE&E dialogue contains three instances where the
student does not respond as expected to tutor questions (ut-
terances 21, 28, 30-31). In utterances 28 and 30-31, the stu-
dent is clearly not able to produce the right answer. Utter-
ance 21 has three problems: it uses incorrect terminology
(“wire” instead of “lead”), is vague (which lead is picked?),
and does not fully answer the question (there are other steps
in connecting leads). In this section, we show how our mod-
ular architecture with its reactive planner can be used to deal
with these unexpected responses.

Our proposed tutoring architecture is shown in Fig. 2.
Control flows through the architecture as follows:

1. When the student types input, the parser produces an un-
derspecified logical form that the interpreter attempts to
fully specify.

2. The interpreter uses the problem solving manager, dia-
logue context, current goals, and curriculum to evaluate
input (note, input to the tutor may simply be that the stu-
dent is idle).

3. The interpreter updates the student model.

4. The interpreter sends messages directly to the dialogue
planner (e.g., an evaluation of the student’s answer to a
question or an alert when one of the values in the student
model falls below threshold).

5. The dialogue planner decides how to react to messages
from the interpreter.
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Figure 2: The BE&E Tutor Architecture

6. The feedback generator produces text from the dialogue
move(s) output by the dialogue planner. Student model
and dialogue context are updated.
The problem solving manager matches student actions to

correct and incorrect (buggy) plans. Plans are incorrect with
respect to not achieving a particular goal or achieving a goal
inefficiently. The student model is updated based on student
actions as well as student inaction; belief that the student
knows the next step of the current plan decreases with the
time it is taking him to perform this action. We are assuming
a probabilistic student model such as the one presented in
(Conati et al. 1997) where domain actions and concepts are
connected in a Bayes net. An example connection would be
that knowing how to attach the leads suggests knowing that
a circuit must be complete for current to flow.

In this section, we describe how a deliberative planner
could adapt plans to deal with student input. We are not
claiming that this is the way to divide responsibilities be-
tween the planning levels, as this is an open research issue.
Our goal is merely to provide an idea of the flexibility re-
quired to implement multi-turn tutorial strategies. Conse-
quently, we also do not discuss communication management
here. See the discussion section for our thoughts on commu-
nication management.

In general, the computer tutor will have many decisions to
make: should a student just be told a piece of information,
asked to provide this information, or shown this information
through a multi-turn teaching tactic? Here, we make the
same decisions as the human tutor.

The tutor’s curriculum contains a list of tutoring goals.
When the tutor starts up, the first unachieved tutoring
goal for a particular student is placed on the deliberative

planner’s agenda (a data structure for goal storage). In
this case, the goal is (student-performs (measure
current)).

The deliberative planner constructs a plan for achieving
this goal using operators from its domain independent plan
library. The library contains both single and multiple turn
tutorial strategies. None of the operators contain domain
knowledge; instead they contain abstract domain references.
Consider the TEACH-STEP-BY-STEP operator (see Fig. 3)
which states that to perform an action a student must per-
form all the substeps of that action. Substeps of particular
actions are not encoded in the operator. Rather, the function
PSM-ASK DECOMPOSITION retrieves the substeps from
the domain reasoner.

The operators relevant to utterances 1-19 are shown in
Fig. 3. Note the prefix s- in operators such as s-knows
refers to student. The operators contain precondition and
constraint slots that must be true before the operator can
be executed. Constraints differ from preconditions in that
constraints cannot be made true through the application of
other operators. Unlike a STRIPS operator which is implic-
itly linked to one action, our operators are linked to zero or
more actions as specified in their action slot.

To simulate the high-level structure of the dialogue in the
appendix, we use the multi-turn TEACH-STEP-BY-STEP
operator. When adding an operator to a plan, we first push
any actions of the operator onto the agenda. In this case,
there are none. Next the preconditions of the operator are
added to the agenda. In this case, the preconditions are that
the student performs the substeps of measuring current (A-G
in the agenda below). For presentation purposes, subgoals in
the agenda are listed under the goals they support. The arrow



indicates the next goal to be addressed.

AGENDA: (s-performs (measure current))

-> A. (s-performs (de-energize circuit))

B. (s-performs (set-meter-to-dc-current))

C. (s-performs (select wire))

D. (s-performs (remove wire))

E. (s-performs (connect leads))

F. (s-performs (energize circuit))

G. (s-performs (read-amt-current))

TEACH-STEP-BY-STEP ?a (multi-turn strategy)

effects: (s-performs ?a)

constraints: (AND (step ?a) (not (primitive ?a)))

preconditions: (foreach (?substep (PSM-ASK DECOMPOSITION ?a))

(s-performs ?substep))

TEACH-NEXT-STEP ?a (multi-turn strategy)

effects: (s-performs ?a)

constraints: (AND (step ?a) (not (primitive ?a)))

preconditions: (AND (s-knows (next ?a))

(s-knows (how-to-perform ?a)))

PRIME-NAME-NEXT ?a (multi-turn strategy)

effects: (primed (next ?a))

constraints: (AND (set ?i (PSM-ASK INSTRUCTIONS))

(set ?acts (PSM-ASK ACTIONS))

(step ?a))

preconditions: (AND (salient (instructions ?i))

(salient (actions-performed ?acts)))

ASK ?a (single-turn strategy)

effects: (s-knows ?a) (s-states ?a) (salient ?a)

precondition: (primed ?a)

action: (ASK-MOVE ?a)

INSTRUCT ?a (single-turn strategy)

effects: (s-performs ?a)

action: (INSTRUCT-MOVE ?a)

INSTRUCT2 ?a (single-turn strategy)

effects: (s-performs ?a) (s-performs ?b)

action: (INSTRUCT-MOVE ?a ?b)

Figure 3: Dialogue Planning Operators

To address subgoal A, the planner chooses the IN-
STRUCT operator which has no preconditions and one ac-
tion, uttering an INSTRUCT dialogue move conveying that
the student should de-energize the circuit. An INSTRUCT
move simply means to give an instruction. To implement
skills involving communicative actions, the feedback gen-
erator produces natural language text given a move and the
move’s content. In this case, the generator is given the IN-
STRUCT move and the content (de-energize cir-
cuit) and produces “Set the switch (i.e., the circuit switch)
to off”.

In the example dialogue, the student flips the switch and
goal A is popped from the agenda. Goals B and C on the
agenda are addressed successfully in the same manner.

The planner addresses goals D and E using the IN-
STRUCT2 operator.1 The INSTRUCT2 operator has the ac-
tion of producing the INSTRUCT move seen in utterance
8. In response, the student removes the wire and the plan-
ner pops goal D from the agenda. The tutor waits for the
student to connect the leads but eventually the time since
the student last performed an action exceeds some tutor set
threshold and the tutor decides to speak. The deliberative
planner must now try an alternative strategy for getting the
student to connect the leads.

We simulate the teaching strategies displayed in utter-
ances 9-20 by first applying the TEACH-NEXT-STEP op-
erator which says the student must know what step is next
(goal E1) and how to perform it (goal E2) in order to exe-
cute the step (see agenda below). A precondition of asking
the student to identify the next step (goal E1.2) is priming the
student (goal E1.1) which is done through PRIME-NAME-
NEXT. PRIME-NAME-NEXT involves making the instruc-
tions salient (goal E1.1.1) and making the student’s actions
salient (goal E1.1.2). The idea is that the student will then
be primed to answer the question: “what is the next step in
the plan?”. Note in applying the ASK operator to address
goal E1.1.1, we assume we do not need to prime the student
in order to ask what the instructions were. This assumption
can later be retracted if it turns out to be false. TEACH-
NEXT-STEP is a fairly simple example of a directed line of
reasoning (Hume et al. 1996).

AGENDA:

E) (s-performs (connect leads))

E1) (student-knows (next (connect leads)))

E1.1) (primed (next (connect leads)))

E1.1.1) (salient (instructions i-list))

-> E1.1.1.1) (ASK-MOVE (instructions i-list))

E1.1.2) (salient (actions-performed a-list))

E1.2) (ASK-MOVE (next step-in-plan))

E2) (student-knows (how-to-perform (connect leads)))

F. (s-performs (energize circuit))

G. (s-performs (read-amt-current))

Some goals on the agenda are tied to the student model as
suggested by (Cawsey 1989). So if the model indicates that
the student knows he must connect the leads, then the tutor
will not bother hinting and asking about what must be done
next. Some preconditions of the operators in Fig. 3 involve
making certain information salient. For example, even if the
tutor thinks the student knows the instructions, the tutor will
re-iterate them ensuring a coherent discussion.

ASK-MOVEs simply ask questions, and the ASK-MOVE
associated with E1.1.1.1 is realized by the question in utter-
ances 10-11. After the question is asked E1.1.1.1 is popped
off the agenda; the student makes the reply seen in utter-
ance 12. Since the student answered correctly, the planner

1In this preliminary investigation we use a separate operator,
INSTRUCT2, to address two goals at once. In future work, we
plan to develop a more general INSTRUCT operator that allows
more than one goal to be addressed.



pops E1.1.1 off the agenda. The same scenario occurs for ut-
terances 14-16 and 17-19 (ASK-MOVEs are answered cor-
rectly) and E1.1.2, E1.1, E1.2, and E1 are popped off the
agenda: the student knows he must connect the leads.

To address goal E2, the tutor uses the ASK operator and
asks “And how are you going to do that?”. There are three
problems with the student’s answer, “pick one of the wires
on the right of the picture”: the interpreter with the help of
the BE&E domain reasoner determines that (1) “one of the
wires on the right of the picture” is vague and can refer to ei-
ther lead; (2) the curriculum dictates that student should use
the term “lead” instead of “wires”; (3) the answer is incom-
plete (it does not say where to attach the first lead or any-
thing about the other lead). The interpreter encodes these
problems as possible dialogue planning goals: (1) student
states which lead to attach, (2) student learns the term lead,
(3) student states the remaining steps involved in connecting
the leads. Goal 2 is tangential; we later see the tutor ignores
the incorrect use of “wire” for “lead” in utterances 25, 28,
31, and 40.

Due to space constraints, we can only give high-level de-
tails about the rest of the dialogue. Goal 2 is addressed indi-
rectly by utterance 22, “You mean the leads of the multime-
ter?” Goal 3 is split into two parts: (a) specifying the miss-
ing parameter, the attachment point of the first lead, and (b)
describing the second step of connecting the leads, connect-
ing the second lead. Utterance 24 addresses goal 1 and part
(a) of goal 3. The goal behind utterances 27-32 is to bring
the reading-amount-of-current step (the last step of the re-
quested action) into focus and then to ask about unsatisfied
preconditions of this action (utterances 35 and 37) resulting
in the student describing the missing action in the plan.

In utterance 27 (“do you understand why you are do-
ing that?”), the tutor expects the student to say something
like “to measure current” but instead the student says “be-
cause you need to connect the red wire to the beginning
of the wire” which is basically a rephrasing of the ques-
tion. To deal with this answer, the tutor repeats the ques-
tion: “Why?”. However, the student again simply rephrases
the question. The tutor needs to realize that it has already
tried repeating the question and must try something new. In
fact, the tutor switches strategies and instead of asking for
the goal of the action, asks for the goal of the lab. Notice
the techniques used here apply to any complex action to be
performed by a student not just connecting leads.

Discussion
In the section above, we have conflated the second and third
levels in the robotics planning architecture. The deliberative
planner should only operate on the third level, building se-
quences and adding sequences to the second level. Plan ex-
ecution should only be performed in the second level. The
first level of the planning architecture should only execute
skills. The feedback generator gets a symbolic representa-
tion of a move (say hint, prompt, instruction) and performs
the skill of constructing the corresponding utterance.

The second level may be an appropriate location to handle
communication management. Communication management
could be defined by rules such as: if the student has not

responded after some threshold, then the tutor should speak;
if the student responds, then the tutor must acknowledge the
student; acceptance means acknowledgment.

To implement our system, we are using the TRINDI
framework (Larsson & Traum 2000). Designing a TRINDI
dialogue manager consists of four steps: defining (1) an in-
formation state (IS), (2) a set of dialogue moves (the com-
municative functions of utterances), (3) a set of update rules
which update the IS taking the last dialogue move(s) and the
IS into account, (4) and a control strategy which defines how
to apply update rules. The IS can be thought of as the mental
state of a dialogue participant, and contains conversational
goals and information gained in the dialogue. External rea-
soning components (e.g., a domain reasoner) communicate
with the dialogue manager by reading and writing the IS.

To translate the architecture presented above into the
TRINDI framework, we must first divide the IS into in-
dependent substructures (e.g., the student model, problem
solving context, and agenda). This should make the result-
ing system more portable and easier to maintain and extend.

Dialogue moves used in current TRINDI systems are rel-
atively simple (ASK, ANSWER, ACCEPT, etc.). We are
analyzing the BE&E dialogues, and investigating using dia-
logue moves such as WRONG-ANSWER and NEAR-MISS
in our system.

We can build upon previous TRINDI systems that have
implemented a large set of update rules for low-level com-
munication management and simple dialogue planning. Dif-
ferent TRINDI systems such as EDIS (Matheson, Poesio, &
Traum 2000) and Godis (Larsson et al. 2000) have chosen
to focus on different concerns. EDIS has a comprehensive
mechanism for handling low-level communication manage-
ment using the notion of obligations. Godis focuses more on
higher-level dialogue planning. However, EDIS and Godis
work on very simple information seeking domains, and their
update rules must be augmented with tutorial strategies. We
are analyzing the BE&E dialogues to develop a set of do-
main independent tutoring strategies for our tutor.

EDIS and Godis have very simple control strategies. For
example, EDIS clusters update rules into rule classes and
given an IS and dialogue move collects all applicable rules
of all rule classes and executes them one by one. Godis’ con-
trol strategy features simple planning (task accommodation
— the system will load and execute plans to achieve user
goals) and replanning (question accommodation — when a
user provides more information than required, the system
acts as if it had asked for that information). Because of
the complexity of tutorial planning, we are investigating ex-
tending Godis’ simple accommodation strategies into a fully
fledged three level planning architecture.

By building a dialogue system within the TRINDI frame-
work we can not only profit from the framework’s mod-
ularity but also from the work done on the currently im-
plemented TRINDI systems. Thus, we are brining to-
gether technology from three areas: reactive planning from
robotics, basic dialogue system technology from computa-
tional linguistics, and expertise in teaching from the ITS
community. Using these knowledge sources, we believe that
we can provide a modular architecture that maintains separa-



tion between domain knowledge, tutorial planning, commu-
nication management, student modeling, and maintenance
of the dialogue context. This should increase the reusabil-
ity, extensibility, and maintainability of the resulting tuto-
rial dialogue system. Such a tutor with its reactive planner
will also have flexibility: it will be able to abandon or mod-
ify failing teaching strategies, skip steps in a plan that have
already been achieved, and deal with unexpected answers
and interrupting questions. We believe this architecture en-
ables some of the capabilities necessary for a tutor that sup-
ports constructive learning, in particular, supporting multi-
turn teaching strategies.
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Appendix



GUI: 1. In this exercise, you will get practice

measuring current with a multimeter.

This lab will lead you through the

steps. Remember that when measuring

current, you must power down the equipment

first and then connect the meter in series

with the circuit.

GUI: 2. Set the switch (i.e. the cir-

cuit switch) to off.

S: <turns off switch>

GUI: 3. Correct.

GUI: 4. Set the Multimeter to adc.

S: <sets the meter correctly>

GUI: 5. Correct.

GUI: 6. Choose the wire spanning the first position

in the circuit where you want to measure

current.

S: <selects wire 2>

GUI: 7. Correct.

GUI: 8. Remove the appropriate wire and connect

the leads of the multimeter to the circuit.

S: <only removes wire 2 from the circuit>

T: 9. OK,

10. let’s break this down into steps.

11. What did the instructions ask you to do?

S: 12. remove the appropriate wire and connect

the leads

T: 13. OK,

14. and how much of this did you do?

S: 15. i only removed the wire

T: 16. Right.

T: 17. So what do you still need to do?

S: 18. connect the leads

T: 19. Right.

20. And how are you going to do that?

S: 21. pick one of the wires on the right of the picture

T: 22. You mean the leads of the multimter?

S: 23. yes

T: 24. Which one will you pick and where will you

attach it?

S: 25. i believe that I’ll pick the red wire and

attach to where I removed the beginning

of the wire

T: 26. OK,

27. do you understand why you are doing that?

S: 28. because you need to connect the red wire

to the beginning of the wire

T: 29. Why?

S: 30. i’m not exactly sure.

31. i just thought that you connect the red

wire to the beginning

T: 32. Do you understand what the goal of this lab is?

S: 33. to be able to connect the multimeter to the

light and read the number of amps are flowing

T: 34. OK,

35. in order for any amps to be flowing, what has

to be true about the circuit?

S: 36. it has to be complete

T: 37. If you do only what you said you were going to

do, will the circuit be complete?

38. (with the exception f the switch being open)?

S: 39. no.

40. i will also have to connect the red wire to the

number 3 on the picture(above the lightbulb)

i meant black wire not red

T: 41. Good. You are absolutely correct.

42. You need to do both of those things before you

press continue.

[...]

Figure 4: A BE&E Dialogue on Measuring Current
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Figure 5: The BE&E Domain Plan for Measuring Current


