

Edinburgh Research Explorer

Distributed query evaluation with performance guarantees

Citation for published version:
Cong, G, Fan, W & Kementsietsidis, A 2007, Distributed query evaluation with performance guarantees. in
Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing, China, June
12-14, 2007. ACM, pp. 509-520. DOI: 10.1145/1247480.1247537

Digital Object Identifier (DOI):
10.1145/1247480.1247537

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Proceedings of the ACM SIGMOD International Conference on Management of Data, Beijing, China, June 12-
14, 2007

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/1247480.1247537
https://www.research.ed.ac.uk/portal/en/publications/distributed-query-evaluation-with-performance-guarantees(47087c3f-9801-49a7-bbc7-d004ac194da3).html

Distributed Query Evaluation with Performance Guarantees

Gao Cong
Microsoft Research Asia

gaocong@microsoft.com

Wenfei Fan
University of Edinburgh &

Bell Laboratories

wenfei@inf.ed.ac.uk

Anastasios
Kementsietsidis

University of Edinburgh

akements@inf.ed.ac.uk

Abstract
Partial evaluation has recently proven an effective technique
for evaluating Boolean XPath queries over a fragmented tree
that is distributed over a number of sites. What left open is
whether or not the technique is applicable to generic data-
selecting XPath queries. In contrast to Boolean queries that
return a single truth value, a generic XPath query returns
a set of elements, and its evaluation introduces difficulties
to avoiding excessive data shipping. This paper settles this
question in positive by providing evaluation algorithms and
optimizations for generic XPath queries in the same dis-
tributed and fragmented setting. These algorithms explore
parallelism and retain the performance guarantees of their
counterpart for Boolean queries, regardless of how the tree
is fragmented and distributed. First, each site is visited at
most three times, and down to at most twice when optimiza-
tions are in place. Second, the network traffic is determined
by the final answer of the query, rather than the size of the
tree, without incurring unnecessary data shipping. Third,
the total computation is comparable to that of centralized
algorithms on the tree stored in a single site. We show
both analytically and experimentally that our algorithms
and optimizations are scalable and efficient on large trees
and complex XPath queries.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query Pro-
cessing

General Terms
Algorithm, Performance

Keywords
Distributed XML documents, Xpath Queries, Parallel
Query Processing

1. Introduction
Partial evaluation has recently found an effective appli-

cation in the evaluation of Boolean XPath queries over an
xml tree that is fragmented, both horizontally and verti-
cally, and is distributed over a number of sites [5]. The

clientele

broker broker

market
name

name

buy

market

name

name

market

name

$33

E*trade Bache

NASDAQ

NYSE NASDAQ

stock stock

code code

GOOGYHOO

stock

code

IBM

buy

$374

buy

$80

stock

code

GOOG

buy

$370

qt

50

qt

40

qt

40

qt

75

client

name

Anna

country

US

client

name

Kim

country

US

client

name

Lisa

country

Canada market

name

TSE

stock

code

GOOG

buy

$382

qt

90

broker

name

CIBC

F
0

F
1

F
2

F
3

F
4

Figure 1: Investment company clientele

rough idea of partial evaluation (see [18] for a survey) is the
following. Consider a function f(x̄1, x̄2). Assumes that we
are given part of its input, say only argument x̄1. Then,
partial evaluation specializes function f with respect to the
known argument x̄1, without waiting for the other argument
x̄2. That is, it performs the part of f ’s computation that
depends only on x̄1, and generates a partial answer, i.e., a
residual function f ′ that depends on the as yet unavailable
argument x̄2. To illustrate its application in Boolean XPath
evaluation, let us consider an example.

Consider the xml tree T shown in Fig. 1, which represents
the clientele of an investment company. For each client the
company stores her name and the country where she resides.
Furthermore, it stores the broker(s) whom the client is us-
ing and the market(s) in which the client trades, through
the broker(s). For each such market, the company stores
the code, buying price buy, and quantity qt of stock(s) that
the client owns. In practice such trees are often decom-
posed into a number of sub-trees, or fragments, and are dis-
tributed over the Internet for geographical or administrative
reasons [3], a setting commonly found in e-commerce, Web
services, or while managing large-scale network directories
[16]. In Fig. 1, we use dashed lines to show one possible
fragmentation. The fragment marked as F0, which includes
the root of the tree, might be stored in the investment com-
pany’s local US server (site S0). However, for tax reasons,
trade data for Canadian customers might have to be stored
in a Canada-based server. Therefore, the fragment of the
tree marked as F3 is stored in a remote Canadian site S3.
Similarly, the nasdaq market might require that all its own
trade data are only remotely accessed and only through rec-
ognized brokers for security concerns. Therefore fragments
F2 and F4 again need to be stored in site S2 outside our
investment company. The fragmentation and distribution
of the tree T are depicted in Fig. 2. In spite of the reasons
that lead to fragmentation, conceptually this is still a single
xml tree over which we would like to pose queries.

Now consider Q = [//stock/code/text() =“goog”], a
Boolean XPath query that is posed at site S0. When be-
ing evaluated at the root of the tree T , the query returns a

clientele

broker

market
market

client
F
0

F
1

F
2

F
3

F
4

F
0

F
1

F
2

F
3

F
4

S
0

S
1

S
2

S
3

Figure 2: Tree fragmentation and fragment tree

single truth value, true if and only if there is a client trad-
ing goog stock. A naive way to evaluate the query is by
first shipping fragments F1, F2, F3, F4 to site S0, assembling
them with F0 into a tree, and then evaluating Q on the tree.
This incurs excessive overhead of data shipping, and worse
still, may not be doable since data at some sites is not al-
lowed to be shipped to S0 for privacy or security reasons.
Another approach is to employ a sophisticated algorithm for
evaluating XPath queries in a centralized system [20]. This
would require a single depth-first traversal of T , visiting each
node exactly once, something we cannot expect to improve
upon. However, this seemingly “optimal” approach would
visit fragments F0, F1, F2, F1, F0, F4, F0, F3, F0 in that order,
visiting F0 four times and F1 twice.

An algorithm, called ParBoX, was developed in [5] based on
partial evaluation, which evaluates Boolean xml queries over
a fragmented tree that is distributed over a number of differ-
ent sites. The algorithm partially evaluates the whole query
Q, in parallel, over each fragment of the tree. Since each
fragment contains only part of the tree, this partial evalu-
ation of Q over each fragment results in a partial answer
to the query, which is a Boolean expression with variables.
The partial answers are all collected to a single coordinator
site and are composed resulting in the final answer to Q.
The ParBoX algorithm has a number of desirable properties,
namely: (a) Each site is visited only once, irrespectively of
the number of fragments stored there. (b) The communica-
tion cost is bounded by the size of the query and the number
of fragments, and is independent of the size of the xml doc-

ument. (c) The total amount of computation performed at
all sites holding a fragment is comparable to the compu-
tation of the optimal centralized algorithm over the whole
tree. (d) The algorithm does not impose any condition on
how the xml documents are fragmented, what the sizes of
these fragments are, or how they are assigned to sites.

A question left open in [5] is how and under which cir-
cumstances the partial evaluation technique can be used to
evaluate generic data selecting XPath queries. The need for
the extension is evident since most XPath queries in practice
are data-selecting queries, which find a set of xml elements
rather than return a single truth value. This highlights the
demand for an efficient algorithm to evaluate generic xml

queries in distributed settings. Of course, such an exten-
sion should not come at a high price. It would be desirable
if, while supporting generic XPath queries, we could retain
properties comparable to those of the ParBoX algorithm.

It is, however, nontrivial to extend the technique to data-
selecting queries. Consider a data selecting XPath query Q′

= //broker[//stock/code/text() =“goog”]/name. A direct
extension of the technique of [5] would send Q′ to every
site and partially evaluate Q′. However, what should be
returned by each site as a partial answer, namely, residual
function? Note that the final answer of Q′ is a set of ele-
ments, and thus using the technique of [5], each site may
send a set of elements that are probably in the answer of

Q′, and let the coordinator do the checking. This leads to
excessive data shipping and in the worst case may end up
shipping the entire tree to the coordinator. It is challenging
to identify precisely what elements are in the final answer
at each site before they are shipped to the coordinator. Fur-
thermore, for data-selecting XPath queries even centralized
evaluation algorithms require two traversals of the tree [20],
instead of a single pass as for Boolean XPath queries.

To this end we develop algorithms and optimizations for
evaluating generic data selecting XPath queries in the same
fragmented and distributed setting of [5]. Based on partial
evaluation, our algorithms retain the properties of [5]. Our
contributions can be summarized as follows:

• We introduce the first partial evaluation algorithm for
generic XPath queries in the distributed setting. We support
a fragment of XPath with the downward axes, which covers
most XPath queries used in practice [15] and includes the
Boolean XPath of [5] as a special case. Our first evaluation
algorithm guarantees that each site is visited at most three

times and our optimized algorithm at most twice, irrespec-
tively of the number of fragments stored there (recall that so-
phisticated centralized algorithms would require two passes
of xml trees to evaluate data-selecting queries). Moreover,
the algorithm has the same worst-case computation com-
plexity as ParBoX and optimal communication cost, in spite
of its support of more complex data-selecting queries. In
particular, each site ships to the coordinator only elements
that are certainly in the answer of a query, such that the
union of these partial answers is the answer of the query.

• Our second contribution is an optimization technique on
the performance of our basic evaluation algorithm which re-
duces the communication and computation costs.

• Our third contribution is a detailed experimental study,
using our implemented partial-evaluation XPath query
engine. Our experiments demonstrate the full potential of
partially evaluating XPath queries on distributed stores.

We believe that our proposed techniques are promising for
efficiently evaluating generic XPath queries in distributed
systems with performance guarantees. We expect that the
evaluation algorithms also shed light on evaluating XPath
queries on large-scale datasets in centralized systems. In-
deed, when the whole tree does not fit in main memory,
through fragmentation we are able to load each time from
secondary storage a different fragment of the tree into main
memory. Our partial evaluation techniques help reduce at
least the cost of swapping the fragments.

Organization. Section 2 discusses xml tree fragmenta-
tion and reviews the class of XPath queries considered in
this paper. Section 3 presents a basic evaluation algorithm
for XPath queries based on partial evaluation, referred to as
PaX3, which directly employs ParBoX to evaluate XPath qual-
ifiers and requires at most three visits at each site. We start
with this basic algorithm for its conceptual clarity and to

simplify the discussion. In Section 4 we then present an im-
proved version of PaX3, which visits each site at most twice.
An optimization technique is given in Section 5. An exper-
imental study is provided in Section 6, followed by related
work in Section 7 and conclusions in Section 8.

2. Preliminaries
We next discuss the fragmentation of xml documents and

present the class of XPath queries studied in this paper.

marketname

nameBache

NYSE

stock

code

IBM

buy

$80

qt

50

client

name

Kim

country

US

clientele

client

name

Anna

country

US

F
1

F
3

F
4

broker

(a) Fragment F0

market

name

NASDAQ

stock

code

GOOG

buy

$370

qt

75

(b) Fragment F4

Figure 3: Example fragments

2.1 XML Tree Fragmentation

We consider settings in which an xml tree T is decom-
posed into a set FT of disjoint trees, or fragments. Each
fragment Fi ∈ FT can be stored in a different site. We do

not impose any constraints on the fragmentation: we allow
for an arbitrary “nesting” of fragments. Fragments can ap-
pear at any level of the tree, and different fragments may
have different sizes (in terms of number of nodes). Further-
more, we do not impose any constraints on how the frag-
ments are distributed: this is determined by the system.
Hence our fragmentation setting is the most generic possi-
ble. As an example, the tree in Fig. 1 consists of five frag-
ments, FT = {F0, F1, F2, F3, F4}, each fragment represented
by a dotted polygon. Observe that a fragmentation of a tree
T induces another tree, called a fragment tree, which rep-
resents the relationship between the different fragments of
T . We are going to use FT to denote both the set of frag-
ments of a tree T and the corresponding induced fragment
tree representation. It will be clear from the context which
of the two notions we refer to. The fragment tree FT for
tree T of Fig. 1 is shown to the right of Fig. 2. We call
root fragment, the fragment at the root of the fragment tree
which also contains the root of tree T . In Fig. 2, this is
fragment F0. Furthermore, given two fragments Fj and Fk,
we say that Fk is a sub-fragment of Fj if Fk is a child of
Fj in the fragment tree. If Fk is a sub-fragment of Fj then
there exists a node v ∈ Fj such that the root node w of Fk

is a child of v in the original tree T . In Fig. 1, fragment F2

is a sub-fragment of F1 which, in turn, is a sub-fragment of
fragment F0. In the original tree T , node broker of fragment
F1 is the parent of root node market of fragment F2.

Each fragment is possibly stored in a different site, as
shown to the right of Fig 2. For example, fragment F3 is
stored in site S3 while both fragments F2 and F4 are stored
in site S2. Given the distribution of fragments, we need to
maintain the relationship between a fragment and its sub-
fragments so as to preserve the structure of the original tree
T . To this end, given a fragment Fj and its sub-fragment
Fk, we add a virtual node in Fj , which we label as Fk, in
place of the missing tree fragment Fk. Under normal cir-
cumstances, while traversing fragment Fj , we know that if
we reach the virtual node Fk, we need to “pass control” to
the site holding fragment Fk in order to continue the traver-
sal of the tree. For example, in Fig. 3(a) fragment F0 has
virtual nodes representing fragments F1, F3 and F4. While
traversing fragment F0 stored in site S0, when we reach vir-
tual node F4, we know that the control for the traversal of
the tree must pass to site S2 holding fragment F4, shown in
Fig. 3(b). We refer to a fragment that has no sub-fragments
as a leaf fragment. In Fig. 3(b), fragment F4 is a leaf frag-
ment and therefore it has no virtual nodes.

2.2 XPath

We consider a class of XPath queries, denoted by X , that
is defined as follows:

Q := ǫ | A | ∗ | Q//Q | Q/Q | Q[q],

q := Q | q/text() = str | q/val() op num | ¬q | q ∧ q | q ∨ q

where Q is a path expression defined in terms of the empty
path ǫ (self), label A (tag), wildcard ∗, the descendant-or-

self-axis ‘//’, child ‘/’, and qualifier [q]. In the qualifier
q, str is a string constant, op stands for one of the arith-
metic comparison operators =, 6=, <,≤,>,≥, num is a num-
ber, and ¬,∧,∨ are the Boolean negation, conjunction and
disjunction operators, respectively.

For example, to get the name of a broker through which
goog stocks are purchased, but no yhoo stocks, we write
a query Q1: //broker[//stock/code/text() =“goog” ∧ ¬
(//stock/code/text() = “yhoo”)]/name. At a context node

v in an xml tree T , the evaluation of a query Q at v, denoted
by val(Q, v), yields the set of nodes of T reachable via Q
from v. On a centralized xml tree T , i.e., when T is not
decomposed and distributed, val(Q, r) can be computed in
O(|T | |Q|) time [11], where r is the root of T .

The class X subsumes twig queries [4] and Boolean XPath
studied in [5]. Note that although our query language sup-
ports only the self, child and descendant XPath axes, this
is usually sufficient since the majority of XPath queries use
the downward axes [15].

Similar to [5], we normalize each query Q in X and convert
it into a normal form (although our normal form is slightly
different here). Specifically, we convert each query Q in X
to a normal form β1/ . . . /βn, where βi is one of A, ∗, //
or ǫ[q]. Function normalize(Q) inductively normalizes, in
linear-time, a query Q as follows:

normalize(ǫ) = ǫ; similarly for ‘∗’, ‘//’ and A;
normalize(Q1/Q2) = normalize(Q1)/normalize(Q2);
normalize(Q[q]) = normalize(Q)/ǫ[normalize(q)];
normalize(Q/text() = ‘str’) = normalize(Q)/ǫ[text() = ‘str’];
normalize(Q/val() = ‘num’) = normalize(Q)/ǫ[val() = ‘num’];
normalize(q1 ∧ q2) = normalize(q1) ∧ normalize(q2);

similarly for q1 ∨ q2 and ¬q1;
normalize(ǫ[q1]/ . . . /ǫ[qn]) =

ǫ[normalize(q1) ∧ . . . ∧ normalize(qn)];

where the last rule is to combine a sequence of ǫ’s into one.
In the sequel, we consider X queries in the normal form.

Striking out all the qualifiers in β1/ . . . /βn we get a “path”
η1/ . . . /ηn, where ηi is either A, ǫ, ∗, or //. We refer to
η1/ . . . /ηn as the selection path of query Q. For example,
the selection path of query Q1 given above is //broker/name.

For reasons that will become clear in the next section,
we decouple the evaluation of qualifiers for each query Q,
from the evaluation of its selection path. We use a vector-
based representation of our queries. More specifically, we
use a vector SVect(Q) to store the prefixes of the selection
path η1/ . . . /ηn, such that SVect(Q)[i] indicates the query
η1/ . . . /ηi. Obviously, vector SVect(Q) is linear in the size of
Q. We use another Boolean vector QVect(Q) to store the list
of all sub-queries of the qualifiers of Q. We sort QVect(Q)
in a topological order such that for any sub-queries q1, q2,
if q1 is a sub-query of q2 then q1 precedes q2 in QVect(Q).
Again, vector QVect(Q) is linear in the size of Q.

Example 2.1: Consider query Q = client[country/text()
= “us”]/broker[market/name/text() = “nasdaq”]/name
which returns the name of brokers of us clients that trade
in the nasdaq market. Then:

normalize(Q) = client/ǫ[country/ǫ[text()=“us”]]/broker/
ǫ[market/name/ǫ[text() = “nasdaq”]]/name

We decouple the selection path /client/broker/name of
the query from the qualifiers [∗/ǫ[country/ǫ[text()=“us”]]
and [∗/ǫ[market/name/ǫ[text() = “nasdaq”]]. Then, vec-
tors SVect(Q) and QVect(Q) are as follows:

SVect(Q) = [q1, q2, q3] where

q1 = client, q2 = q1/broker, q3 = q2/name

QVect(Q) = [q1, q2, q3, q4, q5, q6, q7, q8, q9], where

q1 = country, q2 = [text()=“us”], q3 = q1/ǫ[q2], q4 = ∗/ǫ[q3],
q5 = name, q6 = [text()=“nasdaq”], q7 = q5/ǫ[q6],
q8 = market/q7, q9 = ∗/ǫ[q8]

where the first four entries in QVect(Q) are for the first
qualifier, while the remaining five are for the second. 2

3. Query Evaluation
Consider an X query Q submitted to a site SQ and the

query is to be evaluated over a fragmented and distributed
xml tree T . A näıve evaluation of Q requires collecting to
site SQ all the fragments of tree T , identified by the frag-
ment tree FT . Once collected, tree T is reconstructed by its
fragments and a centralized algorithm is used to evaluate Q
over T . We refer to this approach as NaiveCentralized. The
authors of [5] have already shown experimentally that this
approach is inefficient, even for the case of simple Boolean
queries. Although there are a number of efficient XPath
evaluation engines for centralized xml stores, in research
(e.g. the algorithm of [11]) and beyond (e.g. Saxon [24],
Xalan [29]), the efficiency of these evaluators becomes ap-
parent only after site SQ gets all the data. This incurs large
overhead in network traffic, since fragments are transmit-
ted over the network each time a query is executed. Fur-
thermore, the NaiveCentralized algorithm assumes that site
SQ has main memory big enough to fit T . Worse still, as
remarked earlier, security or privacy reasons may prevent
entire fragments to be shipped from one site to another.

To cope with this we propose the Parallel XPath (PaX3)
evaluation algorithm, based on partial evaluation. The
PaX3 Algorithm guarantees the following:

1. Each site is visited only at most three times, irrespec-
tively of the number of fragments stored in it.

2. Query processing is performed in parallel, on all the
participating sites.

3. The total computation on all sites is comparable to
what is needed by the best-known centralized algorithm.

4. The total network traffic, in any practical setting, is
determined by the size of the query and the size of the

query answer rather than the xml tree.

Thus algorithm PaX3 maintains all the desirable properties
of the ParBoX algorithm, while it allows evaluating generic
data-selecting XPath queries, instead of just Boolean ones.

We start by presenting the PaX3 algorithm to focus on the
main idea of the partial evaluation technique. In the next
section we will present a refined version of PaX3, called PaX2,
which guarantees that each site is visited at most twice while
retaining the other properties of PaX3.

The PaX3 algorithm is initiated at site SQ where the query
Q is issued. Without loss of generality, we assume SQ to
be the site storing the root fragment of the tree T . As
shown in Fig. 4, the algorithm consists of three stages where

each stage corresponds to a single visit of a site holding tree
fragments. In turn, each visit makes a single pass of each
tree fragment and therefore, overall, algorithm PaX3 makes
three passes over the xml tree T . Specifically:

Stage 1: The objective of this stage is to (partially) eval-
uate the qualifiers of query Q. For each node of each frag-
ment, we partially evaluate qualifiers by using our own ex-
tension of the ParBoX algorithm [5]. Intuitively, at the end of
this stage for some nodes we know the actual value of each
qualifier, while for other nodes the value for some qualifiers
is a Boolean formula whose value is yet to be determined.
The value of each qualifier, i.e., Boolean formula, will be
fully known for all nodes by the beginning of the next stage.

Stage 2: The objective of this stage is to (partially) eval-
uate the selection part of query Q. Intuitively, this means
that at the end of this stage, for each node of each fragment,
we know one of two things: (a) whether or not the node is
part of the answer of query Q; or (b) that the node is a can-
didate to be part of the answer. Again, candidacy depends
on the value of a Boolean formula.

Stage 3: For this latter set of candidate nodes, we will
need one additional pass during this stage to determine
which candidate answer nodes are true answer nodes. At
the same time, at this stage, all nodes belonging to the an-
swer of Q are transmitted to site SQ.

Note that the ParBoX algorithm of [5] corresponds only
to the first stage of PaX3. The tricky part, namely, finding
candidate answer nodes and identifying true answer nodes,
is done in Stages 2 and 3.

In what follows, we describe each stage in more detail.

3.1 Qualifier Evaluation

During Stage 1 of Algorithm PaX3, the evaluation of qual-
ifiers is performed through our extension of the ParBoX algo-
rithm [5], which we present here briefly since the extended
ParBoX is only one part of our evaluation algorithm and it is
not a main contribution of our work. Our extensions include
a more expressive language in the qualifiers, which includes
arithmetic comparisons, and the ability to evaluate multiple
top-level qualifiers in a query while in contrast, ParBoX only
needs to compute a single top-level qualifier. Obviously, if a
query has no qualifiers, the whole stage can be skipped and
the evaluation proceeds with Stage 2.

Consider a simple query Q over T . For simplicity, as-
sume that Q has a single qualifier. An efficient evaluation of
QVect(Q) for all the nodes v of T requires a single bottom-up
traversal of T . During the traversal, at a node v we compute
the values of all the sub-queries in QVect(Q) and store them
in a vector QVv associated with v. For this computation,
we often need to consult the (already computed) values of
the QVect(Q) sub-queries at the children and descendants
of v. Only two additional vectors are required to store these
values, namely, vectors QCVv and QDVv, respectively. In-
tuitively, for each sub-query q in QVect(Q), QCVv(q) is true
if and only if there exists some child u of v such that QVu(q)
is true, and similarly, QDVv(q) is true if and only if either
QVv(q) is true or there exists some descendant w of v such
that QVw(q) is true. Now, if Q has a single qualifier, then
the value of the qualifier at v is determined by the value of
the last entry in QVv. If Q has more than one qualifiers,
as is the case in Example 2.1, then the truth value of each
qualifier is determined by the entry in QVv corresponding to

Procedure PaX3

Input: An XPath query Q and a fragmented tree T
Output: The answer (set of nodes) ans of Q over T

/* Stage 1*/
1. for each site Si in FT do

2. exec(Si, evalQual, QVect(Q)) in parallel;
3. for each fragment Fj stored in Si do

4. annotate FT with (QVFj
, QCVFj

, QDVFj
);

5. evalFT(FT);
/* Stage 2*/

6. for each fragment Fj stored in Si do

7. for each sub-fragment Fk of Fj do

8. send (QVFk
, QCVFk

, QDVFk
) to Si;

9. for each site Si in FT do

10. exec(Si, evalSelQ, SVect(Q)) in parallel;
11. for each fragment Fj stored in Si do

12. for each sub-fragment Fk of Fj do

13. annotate FT with SVFk
;

14. evalFT(FT);
/* Stage 3*/

15. for each subfragment Fk of a fragment Fj do

16. send SVFk
to site Sl storing Fk;

17. for each site Si in FT do exec(Si, collectAns);
18. receive ans from each site Si

(a) PaX3 algorithm executed at site SQ

Procedure evalSelQ

Input: A vector SVect(Q) of (sub-)queries
Output: Set returnSet = {SVFk

| where
Fk a subfragment of Fj on Si}

1. for each fragment Fj assigned to Si do

2. cans := ∅;
3. tempSet := topDown(root(Fj), SVect(Q));
4. returnSet := returnSet ∪ tempSet;
5. send returnSet to site SQ;

Procedure topDown

Input: A node v and a vector SVect(Q) of (sub-)queries
Output: Vector SVv of formulas for node v

1. initStack();
2. for each query qi in SVect(Q) from left to right do

3. case qi of

4. t : SVv(qi) := term(v, t);
5. qj/t: SVv(qi) := evalFM(stack(SV (qj)), term(v, t),∧);
6. qj//: SVv(qi) := evalFM(stack(SV (qi)), SVv(qj),∨);
7. SVv(qi) := evalFM(SVv(qi), assocQual(QVv),∧);
8. pushStack(v, SVv)
9. if SVv(|SVect(Q)|) = true then ans := ans ∪ v;
10. elseif SVv(|SVect(Q)|) is a formula then

11. cans := cans ∪ (v, SVv(|SVect(Q)|));
12. if v is a virtual node then returnSet := returnSet ∪ SVv

13. for each child w of v do

14. SVw := topDown(w, SVect(Q));
15. popStack();

Procedure term

Input: A node v and a terminal symbol t in the normal of q
Output: The truth value of evaluating t on v

1. case t of

2. ǫ: return true;
3. ∗: return true;
4. label() = l: return compareString(label(), l);
5. text() = str: return compareString(text(), str);

Procedure collectAns

Input: Vector SVFj
of a fragment Fj of site Si

Output: The set of nodes ans of q over Fj

1. for each pair (v, SVv(|SVect(Q)|) in cans do

2. if unify(SVv(|SVect(Q)|)) = true then ans := ans ∪ v;
3. return ans

(b) PaX3 algorithm executed at participating site

Figure 4: The PaX3 Algorithm

the sub-query which represents that qualifier. In our exam-
ple, the value of the first qualifier is determined by q4 while
that of the second is determined by entry q9.

The above simple procedure assumes that tree T is not
fragmented. In the presence of fragmentation, we need to
perform a bottom-up evaluation of QVect(Q) for each frag-
ment. An immediate problem then is how to compute, dur-
ing the traversal of the fragment, the value of QVect(Q)
given that parts of the tree are missing and are replaced
by virtual nodes. Since each fragment is processed in par-
allel, the values of QVect(Q) are unknown for the virtual
nodes and their corresponding fragments and, under nor-
mal circumstances, until we learn these values from the site
holding the fragment for the virtual node, we cannot pro-
ceed with the evaluation. This is the point where partial
evaluation comes into play. The key idea in the partial eval-
uation of qualifiers is to introduce Boolean variables, one for
each missing value of QVect(Q) at each virtual node.

Example 3.1: Consider query Q from Example 2.1. Then,
the following vectors result in by evaluating QVect(Q) over
the nodes of the leftmost client of fragment F0 in Fig. 3(a):

QVname = <0, 0, 0, 0, 1, 0, 0, 0, 0>
QVcountry = <1, 0, 1, 0, 0, 0, 0, 0, 0>
QVF1

= <x1, x2, x3, x4, x5, x6, x7, x8, x9>
CQVF1

= <cx1,cx2,cx3,cx4,cx5,cx6,cx7,cx8,cx9>
QVclient = <0, 0, 0, 1, 0, 0, 0, 0, x8>

Recall from Example 2.1 that q4 = ∗/ǫ[q3]. That is, at a
node v the value of the first qualifier (entry q4) depends on
the value of entry q3 at the child nodes of v. Indeed, notice
that the first qualifier (value of q4) is true in QVclient since
client has a child node country whose corresponding text is
“US” (entry q3 in QVcountry). We also consider the value

of the second qualifier (value of q9) in QVclient although, in
practice, this qualifier is associated with broker nodes in our
query. From Example 2.1 we know that q9 = ∗/ǫ[q8], that
is, at a node v the value of the second qualifier (entry q9)
depends on the value of entry q8 at the child nodes of v. In
the specific client node, the value of this qualifier depends
on variable x8, that is, it depends on whether or not the
virtual node F1 represents such a fragment that its root node
is market with a name child that has a value of “nasdaq”.
Note that for virtual node F1 we introduce fresh variables
since we do not know the value for any of the entries in the
vector. Note that there are dependencies between some of
the introduced variables. For example, the value of the first
qualifier in F1, that is variable x4, is equal to cx3 since x4 is
true in node F1 as long as node F1 has a child node whose
label is country and whose value is “US” (variable cx3). 2

In the algorithm (shown in Fig. 4), the bottom-up partial
evaluation of qualifiers is initiated in site SQ which makes
a remote procedure call (Fig. 4(a), line 2) to all the sites
holding at least one tree fragment. The actual evaluation,
outlined in the previous paragraphs, is performed by Pro-
cedure evalQual (not shown due to space constraints) which
returns the triplet of vectors (QVFj

, QCVFj
, QDVFj

) corre-
sponding to the root node of fragment Fj . Each site returns
its triplet(s) to site SQ, one triplet per fragment. Then in
site SQ, Procedure evalFT is executed (not shown due to
space constraints). Remember that we introduce variables
during the partial evaluation of fragments, for each virtual
node of a fragment. During the computation of qualifiers,
these variables are often composed and result in complex

Boolean formulas that appear as values in some vector en-
try [5]. The objective of Procedure evalFT is to use infor-
mation from all the fragments and, by unifying variables,
to compute the Boolean values for these vector entries. In
more detail, Procedure evalFT considers the fragment tree
which is now annotated with vector triplets. The proce-
dure requires a single bottom-up traversal of the fragment
tree to unify all variables and compute the Boolean formula
truth values. Note that vectors of leaf fragments in the frag-
ment tree contain no variables (since they do not have any
virtual nodes), as shown in our example for fragments F2,
F3 and F4. During the bottom-up traversal of FT , Proce-
dure evalFT uses the Boolean values of the leaf fragments to
unify the variables of the vectors that belong to the parent
fragments in FT . The procedure continues in this fashion
until it reaches the root of FT .

Example 3.2: After Procedure evalQual concludes in frag-
ments F1 and F2, the following are some of the vectors that
are computed for nodes of the two fragments.

Vectors computed in fragment F1

QVbroker = <0, 0, 0, y3, 0, 0, 0, 0, y8>
QVF2

= < y1,y2, y3, y4, y5, y6, y7, y8, y9 >

Vectors computed in fragment F2

QVmarket = <0, 0, 0, 0, 0, 0, 0, 1, 0>
QVname = <0, 0, 0, 0, 1, 0, 1, 0, 0>

Vectors QVbroker and QVmarket are computed for the
roots of the two fragments, respectively. Vector QVF2

cor-
responds to virtual node F2 of fragment F1 where a distinct
variable is introduced for each unknown vector value. Vec-
tor QVname is computed at the name node of fragment F2.
Note that q8 is true in QVmarket, i.e., the market node has
a name child node with value “nasdaq”. The computation
of q8 relies, in turn, on the precomputed (by the bottom-up
evaluation) value of entry q7 from QVname.

As described earlier, vectors QVbroker and QVmarket are
sent to site SQ and are used as input to Procedure evalFT.
The procedure unifies the variables in the received vectors by
matching virtual nodes to root fragment nodes. That is, it
determines that the vector which introduced the yi variables
in fragment F1 (resp. vector QVF2

for virtual node F2) is
essentially vector QVmarket corresponding to the root node
market of fragment F2. By matching the two vectors, the
procedure unifies variable y8 to true (entry q8 of QVmarket).
This, in turn, implies that entry q9 in QVbroker is also true
and therefore the second qualifier of the initial query is true
for the corresponding broker node. 2

3.2 Selection Path Evaluation

Stage 2 of Algorithm PaX3 is initiated again at site SQ by
having site SQ notifying each site Si holding a fragment Fj

about the result of Procedure evalFT (Fig 4(a), line 6), i.e.,
the truth values of vector triplets (QVFk

, QCVFk
, QDVFk

)
for each sub-fragment Fk of Fj (Fig 4(a), lines 6-8). The
received vector triplets will be used by site Si to determine
the values of qualifiers for all the nodes in Fj . As a next
step, site SQ initiates the partial evaluation of the query
selection path by making a remote procedure call (Fig 4(a),
lines 9-10) to all the sites holding at least one tree fragment.

We now examine in more detail the partial evaluation of
a selection path. Consider a query Q over T and, in par-
ticular, consider the selection path vector SVect(Q) of Q.
An efficient evaluation of SVect(Q) over a tree T requires a

single top-down (depth-first) traversal of T (Fig 4(b), Pro-
cedure topDown). For each node v encountered during the
traversal and for each sub-query qi in SVect(Q), we decide
whether or not v can be reached from the root of the en-
tire tree by following qi. We store the results for all sub-
queries of SVect(Q) in a Boolean vector SVv associated with
node v (Procedure topDown, lines 2-6). This computation of-
ten requires to consult the (already computed) values of the
SVect(Q) sub-queries at the ancestors of v. To this end, we
use a stack to store the values of SVu, for every node u that is
an ancestor of v. At the same time, we make sure that each
time the vector at the top of the stack summarizes the infor-
mation for all vectors in the stack. More specifically, when v
is being processed, SVp is the top of the stack, where p is the
parent of v. With this we compute SVv(qi) as follows. If qi is
a basic term A, SVv(qi) is set true if the label of v is A (line 4
of Procedure topDown and procedure term of Fig 4(b)). If qi

is qj/t for some query qj and a basic term t, then SVv(qi)
is true if both SVp(qj) and term (v, t) are true. Here func-
tion evalFM (not shown) is used to compute the Boolean
formula of SVp(qj)∧ term(v, t). If qi is qj//, then SVv(qi) is
true if either SVp(qi) or SVv(qj) is true (note that SVv(qj)
is already computed since it precedes qi in SVect(Q). We
do this without imposing any additional overhead, in terms
of space, to our vectors which are still linear in the size of
the query Q. At the same time, we manage to save compu-
tation time since we do not have to go through the whole
stack for each node under consideration. Also note that un-
like the evaluation of qualifiers which require three vectors
per node, here we only maintain a single vector per node,
an improvement of our algorithm compared to ParBoX [5].
At end of the computation at node v, we consult the last

entry in SVv, denoted by SVv(|SVect(Q)|). If the value of
this entry is true then node v is part of the answer for query
Q and is put in the set ans, otherwise it is not.

There are two more things to consider during the evalua-
tion of selection paths. First, we need to consider qualifiers.
Recall that qualifiers and selection paths are evaluated inde-
pendently by our algorithm. Also, note that the truth values
of all qualifiers, in all the nodes, are known after the end of
Stage 1. We maintain the relationship between the selection
SVect(Q) and qualifier part QVect(Q) of query Q through
Procedure assocQual (not shown). The procedure returns for
each entry of SVect(Q) the qualifier entry in QVect(Q) for
which the truth value we need to check. To determine the
truth value the qualifier associated to qi at a node v and
entry qi of SVect(Q) (Procedure topDown, line 7), we only
need to instantiate the variables in QVv with the correspond-
ing truth values in QVFk

for sub-fragments Fk, which were
received from site SQ at the beginning of the second stage.

Example 3.3: For simplicity, ignore for a moment the frag-
mentation of the tree in Fig. 1 and assume that we evaluate
SVect(Q) from Example 2.1 over the three clients of the tree.
Then, the following are the SVect(Q) vectors computed for
some of the nodes:

Vectors leftmost client middle client rightmost client
SVclient < 1, 0, 0 > < 1, 0, 0 > < 0, 0, 0 >
SVbroker < 0, 1, 0 > < 0, 1, 0 > < 0, 0, 0 >
SVname < 0, 0, 1 > < 0, 0, 1 > < 0, 0, 0 >

For the two leftmost clients all vectors are identical since
for both clients the qualifiers on client and country evalu-
ate to true (from Stage 1). As a result, the name nodes of
broker are answers to the query, verified by the fact that

SVname(|SVect(Q)|) is true. For the rightmost client, al-
though there exists a client/broker/name path, the vector
entries are all false since all qualifiers evaluate to false. 2

The second thing we need to consider is fragmentation.
At the beginning of the top-down traversal, given the root
node r of a fragment Fj , we do not know the SVect(Q)
vector which summarizes the ancestors of r (located in some
other fragment). Similar to the evaluation of qualifiers, we
address this issue by introducing Boolean variables, one for
each value of the unknown SVect(Q) vector. We initialize
the stack used in the traversal to include the vector with
the variables (Procedure topDown, line 1). An immediate
effect from the introduction of variables is that for some
nodes, say node v, the last entry in vector SVv might be
a Boolean formula. Since we are not sure about whether
or not node v is an answer to Q we add v to the set of
candidate answers of Q (Procedure topDown, lines 10-11).
The third stage of algorithm PaX3 will determine which of
the candidate answers is an actual answer to Q.

Similar to Stage 1, Stage 2 concludes by having each site
Si returning to site SQ a set of SVect(Q) vectors, namely,
returnSet, one vector for each sub-fragment (virtual node) Fk

of a fragment Fj of site Si. Note that returnSet consists of
at most k Boolean vectors, where k is the number of virtual
nodes in the fragment. Neither ans nor cans is sent to SQ. At
site SQ Procedure evalFT unifies the variables in the received
vectors, through a single top-down traversal of FT .

Example 3.4: After Procedure topDown concludes in frag-
ment F1, the following SVect(Q) vectors are computed for
the nodes in F1.

SVinit =< z1, z2, z3 >
SVbroker =< 0, z1, 0 >
SVname =< 0, 0, z1 >

Vector SVinit is inserted into the stack in Procedure topDown

(line 1). This is because we are not sure during the parallel
processing of fragments what path precedes node broker. In
this particular case, we are interested in whether the par-
ent node of broker, which is stored in fragment F0, is client
(variable z1). Even if we know that the parent node of bro-
ker must be client, we are not certain whether there are
any qualifiers in the parent node or whether any such qual-
ifiers evaluate to true or false. One of the advantages of
partial evaluation is that query processing proceeds, even
in the presence of uncertainty, and information about quali-
fiers and selection paths is kept local to each fragment rather
than being sent to the coordinator site SQ. This results in,
as we will prove in Section 3.4, minimum network traffic
while computation costs remain optimal.

The uncertainty of what precedes node broker is prop-
agated in both SVect(Q) vectors SVbroker and SVname
through Boolean variable z1. Note that node name is a can-
didate answer due to the last entry in SVname. After Pro-
cedure topDown concludes in all fragments, Procedure evalFT

uses vector SVclient =< 1, 0, 0 > from fragment F0 to unify
vector SVinit =< z1, z2, z3 > from fragment F1. Variable z1

is unified to true and thus node name is an answer to Q. 2

3.3 Retrieving query answers

The last stage of Algorithm PaX3 is initiated at site SQ by
having site SQ notifying each site Sl holding a fragment Fk

about the result of Procedure evalFT (Fig 4(a), line 15), i.e.,
the truth values of vector SVFk

. Note that although vector

SVFk
was sent to SQ from the site Si holding the parent frag-

ment Fj of Fk, the vector is sent to Sl in which Fk is stored,
instead of Si. The received vectors are used by each site to
determine which candidate answers in cans are real answers
of Q (Fig. 4(b), Procedure collectAns). Referring to our last
example, after site SQ determines that variable z1 unifies to
true, it sends this information to fragment F1. Fragment F1

determines, in turn, that node name is an answer to query
Q and thus it sends this node back to site SQ.

3.4 Analysis

To compare with [5], for the analysis of the PaX3 algo-
rithm, we consider the communication cost of the algorithm
as well as its total and parallel computation costs. The total
computation cost is the sum of the computation performed
at all the sites that participate in the evaluation. The par-
allel computation cost is the time needed for evaluating the
query at different sites in parallel. Since a large part of the
evaluation is performed in parallel, the parallel computation
cost measures the perceived execution time of the algorithm
and therefore it more accurately describes its performance.

Communication cost. As shown in [5], the communica-
tion cost for the first stage is O(|Q| |FT |), that is, com-
munication is independent of the initial tree T and it only
depends on the size of the query Q. It is easy to see
that the second stage of PaX3 also has communication cost
O(|Q| |FT |). Finally, the last stage has communication cost
O((|Q| |FT |) + |ans|). Therefore, the total communication
cost of PaX3 is O((|Q| |FT |) + |ans|).

Note that when we execute a query Q in a distributed
environment with at most |FT | sites, it is obvious that we
are willing to pay at least the cost of transmitting our query
over the various sites (cost O(|Q| |FT |)). In addition, it
is obvious that one cannot avoid the cost of retrieving the
actual answers to our query (cost O(|ans|)). In this sense, a
communication cost O((|Q| |FT |) + |ans|) is optimal.

Total computation cost. At each stage, each fragment
Fj is traversed only once. During the traversal, at each
node v of Fj at most O(|Q|) operations are performed (one
operation per vector entry). Therefore, at each stage, the
total computation for each fragment is O(|Q| |Fj |). At the
end, in each stage and overall, the total computation for all
fragments is O(|Q| |T |). Note that this coincides with the
cost of executing a query Q over a tree T in a central site
[11]. Therefore, the distribution of computation does not
incur much extra costs in terms of total computation.

Parallel computation cost. As more than one fragments
can be assigned to a site, we use |FSi

| to denote the cumula-
tive size of the fragments in site Si. As computation is per-
formed in parallel at all sites, the parallel computation cost
at each stage is determined by the site holding the largest
cumulative fragment. That is, the parallel computation cost
for the first two stages and overall is O(|Q| max

Si

|FSi
|).

Correctness. One can verify, by induction on the structure
of X queries Q, that algorithm PaX3 computes the correct
answer Q(T) on any xml tree T no matter how T is frag-
mented and distributed.

Summary. With the exception of the necessary O(|ans|)
cost incurred by transmitting query answers and the nec-
essary at most two visits per site, the costs of PaX3 coin-
cide with those of ParBoX. In short, we have proposed an
algorithm to partially evaluate a larger, and more useful,

Procedure PaX2

Input: An XPath query Q and a fragmented tree T
Output: The set of nodes ans of Q over T

/* Stage 1 */
1. for each fragment Fj stored in Si do

2. exec(Si, Fj , evalXPath,SVect(Q));
3. for each fragment Fj stored in Si do

4. annotate FT with (QVFj
, QCVFj

, QDVFj
);

5. for each sub-fragment Fk of Fj do

6. annotate FT with SVFk
;

7. evalFT(FT);
/* State 2 */

8. for each fragment Fj stored in Si do

9. for each sub-fragment Fk of Fj do

10. send (QVFk
, QCVFk

, QDVFk
) to Si;

11. send SVFk
to site Sl storing Fk;

12. for each site Si in FT do exec(Si, collectAns);
13. receive ans;

Figure 5: The PaX2 Algorithm

fragment of queries than those considered by ParBoX yet we
provided comparable performance guarantees. Moreover, we
guarantee minimum tree data transmission since the only
tree data transmitted by PaX3 are the actual query answers.

4. Improved Algorithm
We next present Algorithm PaX2, which needs two stages

and at most two visits of each site, one less than PaX3.
The main idea behind algorithm PaX2 is to combine the

first two stages of algorithm PaX3, i.e., evaluation of qual-
ifiers and that of selection paths, into a single stage. As
shown in Fig. 5, the algorithm starts with letting querying
site SQ make a remote procedure call to all the sites holding
fragments (lines 1-2). At each such site, Procedure evalXPath

(not shown due to space constraints) combines the partial
evaluation of selection paths with that of qualifiers, over a
fragment Fj . The procedure performs a top-down (depth-
first) traversal of fragment Fj . At each node v of Fj , two
types of computation are performed: a pre-order computa-
tion and a post-order computation. The pre-order compu-
tation at v essentially performs the computation of Proce-
dure topDown in Fig. 4(b). One important difference is that
unlike Procedure topDown which assumes that qualifiers have
already been computed (Fig. 4(b), line 7), here we need to
introduce variables for the values of the yet undetermined
qualifiers.

Example 4.1: Consider the XPath query of Example 2.1.
The pre-order computation of the query over the leftmost
client node of fragment F0 (shown in Fig. 3(a)) results in
the SVect(Q) vector SVclient =< qz1, 0, 0 >. Here variable
qz1 indicates that although the node label is indeed client,
the qualifier for the node is yet to be determined. Contrast
this with Example 3.3 that, at the same node, Algorithm
PaX3 results in vector < 1, 0, 0 > since the value of qualifiers
has already been computed in Stage 1 by PaX3.

For a more complex example, consider the pre-order com-
putation over fragment F1. The computation results in
SVbroker =< 0, z1 ∧ qz2, 0 >. Here variable z1 is due to the
initialization of the vector stack (see Example 3.4), while
variable qz2 is due to the qualifier for the node which is still
undetermined. In terms of node name, the computation re-
sults in SVname =< 0, 0, z1 ∧ qz2 > 2

The post-order computation at a node v starts once every

node in the sub-tree rooted at v is visited (always within a
fragment). At that point, the qualifiers have been computed
for all the nodes in the sub-tree, through a procedure that
is similar in spirit with Stage 1 of PaX3. Given the qualifier
values at node v, we can unify some of the variables that
have been introduced during the pre-order computation.

Example 4.2: Continuing with our last example, after
we traverse the sub-tree rooted at the leftmost node client
of fragment F0, the qualifiers for the sub-tree rooted at
client have been computed and are shown in Example 3.1.
Given these qualifiers, and since the client node is associated
only with the first qualifier (entry q4 of QVclient), we can
unify variable qz1 to true. This yields vector SVclient =<
1, 0, 0 >, the same vector that Algorithm PaX3 computes but
only after two passes.

For fragment F1, the qualifiers for the sub-tree rooted at
broker are shown in Example 3.2. Since node broker is asso-
ciated only with the second qualifier (entry q9 of QVbroker),
we can unify variable qz2 to y8. Then, SVbroker is now
< 0, z1 ∧ y8, 0 > while SVname is now < 0, 0, z1 ∧ y8 >. The
values for both variables z1 and y8 will be determined in the
next stage of PaX2. 2

Stage 1 concludes by having each site Si returning to site
SQ a set of SVect(Q) and QVect(Q) vectors, one SVect(Q)
vector for each virtual node Fk of a fragment Fj of site
Si, and one QVect(Q) vector for each fragment Fj of site
Si. Then at SQ Procedure evalFT unifies the variables in
the received vectors. Stage 2 of PaX2 is similar to Stage
3 of PaX3. The unified vectors are sent from SQ to the
appropriate sites, and the sites sent to SQ the query answers.

Example 4.3: Continuing with our last example, site S1

holding fragment F1 receives the following vectors from SQ:

SVinit =< 1, 0, 0 >
QVF2

=< 0, 0, 0, 0, 0, 0, 0, 1, 0 >

With these vectors, site S1 unifies variable z1 to true (entry
q1 in SVinit) and variable y8 to true (entry q8 in QVF2

.
Then the vector for node broker becomes < 0, 1, 0 > and
the vector for node name becomes < 0, 0, 1 >. Therefore,
node name is an answer node for query Q. 2

Analysis. While the worst-case complexity of algorithms
PaX3 is the same as its PaX2 counterpart, algorithm PaX2 re-
quires one less visit. As will be seen in Section 6, our exper-
imental results demonstrate that PaX2 outperforms PaX3.

5. Optimizing Query Evaluation
We now present an optimization that identifies fragments

which do not contain any nodes that are in the query answer.
The optimization is used by both PaX3 and PaX2 to rule out
the identified fragments from any further processing.

To do this, we require that each edge (Fj , Fk) of the frag-
ment tree FT of T is annotated with a simple XPath ex-
pression describing the path in T connecting the root of
fragment Fj with the root of fragment Fk. As an example,
Fig. 6 shows the XPath-annotated fragment tree from our
motivating example. The (F0, F4) edge is annotated with
client/broker/market since the root of fragment F4 is reach-
able from the clientele root node through this expression.
Note that the additional XPath-annotation requirement im-
poses negligible space overhead for the fragment tree FT .

To see how XPath-annotation can help during query eval-
uation, consider a query Q and a top-down evaluation of

�
0�

1�
2

�
3

�
4

client/broker

market

client/broker/market

client

Figure 6: XPath-annotated fragment tree

the selection path of Q. Both algorithms PaX3 (in its Stage
2) and PaX2 (in its Stage 1) perform an evaluation of this
type. We propose to first use a top-down evaluation of the
selection path of Q over the XPath-annotated fragment tree.
Intuitively, performing such an evaluation results in a set of
nodes which correspond to fragments. Each returned frag-
ment potentially contains actual tree nodes that are in the
answer of Q. Our objective is to evaluate PaX3 or PaX2 only

on these fragments and skip fragments that we know contain
no nodes relevant to the answering of Q.

Example 5.1: Consider a simple query client/name over
tree T which returns the names of all clients. Evaluating
this query over the fragment tree of Fig. 6 finds fragments
F0 and F4. Fragment F0 is considered since the procedure
cannot determine with certainty whether the fragment con-
tains or not any paths satisfying the query. Fragment F4 is
considered since the procedure knows that a client subtree
is included in F4, although it is not certain whether a name
node is also included. On the other hand, the procedure de-
termines with certainty that fragments F1, F2 and F3 should
not be considered. Fragment F1 is ruled out since the path
client/broker between fragments F0 and F1 does not satisfy
the query. Similarly, the path client/broker/market from
F0 to F2 and F3 does not satisfy the query and therefore
fragments F2 and F3 are both ruled out. 2

XPath-annotations are used before the beginning of Stage
2 in PaX3 and before Stage 1 in PaX2 to identify fragments
that are relevant to a query. Apart from ruling out irrelevant
fragments, XPath-annotations can also be used to reduce
the number of passes of our algorithms. In more detail, if
the input query Q has no qualifiers then we can use XPath-
annotations to skip the last step of both algorithm PaX3 and
PaX2. Intuitively, through the XPath-annotations we can
guarantee that any candidate answers identified by Stage 2
and 1, respectively, of the algorithms are real answers to
the query and can be sent back to site SQ. Recall from
Section 3.2 that without XPath-annotations, for each frag-
ment, we need to initialize the stack in Procedure topDown

with variables, since we have no information about the an-
cestor nodes of each fragment root. XPath-annotations en-
capsulate precisely the information about the ancestors of a
fragment root and they can be used to initialize the stack
in Procedure topDown with concrete Boolean values, instead
of variables. Thus every answer to query Q can be identi-
fied with certainty. As will be shown in Section 6, XPath-
annotations are effective in reducing query evaluation time.

6. Experimental Study
We next present our experimental results. For our exper-

iments we used ten Linux machines (fragment sites), dis-
tributed over a local LAN. Each machine has a 3GHz CPU
and 1GB of memory. Our datasets consist of trees whose
root node is called “sites” and each child node of the root

Q1 /sites/site/people/person
Q2 /sites/site/open auctions//annotation
Q3 /sites/site/people/person[profile/age > 20 ∧

/address/country=“US”]/creditcard
Q4 /sites//people/person[/profile/age >20 ∧

/address/country=“US”]/creditcard

Figure 7: Sample queries

Fragment Tree 1 (FT1)

...

Fragment Tree 2 (FT2)�
0�

1

�
2

�� site

site
site

F0

F3

F2

F1

F5

F4

site

site
site

regions

namerica

F6

open_auctions

F7 F8 F9

regions closed_auctions

open_auctions

Figure 8: (Annotated) fragment trees used

node is a whole XMark [25] “site”. We generated multiple
XMark “sites” and in each experiment we assigned (frag-
ments of) XMark “sites” to different machines. In terms of
queries, Fig. 7 shows a sample of the executed queries over
our fragmented tree. The choice of presented queries will
become clear shortly. In all experiments, reported times are
averaged over multiple runs of each experiment. For each
reported time, computation time dominates over communi-
cation time, that is, the time it takes to send query answers
to the query site is negligible compared to the time to com-
pute these answer by running PaX3 or PaX2. For consistency,
algorithm PaX3 is always plotted using solid lines, while al-
gorithm PaX2 is plotted with dotted lines. During the eval-
uation of an algorithm, if no XPath-annotations (NA) are
used then the line is plotted using a box symbol, while if
XPath-annotations (XA) are used the line is plotted using
the black diamond symbol.

Experiment 1: The objective of this series of experiments
is twofold. First, we want to illustrate the benefits of frag-
mentation. Second, we want to verify the effectiveness and
scalability (in number of fragments) of PaX3 and PaX2 both
with and without XPath-annotations in the fragment tree.
We consider a simple fragment tree like FT1, shown to the
left of Fig. 8. Our conclusions carry over to more complex
fragment trees (with the same number of fragments) since
in both PaX3 and PaX2, irrespectively of the structure of the
fragment tree and the presence of XPath annotations, a site
holding a fragment at any level of the tree communicates
directly with site SQ. Each fragment in FT1 corresponds
to an XMark “site” and is assigned to a different machine.
Throughout this experiment, the cumulative size of all frag-
ments in FT1 is constant and equal to approx. 100MB. In
more detail, in the first iteration of the experiment we con-
sider a single fragment F0 of size 100MB, then iteration two
considers two fragments F0 and F1 of 50MB each and, in
general, in iteration j we consider j fragments each of size
(100/j)MB. For this experiment, we focus on two queries,
one without qualifiers (Q1) and one with qualifiers (Q4).

In Fig. 9(a), we show the evaluation times of query Q1
at each iteration of the experiment for algorithm PaX3. The
top line in the graph shows the evaluation times of Q1 in
the absence of XPath-annotations, while the bottom line
uses XPath-annotations. In general, note that regardless of
the presence of XPath-annotations, fragmentation of trees
is beneficial since as fragmentation increases query evalua-
tion time decreases, due to parallelism. The figure also val-

1 2 3 4 5 6 7 8 9 10

Number of machines/fragments

0

0.5

1

1.5

2

2.5

3

T
im
e
 (
s
e
c
s
)

PaX3-NA-Q1
PaX3-XA-Q1

(a) Query Q1

1 2 3 4 5 6 7 8 9 10

Number of machines/fragments

0

2

4

6

8

10

12

T
im
e
 (
s
e
c
s
)

PaX3-NA-Q4
PaX2-NA-Q4

(b) Query Q4

Figure 9: Evaluation vs. Fragmentation

idates the theoretical analysis of the previous section since
the evaluation (parallel computation) cost of PaX3 depends
only on the maximum fragment size. Since the difference in
maximum fragment sizes between iterations j and (j + 1)
is 100

j×(j+1)
MB, the improvement in evaluation times between

iterations starts to diminish after approx. iteration 6.
Let us now focus on the number of passes. Since query

Q1 has no qualifiers, algorithm PaX3 can skip the first stage
(pass) and only requires two passes of each fragment. Note
that during the first iteration, when only one fragment exists
(i.e., no actual fragmentation), algorithm PaX3 needs only
to execute Stage 2 (a single pass) and can also skip the last
stage, since any candidate answers from the second phase
can be returned to the user. When a second fragment is
introduced in the next iteration of our experiment, PaX3

needs two passes per fragment. This additional pass causes
a minor increase in evaluation time, as shown in the figure.
The effect of parallelism outweighs however the cost of the
additional pass from the third iteration on.

Note that by using the XPath-annotations, the evalua-
tion time of PaX3 is almost halved. The XPath-annotations
are used in PaX3 to determine already at the second stage
whether a candidate answer is a real answer. Therefore, we
save the cost of Stage 3, which is now skipped not just in
the first iteration but in all the subsequent ones.

We now focus on algorithm PaX2. For query Q1, PaX2

has approximately the same evaluation time as algorithm
PaX3, and thus it is not shown in the figure. To see why
this is so, note that due to the lack of qualifiers in Q1, both
algorithms require two passes over each fragment. The sit-
uation is different however, for a query like Q4, as shown in
Fig. 9(b). Due to qualifiers, algorithm PaX3 requires three
passes per fragment, while PaX2 requires only two. The fig-
ure shows the savings coming from combining the first two
passes of PaX3 into one pass in PaX2. XPath-annotations in
the fragment tree do not alter the evaluation times of Q4 in
either of the two algorithms. This is due to the ‘//’ in the
selection part of query Q4 which, given the fragmentation
in FT1, requires us to consider all the fragments.

Experiment 2: The objective of this series of experiments
is to study the scalability of our algorithms in terms of query
evaluation times, as we increase the size of data. Here we
consider a more natural fragment tree for our data, shown
to the right in Fig. 8. The tree contains four XMark “sites”
that are fragmented in different ways. Fragments F0 (which
includes the root of the whole tree) and F3 contain two
whole XMark “sites”, while the other two XMark “sites”
are in fragments F1 and F2 and are further fragmented as
shown in the figure. Unlike the previous experiment, not
all fragments have the same size. The table below shows
the approximate sizes of the various fragments in the first
experiment iteration. Each fragment is assigned to a dif-
ferent machine and the cumulative size of the data is 100MB.

Fragments F0, F1, F2, F3 F4, F5, F6, F8 F7 F9

Size 5MB 12MB 28MB 8MB

At each iteration, we increase the size of each fragment,
while maintaining constant the relative ratio of sizes between
different fragments. The increase is such that the cumulative
size of the data is augmented by 20MB, per iteration. At the
last iteration, the tree is approximately 280MB. We consider
four queries in this experiment, such that (a) two do not have
qualifiers (Q1 and Q2), while the other two do (Q3 and Q4);
(b) two are without a ‘//’ in the selection part of the query
(Q1 and Q3) while the other two do have a ‘//’ (Q2 and Q4).
Therefore, the queries cover all four possible combinations
and are representative of a large class of common queries.

Figure 10(a) clearly shows that algorithm PaX3 scales lin-
early for query Q1, as the data size increases (with or with-
out XPath annotations). The running times for PaX2 are
almost identical with the two lines from PaX3, and there-
fore are not shown in the figure. As explained earlier, this
is because both algorithms execute two passes over each
fragment, due to lack of qualifiers. The figure also illus-
trates that evaluation times are more than halved from
using XPath-annotations during query evaluation. Specif-
ically, due to the annotations in FT2, the evaluation only
considers the data in fragments F0, F1, F2 and F3. Fig-
ure 10(b) shows that the situation is similar, even in the
presence of a ‘//’. Here in spite of the ‘//’ in the query, due
to the fragmentation in FT2, only fragments F0, F1, F2, F3,
F6 and F8 are considered during the evaluation.

Let us look now at Fig. 10(c). Again, PaX3 scales linearly
and its evaluation times are almost identical regardless of
whether or not XPath-annotations are in place. The reason
for this is that here PaX3 must execute Phase 1 over all

fragments, since Q3 has qualifiers. Our experiments show
that the cost of evaluating qualifiers (Phase 1) is dominant in
PaX3 and therefore any gains made from XPath-annotations
are minor, for this query, compared to the total execution
time. Observe that this is not the case for queries like Q1
and Q2 where no qualifiers are present. There, the gains are
significant, compared to the total execution time.

The second line in Fig. 10(c) shows that PaX2 scales also
linearly and is faster than PaX3, illustrating once more the
benefits of combining the two passes into one. Note that
by using XPath-annotations (third line in the figure), the
evaluation time of PaX2 is improved even further. In contrast
to PaX3, which computes qualifiers in all the fragments, PaX2

is more sophisticated in that it uses XPath-annotations to
decide on which fragments it executes the combined pass.

The last query considered, query Q4, has a ‘//’ in its
selection path and given the fragmentation of FT2, we must
evaluate the query (and its qualifiers) over all the fragments
of FT2. Here, XPath-annotations do not help in ruling out
any fragments. Therefore, as the figure shows, the only gains
in evaluation time are from combining the two passes of PaX3

into one pass of PaX2.

Experiment 3: This series of experiments are to show
that our optimization reduces in practice not only the par-
allel computation cost of our algorithms, but equally im-
portantly, it also reduces the total computation cost. This
experiment builds on the results of Experiment 2 and uses
exactly the same setting. To compute the total computa-
tion cost of our algorithms, we sum the evaluation times for
each machine holding a fragment. Figure 11 shows the total

100 120 140 160 180 200 220 240 260 280

Cumulative fragment data size (MB)

0

0.5

1

1.5

2

2.5

T
im
e
 (
s
e
c
s
)

PaX3-NA-Q1
PaX3-XA-Q1

(a) Query Q1

100 120 140 160 180 200 220 240 260 280

Cumulative fragment data size (MB)

0

0.5

1

1.5

2

2.5

3

T
im
e
 (
s
e
c
s
)

PaX3-NA-Q2
PaX3-XA-Q2

(b) Query Q2

100 120 140 160 180 200 220 240 260 280

Cumulative fragment data size (MB)

0

1

2

3

4

5

6

7

8

T
im
e
 (
s
e
c
s
)

PaX3-NA-Q3
PaX2-NA-Q3
PaX2-XA-Q3

(c) Query Q3

100 120 140 160 180 200 220 240 260 280

Cumulative fragment data size (MB)

0

2

4

6

8

T
im
e
 (
s
e
c
s
)

PaX3-NA-Q4
PaX2-NA-Q4

(d) Query Q4

Figure 10: Evaluation time vs. Data scalability, for different queries

100 120 140 160 180 200 220 240 260 280

Cumulative fragment data size (MB)

0

2

4

6

8

10

12

14

16

18

20

T
im
e
 (
s
e
c
s
)

PaX3-NA-Q1
PaX3-XA-Q1

(a) Query Q1

100 120 140 160 180 200 220 240 260 280

Cumulative fragment data size (MB)

0

2

4

6

8

10

12

14

16

18

20

22

T
im
e
 (
s
e
c
s
)

PaX3-NA-Q2
PaX3-XA-Q2

(b) Query Q2

100 120 140 160 180 200 220 240 260 280

Cumulative fragment data size (MB)

0

10

20

30

40

50

60

70

80

T
im
e
 (
s
e
c
s
)

PaX3-NA-Q3
PaX2-NA-Q3
PaX2-XA-Q3

(c) Query Q3

100 120 140 160 180 200 220 240 260 280

Cumulative fragment data size (MB)

0

10

20

30

40

50

60

70

80

T
im
e
 (
s
e
c
s
)

PaX3-NA-Q4
PaX2-NA-Q4

(d) Query Q4

Figure 11: Total computation time for different queries

computation cost for each query and algorithm of Fig. 10.
Consider Fig. 10(a) and 11(a). At first glance, the two fig-

ures seem similar, yet there is an important difference. By
considering XPath-annotations in the fragment tree while
evaluating query Q1, the parallel computation cost was al-
most halved. Figure 11(a) shows that, in addition, the to-
tal computation cost was reduced by two-thirds. This is
because the machines holding fragments that were termed
irrelevant to the query did not perform any computation.
Therefore, by using XPath-annotations not only the query
evaluated faster, but also it required less processing power to
do so. Similarly, for Q2 XPath-annotations saved two-thirds,
in terms of parallel computation, and almost three-quarters,
in terms of total computation.

Figures 11(c) and 11(d) illustrate that, in the absence of
XPath-annotations, in both PaX3 and PaX2 the savings in
parallel computation are proportional to the corresponding
savings in total computation cost. This is because without
XPath annotations, both algorithms are evaluated over each
fragment of the tree. However, in the presence of XPath-
annotations (last line in Fig. 10(c) and 11(c)), the savings
in total computation are again even more significant from
those in parallel computation.

Concluding remarks: We have shown that distributing
tree fragments over various sites proves an effective strat-
egy with significant reductions in evaluation times. Obvi-
ously, always using the (optimized) algorithm PaX2 along
with XPath-annotations in the fragment tree is sufficient to
consistently give the best results in terms of query evalua-
tion time. We should temper the claim about the effective-
ness of XPath-annotations with the following observation.
In the presence of a ‘//’ in the selection path of a query,
XPath-annotations might not help much, as shown earlier
for queries like Q4. However, it is not the case that the
presence of ‘//’ makes XPath-annotations useless. As shown
above for query Q2, if ‘//’ appears after a prefix of the se-
lection path of the query that matches a path in the XPath-
annotations, then a considerable number of fragments might
be ruled out, thus improving query evaluation times.

7. Related Work
Closest to this work is the ParBoX algorithm proposed

in [5], which possesses performance guarantees on the to-
tal network traffic, computation and communication steps
(once). While this work is an extension of [5], the new tech-
nical development presented here is substantial and non-
trivial. As remarked in Section 1, ParBoX is restricted to
Boolean XPath queries, which return a single truth value of
constant size, and thus the partial answers in their setting
are easy to characterize. Indeed, ParBoX is a special case of
Stage 1 of the PaX3 algorithm (Section 3.1). In contrast, this
work deals with data-selecting XPath queries, which return
a set of xml elements with variable sizes depending on the
selectivity of the queries. A direct application of the par-
tial evaluation technique or a direct extension of the ParBoX

algorithm will lead to shipping a superset of the answer of
a query from each participating site, and thus to excessive
network traffic that in the worst case is as large as the en-
tire tree rather than the answer of the query. The focus of
this work is to figure out what appropriate partial answers
should be used, identify precisely elements in the answer of
the query, and ship only those in the final answer to the
coordinator site. Despite that this works tackles a far more
challenging problem, it achieves the same performance guar-
antee as its Boolean-query counterpart.

Close to this work are also [27, 2], both with nice per-
formance bounds on total network traffic, computation and
communication steps. While [27] studies distributed (data-
selecting) query evaluation on semistructured data, [2] pro-
vides algorithms for evaluating (aggregate and Boolean)
queries on hierarchical distributed catalogs [26]. This work
deals with a different problem, namely, (data-selecting)
XPath evaluation on xml data. It also differs from [27, 2]
in technical approaches. The algorithms of [27, 2] employ
query decomposition and focus on query plan generation,
which rewrite an input query into sub-queries appropriate
for individual sites (using, e.g., the accessibility information
of the distributed data); in contrast, this work avoids this
overhead by sending the whole query to each relevant site;
in addition, the algorithms in this paper characterize partial

answers as Boolean expressions rather than concrete data as
found in [27, 2]. Moreover, an algorithm was given in [19]
for evaluating XPath queries on tree fragments distributed
in disk pages, employing a nice notion of partial path in-
stances. It differs from this work in the following: (a) it
is based on query decomposition and scheduling of the exe-
cution of sub-queries, instead of evaluating the same query
at all sites and taking expressions as partial answers; (b) it
considers a simpler set of XPath queries without qualifiers.

There has been a large body of work on distributed query
processing (see, e.g., [21] for a nice survey). The key issue is
minimizing communication cost [21]. Based on partial evalu-
ation, this work minimizes both data movement and commu-
nication steps by shipping residual functions (Boolean for-
mula) rather than data. Existing techniques for distributed
query processing can benefit our algorithms, notably hybrid
shipping, two-phase optimization [21], replication [1], par-
allel query evaluation [8, 14] and mutant query plans [22].
Partial evaluation can also be combined with recent tech-
niques developed for P2P systems (e.g., [7, 13, 17, 9]) and
be applied to P2P query processing.

A number of algorithms have been developed for evaluat-
ing XPath queries in centralized systems (e.g., [11, 20]). As
remarked in Section 1, these algorithms may not work well
in a distributed setting, and in addition, the partial evalua-
tion technique may improve the performance of processing
xml queries on large xml documents stored in secondary
storage in a centralized system. In particular, since partial
evaluation of xml queries conducts xml tree traversal, the
most time consuming part, in parallel, it suggests poten-
tial optimizations for xml query processing in native xml

stores by exploring parallelism. On the other hand, XPath
optimizations (e.g., [6, 23]) are complementary to this work.

Partial evaluation has been proven useful in a variety of
areas including compiler generation, code optimization and
dataflow evaluation (see [18]). Its relevance to query evalu-
ation has surfaced from time to time, most notably in the
Disco system [28] and in query rewriting with views and
deductive databases [10, 12].

8. Conclusions
We have developed algorithms and optimizations for eval-

uating generic XPath queries on arbitrarily fragmented and
distributed xml trees. We have shown both analytically
and experimentally that our techniques are scalable and ef-
ficient for handling complex XPath queries on large datasets.
We remark that it is far more challenging to partially eval-
uate data-selecting queries than Boolean queries, and our
techniques are among the first for distributed processing of
data-selecting XPath queries with performance guarantees.

The first topic for future work is naturally the application
of partial evaluation to processing xml updates and more
expressive xml queries in distributed systems. The second
topic, as remarked earlier, is to use the technique to evaluate
xml queries on large xml documents in native xml stores.
A third topic is to integrate partial evaluation with other
optimization techniques for distributed query processing.

Acknowledgment. Wenfei Fan is supported in part by EP-
SRC GR/S63205/01, GR/T27433/01, and BBSRC BB/D006473/
1. The work was done when Gao Cong was at the University of
Edinburgh.

9. References
[1] S. Abiteboul, A. Bonifati, G. Cobena, I. Manolescu, and

T. Milo. Dynamic XML documents with distribution and
replication. In SIGMOD, 2003.

[2] S. Amer-Yahia, D. Srivastava, and D. Suciu. Distributed
evaluation of network directory queries. TKDE, 16(4):474–
486, 2004.

[3] J.-M. Bremer and M. Gertz. On distributing XML reposito-
ries. In WebDB, 2003.

[4] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig joins:
optimal XML pattern matching. In SIGMOD, 2002.

[5] P. Buneman, G. Cong, W. Fan, and A. Kementsietsidis.
Using partial evaluation in distributed query evaluation. In
VLDB, 2006.

[6] E. Colen, H. Kaplan, and T. Milo. Labeling dynamic XML
tree. In PODS, 2002.

[7] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasun-
daram. Querying peer-to-peer networks using P-Trees. In
WebDB, 2004.

[8] D. J. DeWitt and J. Gray. Parallel database systems: The fu-
ture of high performance database systems. Commun. ACM,
35(6), 1992.

[9] P. Ganesan, M. Bawa, and H. Garcia-Molina. Online bal-
ancing of range-partitioned data with applications to Peer-
to-Peer systems. In VLDB, 2004.

[10] P. Godfrey and J. Gryz. A strategy for partial evaluation of
views. In Intelligent Information Systems, 2000.

[11] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for
processing XPath queries. In VLDB, 2002.

[12] A. Gupta, Y. Sagiv, J. D. Ullman, and J. Widom. Constraint
checking with partial information. In PODS, 1994.

[13] A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu,
and I. Tatarinov. The Piazza peer data management system.
TKDE, 16(7):787–798, 2004.

[14] H. Hsiao and D. J. DeWitt. Chained Declustering: A New
Availability Strategy for Multiprocessor Database Machines.
In ICDE, 1990.

[15] Z. G. Ives, A. Y. Halevy, and D. S. Weld. An XML
query engine for network-bound data. The VLDB Journal,
11(4):380–402, 2002.

[16] H. V. Jagadish, L. V. S. Lakshmanan, T. Milo, D. Srivastava,
and D. Vista. Querying network directories. In SIGMOD,
1999.

[17] H. V. Jagadish, B. C. Ooi, and Q. H. Vu. Baton: A balanced
tree structure for peer-to-peer networks. In SIGMOD, 2005.

[18] N. D. Jones. An introduction to partial evaluation. ACM
Computing Surveys, 28(3), 1996.

[19] C.-C. Kanne, M. Brantner, and G. Moerkotte. Cost-sensitive
reordering of navigational primitives. In SIGMOD, 2005.

[20] C. Koch. Efficient processing of expressive node-selecting
queries on XML data in secondary storage: A tree automata-
based approach. In VLDB, 2003.

[21] D. Kossman. The State of the Art in Distributed Query Pro-
cessing. ACM Computing Surveys, 32(4):422–469, 2000.

[22] V. Papadimos and D. Maier. Distributed queries without
distributed state. In WebDB, 2002.

[23] P. Ramanan. Efficient algorithms for minimizing tree pattern
queries. In SIGMOD, 2002.

[24] Saxon. http://saxon.sourceforge.net/.
[25] A. Schmidt, F. Waas, M. Kersten, M. Carey, I. Manolescu,

and R. Busse. XMark: A benchmark for XML data manage-
ment. In VLDB, 2002.

[26] M. Smith and T. A. Howes. LDAP : Programming Directory-
Enabled Apps. Sams, 1997.

[27] D. Suciu. Distributed query evaluation on semistructured
data. TODS, 27(1):1–62, 2002.

[28] A. Tomasic, L. Raschid, and P. Valduriez. Scaling heteroge-
neous databases and the design of Disco. In ICDCS, pages
449–457, 1996.

[29] Xerces and Xalan. http://xalan.apache.org.

