

Edinburgh Research Explorer

Expressiveness and complexity of xml publishing transducers

Citation for published version:
Fan, W, Geerts, F & Neven, F 2007, Expressiveness and complexity of xml publishing transducers. in
Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 11-13, 2007, Beijing, China. ACM, pp. 83-92. DOI: 10.1145/1265530.1265542

Digital Object Identifier (DOI):
10.1145/1265530.1265542

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 11-13, 2007, Beijing, China

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/1265530.1265542
https://www.research.ed.ac.uk/portal/en/publications/expressiveness-and-complexity-of-xml-publishing-transducers(246102ef-9ab7-4483-959d-05042d909822).html

Expressiveness and Complexity of XML Publishing
Transducers

Wenfei Fan

Univ. of Edinburgh &
Bell Labs

wenfei@inf.ed.ac.uk

Floris Geerts
Univ. of Edinburgh &
Hasselt University &

Transnational Univ. of Limburg

fgeerts@inf.ed.ac.uk

Frank Neven

Hasselt University &
Transnational Univ. of Limburg

frank.neven@uhasselt.be

Abstract
A number of languages have been developed for specifyingXML
publishing,i.e., transformations of relational data intoXML trees.
These languages generally describe the behaviors of a middleware
controller that builds an output tree iteratively, issuing queries to a
relational source and expanding the tree with the query results at
each step. To study the complexity and expressive power ofXML
publishing languages, this paper proposes a notion ofpublishing
transducers. Unlike automata for queryingXML data, a publish-
ing transducer generates a newXML tree rather than performing a
query on an existing tree. We study a variety of publishing trans-
ducers based on what relational queries a transducer can issue, what
temporary stores a transducer can use during tree generation, and
whether or not some tree nodes are allowed to be virtual,i.e., ex-
cluded from the output tree. We first show how existingXML
publishing languages can be characterized by such transducers.
We then study the membership, emptiness and equivalence prob-
lems for various classes of transducers and existing publishing lan-
guages. We establish lower and upper bounds, all matching, rang-
ing from PTIME to undecidable. Finally, we investigate the expres-
sive power of these transducers and existing languages. We show
that when treated as relational query languages, different classes
of transducers capture either complexity classes (e.g.,PSPACE) or
fragments of datalog (e.g.,linear datalog). For tree generation, we
establish connections between publishing transducers and logical
transductions.

Categories and Subject Descriptors: H.2.3 [Database Man-
agement]: Languages –Query Languages; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic —Compu-
tational Logic

General Terms: Languages, Theory, Design.

1. Introduction
To exchange data residing in relational databases, one typically

needs to export the data asXML documents. This is referred to as
XML publishingin the literature [2, 5, 11, 16, 26], and is essentially

course

��
��
��
��

��
��
��
��

cno prereq

db

course

title

course course

course

��
��
��
��

(a) XML view τ1

cno

prereq

db

course

cno

cno title

course course

cno

(b) XML view τ2

Figure 1: Example XML publishing

to define anXML view for relational data: given a relational schema
R, it is to define a mappingτ such that for any instanceI of R, τ(I)
is anXML tree.

A number of languages have been developed forXML publish-
ing, including commercial products such as annotatedXSD of Mi-
crosoftSQLServer 2005 [19],DAD of IBM DB2 XML Extender [15],
DBMS XMLGEN of Oracle 10gXML DB [23], and research proto-
typesXPERANTO [26], TreeQL [11, 2] andATG [5, 6]. These lan-
guages typically specify the behaviors of a middleware controller
with a limited query interface to relational sources. AnXML view
defined in such a language builds an output tree top-down starting
from the root: at each node it issues queries to a relational source,
generates the children of the node using the query results, and it-
eratively expands the subtrees of those children in the same way.
It may (implicitly) store intermediate query results in registers and
pass the information downward to control subtree generation [2, 5,
6, 15, 19, 23, 26]. It may also allowvirtual tree nodes [2, 5, 6] that
will be removed from the output tree to express,e.g.,XML entities.

Given a variety ofXML publishing languages, a user may natu-
rally ask which language should be used to define anXML view. Is
the view expressible in one language but not in another? How ex-
pensive is it to compute views defined in a language? Furthermore,
after the view is defined, is it possible to determine, at compile time,
whether or not the view makes sense,i.e., it does not always yield
an empty tree? Is this view equivalent to another view,i.e., they al-
ways produce the same output tree from the same relational source?

Example 1.1: Consider a registrar databaseI0 of a rela-
tional schemaR0 consisting of course(cno, title, dept), and
prereq(cno1, cno2) (with keys underlined). The database maintains
course data and a relationprereq, in which a tuple (c1, c2) indicates
that c2 is a prerequisite ofc1. That is, relationprereq gives the
prerequisite hierarchy of the courses.

The registrar office wants to export twoXML views:

• XML view τ1 contains the list of all theCS courses extracted
from the databaseI0. Under eachcourse are thecno (num-
ber) andtitle of the course, as well as its prerequisite hierar-
chy. As shown in Fig. 1(a), the depth of thecoursesub-tree
is determined by its prerequisite hierarchy.

• View τ2 is a tree of depth three. As depicted in Fig. 1(b), it
consists of the list of all theCS courses. Below eachcourse
c is the list of all thecno’s that appear in the prerequisite
hierarchyof c, followed by thecno andtitle of c.

The user may ask the questions mentioned above regarding these
XML views. As will be seen shortly, not all commercial languages
are capable of expressing these views due to the recursive nature of
the prerequisite hierarchy. 2

Answering these questions calls for a full treatment of the ex-
pressive power and complexity ofXML publishing languages. The
increasing demand for data exchange andXML publishing high-
lights the need for this study. Indeed, this is not only important for
the users by providing a guidance for how to choose a publishing
language, but is also useful for database vendors in developing the
next-generationXML publishing languages. Despite their impor-
tance, to our knowledge no previous work has investigated these
issues.

Publishing transducers. To examine the complexity and expres-
siveness ofXML publishing languages in a comparative basis, we
need a uniform formalism to characterize these languages. To this
end, we introduce a formalism of transducers, referred to aspub-
lishing transducers. A publishing transducer is a top-down trans-
ducer that simultaneously issues queries to a relational database,
keeps intermediate results in its local stores (registers) associated
with each node, and iteratively expandsXML trees by using the
extracted data. As opposed to the automata for queryingXML
data [21, 22], it generates a newXML tree rather than evaluating
a query on an existing tree. In order to encompass existing publish-
ing languages, we parameterize publishing transducers using the
following parameters:

• L (logic): the relational query language in which queries
on relational data are expressed; we consider conjunctive
queries with ‘=’ and ‘6=’ (CQ), first-order queries (FO), and
(inflationary) fixpoint queries (FP);

• S (store): registers that keep intermediate results; we
consider transducers in which each register stores a finite
relationversus those that store a singletuple;

• O (output): the types of tree nodes; in addition tonormal
nodes that remain in the output tree, we may allowvirtual
nodes that will be removed from the output. We study trans-
ducers that only produce normal nodes versus those that may
also allow virtual nodes.

We denote byPT(L, S, O) various classes of publishing trans-
ducers, whereL, S, O are logic, store and output parameters as
specified above. As we will see later, different combinations of
these parameters yield a spectrum of transducers with quite differ-
ent expressive power and complexity.

Main results. We present a comprehensive picture of the com-
plexity and expressiveness for all classesPT(L, S, O) as well as for
existingXML publishing languages.

Characterization of existingXML publishing languages.We exam-
ine several commercial languages and research proposals, and show
that each of these languages can be characterized as a special case

of publishing transducers. For example, annotatedXSD of Mi-
crosoft [19] is a class of “nonrecursive”PT(CQ, tuple, normal),
DBMS XMLGEN of Oracle [23] can be expressed inPT(FP, tuple,
normal), andSQL/XML of IBM [15] is a class of nonrecursive
PT(FO, tuple, normal). Moreover, relation stores and virtual nodes
are needed to characterizeTreeQL [11, 2] andATG [5, 6]. Con-
versely, for most classesPT(L, S, O) there are existing publishing
languages corresponding to them. For the few that do not find a
corresponding commercial system, we explain why it is the case.
For example, no commercial language corresponds toPT(FP, re-
lation, virtual) because it does not increase the expressive power
overPT(FO, relation, virtual), and for the latter a running prototype
system [5] has already been being used.

Static analysis.We investigate classical decision problems asso-
ciated with transducers: the membership, emptiness and equiva-
lence problems. The analyses of these problems may tell a user, at
compile time, whether or not a publishing transducer makes sense
(emptiness), whether anXML tree of particular interest can be gen-
erated from a publishing transducer (membership), and whether a
more efficient publishing transducer can in fact generate the same
set of XML trees as a more expensive transducer (equivalence).
We establish complexity bounds for these problems, ranging from
PTIME to undecidable, for all the classesPT(L, S, O) and for the
special cases that characterize existing publishing languages. All
these upper and lower bounds match We also provide data com-
plexity for evaluatingvarious publishing transducers.

Expressive power.We characterize the expressiveness of publishing
transducers in terms of both relational query languages and logical
transducers for tree generation.

We first treat a publishing transducer as a relational query that,
on an input relational database, evaluates to a relation which is the
union of the registers associated to nodes of the output tree with
a designated label. We show that each classPT(L, S, O) captures
either a complexity class or a fragment of a well-studied relational
query language, except one for which we only show that it con-
tains a fragment of datalog. For example, the largest classPT(FP,
relation, virtual) capturesPSPACEand the smallestPT(CQ, tuple,
normal) captures linear datalog (see,e.g., [14]). Along the same
lines we characterize the existing publishing languages. For exam-
ple, we show thatSQL/XML of IBM [15] is in FOand annotatedXSD

of Microsoft [19] is in union ofCQ queries.
For tree generation, we establish connections between certain

fragments ofPT(L, S, O) and logical interpretations [12] or trans-
ductions [8]. For example, we show thatPT(L, tuple, virtual) con-
tain theL-transducers forL ranging over CQ, FO and FP, and that
regular unranked tree languages are contained inPT(FO, tuple, nor-
mal) but not inPT(CQ, relation, virtual).

In both settings we also provide separation and equivalence
results for various classes of publishing transducers. For example,
we show thatPT(FP, relation, normal) andPT(FO, relation, normal)
are equivalent in the relational setting, whereas for tree generation,
PT(FO, relation, normal) is properly contained inPT(FP, relation,
normal) but in contrast,PT(FO, relation, virtual) andPT(FP,
relation, virtual) have the same expressive power.

To our knowledge, this work is the first to provide a general the-
oretical framework to study the expressive power and complexity
of XML publishing languages. A variety of techniques are used to
prove the results, including finite model constructions and a wide
range of simulations and reductions.

Related work. As remarked earlier, a number ofXML publishing
languages have been proposed (see [16] for a survey). However,

the complexity and expressiveness of these languages have not been
studied. There has also been recent work on data exchange,e.g.,[3,
10]. This work differs from [3, 10] in that we focus on (a) trans-
formations from relational data toXML defined in terms of trans-
ducers with embedded relational queries, rather than relation-to-
relation [10] orXML -to-XML [3] mappings derived from source-to-
target constraints, and (b) complexity and expressiveness analyses
instead of consistent query answering.

A variety of tree automata and transducers have been developed
(see [13] for a survey), some particularly forXML (e.g.,[18, 20, 21,
22]). As remarked earlier, tree recognizers [13] and the automata
for queryingXML [21, 22] operate on an existing tree, and either
accept the tree or select a set of nodes from the tree. In contrast,
a publishing transducer does not take a tree as input; instead, it
builds a new tree by extracting data from a relational source. While
thek-pebble transducers of [20] return anXML tree as output, they
also operate on an inputXML tree rather than a relational database,
and cannot handle data values. Similarly, anXSM of [18] takes
XML data streams as input and produces one or moreXML streams.
Furthermore, the expressive power and complexity of theseXML
transducers have not been studied.

There has been a host of work on the expressive power and com-
plexity of relational query languages (see [1, 9] for surveys). While
those results are not directly applicable to publishing transducers,
some of our results are proved by capitalizing on related results on
relational query languages.

Logical interpretations or transductions define a mapping
from structures to structures through a collection of formulas
(seee.g.,[8] for a survey of graph transductions). Recently logical
tree-to-tree interpretations are used in [4] to characterizeXQuery.
We employ transductions to characterize the tree generating power
of publishing transducers.

Organization. Section 2 reviewsXML trees. Section 3 defines
publishing transducers. Section 4 characterizes existingXML pub-
lishing languages in terms of these transducers. Section 5 studies
decision problems for a variety of publishing transducers and ex-
isting languages, and Section 6 investigates their expressive power.
Section 7 summarizes the main results of the paper.

2. XML Trees with Local Storage
We first reviewXML trees and define trees with registers.

XML trees. An XML document is typically modeled as a node-
labeled tree. Assume a finite alphabetΣ of tags. A tree domain
domis a subset of IN∗ such that for anyv ∈ IN∗ andi ∈ IN, if v.i is
in domthen so isv, and in addition, ifi > 1 thenv.(i− 1) is also
in dom. A Σ-tree t is defined to be(dom(t), lab), wheredom(t)
is a tree domain, andlab is a function fromdom(t) to Σ.

Intuitively, dom(t) is the set of thenodesin t, while the empty
string ε represents the root oft, denoted byroot(t). Each node
v ∈ dom(t) is labeled by the functionlab with a taga of Σ, called
ana-element. Moreover,v has a (possibly empty) list of elements
as its children, denoted bychildren(v). Herev.i ∈ dom(t) is the
i-th child of v, andv is called the parent ofv.i. Note thatt is
unranked, i.e., there is no fixed bound on the number of children of
a node int.

In particular we assume thatΣ contains a specialroot tagr, such
that lab(ε) = r and moreover, for anyv ∈ dom(t), lab(v) 6= r
if v 6= ε. To simplify the discussion we also assume a special tag,
text, in Σ. Any node labeledtext carries a string (PCDATA) and is
referred to as atext node.

Trees with local storage. We studyΣ-trees generated from re-
lational data. To construct a tree in a context-dependent fashion,

one needs to pass information from a node to its children. To do
this, we store data values in a local store at each node. We assume
a recursively enumerable infinite domainD of data valueswhich
serves both as the domain of the relational databases and of the
local stores at nodes of the generated output tree.

A Σ-tree with local storage, or simply a tree if it is clear from the
context, is a pair(t,Reg), wheret is aΣ-tree, andRegis a function
that associates each nodev ∈ dom(t) with a finite relation overD.
We refer toReg(v) as thelocal storeor theregisterof v, and use
TreeΣ to denote the set of allΣ-trees with local storage.

We consider two classes of trees: for allv ∈ dom(t), (a) either
Reg(v) stores afinite relationover D, (b) or Reg(v) is a single tu-
pleoverD. These are referred to asΣ-trees withrelationstores and
tuplestores, respectively. Note that trees with tuple stores are aspe-
cial caseof trees with relation stores. As will be seen shortly, the
content ofReg(v) is computed via a relational query on a database
overD, and it is used to control how the children ofv will be gen-
erated.

3. Publishing Transducers
We now define publishing transducers. Intuitively, a publishing

transducer is a finite-state machine that creates a tree from a rela-
tional database in atop-down way. It starts from an initial state that
corresponds to the root node of the tree, and then followsdetermin-
istically a transition based on the current state of the transducer and
the tag of the current node in the tree created so far. The transition
directs how the children of a node are generated based on the un-
derlying database, by providing the tags of the children as well as
relational queries that extract data from the database. More specif-
ically, for each child taga, a relational query of the formφ(x̄; ȳ)
is specified, which generates a list of children labeleda. The result
of the query is partitioned using thegroup-byattributes̄x, yielding
sets of tuples. For each set, a child labeleda is spawned, carrying
the set in its local register, which will be used in queries in succes-
sive transitions. As a result, the structure of the tree is dependent
on the underlying database instance.

We next define publishing transducers more formally. In the fol-
lowing, a relational schema is a finite collection of relation names
and associated arities.

Definition 3.1: Let R be a relational schema andL a relational
query language. Apublishing transducerfor R is defined to be
τ = (Q, Σ, Θ, q0, δ), whereQ is a finite set ofstates; Σ is a finite
alphabet oftags; Θ is a function fromΣ to IN associating thearity
of registersRega to eachΣ taga; q0 is thestart state; andδ is a
finite set oftransduction rulessuch that for each(q, a) ∈ Q × Σ,
if q 6= q0 anda is not the root tagr, then there is a unique rule of
the form:

(q, a) → (q1, a1, φ1(x̄1; ȳ1)), . . . , (qk, ak, φk(x̄k; ȳk)).

Here k ≥ 0, and for i ∈ [1, k], (qi, ai) ∈ Q × Σ, andφi ∈
L is a query fromR andRega to Regai

, whereRega andRegai

are aΘ(a)- and aΘ(ai)-ary relation, respectively. To simplify
the discussion we assume thatai 6= aj if i 6= j. As mentioned
above, tuples in the result ofφi(x̄i; ȳi) are grouped bȳxi and are
distributed among different children labeledai as the content of
Regai

of each child. This will be explained in more detail below.
There are two special cases: (a)q0 andr do not appear in the

right-hand side of any rule, and there is exactly one rule forq0,
namely, the rule for(q0, r), referred to as thestart rule; (b) if a is
text, thenk = 0 in the rule for(q, text), i.e., the right-hand side of
the rule is empty. 2

Example 3.1: The view shown in Fig. 1(a) can be defined by

a publishing transducerτ1 = (Q1, Σ1, Θ1, q0, δ1), where
Q1 = {q0, q}, Σ1 = {db, course, prereq, cno, title, text}, and
the root tag isdb; we associate four sets of registersRegc, Regp,
Reg# andRegt with course, prereq, cno and title nodes, to which
the arity-functionΘ1 assigns2, 1, 1, 1, respectively; finally,δ1 is
defined as follows:

δ1(q0, db) = (q, course, φ1(cno, title; ∅)), where
φ1(cno,title) = ∃ dept (course(cno, title, dept) ∧ dept = ‘CS’)

δ1(q, course) = (q, cno, φ1
2(cno; ∅)), (q, title, φ2

2(title; ∅)),
(q, prereq, φ1

2(cno; ∅)), where
φ1

2(cno) = ∃ title Regc(cno, title), and
φ2

2(title) = ∃ cno Regc(cno, title),

δ1(q, prereq) = (q, course, φ3(cno, title; ∅)), where
φ3(c, t) = ∃ c′ d (Regp(c′) ∧ prereq(c′, c) ∧ course(c, t, d))

δ1(q, cno) = (q, text, φ4(cno; ∅)), whereφ4(c) = Reg#(c)

δ1(q, title) = (q, text, φ5(title; ∅)), whereφ5(t) = Reg#(t)

Note that in each queryφ(x̄; ȳ) in the rules,|ȳ| = 0, i.e., ȳ is ∅.
The semantics ofτ1 will be given in Example 3.2. 2

A publishing transducerτ can be recursive. To illustrate this we
define thedependency graphGτ of τ . For each(q, a) ∈ Q × Σ
there is a unique nodev(q, a) in Gτ , and there is an edge from
v(q, a) to v(q′, a′) iff (q′, a′) is on the right-hand side of the rule
for (q, a). We say that the transducerτ is recursiveiff there is a
cycle inGτ .

Transformations. In a nutshell,τ generates a tree from a database
I of schemaR in a top-down fashion. Initially,τ constructs a tree
t consisting of a single node labeled(q0, r) with an empty storage.
At each step,τ expandst by simultaneouslyoperating on the leaf
nodes oft. At each leafu labeled(q, a), τ generates new nodes by
finding the rule for(q, a) from δ, issuing queries embedded in the
rule to the relational databaseI and the registerRega(u) associated
with u, and spawning the children ofu based on the query results.
The query results are kept in the registers of these children nodes.
The transformation proceeds until a stop condition is satisfied at all
the leaf nodes (to be presented shortly). At the end, all registers
and states are removed from the treet to obtain aΣ-tree, which is
the output ofτ .

We now formally define the transformation induced byτ from
a databaseI. As in [2], we assume an implicit ordering≤ on D,
which is just used to order the nodes in the output tree and, hence,
get a unique output. We donotassume that the ordering is available
to the query languageL.

We extendΣ-trees with local storage by allowing nodes to be
labeled with symbols fromΣ∪Q×Σ. We use TreeQ×Σ to denote
the set of all such extendedΣ-trees. Then, every step in the trans-
formation rewrites a tree in TreeQ×Σ, starting with the single-node
tree(q0, r).

More specifically, for two treesξ, ξ′ ∈ TreeQ×Σ, we define the
step-relation⇒τ,I as follows:ξ ⇒τ,I ξ′ iff there is a leafu of ξ
labeled(q, a) and one of the following conditions holds:

(1) if there is an ancestorv of u such thatu, v are labeled withthe
same state and tag, andRega(v) = Rega(u), thenξ′ is obtained
from ξ by changinglab(u) to a. Otherwise,

(2) assume that the rule for(q, a) is
(q, a)→ (q1, a1, φ1(x̄1; ȳ1)), . . . , (qk, ak, φk(x̄k; ȳk)).

If k > 0, thenξ′ is obtained fromξ by rooting the forestf1 · · · fk

underu. For eachj ∈ [1, k], fj is constructed as follows. Let
{d̄1, . . . , d̄n} = {d̄ | I ∪ Rega(u) |= ∃ȳjφj(d̄; ȳj)} and d̄1 ≤
· · · ≤ d̄n with ≤ extended to tuples in the canonical way. Thenfj

is a list of nodes[v1, · · · , vn], wherevi is labeled with(qj , aj) and

its registerRegaj (vi) stores the relation{d̄i}×{ē | I∪Rega(u) |=
φj(d̄i; ē)}; here we useRega and Regaj

to denote the registers
associated with thea-nodeu and theaj-nodevi, respectively. If
all fi’s are empty,ξ′ is obtained fromξ by labelingu with a.

If k = 0, i.e., the right-hand side of the rule is empty, thenξ′ is
obtained fromξ by changing the label ofu to a. In particular, if the
taga is text, then inξ′, u carries a string representation ofRega(u)
(assuming a function that maps relations overD to strings, based
on the order≤).

The first condition, referred to as thestop-condition, states that
the transformation stops at the leafu if there is a nodev on the path
from the root tou such thatu repeatsthe stateq, taga, and the
content ofRega(v) of v. Since the subtree rooted atu is uniquely
determined byq, a, Rega(u) andI, this asserts that the tree will not
expand atu if the expansiondoes not add new informationto the
tree. This stop condition is the same as the one used inATGs [6]. As
will be seen in the next section, most commercial systems support
only nonrecurisvepublishing transducers and thus do not necessar-
ily need a stop condition.

The second condition states how to generate the children of the
leaf u via a transduction rule. Observe that the children spawned
from u can be characterized by a regular expressiona∗1 . . . a∗k. For
eachj ∈ [1, k], theaj children aregrouped bythe valuesd̄ of the
parameter̄x in the query∃ȳjφj(x̄j ; ȳj). That is, for each distinct̄d
such that∃ȳjφj(d̄; ȳj) is nonempty, anaj child w is spawned from
u, carrying the result ofφj(d̄; ȳj) in its local storeRegaj

(w).
The transformationstops at the leafu, i.e., no children are

spawned atu, if (a) the stop condition given above is satisfied; or
(b) the queryφj(x̄j ; ȳj) turns out to be empty for alli ∈ [1, k]
when it is evaluated onI andRega(u); in this case all the forests
fj are empty; or (c) the right-hand side of the rule for(q, a) is
empty, i.e., k = 0 in condition (2) above; this is particularly the
case fora = text, as text nodes have no children. These conditions
ensure the termination of the computation. Note that transduction
at other leaf nodes may proceed after the transformation stops atu.

Example 3.2: Given an instanceI0 of the schemaR0 described
in Example 1.1, the publishing transducerτ1 given in Example 3.1
works as follows. It first generates the root of the treet, labeled
with (q0, db). It then evaluates the queryφ1 on I0, and for each
distinct tuple in the result, it spawns acourse child v carrying the
tuple in its registerRegc(v). At nodev it issues queriesφ1

2 andφ2
2

on Regc(x), and spawns itscno, title andprereq children carrying
the corresponding tuple in their registers. At thecno child, it sim-
ply extracts the string value ofcno and the transformation stops;
similarly for title. At the prereq child u, it issues queryφ3 against
bothI0 andRegp(u); i.e., it extracts all (immediate) prerequisites
of the coursev, for which the cno is stored inRegp(u). In other
words, thecno information passed down from nodev is used to de-
termine the children ofu. For each distinct tuple in the result ofφ3,
it generates a course child ofu. The transformation continues un-
til either it reaches some course for which there is no prerequisite,
i.e.,φ3 returns empty at itsprereq child; or when a course requires
itself as a prerequisite (which does not happen in practice), and at
this point the stop condition terminates the transformation. The fi-
nal tree, after the local registers and states are stripped from it, is a
Σ-tree of the form depicted in Fig. 1(a).

Note that the transformation isdata-driven: the number of chil-
dren of a node and the depth of theXML tree are determined by the
relational databaseI. 2

We denote by⇒∗
τ,I the reflexive and transitive closure of⇒τ,I .

The result of the τ -transformationon I w.r.t.≤ is the treeξ such

that (q0, r) ⇒∗ ξ and all leaf nodes ofξ carry a label fromΣ.
This means thatξ is final and cannot be expanded anymore. We
use τ(I) to denote theΣ-tree obtained fromξ by striking out
the local storage and states fromξ. We denote byτ(R) the set
{τ(I) | I is an instance ofR}, i.e., the set of trees induced by
τ -transformations onI whenI ranges over all instances of the re-
lational schemaR. Note that for any order on the input instance, a
transducer always terminates and produces a unique output tree.

Virtual nodes. To cope withXML entities we also consider a class
of publishing transducers withvirtual nodes. Such a transducer is
of the form τ = (Q, Σ, Θ, q0, δ, Σe), whereΣe is a designated
subset ofΣ, referred to as thevirtual tagsof τ ; andQ, Σ, Θ, q0, δ
are the same as described in Definition 3.1. We require thatΣe does
not contain the root tag. On a relational databaseI the transducer
τ behaves the same as a normal transducer, except that theΣ-tree
τ(I) is obtained from the resultξ of theτ -transformation onI as
follows. First, the local registers and states are removed fromξ.
Second, for each nodev in dom(ξ), if v is labeled with a tag in
Σe, we shortcutv by replacingv with children(v), i.e., treating
children(v) as children of the parent ofv, and removingv from the
tree. The process continues until no node in the tree is labeled with
a tag inΣe.

Example 3.3: Suppose that we want to define a publishing trans-
ducer for theXML view shown in Fig. 1(b), and that the query
languageL is FO. One can show, via a simple argument using
Ehrenfeucht-Fräısśe (EF)-style game, that this is not expressible as
a normal transducer of Definition 3.1 (see,e.g.,[17] for a discus-
sion ofEF games). In contrast, this can be defined as a publishing
transducerτ2 with virtual nodes. Indeed, capitalizing on a virtual
tagl, we give some of the transduction rulesδ2 of τ2 as follows:

δ2(q0, db) andδ2(q, course) are as in Example 3.1

δ2(q, prereq) = (q, l, ϕ1(∅; cno)), (q, cno, ϕ2(cno; ∅))
ϕ1(c) = Regp(c) ∨ ∃ c′ (Regp(c′) ∧ prereq(c′, c))
ϕ2(c) = ϕ1(c) ∧ ∀c′(Regp(c′) ↔ ϕ1(c′)),

δ2(q, l) is asδ2(q, prereq) with precreq = l andRegp = Regl.

In ϕ1, |x̄| = 0 and thus the result ofϕ1 is put in asingle relation,
stored in the registerRegl(v) of the l child v. In contrast,|ȳ| = 0
in ϕ2 and thus its query result isgroupedby each distinct tuple.
Hence, if the query result is nonempty, then for each tuple in it, a
distinctcno child is generated.

Intuitively, for each coursec the transducerτ2 recursively finds
cno’s in the prerequisite hierarchy ofc and adds thesecno’s to the
relationRegl(v) until it reaches a fixpoint, wherev is labeled with
the virtual tagl. Only at this point, the queryϕ2(c) returns a non-
empty setRegl(v). For eachcno in the set, a distinctcno node is
created. Then, all the nodes labeledl are removed and thosecno
nodes become the children ofc. Thusτ2 induces theXML view of
Fig. 1(b). 2

Fragments. We denote byPT(L, S, O) various classes of publish-
ing transducers. Here,L indicates the relational query language in
which queries embedded in the transducers are defined. We con-
siderL ranging over conjunctive queries with ‘6=’ (CQ), first-order
logic (FO) and (inflationary) fixpoint logic (FP), all with equality
‘=’. StoreS is eitherrelation or tuple, indicating that theΣ-trees
induced by the transducers are with relation or tuple stores, respec-
tively. Observe that transducers with tuple stores are a special case
of those with relation stores. For any transducerτ with tuplestores,
|ȳi| = 0 in each queryφi(x̄i; ȳi) in τ , as illustrated in Example 3.1.
OutputO is eithernormalor virtual, indicating whether a transduc-
ers allow virtual nodes or not. ThusPT(FP, relation, virtual) is the
largest class considered in this paper, which consists of transducers

that are defined with fixpoint-logic queries and generate trees with
relation stores and virtual nodes. In contrast,PT(CQ, tuple, normal)
is the smallest.

For each classPT(L, S, O), we denote byPTnr(L, S, O) its sub-
class consisting of allnonrecursivetransducers in it.

For instance, the transducersτ1 andτ2 given in Examples 3.1
an 3.3 are inPT(CQ, tuple, normal) andPT(FO, relation, virtual),
respectively (τ2 is also definable inPTnr(FP, tuple, normal); we omit
this definition for the lack of space).

4. Characterization of XML Publishing Lan-
guages

We examine publishing languages that are either supported
by commercial products or are representative research proposals
(see [16] for a survey). We classify these languages in terms of
publishing transducers with certain restrictions.

Microsoft SQL Server 2005 [19]. Two main XML publishing
methods are supported by Microsoft, namely,FOR-XML expres-
sions and annotatedXSD schema.

The first method extracts data from a relational source viaSQL
queries, and organizes the extracted data intoXML elements using a
FOR-XML construct. HierarchicalXML trees can be built top-down
by nestedFOR-XML expressions. While no explicit registers are
used, during tree generation information can be passed from a node
to its children along the same lines as the use of tuple variables in
nestedSQL queries (i.e.,correlation). The depth of a generated tree
is bounded by the nesting level ofFOR-XML expressions (although
user-defined functions can be recursive, Microsoft imposes a max-
imum recursive depth, and thus a bounded tree depth). No virtual
nodes are allowed. ThusFOR-XML expressions are definable in
PTnr(FO, tuple, normal).

The second method specifies anXML view by annotating a (non-
recursive)XSD schema, which associates elements and attributes
with relations and table columns, respectively. Given a relational
source, the annotatedXSD constructs anXML tree by populating
elements with tuples from their corresponding tables, and instan-
tiating attributes with values from the corresponding columns. In-
formation is passed via parent-child key-based joins, specified in
terms of arelationship annotation. It only supports simple condi-
tion tests and does not allow virtual nodes. The depth of the tree is
bounded by the fixed “tree template” (XSD). Thus annotatedXSD

can be expressed inPTnr(CQ, tuple, normal).

IBM DB2 XML Extender [15]. IBM also supports two main meth-
ods:SQL/XML and document access definition (DAD).

The first method extendsSQL by incorporatingXML constructs
(e.g.,XMLAGG , XMLELEMENT). It extracts relational data in paral-
lel with XML -element creation. Nested queries are used to generate
a hierarchicalXML tree, during which a node can pass information
to its children via correlation. The tree has a fixed depth bounded by
the level of query nesting, and has no virtual nodes. ThusSQL/XML

is essentiallyPTnr(FO, tuple, normal).
The second method in turn has two flavors, namely,

SQL MAPPING andRDB MAPPING. The former extracts relational
data with a singleSQLquery, and organizes the extracted tuples into
a hierarchicalXML tree by using a sequence ofgroup by, one for
each tuple column and following a fixed order on the columns. The
depth of the tree is bounded by the arity of the tuples returned by the
query. The latter embeds nestedRDB NODE expressions in aDAD.
The DAD is basically a tree template with a fixed depth, and those
embedded expressions are essentiallyCQ queries for populating el-
ements and attributes specified in theDAD. Neither of these two

Microsoft SQL Server 2005 IBM DB2 XML Extender Oracle 10g XML DB XPERANTO TreeQL ATG
FOR XML annotated XSD SQL/XML DAD (SQL/RDB) SQL/XML DBMS XMLGEN

PTnr(FO, t, n) PTnr(CQ, t, n) PTnr(FO, t, n) PTnr(FO, t, n) (SQL) PTnr(FO, t, n) PT(FP, t, n) PTnr(FO, t, n) PTnr(CQ, t, v) PT(FO, t, v) [5]
PTnr(CQ, t, n) (RDB) PT(CQ, r, v) [6]

Table 1: Characterization of existingXML publishing languages (t: tuple; r: relation; n: normal; v: virtual)

allows virtual nodes. One can expressDAD with SQL MAPPING

in PTnr(FO, tuple, normal), andRDB MAPPING in PTnr(CQ, tuple,
normal).

Oracle 10gXML DB [23]. Oracle supportsSQL/XML as described
above, and aPL/SQL packageDBMS XMLGEN. DBMS XMLGEN

extendsSQL/XML by supporting the linear recursion construct
connect-by (SQL’99), and is thus capable of defining recursive
XML views. Given a relational source, anXML tree of an un-
bounded depth is generated top-down, along the same lines as
nestedSQL/XML queries. Information is passed from a node to
its children viaconnect-by joins. For each tuple resulted from the
joins, a child node is created, whose children are in turn created
in the next iteration of the recursive computation. Neither virtual
nodes are allowed, nor an explicit stop condition is given. If the
stop condition given in Section 3 is imposed,XML views defined in
DBMS XMLGEN are expressible inPT(FP, tuple, normal).

XPERANTO [26]. It supports essentially the sameXML views as
SQL/XML , and thus inPTnr(FO, tuple, normal).

TreeQL [11, 2]. TreeQL was proposed for theXML publishing mid-
dleware SilkRoute [11]. Here we consider its abstraction developed
in [2]. It defines anXML view by annotating the nodes of a tree
template (of a fixed depth) withCQ queries. It supports virtual tree
nodes and tuple-based information passing via free-variable bind-
ing (i.e., the free variables of the query for a nodev are a subset
of the free variables of each query for a child ofv). ThusTreeQL
views are expressible inPTnr(CQ, tuple, virtual).

ATG [5, 6]. Attribute transformation grammars (ATG) were pro-
posed in [5] and revised in [6], forXML publishing middleware
PRATA. An ATG defines anXML view based on aDTD, by associ-
ating each element type with an inherited attribute (register), and
annotating each productiona → α in the DTD with a set of rela-
tional queries, one for each sub-element typeb in the regular ex-
pressionα, specifying how to populate theb sub-elements of ana
element. It supports recursiveDTDs and thus recursiveXML views,
as well as virtual nodes to cope withXML entities. While the early
version of [5] employsFO queries and tuple registers, the revised
ATGs [6] adoptCQqueries, relation registers and the stop condition
of Section 3.ATGs of [5, 6] are basicallyPT(FO, tuple, virtual) and
PT(CQ,relation,virtual), respectively.

The characterization is summarized in Table 1. Except
DBMS XMLGEN andATGs, these languages do not support recur-
sive XML views exported from relational data. Indeed, one can
verify, via a simpleEF-game argument, that theXML views of Ex-
ample 3.1 and 3.3 are expressible inDBMS XMLGEN andATGs, but
not in the other languages.

5. Decision Problems and Complexity
In this section we first provide tight worst-case complexity for

evaluating various publishing transducers. We then focus on central
decision problems associated with these transducers. Consider a
classPT(L, S, O) of publishing transducers. (i) The membership
problemfor PT(L, S, O) is to determine, given aΣ-tree t and a

transducerτ in this class, whether there is an instanceI with t =
τ(I), i.e., τ on I computes the treet. (ii) Theemptiness problem
for PT(L, S, O) is to determine, givenτ in this class, whether there
is an instanceI with τ(I) 6= r, i.e., the tree with the root only.
So, it is to decide whetherτ can induce nontrivial trees. (iii) The
equivalence problemfor PT(L, S, O) is to determine, given two
transducersτ1 andτ2 in the class defined for relational databases of
the same schemaR, whether or notτ1(I) = τ2(I) for all instances
I of R, i.e.,the two transducers produce the sameΣ-trees on all the
instances ofR.

We first establish upper and lower bounds for these problems, all
matching except one, for all classes of transducers defined in Sec-
tion 3. We then revisit these issues for nonrecursive transducers that
characterize the existing publishing languages studied in Section 4.
Our main conclusion for this section is that most of these problems
are beyond reach in practice for general publishing transducers, but
some problems become simpler for certain existing languages.

5.1 Decision Problems for Publishing Transducers
We first discuss the data complexity of computing the output of

a publishing transducer.

Proposition 5.1: For anyτ in PT(L, S, O), whereL is CQ, FO or
FP, andO is normal or virtual, and for any databaseI, the size of
τ(I) is at most exponential and double exponential in the size of
I whenS is tuple and relation, respectively. There are instances
for which this maximal size is reached whenL is CQ. Worst-case
data-complexity isEXPTIME and 2EXPTIME whenS is tuple and
relational, respectively. 2

PROOF. It suffices to remark that the rank ofτ(I) is bounded
by a polynomial in the size|I| of I, its depth by a polynomial in
|I| if S is tuple, and by an exponential ifS is relation. To see
that the bounds are tight, for transducers with tuple stores consider
a databaseI1 encoding aDAG of a certain shape (e.g.,a chain of
diamonds), and a recursive transducerτ1 in PT(CQ, tuple, normal)
expanding theDAG into a tree. Then the size of the outputτ1(I1)
is exponential in|I1|. For relation stores, considerI2 encoding a
n-digit binary counter, andτ2 in PT(CQ, relation, normal) that at
each node creates two branches, each incrementing the counter by
1. Then the size ofτ2(I2) is 22n

. 2

We now turn to the classical decision problems associated with
transducers.

Proposition 5.2: Membership, emptiness and equivalence are un-
decidable forPT(L, S, O) whenL is FOor FP, S is relation or tuple,
andO is virtual or normal. 2

PROOF. It suffices to show that these problems are undecidable
for PT(FO, tuple, normal). This is verified by a reduction from the
satisfiability problem for relationalFO queries, which is known to
be undecidable (see,e.g.,[1]). 2

ForL equal toCQ, the situation gets slightly better.

Theorem 5.3:For PT(CQ, S, O),

• the emptiness problem is decidable inPTIME for PT(CQ, S,
normal), but becomesNP-complete forPT(CQ, S, virtual);

• the equivalence problem is undecidable;
• the membership problem isΣp

2-complete forPT(CQ, tuple,
normal), but becomes undecidable when eitherS is relation
or O is virtual. 2

PROOF. For the emptiness problem forτ in PT(CQ, S, normal),
it is sufficient to test emptiness of theCQ queries in the start rule of
τ . The satisfiability of these queries can be checked inPTIME in the
size of the queries. TheNP lower bound for the emptiness problem
for PT(CQ, tuple, virtual) is by a reduction from 3SAT [24]. The up-
per bound for the emptiness problem forτ in PT(CQ, relation, vir-
tual) is proved by providing anNP algorithm that (1) guesses a path
from the root of the dependency graphGτ of τ to a node labelled
with a non-virtual tag; (2) checks the satisfiability of the composi-
tion of theCQ queries along that path. The latter can be checked in
PTIME in the size of the originalCQ queries.

For PT(CQ, tuple, normal) the undecidability of the equivalence
problem is by a reduction from the halting problem for 2-register
machines (see,e.g., [7]) which leads to the undecidability of the
problem forPT(CQ, S, O). We note that it remains undecidable for
PT(CQ, relation,O) without ‘6=’.

The Σp
2 lower bound for the membership problem forPT(CQ,

tuple, normal)in the absence of ‘6=’ , is by a reduction from∃∗∀∗-
3SAT [24]. The upper bound is proved by (1) establishing a small
model property: for anyΣ-treet andτ in the class, ift ∈ τ(R),
then there exists anI such thatτ(I) = t and |I| is linear in |t|;
(2) providing an algorithm for checking the existence ofI by using
a nondeterministicPTIME Turing machine with aNP oracle. For
PT(CQ, tuple, virtual), the undecidability is by a reduction from
the emptiness problem for deterministic finite 2-head automata
(see,e.g.,[27]). ForPT(CQ, relation,O), the undecidability is by a
reduction from the satisfiability problem forFOqueries: given aFO
queryq on databases of schemaR1, we define a new schemaR2

that subsumesR1 to encode the result of each sub-query ofq, and
a transducerτ in the class that checks whetherq on an instanceI
of R1 yields the result coded in the corresponding instance ofR2.
Capitalizing on virtual nodes, we show thatτ(R2) contains a fixed
tree iff q is not satisfiable. The proof does not make use of ‘6=’. 2

5.2 Complexity of Existing Publishing Languages
The results of the previous section carry over immediately to the

existing publishing languages adopting recursion, which arePT(FP,
tuple, normal) (DBMS XMLGEN), PT(FO, tuple, virtual) (ATG [5])
and PT(CQ, relation, virtual) (ATG [6]). Table 1 shows that, in
contrast, many of them are non-recursive:PTnr(FO, tuple, normal)
(FOR-XML , SQL mapping,SQL/XML), PTnr(CQ, tuple, normal) (an-
notatedXSD, RDB mapping), andPTnr(CQ, tuple, virtual) (TreeQL).
Each of these nonrecursive classes is treated below.

We show that the absence of recursion for these publishing lan-
guages simplifies the analyses. Indeed, for anyτ in one of these
nonrecursive classes, theΣ-tree induced byτ on any database is
bounded byτ . From this it follows:

Corollary 5.4: For publishing transducersτ in PTnr(FO, tuple, nor-
mal) (orPTnr(CQ, tuple,O)), the worst-case data complexity forτ -
transformations is inPTIME (both forO normal or virtual). 2

The decision problems also become simpler, to an extent.

Theorem 5.5: The emptiness, membership and equivalence prob-
lems are undecidable forPTnr(FO, tuple, normal). The emptiness
problem forPTnr(CQ, tuple, normal) is in PTIME; it isNP-complete
for PTnr(CQ, tuple, virtual). The membership and equivalence prob-
lems forPTnr(CQ, tuple,O) areΣp

2-complete, and inΠp
3-complete,

respectively. 2

PROOF. The proof of Proposition 5.2 remains intact forPTnr(FO,
tuple, normal). Similarly, thePTIME upper bound for emptiness
of Theorem 5.3 trivially holds forPTnr(CQ, tuple, normal). Since
the NP lower bound proof of Theorem 5.3 for emptiness uses a
non-recursive transducer, the lower bound extends toPTnr(CQ, tu-
ple, virtual). TheNP upper bound of Theorem 5.3 trivially holds
for PTnr(CQ, tuple, virtual). Similarly, forPTnr(CQ, tuple,O), the
Σp

2 upper-bound proof of Theorem 5.3 for membership extends to
PTnr(CQ, tuple, virtual). For the equivalence problem forPTnr(CQ,
tuple, normal), we prove theΠp

3 lower bound by reduction from the
∀∗∃∗∀∗-3SAT problem. We give aΠp

3-time checking algorithm for
PTnr(CQ, tuple, virtual), by characterizing transducer equivalence in
terms of (a) isomorphism between the dependency graphs of trans-
ducers (DAGs), and (b) a form of equivalence onCQ queries along
the paths in the twoDAGs starting from the root. 2

6. Expressiveness of Publishing Transducers
In this section, we characterize the expressive power of pub-

lishing transducers in terms of relations-to-tree mappings (i.e., tree
generation) and relations-to-relation mappings (i.e, relational query
languages).

6.1 Tree Generation versus Relational Languages
Although publishing transducers define mappings from rela-

tional databases to trees, they can also be considered as a relational
query language mapping relational databases to relations. To this
end, we fix a designated output labelao. For any instanceI of R,
the τ -transformation onI yields a final treeξ with local storage
in TreeQ×Σ, from which the outputΣ-treeτ(I) is obtained by re-
moving local stores and transducer states (recall from Section 3).
Therelation induced byτ onI is then defined to be the union of all
the storesRegao

(v) for all nodesv labeledao in ξ. Therefore, we
refer toτ as a relational query whenτ is viewed as a mapping from
instancesI to the relation induced byτ on I. Whenτ is viewed
as a relation-to-tree mapping, we refer toτ as a tree generating
mapping.

We want to compare the expressive power of one class
PT(L1, S1, O1) with that of another classPT(L2, S2, O2) both as
a tree generation and a relational query language. We say that
PT(L1, S1, O1) is contained inPT(L2, S2, O2) as a tree/relational
query language, denoted byPT(L1, S1, O1) ⊆ PT(L2, S2, O2), if
for any τ1 in PT(L1, S1, O1) defined for a relational schemaR,
there existsτ2 in PT(L2, S2, O2) for the sameR such that they de-
fine the same tree/relational query.

The two classes are said to beequivalentin expressive power,
denoted byPT(L1, S1, O1) = PT(L2, S2, O2), if PT(L1, S1, O1)
⊆ PT(L2, S2, O2) andPT(L2, S2, O2) ⊆ PT(L1, S1, O1). We say
that PT(L1, S1, O1) is properly contained inPT(L2, S2, O2), de-
noted byPT(L1, S1, O1) ⊂ PT(L2, S2, O2), if PT(L1, S1, O1) ⊆
PT(L2, S2, O2) but PT(L1, S1, O1) 6= PT(L2, S2, O2). These no-
tions extend to comparingPT(L, S, O) vs. other tree generating
formalisms, and to comparingPT(L, S, O) vs. relational query lan-
guages.

We also characterizePT(L, S, O) with respect to complexity
classes. TreatingPT(L, S, O) as a relational query language, for
example, we consider therecognition problemfor its transducers
τ : given a tupleu and an instanceI of the schema for whichτ is
defined, it is to determine whetheru is in the relationRo(ao) in-
duced byτ on I. We say thatPT(L, S, O) capturesa complexity
classC if the recognition problem for all transducers inPT(L, S, O)
is in C and moreover, for any queryq whose recognition problem is
in C, there existsτ in PT(L, S, O) defined on the same schemaR as
q, such thatq andτ return the same output relation on all instances

of R.

Outline. We study the expressive power of all the classes
PT(L, S, O) defined in Section 3 with respect to relational query
and tree generation languages, in Sections 6.2 and 6.3, respectively.
We then investigate the expressive power of existingXML publish-
ing languages in Section 6.4. The results in this section hold irre-
spectively of whether the queries inL have explicit access to the
order≤ on the domainD, unless explicitly stated otherwise.

6.2 Expressiveness in Terms of Relational Queries
We start by treatingPT(L, S, O) as a relational query language.

We first review two fragments of datalog. One fragment islin-
ear datalog (see e.g., [1]), denoted by LINDATALOG . It con-
sists of datalog programs in which each rule is of form:p(x̄) ←
p1(x̄1), . . . , pn(x̄n), and moreover, at most onepi is anIDB predi-
cate. We allow somepj to be6=. The other, referred to asdetermin-
istic datalogand denoted byDDATALOG, is the class of programs
in which eachIDB predicate has only one rule of the form above
(its body may contain more than oneIDB predicate).

We useTC0[L] to denote a fragment of transitive closure logic:
the set of all formulas[TCx̄,ȳ ϕ](ā, b̄), whereϕ ∈ L. Follow-
ing [14] one can verify thatTC0[CQ] = L INDATALOG .

The main result of Section 6.2 is given as follows.

Theorem 6.1:When treated as relational query languages,
(1) PT(L, S, virtual) = PT(L, S, normal),

(2) PT(CQ, tuple,O) ⊂ PT(FO, tuple,O)
(3) ⊆ PT(FP, tuple,O)
(4) ⊂ PT(FO, relation,O)
(5) = PT(FP, relation,O),

(6) PT(CQ, tuple,O) ⊂ PT(CQ, relation,O)
(7) ⊂ PT(FO, relation,O),

(8) PT(CQ, relation,O) 6⊆ PT(FO, tuple,O),
whereO is either normal or virtual. The containment in state-
ment (3) is proper ifNLOGSPACE 6= PTIME. Moreover,

(a) PT(FO, relation,O) capturesPSPACE.

(b) PT(FP, tuple, O) = (inflationary) FP on ordered databases
and thus capturesPTIME.

(c) PT(FO, tuple, O) = TC0[FO] on ordered databases, and
thus capturesNLOGSPACE. On unordered databases,PT(FO,
tuple,O) ⊂ NLOGSPACE.

(d) PT(CQ, relation,O) ⊇ DDATALOG.

(e) PT(CQ, tuple,O) = L INDATALOG . 2

Among other things, this tells us the following in the relational
setting. Virtual nodes do not add expressive power (statement (1))
and thus we only need to considerPT(L, S, normal). In contrast, we
have to treat publishing transducers with relation stores and those
with tuple stores separately (4, 6, 8). WhileFPdoes not add expres-
sive power overFO in PT(L, relation,O), it does inPT(L, tuple,O)
(5, 3). Moreover, replacingCQ with FO in PT(CQ, S, O) leads to
increase in expressiveness whenS is either relation or tuple (2, 7).
The rest of the results position the expressive power of these trans-
ducersw.r.t. complexity classes and datalog fragments.

PROOF. To show thatPT(FO, relation,O) capturesPSPACE, we
first show that for eachτ in PT(FO, relation,O), its recognition
problem can be determined by using nondeterministicPSPACETur-
ing machine. Conversely, we simulate every partial fixpoint query
(known to capture PSPACE on ordered instances) using a trans-
ducer and show that a total order is definable in this class. Sim-
ilarly, we simulate eachτ in PT(FP, tuple, O) (resp.PT(FO, tu-
ple,O)) in FP (resp. inTC0[FO]), and vice versa. Thus on ordered

databases,PT(FP, tuple,O) and PT(FO, tuple,O) capturePTIME

andNLOGSPACE, respectively. On unordered structures, since the
parity queryeven is not expressible inFP, it is not definable in
PT(FP, tuple,O). We simulateDDATALOG and LINDATALOG in
PT(CQ, relation,O) and PT(CQ, tuple,O), respectively, and vice
versa for LINDATALOG .

Statement (1) holds because for any treeξ induced by a trans-
ducer inPT(L, S, virtual), and for any normala-elementv in ξ,
removing virtual nodes fromξ does not change the content of the
registerRega(v). Statement (5) is verified by simulatingFPqueries
in PT(FO, relation, normal). Statements (4, 6) follow from (5) and
the fact that each transducer inPT(L, tuple,O) is a special case of
PT(L, relation,O) in which for any queryφ(x̄, ȳ), ȳ is the empty
list. The containment in (4) is proper since on unordered structures,
even is expressible inPT(FO, relation,O) but not inFP. We show
that the containment of (6) is proper by defining a transducerτ in
PT(CQ, relation,O) that takes a relation encoding the edges of a
rooted graphG as input, expandsG into a tree, and adds a certain
node to the tree iff the root ofG has two particular descendants
on different branches ofG. One can verify thatτ is not express-
ible even inPT(FO, tuple,O) (this requires anEF-game argument
to show that the relational query defined byτ is not definable in
FO). From this also follows (8). To prove that the containments
in (2, 7) are proper, we give anFO queryq, which is clearly defin-
able inPT(FO, tuple,O), and show thatq is not definable inPT(CQ,
relation,O) due to the monotonicity ofCQ queries. 2

6.3 Tree Generating Power
For tree generation, we provide separation and equivalence re-

sults for various classes of publishing transducers, and establish
their connection with logical transducers [8] and regular tree lan-
guages (specializedDTDs).

Equivalence and separation.As opposed to Theorem 6.1, Propo-
sition 6.2 below shows that when it comes to tree generation, virtual
nodes do add expressive power to publishing transducers. More-
over, if L ⊂ L′, thenPT(L′, S, normal) properly containsPT(L,
S, normal) whereas in the relational query setting,PT(FP, relation,
normal) =PT(FO, relation, normal). The other results in Proposi-
tion 6.2 are comparable to their counterparts in Theorem 6.1.

Proposition 6.2: For tree generation,

(1) PT(L, S, normal)⊂ PT(L, S, virtual),

(2) PT(L, S, normal)⊂ PT(L′, S, normal) ifL ⊂ L′,
(3) PT(CQ, tuple, virtual)⊂ PT(FO, tuple, virtual)
(4) ⊆ PT(FP, tuple, virtual)

(5) PT(CQ, relation, virtual)⊂ PT(FO, relation, virtual)
(6) = PT(FP, relation, virtual),

(7) PT(L, tuple,O) ⊂ PT(L, relation,O).

(8) PT(CQ, relation, normal)6⊆ PT(FP, tuple, virtual),

whereL,L1,L2 are FP, FO or CQ, and O is normal or virtual.
The containment in (4) is proper ifPTIME 6=NLOGSPACE. 2

PROOF. We prove that the containments in (1-5) are proper
as follows. For (1), we defineτ1 in PT(CQ, tuple, virtual) that
can generate aΣ-tree in which the root has exponentially many
children, which is not doable even by transducers inPT(FP, re-
lation, normal). For (2-5), observe that by Theorem 6.1, there
exists a Boolean queryq in L′ not expressible inPT(L, S, O) if
PT(L, S, O) is considered as a relational query language (for (4)
if PTIME 6=NLOGSPACE). We defineτ2 in PT(L′, S, normal) such

that τ2 generates a nontrivial tree iffq is satisfied. Statement (6)
holds since eachFPquery can be simulated inPT(FO, relation, vir-
tual) by using virtual nodes. The containment of (7) is proper since
transducers inPT(L, relation,O) can induce trees of exponential
depth, as opposed to trees of polynomial depth induced by those in
PT(L, tuple,O); similarly for (8). 2

Logical transducers.For a logicL, anL-tree-transduction defines
a mapping from relations over a schemaR to a tree with a sequence
of L-formulasφe, φ< and(φa)a∈Σ such that on everyR-structure
I, φe(I), φ<(I) andφa(I) define the edge relation, the ordering on
the siblings, and thea-labeled nodes of the tree, respectively. To ex-
press transformations of exponential size increase (like publishing
transducers can),φe(I) defines aDAG, and we consider its unfold-
ing as a tree when making a comparison with publishing transduc-
ers. First-order (resp. second-order) transductions are those where
nodes of the output tree arek-ary tuples (resp.k-ary relations) over
the input structure, for some fixedk. An L-transductionT is fixed-
depthwhen there is aǹ such that for any inputI, T (I) is a tree
of depth at most̀ . In a similar way to logical transductions, we
can also defineC-transductions (both first and second order) for a
complexity classC where there areC-Turing machines to decide
the relationsφe, φ< and(φa)a∈Σ.

Theorem 6.3:

1. WhenL ranges overCQ, FO andFP, everyL-transduction is
definable inPT(L, tuple, virtual).

2. When L ranges overFO and FP, every transducer in
PTnr(L, tuple, virtual) is definable as a fixed-depthL-
transduction.

3. There is a recursive transducer inPT(FO, tuple,O) that is not
definable as anFO-transduction.

4. WhenL ranges overCQ, FO andFP, over unordered trees,
fixed-depthL-transductions are equivalent toPTnr(L, tu-
ple,O).

5. Over ordered input structures,PT(FO, relation, virtual) and
PT(FP, tuple, virtual) contain thePSPACEsecond-order and
PTIME first-order transductions.

2

PROOF. (1) A direct simulation using virtual nodes to express
arbitrary sequences of labels shows thatPT(L, tuple, virtual) are
at least as expressive asL-transductions. (2) When transducers
are nonrecursive, there is no stop condition, andPT(L, tuple, vir-
tual) corresponds precisely toL-transductions generating trees of a
fixed depth. (3) This statement holds because recursivePT(FO, tu-
ple,O) can express graph-reachability known not definable inFO.
(4) When disregarding the order of siblings, virtual nodes are no
longer needed and fixed depthFO-transductions become equivalent
to PTnr(FO, tuple,O). (5) PT(FO, relation, virtual) andPT(FP, tuple,
virtual) are quite expressive as they contain all transformations in
PSPACEandPTIME, respectively, over ordered structures. Here the
correspondence betweenFP and PTIME, and between partial fix-
point andPSPACEon ordered structures, is exploited. 2

Regular tree languages.It is known [22] that a set of unranked
trees is regular iff it isMSO definable, and that a set of trees is
MSO definable iff it is the set of trees recognized by a specialized
DTD [25]. Recall that aDTD d′ overΣ is defined by a set of rules of
the forma→ α, wherea is a tag inΣ andα is a regular expression
overΣ. A Σ-treet conforms tod iff for eacha-elementv in t, the
list of labels ofchildren(v) is a string inα.

A specializedDTD d over Σ is a triple(Σ′, d′, g), whereΣ ⊆
Σ′, g is a mappingΣ′ 7→ Σ, andd′ is a DTD over Σ′. A Σ-
treet conforms tod if there exists aΣ′-treet′ that satisfiesd′ and
moreover,t = g(t′). We denote byL(d) the set of allΣ-trees
conforming tod.

A specializedDTD d is said to be definable inPT(L, S, O) if
there exists a publishing transducerτ in the class defined for some
relational schemaR such thatL(d) = τ(R).

The next result tells us that whenL is FOor FP, PT(L, S, virtual)
is capable of defining all specializedDTDs, and thus all regular un-
ranked trees andMSO definable trees. In contrast,PT(CQ, S, O)
does not have sufficient expressive power to define evenDTDs. We
defer a full treatment of the connection between publishing trans-
ducers (e.g.,PT(FP, S, normal) andPT(FO, S, normal)) and regular
tree languages to the full version of the paper due to the space con-
straint.

Theorem 6.4: WhenL is FO or FP, every specializedDTD overΣ
is definable inPT(L, tuple, virtual). There existDTDs that are not
definable inPT(CQ, relation, virtual). 2

PROOF. For each specializedDTD d, we defineτ in PT(FO, tu-
ple, virtual) for a schemaR encoding a graph such that all trees in
τ(R) conform tod, and for anyt ∈ L(d), there is an instanceI of
R such thatt = τ(I). We show thatDTDswith disjunctive rules are
not definable inPT(CQ, relation, virtual) due to the monotonicity of
CQ queries. 2

6.4 Expressiveness of Existing Languages
We next study the expressiveness of existing publishing lan-

guages in the relational-query and tree generation settings.

Relational Query Languages.It can be verified that the results of
Theorem 6.1 forPT(FP, tuple, normal),PT(FO, tuple, virtual) and
PT(CQ, relation, virtual) also hold forDBMS XMLGEN andATGs,
respectively. The theorem below settles the issue forPTnr(FO, tu-
ple, normal) (FOR-XML , SQL mapping,XPERANTO, SQL/XML),
PTnr(CQ, tuple,O) (annotatedXSD, RDB mapping,TreeQL).

Theorem 6.5: When treated as relational query languages,
PTnr(FO, tuple,O) = FO, andPTnr(CQ, tuple,O) = UCQ (UCQ de-
notes union of conjunctive queries with ‘=, 6=’). 2

PROOF. Every UCQ query can be simulated inPTnr(CQ, tu-
ple, O). Conversely, for each transducerτ in PTnr(CQ, tuple,O)
and a designated output tagao, the output relationRo(ao) of a τ -
transformation is computed by the union of allpath queries, where
each path query is the compositions of theCQ queries on a path in
the dependency graph ofτ from the root to a leaf node labeledao.
Similarly, PTnr(FO, tuple,O) = FO can be verified. 2

Tree generation. The proof for (1, 2) of Proposition 6.2 remains
intact for nonrecursive transducers. As an immediate corollary,
PTnr(CQ, tuple, normal)⊂ PTnr(FO, tuple, normal) andPTnr(CQ, tu-
ple, normal)⊂ PTnr(CQ, tuple, virtual). Theorem 6.3 has shown that
for unordered trees fixed-depthFO-transductions are equivalent to
PTnr(FO, tuple,O).

Publishing languages characterized by nonrecursive publishing
transducers do not have sufficient expressive power to defineDTDs,
due to the bound on the depth of the trees induced. From The-
orem 6.4 it follows that specializedDTDs are definable inATGs
of [5].

7. Conclusion
We have proposed the notion of publishing transducers and

characterized several existingXML publishing languages in terms

Fragments Equivalence Emptiness Membership
PT(FP,S, O) (Th. 5.2) undecidable undecidable undecidable
PT(FO,S, O) (Th. 5.2) undecidable undecidable undecidable

PT(CQ, tp, nm) (Th. 5.3) undecidable PTIME Σp
2-complete

PT(CQ, rl, nm) (Th. 5.3) undecidable PTIME undecidable
PT(CQ,S, vr) (Th. 5.3) undecidable NP-complete undecidable

PTnr(FO, tp, nm) (Th. 5.5) undecidable undecidable undecidable
PTnr(CQ, tp, nm) (Th. 5.5) Πp

3-complete PTIME Σp
2-complete

PTnr(CQ, tp, vr) (Th. 5.5) Πp
3-complete NP-complete Σp

2-complete

Table 2: Complexity of decision problems (S: relation or tuple ; O:
normal or virtual; tp: tuple; rl: relation; nm: normal; vr: virtual)

Fragments Complexity/Language
PT(FP, rl,O) (Th. 6.1) PSPACE
PT(FO, rl,O) (Th. 6.1) PSPACE
PT(FP, tp,O) (Th. 6.1) FP, PTIME (ordered database)
PT(FO, tp,O) (Th. 6.1) TC0[FO], NLOGSPACE(ordered)
PT(CQ, rl,O) (Th. 6.1) ⊇ DDATALOG
PT(CQ, tp,O) (Th. 6.1) TC0[CQ], LINDATALOG

PTnr(FO, tp,O) (Th. 6.5) FO
PTnr(CQ, tp,O) (Th. 6.5) UCQ

Table 3: Expressive power characterized in terms of
relational query languages

of these transducers. For a variety of classes of publishing
transducers, including both genericPT(L, S, O) and nonrecur-
sivePTnr(L, S, O) characterizing existing publishing languages, we
have provided (a) a complete picture of the membership, equiva-
lence and emptiness problems, (b) a comprehensive expressiveness
analysis in terms of both querying and tree generating power, as
well as a number of separation and equivalence results. We expect
these results will help the users decide what publishing languages
to use, and database vendors develop or improve commercialXML
publishing languages.

The main results for the static analyses and querying power (for
relational queries only due to lack of space) are summarized in Ta-
bles 2 and 3, respectively, annotated with their corresponding theo-
rems and conditions (e.g.,ordered). These tables show that differ-
ent combinations of logicL, storeS and outputO, as well as the
presence of recursion, lead to a spectrum of publishing transducers
with quite different complexity and expressive power.

The study of publishing transducers is still preliminary. An open
issue open question concerns, when treated as a relational query
language, whether or notPT(CQ, relation,O) capturesDDATALOG?
We only know thatDDATALOG is containedPT(CQ, relation,O).
Another interesting topic is the typechecking problem for publish-
ing transducers. Our preliminary results (not included due to lack
of space) show that while this is undecidable in general, there are
interesting decidable cases. This issue deserves a full treatment of
its own. Finally, we plan to investigate two-way and nondetermin-
istic publishing transducers.

Acknowledgments. We thank Michael Benedikt, Christoph Koch
and Leonid Libkin for helpful discussions. Wenfei Fan is sup-
ported in part byEPSRC GR/S63205/01, GR/T27433/01and BBSRC
BB/D006473/1. Floris Geerts is a postdoctoral researcher of the
FWO Vlaanderen and is supported in part byEPSRC GR/S63205/01.

8. References

[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of
Databases. Addison-Wesley, 1995.

[2] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Type-
checkingXML views of relational databases.TOCL, 4, 2003.

[3] M. Arenas and L. Libkin. XML data exchange: consistency
and query answering. InPODS, 2005.

[4] M. Benedikt and C. Koch. Interpreting tree-to-tree queries. In
ICALP, pages 552–564, 2006.

[5] M. Benedikt, C. Chan, W. Fan, R. Rastogi, S. Zheng and
A. Zhou. DTD-directed publishing with attribute translation
grammars. InVLDB, 2002.

[6] P. Bohannon, B. Choi, and W. Fan. Incremental evaluation of
schema-directed XML publishing. InSIGMOD, 2004.

[7] E. Börger, E. Gr̈adel, and Y. Gurevich.The Classical Decision

Problem. Springer, 1997.
[8] B. Courcelle. Monadic second-order definable graph trans-

ductions: A survey.TCS, 126(1):53–75, 1994.
[9] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity

and expressive power of logic programming.ACM Comput.
Surv, 33(3):374–425, 2001.

[10] R. Fagin, P. Kolaitis, and L. Popa. Data exchange: getting to
the core.TODS, 30(1):174–210, 2005.

[11] M. F. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and
W. C. Tan. SilkRoute: A framework for publishing relational
data in XML.TODS, 27(4):438–493, 2002.

[12] J. Flum and H. Ebbinghaus.Finite Model Theory. Springer,
2nd edition, 1999.

[13] F. Gécseg and M. Steinby. Tree languages. InHandbook of
Formal Languages, volume 3. Springer, 1996.

[14] E. Gr̈adel. On Transitive Closure Logic. InCSL, 1992.
[15] IBM. DB2 XML Extender.

http://www-3.ibm.com/software/data/db2/extended/xmlext/.
[16] R. Krishnamurthy, R. Kaushik, and J. F. Naughton. XML-

SQL query translation literature: The state of the art and open
problems. InXsym, 2003.

[17] L. Libkin. Elements of Finite Model Theory. Springer, 2004.
[18] B. Ludäscher, P. Mukhopadhyay, and Y. Papakonstantinou. A

transducer-based XML query processor. InVLDB, 2002.
[19] Microsoft. XML support in microsoftSQL server 2005, 2005.

msdn.microsoft.com/library/en- us/dnsql90/html/sql2k5xml.asp/.
[20] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML

transformers.JCSS, 66(1):66–97, 2003.
[21] F. Neven. On the power of walking for querying tree-

structured data. InPODS, 2002.
[22] F. Neven and T. Schwentick. Query automata over finite trees.

TCS, 275(1-2):633–674, 2002.
[23] Oracle. Oracle Database 10g Release 2 XML DB Whitepaper.

http://www.oracle.com/technology/tech/xml/ xmldb/index.html.
[24] C. H. Papadimitriou.Computational Complexity. AW, 1994.
[25] Y. Papakonstantinou and V. Vianu. Type inference for views

of semistructured data. InPODS, 2000.
[26] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,

B. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently pub-
lishing relational data as XML documents.VLDB J., 10(2-
3):133–154, 2001.

[27] M. Spielmann.Abstract State Machines: Verification Prob-
lems and Complexity. PhD thesis, RWTH Aachen, 2000.

[28] R. van der Meyden. The complexity of querying indefinite
data about linearly ordered domains.JCSS, 54(1), 1997.

[29] M. Y. Vardi. The complexity of relational query languages
(extended abstract). InSTOC, pages 137–146, 1982.

	Introduction
	XML Trees with Local Storage
	Publishing Transducers
	Characterization of XML Publishing Languages
	Decision Problems and Complexity
	Decision Problems for Publishing Transducers
	Complexity of Existing Publishing Languages

	Expressiveness of Publishing Transducers
	Tree Generation versus Relational Languages
	Expressiveness in Terms of Relational Queries
	Tree Generating Power
	Expressiveness of Existing Languages

	Conclusion
	References

