-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Expressiveness and complexity of xml publishing transducers

Citation for published version:

Fan, W, Geerts, F & Neven, F 2007, Expressiveness and complexity of xml publishing transducers. in
Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 11-13, 2007, Beijing, China. ACM, pp. 83-92. DOI: 10.1145/1265530.1265542

Digital Object Identifier (DOI):
10.1145/1265530.1265542

Link:
Link to publication record in Edinburgh Research Explorer

Document Version: _
Early version, also known as pre-print

Published In:
Proceedings of the Twenty-Sixth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, June 11-13, 2007, Beijing, China

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN o ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/28979184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/1265530.1265542
https://www.research.ed.ac.uk/portal/en/publications/expressiveness-and-complexity-of-xml-publishing-transducers(246102ef-9ab7-4483-959d-05042d909822).html

Expressiveness and Complexity of XML Publishing

Transducers
Wenfei Fan Floris Geerts Frank Neven
Univ. of Edinburgh &
Univ. of Edinburgh & Hasselt University & Hasselt University &
Bell Labs Transnational Univ. of Limburg Transnational Univ. of Limburg
wenfei@inf.ed.ac.uk fgeerts@inf.ed.ac.uk frank.neven@uhasselt.be
Abstract db
A number of languages have been developed for specifyinig A\ db
publishing,i.e., transformations of relational data in¥iL trees. course course course
These languages generally describe the behaviors of a middleware M
controller that builds an output tree iteratively, issuing queriestoa ¢no titte prereq course course course
relational source and expanding the tree with the query results at /l
each step. To study the complexity and expressive powgmuf coufee course prereq cno title
publishing languages, this paper proposes a notiopublishing /l\
transducers Unlike automata for queryingML data, a publish- o cno cno

ing transducer generates a ngML tree rather than performing a :
query on an existing tree. We study a variety of publishing trans- (@) XML view 7,
ducers based on what relational queries a transducer can issue, what
temporary stores a transducer can use during tree generation, and
whether or not some tree nodes are allowed to be virtiea) ex-

cluded from the output tree. We first show how existiigL R, itis to define a mapping such that for any instandeof R, ()
publishing languages can be characterized by such transducersis gnxmL tree.

We then study the membership, emptiness and equivalence prob- A number of languages have been developedfar. publish-
lems for various classes of transducers and existing publishing 'an'ing including commercial products such as annotated of Mi-
guages. We establish lower and upper bounds, all matching, rang-crosoftsQL Server 2005 [19JpAD of IBM DB2 XML Extender|[15],
ing from PTIME to undecidable. Finally, we investigate the expres- o\ «MLGEN of Oracle 10gXML DB [23], and research proto-

sive power of these transducers and existing languages. We Sho"‘fypesXPERANTO[ZG], TreeQL [11,2] andATG [5}[6]. These lan-

that when treated as relational query _Ianguages, different (:Iassesguages typically specify the behaviors of a middleware controller
of transducers capture either complexity classeg.(PSPACE or with a limited query interface to relational sources. YL view

fragments of dataloge(g.,linear datalog). For tree generation, We yefined in such a language builds an output tree top-down starting
establish connections between publishing transducers and logicakom the root: at each node it issues queries to a relational source,

(b) XML view 7,

Figure 1: Example XML publishing

to define arxML view for relational data: given a relational schema

transductions. generates the children of the node using the query results, and it-
Categories and Subject Descriptors: H.2.3 [Database Man- eratively expands the subtrees of those children in the same way.
agement]} Languages -Query LanguagesF.4.1 Mathematical It may (implicitly) store intermediate query results in registers and
Logic and Formal Languages] Mathematical Logic —Compu- pass the information downward to control subtree generétion [2, 5,
tational Logic 6,/15/19/ 28, 26]. It may also allowirtual tree nodeq [Z,|%,/6] that
General Terms: Languages, Theory, Design. will be removed from the output tree to expresg., XML entities.

Given a variety oiXML publishing languages, a user may natu-
) rally ask which language should be used to defin&ih view. Is
1. Introduction the view expressible in one language but not in another? How ex-
To exchange data residing in relational databases, one typically pensive is it to compute views defined in a language? Furthermore,
needs to export the data #sIL documents. This is referred to as after the view is defined, is it possible to determine, at compile time,
XML publishingin the literature[[2, 5, 11, 16, 26], and is essentially whether or not the view makes senge,, it does not always yield
an empty tree? Is this view equivalent to another vies, they al-
ways produce the same output tree from the same relational source?

Example 1.1: Consider aregistrar databasel, of a rela-
tional schemaR, consisting of course(cno, title, dept), and
prereq(cnol, cno2) (with keys underlined). The database maintains
course data and a relatioprereq, in which a tuple ¢, ¢2) indicates
that co is a prerequisite of;. That is, relationprereq gives the
prerequisite hierarchy of the courses.

The registrar office wants to export twavL views:

e XML view 11 contains the list of all thes courses extracted of publishing transducers. For example, annotated of Mi-
from the databasé&,. Under eactrourse are thecno (num- crosoft [19] is a class of “nonrecursive®T(CQ, tuple, normal),
ber) anditle of the course, as well as its prerequisite hierar- DBMS_XMLGEN of Oracle [23] can be expressed #I(FP, tuple,
chy. As shown in Fig__1(%), the depth of theursesub-tree normal), andsQu/xmL of IBM [15] is a class of nonrecursive
is determined by its prerequisite hierarchy. PT(FO, tuple, normal). Moreover, relation stores and virtual nodes

are needed to characterizeeeQL [11, (2] andATG [5} [6]. Con-

e View 7 is a tree of depth three. As depicted in fig. 1(b), it versely, for most classesT(£, S, O) there are existing publishing

consists of the list of all thes courses. Below eactvourse: languages corresponding to them. For the few that do not find a
¢ is the list of all thecno's that appear in the prerequisite corresponding commercial system, we explain why it is the case.
hierarchyof ¢, followed by thecno andtitle of c. For example, no commercial language correspondaT(eP, re-

éation, virtual) because it does not increase the expressive power
overPT(FO, relation, virtual), and for the latter a running prototype
5] has already been being used.

The user may ask the questions mentioned above regarding thes
XML views. As will be seen shortly, not all commercial languages ,
are capable of expressing these views due to the recursive nature ofYStemL:
the prerequisite hierarchy. | Static analysisWe investigate classical decision problems asso-

Answering these questions calls for a full treatment of the ex- Ciated with transducers: the membership, emptiness and equiva-
pressive power and complexity ®fIL publishing languages. The lence problems. The analyses of these problems may tell a user, at
increasing demand for data exchange aml publishing high- compile time, whether or not a publishing transducer makes sense
lights the need for this study. Indeed, this is not only important for (6mptiness), whether atML tree of particular interest can be gen-
the users by providing a guidance for how to choose a publishing €ratéd from a publishing transducer (membership), and whether a
language, but is also useful for database vendors in developing theMore efficient publishing transducer can in fact generate the same
next-generationkML publishing languages. Despite their impor- S€t of XML trees as a more expensive transducer (equivalence).

tance, to our knowledge no previous work has investigated these Ve establish complexity bounds for these problems, ranging from
issues. PTIME to undecidable, for all the classe3(L, S, O) and for the

special cases that characterize existing publishing languages. All
Publishing transducers. To examine the complexity and expres- these upper and lower bounds match We also provide data com-
siveness oKkML publishing languages in a comparative basis, we Plexity for evaluatingvarious publishing transducers.
need a uniform formalism to characterize these languages. To thisExpressive poweWe characterize the expressiveness of publishing
end, we introduce a formalism of transducers, referred tpuds transducers in terms of both relational query languages and logical
lishing transducers A publishing transducer is a top-down trans- transducers for tree generation.
ducer that simultaneously issues queries to a relational database, We first treat a publishing transducer as a relational query that,
keeps intermediate results in its local stores (registers) associatetbn an input relational database, evaluates to a relation which is the
with each node, and iteratively expangsiL trees by using the union of the registers associated to nodes of the output tree with
extracted data. As opposed to the automata for queryivig a designated label. We show that each cRKZ, S, O) captures
data [21] 22], it generates a newIL tree rather than evaluating either a complexity class or a fragment of a well-studied relational
aquery on an existing tree. In order to encompass existing publish-query language, except one for which we only show that it con-
ing languages, we parameterize publishing transducers using thetains a fragment of datalog. For example, the largest cagzp,
following parameters: relation, virtual) captureespAcEand the smallesPT(CQ, tuple,

o £ (logic): the relational query language in which queries Normal) captures linear datalog (seeg., [14]). Along the same
on relational data are expressed; we consider conjunctive lines we characterize the existing pupllshlng languages. For exam-
queries with =’ and ‘#’ (CQ), first-order queriesfO), and ple, we show thasQL/xML of IBM [15] is in FOand annotatessp
(inflationary) fixpoint queriesrP); of Microsoft [19] is in union ofcQ queries. . .
) .) For tree generation, we establish connections between certain
* 5 (store): registers that keep intermediate results; we fagments oPT(£, S, 0) and logical interpretation$ [12] or trans-
consider transducers in which each register stores a finite y,ctions [8]. For example, we show tHat(£, tuple, virtual) con-

relation versus those that store a singlple; tain the£-transducers for. ranging over CQ, FO and FP, and that

e O (output): the types of tree nodes; in addition normal regular unranked tree languages are contain@d(Ro, tuple, nor-
nodes that remain in the output tree, we may allortual mal) but not inPT(CQ, relation, virtual).
nodes that will be removed from the output. We study trans- In both settings we also provide separation and equivalence
ducers that only produce normal nodes versus those that mayresults for various classes of publishing transducers. For example,
also allow virtual nodes. we show thaPT(FP, relation, normal) an@T(FO, relation, normal)

are equivalent in the relational setting, whereas for tree generation,
PT(FO, relation, normal) is properly contained RT(FP, relation,
normal) but in contrast,PT(FO, relation, virtual) andPT(FP,
relation, virtual) have the same expressive power.

To our knowledge, this work is the first to provide a general the-
oretical framework to study the expressive power and complexity
Main results. We present a comprehensive picture of the com- Of XML publishing languages. A variety of techniques are used to

plexity and expressiveness for all classaéz, S, 0) as well as for prove the results, including finite model constructions and a wide
existingXML publishing languages. range of simulations and reductions.

Characterization of existingML publishing language3ie exam-
ine several commercial languages and research proposals, and shoRelated work. As remarked earlier, a number ®fL publishing
that each of these languages can be characterized as a special cat#nguages have been proposed (5eé [16] for a survey). However,

We denote byPT(L, S, O) various classes of publishing trans-
ducers, whereC, S, O are logic, store and output parameters as
specified above. As we will see later, different combinations of
these parameters yield a spectrum of transducers with quite differ-
ent expressive power and complexity.

the complexity and expressiveness of these languages have not beeone needs to pass information from a node to its children. To do
studied. There has also been recent work on data excheugg3) this, we store data values in a local store at each node. We assume
10]. This work differs from|[8] 10] in that we focus on (&) trans- a recursively enumerable infinite domdinof data valueswhich
formations from relational data toML defined in terms of trans- serves both as the domain of the relational databases and of the
ducers with embedded relational queries, rather than relation-to- local stores at nodes of the generated output tree.
relation [10] orXML -to-XML [3] mappings derived from source-to- A 3-tree with local storageor simply a tree if it is clear from the
target constraints, and (b) complexity and expressiveness analysegontext, is a paift, Reg), wheret is aX-tree, andRegis a function
instead of consistent query answering. that associates each node dom(t) with a finite relation oveb.

A variety of tree automata and transducers have been developed/e refer toRegv) as thelocal storeor theregisterof v, and use
(see|[13] for a survey), some particularly faviL (e.g.,[18,[20, 21, Trees to denote the set of all-trees with local storage.
22]). As remarked earlier, tree recognizers|[13] and the automata We consider two classes of trees: forale dom(t), (a) either
for queryingXmL [21,[22] operate on an existing tree, and either Regv) stores dinite relationover D, (b) or Reqv) is asingle tu-
accept the tree or select a set of nodes from the tree. In contrastpleoverD. These are referred to astrees withrelation stores and
a publishing transducer does not take a tree as input; instead, ittuplestores, respectively. Note that trees with tuple stores spea
builds a new tree by extracting data from a relational source. While cial caseof trees with relation stores. As will be seen shortly, the
the k-pebble transducers of [20] return ARIL tree as output, they content ofRegv) is computed via a relational query on a database
also operate on an inpMML tree rather than a relational database, overD, and it is used to control how the childrenofvill be gen-
and cannot handle data values. Similarly, 8™ of [18] takes erated.
XML data streams as input and produces one or igite streams.
Furthermore, the expressive power and complexity of these 3. Publishing Transducers
tra?r?;ifec;a];ssrgae\/eenn;:]ggfgf?Atllécrill(e(t)jr.] the expressive power and com- We now Qefine_ publishing tran_sducers. Intuitively, a publishing

. . . transducer is a finite-state machine that creates a tree from a rela-

plexity of relational query languages (seg [, 9] for surveys). While

those results are not directly applicable to publishing transducers tional database in @p-down way It starts from an initial state that
Y app etop 9 ’corresponds to the root node of the tree, and then foltbetsrmin-
some of our results are proved by capitalizing on related results on

relational query lanauanes istically a transition based on the current state of the transducer and

Lo icalqinte); ret%tio?]s .or transductions define a manpin the tag of the current node in the tree created so far. The transition

9 P . PPING " jiracts how the children of a node are generated based on the un-
from structures to structures through a collection of formulas

(seee.g..[B] for a survey of graph transductions). Recently logical derlying database, by providing the tags of the children as well as
9. [l y ot grap i : tylog relational queries that extract data from the database. More specif-
tree-to-tree interpretations are used|ih [4] to charactetizeery.

. ! . ically, for each child tag:, a relational query of the form(z; g)
gi)ﬁggﬁﬁg?&ﬁ%ﬁ'cﬁz to characterize the tree generating POWels specified, which generates a list of children labele@he result
' of the query is partitioned using tlggoup-byattributesz, yielding
Organization. Section[? reviewML trees. Sectiofi]3 defines sets of tuples. For each set, a child labeled spawned, carrying
publishing transducers. Sectioh 4 characterizes existing pub- the set in its local register, which will be used in queries in succes-
lishing languages in terms of these transducers. Sefcion 5 studiessive transitions. As a result, the structure of the tree is dependent
decision problems for a variety of publishing transducers and ex- on the underlying database instance.

isting languages, and Sectjoh 6 investigates their expressive power. We next define publishing transducers more formally. In the fol-

Sectior] ¥ summarizes the main results of the paper. lowing, a relational schema is a finite collection of relation names
and associated arities.
2. XML Trees with Local Storage Definition 3.1: Let R be a relational schema an@ a relational
We first reviewxXML trees and define trees with registers. query language. Aublishing transducefor R is defined to be

XML trees. An XML document is typically modeled as a node- 7 = (@2, ©,q,6), whereQ is a finite set oftates X’ is a finite
labeled tree. Assume a finite alphabebf tags A tree domain alphabet ofags © is a function from>. to N associating therity

domis a subset of K such that forany € N* andi € N, if v.i is of registersReg, to eachy taga; qo is thestart state andd is a
in domthen so isv, and in addition, ifi > 1 thenv.(i — 1) is also _flnlte set oftran;ductlon rulesuch that for eac!(nq, a) € QxX,

in dom A X-treet is defined to bedom(t), lab), wheredom(t) if ¢ # qo anda is not the root tag, then there is a unique rule of
is a tree domain, anldb is a function fromdom(t) to . the form:

Intuitively, dom(t) is the set of therodesin ¢, while the empty (¢,0) — (q1,a1,61(Z1;51)s - - s Qs Ok, Dr(Tis i)
string e represents the root af denoted byroot(¢). Each node)
v € dom(t) is labeled by the functiotub with a taga of ¥, called Herek > 0, and fori € [L k], (gi,a:) € @ x X, and¢; €
ana-element Moreover,v has a (possibly empty) list of elements £ is @ query fromR andReg, to Reg, , whereReg, andReg,,

as its children, denoted hildren(v). Herev.i € dom(t) is the are aO(a)- and a®(a;)-ary relation, respectively. To simplify
i-th child of v, andv is called the parent of.i. Note thatt is the discussion we assume that# a; if i # j. As mentioned
unrankedi.e., there is no fixed bound on the number of children of above, tuples in the result gf,(z;; 7:) are grouped by and are
a node irt. distributed among different children labeleg as the content of
In particular we assume thEtcontains a speciabot tagr, such Reg,,. of each child. This will be explained in more detalil pelow.
thatlab(e) = r and moreover, for any € dom(t), lab(v) # r _ There are two special cases: Qa)and_r do not appear in the
if v £ £. To simplify the discussion we also assume a special tag, fight-hand side of any rule, and there is exactly one rulegfor
text, in ©. Any node labeledext carries a stringCDATA) and is namely, the rule fofqo,), referred to as thetart rule; (b) if a is
referred to as aext node. text, thenk = 0 in the rule for(q, text), i.e., the right-hand side of
the rule is empty. a

Trees with local storage. We studyX-trees generated from re-
lational data. To construct a tree in a context-dependent fashion, Example 3.1: The view shown in Fig[1(4) can be defined by

a publishing transduceri = (Q1,%1, ©1, o, 1), Where
Q1 = {qo,q}, X1 = {db, course, prereq, cno, title, text}, and
the root tag isdb; we associate four sets of registéteg, Reg,,

Reg: andReg with course, prereq, cno andtitle nodes, to which
the arity-function©®; assign2, 1,1, 1, respectively; finallyg, is

defined as follows:

51 (qo, db) = (g, course, ¢1(cno, title; B)), where
¢1(cno,title) = 3 dept (course(cno, title, dept) A dept = ‘CS”)
81(q, course) = (g, cno, ¢3(cno; M), (g, title, Pp3(title; B)),
(g, prereq, ¢1(cno; ®)), where
qﬁ%(cno) = 3 title Reg,,(cno, title), and
¢35 (title) = 3 cno Reg,.(cno, title),
81(q, prereq) = (g, course, ¢3(cno, title; 0)), where
#3(c,t) =3¢’ d (Reg,(c") A prereg(c’, ¢) A course(c, t, d))
61(g, cno) = (g, text, pa(cno; D)), wherega(c) = Regy (c)

61(q, title) = (g, text, s (title; 0)), wheregs (t) = Reg (1)

Note that in each query(z; y) in the rules,|y| = 0, i.e., 7 is 0.
The semantics of; will be given in Examplé 3]2. o

A publishing transducer can be recursive. To illustrate this we
define thedependency grapt¥ of . For each(q,a) € Q x X
there is a unique node(q, a) in G, and there is an edge from
v(g,a) towv(q’,a) iff (¢’,a’) is on the right-hand side of the rule
for (¢,a). We say that the transduceris recursiveiff there is a
cycle inG,.

Transformations. In a nutshell;- generates a tree from a database
I of schemaR in a top-down fashion. Initiallyr constructs a tree

t consisting of a single node labelégh,) with an empty storage.
At each stepy expandg by simultaneouslyperating on the leaf
nodes oft. At each leafu labeled(q, a), 7 generates new nodes by
finding the rule for(q, a) from §, issuing queries embedded in the
rule to the relational databagend the registeReg,, (u) associated
with u, and spawning the children afbased on the query results.

its registerRega, (v:) stores the relatiofid; } x {& | IUReg, (u) =
#;(di; €)}; here we useReg, and Reg, to denote the registers
associated with the-nodew and thea;-nodew;, respectively. If
all f;’s are empty¢’ is obtained frong by labelingu with a.

If & = 0, i.e.,the right-hand side of the rule is empty, th&nis
obtained front by changing the label af to a. In particular, if the
taga is text, then in¢’, u carries a string representationRég,, (u)
(assuming a function that maps relations oleto strings, based
on the ordeK).

The first condition, referred to as tiséop-condition states that
the transformation stops at the leaif there is a node on the path
from the root tou such thatu repeatsthe stateg, taga, and the
content ofReg,, (v) of v. Since the subtree rootedais uniquely
determined byj, a, Reg, (u) andl, this asserts that the tree will not
expand at: if the expansiordoes not add new informatido the
tree. This stop condition is the same as the one usatds [6]. As
will be seen in the next section, most commercial systems support
only nonrecurisvepublishing transducers and thus do not necessar-
ily need a stop condition.

The second condition states how to generate the children of the
leaf u via a transduction rule. Observe that the children spawned
from u can be characterized by a regular expresaipn . a;,. For
eachj € [1, k], thea; children aregrouped bythe valuesi of the
parameteft in the quenay,;¢;(Z;; ;). Thatis, for each distinat
such thaBy, ¢, (d; 9;) is nonempty, am; child w is spawned from
u, carrying the result o, (d; g;) in its local storeReg, (w).

The transformatiorstopsat the leafu, i.e., no children are
spawned at, if (a) the stop condition given above is satisfied; or
(b) the queryp;(z;;y,) turns out to be empty for all € [1, k]
when it is evaluated ol andReg, (u); in this case all the forests
f; are empty; or (c) the right-hand side of the rule fqta) is
empty,i.e., k = 0 in condition (2) above; this is particularly the
case fora = text, as text nodes have no children. These conditions
ensure the termination of the computation. Note that transduction

The query results are kept in the registers of these children nodes at other leaf nodes may proceed after the transformation staps at

The transformation proceeds until a stop condition is satisfied at all
the leaf nodes (to be presented shortly). At the end, all registers

and states are removed from the ttee obtain a>-tree, which is
the output ofr.

We now formally define the transformation inducedbjrom
a databasé. As in [2], we assume an implicit ordering on D,

which is just used to order the nodes in the output tree and, hence

get a unique output. We dmtassume that the ordering is available
to the query languagé.

We extendX-trees with local storage by allowing nodes to be
labeled with symbols frolx U @Q x . We use Tregx s to denote
the set of all such extendédttrees. Then, every step in the trans-
formation rewrites a tree in Treg s, starting with the single-node
tree(qo,).

More specifically, for two tree§, ¢’ € Treey s, we define the
step-relation=, ; as follows: ¢ =, ; ¢ iff there is a leafu of ¢
labeled(q, a) and one of the following conditions holds:

(1) if there is an ancestar of u such thatu, v are labeled withthe
same state and tagindReg, (v) = Reg,(u), then¢’ is obtained
from & by changingab(u) to a. Otherwise,
(2) assume that the rule fdq,) is

(q,0) = (q1,a1,01(Z1; 1)), - - -+ (qk, ak, Pk (Th; Yi))-
If £ > 0, then¢’ is obtained fron€ by rooting the foresf; - - - fx
underu. For eachj € [1,k], f; is constructed as follows. Let
{dr,....dn} = {d | I UReg,(u) |= 35;¢;(d:)} anddy <
--- < d, with < extended to tuples in the canonical way. Thfen
is a list of nodeguy, - - - , vn], wherew; is labeled with(¢;, a;) and

Example 3.2: Given an instancd, of the schemaR, described
in Exampld L], the publishing transdueergiven in Examplé 3]1
works as follows. It first generates the root of the tteéabeled
with (qo, db). It then evaluates the quety on Ip, and for each
distinct tuple in the result, it spawnscaurse child v carrying the

'tuple in its registeReg, (v). At nodew it issues queriegs and$3

on Reg, (x), and spawns itsno, title andprereq children carrying
the corresponding tuple in their registers. At te child, it sim-
ply extracts the string value afo and the transformation stops;
similarly for title. At the prereq child u, it issues querys against
both Ip andReg, (u); i.€., it extracts all (immediate) prerequisites
of the coursev, for which the cno is stored iReg,(u). In other
words, thecno information passed down from nodes used to de-
termine the children ofi. For each distinct tuple in the resultof,
it generates a course child of The transformation continues un-
til either it reaches some course for which there is no prerequisite,
i.e., ¢ returns empty at itprereq child; or when a course requires
itself as a prerequisite (which does not happen in practice), and at
this point the stop condition terminates the transformation. The fi-
nal tree, after the local registers and states are stripped from it, is a
Y-tree of the form depicted in Fifj. I{a).

Note that the transformation @ata-driven the number of chil-
dren of a node and the depth of tkelL tree are determined by the
relational databasé O

We denote by=- ; the reflexive and transitive closure €f; ;.
The result of the 7-transformationon I w.r.t. < is the tree¢ such

that (gqo,7) =" ¢ and all leaf nodes of carry a label from>.
This means thaf is final and cannot be expanded anymore. We
use7(I) to denote theX-tree obtained front by striking out
the local storage and states frgm We denote byr(R) the set
{r(I) | I isaninstance oR}, i.e., the set of trees induced by
T-transformations od whenI ranges over all instances of the re-
lational schemaR. Note that for any order on the input instance, a
transducer always terminates and produces a unique output tree.

Virtual nodes. To cope withXML entities we also consider a class
of publishing transducers withirtual nodes Such a transducer is
of the formr = (Q, %, 0, qo, d, Xc), whereX, is a designated
subset of, referred to as theirtual tagsof r; andQ, X, ©, qo, ¢
are the same as described in Definifior] 3.1. We requiréthdbes
not contain the root tag. On a relational databAske transducer
7 behaves the same as a normal transducer, except thattitee
7(I) is obtained from the resuft of the 7-transformation o as
follows. First, the local registers and states are removed fom
Second, for each nodein dom(&), if v is labeled with a tag in
3., we shortcutv by replacingv with children(v), i.e., treating
children(v) as children of the parent @f and removing from the

that are defined with fixpoint-logic queries and generate trees with
relation stores and virtual nodes. In contr&(CQ, tuple, normal)
is the smallest.

For each clasBT(L, S, O), we denote byT,(L, S, O) its sub-
class consisting of allonrecursivaransducers in it.

For instance, the transducers and > given in Example§ 3|1
an[3.3 are irPT(CQ, tuple, normal) andT(FO, relation, virtual),
respectively {; is also definable irT,(FP, tuple, normal); we omit
this definition for the lack of space).

4. Characterization of XML Publishing Lan-
guages
We examine publishing languages that are either supported
by commercial products or are representative research proposals
(see [[16] for a survey). We classify these languages in terms of
publishing transducers with certain restrictions.

Microsoft SQL Server 2005[19]. Two main XML publishing
methods are supported by Microsoft, namelgRr-XML expres-
sions and annotatedsb schema.

tree. The process continues until no node in the tree is labeled with e first method extracts data from a relational sourcesga

ataginX..

Example 3.3: Suppose that we want to define a publishing trans-
ducer for thexML view shown in Fig[I{B), and that the query
language”l is FO. One can show, via a simple argument using
Ehrenfeucht-Frg<$ (EF)-style game, that this is not expressible as
a normal transducer of Definitign 3.1 (seeg.,[17] for a discus-
sion of EF games). In contrast, this can be defined as a publishing
transducerr, with virtual nodes. Indeed, capitalizing on a virtual
tag!l, we give some of the transduction rulesof 7» as follows:

52(go, db) anddz (g, course) are as in Exampfe 3.1

62(q, prereq) = (q,1, ¢1(0; cno)), (g, cno, w2(cno; 1))
¢1(c) =Reg,(c) v 3 ¢’ (Reg,(c') A prereq(c’, c))
p2(c) = p1(c) AV (Reg, (') « pr(c)),

62(g, 1) is asdz(q, prereq) with precreq =l andReg,, = Reg;.

In ¢1, |Z| = 0 and thus the result @f, is put in asingle relation
stored in the registeReg, (v) of thel child v. In contrast|y| = 0
in 2 and thus its query result igroupedby each distinct tuple.
Hence, if the query result is nonempty, then for each tuple in it, a
distinctcno child is generated.

Intuitively, for each course the transducer; recursively finds
¢cno’s in the prerequisite hierarchy efand adds theseno’s to the
relationReg, (v) until it reaches a fixpoint, whereis labeled with
the virtual tagl. Only at this point, the querys(c) returns a non-
empty setReg, (v). For eachcno in the set, a distinctno node is
created. Then, all the nodes labeledre removed and thosao
nodes become the children @f Thus7, induces thexmL view of

Fig.[1(B). o
Fragments. We denote byrT(L, S, O) various classes of publish-
ing transducers. Herd, indicates the relational query language in

queries, and organizes the extracted dataximb elements using a
FOR-XML construct. HierarchicatML trees can be built top-down

by nestedrorR-xML expressions. While no explicit registers are
used, during tree generation information can be passed from a node
to its children along the same lines as the use of tuple variables in
nestedsQL queries i.e., correlation). The depth of a generated tree
is bounded by the nesting level BOR-XML expressions (although
user-defined functions can be recursive, Microsoft imposes a max-
imum recursive depth, and thus a bounded tree depth). No virtual
nodes are allowed. ThusorR-XML expressions are definable in
PT.(FO, tuple, normal).

The second method specifies)aviL view by annotating a (non-
recursive)xsb schema, which associates elements and attributes
with relations and table columns, respectively. Given a relational
source, the annotatedsb constructs arKML tree by populating
elements with tuples from their corresponding tables, and instan-
tiating attributes with values from the corresponding columns. In-
formation is passed via parent-child key-based joins, specified in
terms of arelationship annotation. It only supports simple condi-
tion tests and does not allow virtual nodes. The depth of the tree is
bounded by the fixed “tree templateX4D). Thus annotatedsp
can be expressed #T,(CQ, tuple, normal).

IBM DB2 XML Extender [15]. IBM also supports two main meth-
ods:sQU/xXML and document access definitiam).

The first method extendsQL by incorporatingKML constructs
(e.0.,.XMLAGG, XMLELEMENT). It extracts relational data in paral-
lel with XML -element creation. Nested queries are used to generate
a hierarchicakmL tree, during which a node can pass information
to its children via correlation. The tree has a fixed depth bounded by
the level of query nesting, and has no virtual nodes. BagxmL

which queries embedded in the transducers are defined. We conis essentiallyPT,(FO, tuple, normal).

sider £ ranging over conjunctive queries witk* (CQ), first-order
logic (FO) and (inflationary) fixpoint logicKP), all with equality
‘=", StoreS is eitherrelation or tuple indicating that the:-trees

The second method in turn has two flavors, namely,
SQL_MAPPING andRDB_MAPPING. The former extracts relational
data with a singlsQL query, and organizes the extracted tuples into

induced by the transducers are with relation or tuple stores, respec-a hierarchicakML tree by using a sequence gfoup_by, one for
tively. Observe that transducers with tuple stores are a special caseeach tuple column and following a fixed order on the columns. The

of those with relation stores. For any transduceiith tuplestores,
;| = 0in each query; (z;; ¥:) in 7, asillustrated in Example 3.1.
OutputO is eithemormalor virtual, indicating whether a transduc-
ers allow virtual nodes or not. TherST(FP, relation, virtual) is the

depth of the tree is bounded by the arity of the tuples returned by the
query. The latter embeds nesteOB_NODE expressions in aAD.

The DAD is basically a tree template with a fixed depth, and those
embedded expressions are essentiaipygueries for populating el-

largest class considered in this paper, which consists of transducerements and attributes specified in thed. Neither of these two

Microsoft SQL Server 2005
FOR XML | annotated XSO
PT.(FO, t, n)] PT.(CQ, t, n)

IBM DB2 XML Extender
SQL/XML | DAD (SQL/RDB)
PT.(FO, t, n)| PT,(FO, t, n) (SQL)
PT.(CQ, t, n) (RDB)

Oracle 10g XML DB
SQL/XML |DBMS_XMLGEN
PT.(FO, t, n) PT(FP, t, n)

XPERANTO TreeQL ATG

PTa(FO, 1, N) | PTo(CQ, 1, V) | PT(FO, t, V) [B]]
PT(CQ, r, v)[6]

Table 1: Characterization of existingXML publishing languages (t: tuple; r: relation; n: normal; v: virtual)

allows virtual nodes. One can expressD with SQLMAPPING
in PT,(FO, tuple, normal), andkDB_MAPPING in PT,(CQ, tuple,
normal).

transducerr in this class, whether there is an instadoeith ¢ =
7(I), i.e.,, 7 on I computes the tree (ii) The emptiness problem
for PT(L, S, O) is to determine, given in this class, whether there
is an instancd with 7(I) # r, i.e., the tree with the root only.
So, it is to decide whether can induce nontrivial treesiii) The
equivalence problerfor PT(L, S, O) is to determine, given two
transducers; andr: in the class defined for relational databases of

Oracle 10gXML DB [23]. Oracle supportsQL/xML as described
above, and #®L/SQL packageDBMS_XMLGEN. DBMS_XMLGEN
extendssQL/XML by supporting the linear recursion construct
connect-by (SQL'99), and is thus capable of defining recursive the same schem, whether or not; (I) = 7»(I) for all instances
XML views. Given a relational source, &ML tree of an un- Jof R, i.e.,the two transducers produce the sathrees on all the
bounded depth is generated top-down, along the same lines asnstances oR.

nestedsQU/xXML queries. Information is passed from a node to W first establish upper and lower bounds for these problems, all
its children viaconnect-by joins. For each tuple resulted from the matching except one, for all classes of transducers defined in Sec-
joins, a child node is created, whose children are in turn created tjon[3. We then revisit these issues for nonrecursive transducers that
in the next iteration of the recursive computation. Neither virtual characterize the existing publishing languages studied in Ségtion 4.
nodes are allowed, nor an explicit stop condition is given. If the Our main conclusion for this section is that most of these problems

stop condition given in Secti¢r} 3 is imposediL views defined in
DBMS_XMLGEN are expressible iRT(FP, tuple, normal).

XPERANTO [26]. It supports essentially the sam®IL views as
SQU/XML, and thus irPT,(FO, tuple, normal).

TreeQL [11,[2]. TreeQL was proposed for theML publishing mid-

are beyond reach in practice for general publishing transducers, but
some problems become simpler for certain existing languages.

5.1 Decision Problems for Publishing Transducers

We first discuss the data complexity of computing the output of
a publishing transducer.

dleware SilkRoute [11]. Here we consider its abstraction developed Proposition 5.1: For anyr in PT(Z, S, O), whereL is CQ, FO or

in [2]. It defines anXML view by annotating the nodes of a tree
template (of a fixed depth) withQ queries. It supports virtual tree

nodes and tuple-based information passing via free-variable bind-

ing (i.e., the free variables of the query for a nodeare a subset
of the free variables of each query for a childwf ThusTreeQL
views are expressible T, (CQ, tuple, virtual).

ATG [[6]. Attribute transformation grammarsTG) were pro-
posed in[[5] and revised in [6], foxML publishing middleware
PRATA. An ATG defines arKML view based on ®TD, by associ-
ating each element type with an inherited attribute (register), and
annotating each production — « in the DTD with a set of rela-
tional queries, one for each sub-element tyda the regular ex-
pressiony, specifying how to populate thesub-elements of an
element. It supports recursi@a Ds and thus recursivEML views,

as well as virtual nodes to cope witML entities. While the early
version of [5] employs=O queries and tuple registers, the revised
ATGs [6] adoptCQ queries, relation registers and the stop condition
of Sectior B ATGs of [5,[6] are basicallypT(FO, tuple, virtual) and
PT(CQ relation,virtual), respectively.

The characterization is summarized in Tafple 1. Except
DBMS_XMLGEN andATGs, these languages do not support recur-
sive XML views exported from relational data. Indeed, one can
verify, via a simpleEF-game argument, that theviL views of Ex-
amplg 3.1 and 3]3 are expressibl®®BMS_XMLGEN andATGs, but
not in the other languages.

5. Decision Problems and Complexity
In this section we first provide tight worst-case complexity for

evaluating various publishing transducers. We then focus on central

FP, andO is normal or virtual, and for any databasethe size of
7(I) is at most exponential and double exponential in the size of
I when S is tuple and relation, respectively. There are instances
for which this maximal size is reached whgnis CQ. Worst-case
data-complexity i€EXPTIME and ZXPTIME when S is tuple and
relational, respectively. a

PrROOF It suffices to remark that the rank efI) is bounded
by a polynomial in the siz¢l| of I, its depth by a polynomial in
|I| if S is tuple, and by an exponential § is relation. To see
that the bounds are tight, for transducers with tuple stores consider
a databasé; encoding abAG of a certain shapee(g.,a chain of
diamonds), and a recursive transduegein PT(CQ, tuple, normal)
expanding theAG into a tree. Then the size of the outpu{(1:)
is exponential inI;|. For relation stores, considés encoding a
n-digit binary counter, and- in PT(CQ, relation, normal) that at
each node creates two branches, each incrementing the counter by
1. Then the size ofy(I5) is 22" m

We now turn to the classical decision problems associated with
transducers.

Proposition 5.2: Membership, emptiness and equivalence are un-
decidable foPT(L, S, O) whenL isFOorFP, S is relation or tuple,
andO is virtual or normal. |

PrROOF It suffices to show that these problems are undecidable
for PT(FO, tuple, normal). This is verified by a reduction from the
satisfiability problem for relation&O queries, which is known to
be undecidable (see,g.,[1]). |

For £ equal toCQ, the situation gets slightly better.

decision problems associated with these transducers. Consider & heorem 5.3:ForPT(CQ, S, O),

classPT(L, S, O) of publishing transducers.i)(The membership
problemfor PT(L, S, O) is to determine, given &-treet and a

e the emptiness problem is decidablermiME for PT(CQ, S,
normal), but becomesp-complete folPT(CQ, S, virtual);

e the equivalence problem is undecidable;

e the membership problem 85-complete forPT(CQ, tuple,
normal), but becomes undecidable when eittiés relation
or O is virtual. U

PrROOF For the emptiness problem ferin PT(CQ, S, normal),
it is sufficient to test emptiness of tka® queries in the start rule of
7. The satisfiability of these queries can be checkedrimE in the
size of the queries. Thep lower bound for the emptiness problem
for PT(CQ, tuple, virtual) is by a reduction fromsaT [24]. The up-
per bound for the emptiness problem fom PT(CQ, relation, vir-
tual) is proved by providing anp algorithm that (1) guesses a path
from the root of the dependency graph of 7 to a node labelled
with a non-virtual tag; (2) checks the satisfiability of the composi-
tion of theCQ queries along that path. The latter can be checked in
PTIME in the size of the originatQ queries.

For PT(CQ, tuple, normal) the undecidability of the equivalence
problem is by a reduction from the halting problem for 2-register
machines (sees.g.,[7]) which leads to the undecidability of the
problem forPT(CQ, S, O). We note that it remains undecidable for
PT(CQ, relation,O) without ‘£".

The 3% lower bound for the membership problem #@T(CQ,
tuple, normal)n the absence ot#’, is by a reduction fromd*Vv*-
3SAT [24]. The upper bound is proved by (1) establishing a small
model property: for any-treet andr in the class, it € 7(R),
then there exists ah such thatr(I) = ¢ and|I| is linear in|¢|;

(2) providing an algorithm for checking the existencd dify using

a nondeterministi®eTIME Turing machine with avp oracle. For
PT(CQ, tuple, virtual), the undecidability is by a reduction from
the emptiness problem for deterministic finite 2-head automata
(seee.q.,[27]). ForPT(CQ, relation,O), the undecidability is by a
reduction from the satisfiability problem f60 queries: given &0
queryq on databases of schenia, we define a new schenfa,
that subsume®; to encode the result of each sub-query;pénd

a transducer in the class that checks whethgon an instancd

of R, yields the result coded in the corresponding instancB-nf
Capitalizing on virtual nodes, we show thdtR2) contains a fixed
tree iff ¢ is not satisfiable. The proof does not make use#f ‘' O

5.2 Complexity of Existing Publishing Languages

The results of the previous section carry over immediately to the
existing publishing languages adopting recursion, whichPa(er,
tuple, normal) OBMS_XMLGEN), PT(FO, tuple, virtual) &TG [5])
and PT(CQ, relation, virtual) ATG [6]). Table[] shows that, in
contrast, many of them are non-recursit,(FO, tuple, normal)
(FOR-XML, SQL_mapping,sQL/XML), PT.(CQ, tuple, normal) (an-
notatedxsD, RDB_mapping), andT,(CQ, tuple, virtual) reeqL).
Each of these nonrecursive classes is treated below.

We show that the absence of recursion for these publishing lan-
guages simplifies the analyses. Indeed, for ang one of these
nonrecursive classes, thetree induced by- on any database is
bounded byr. From this it follows:

Corollary 5.4: For publishing transducetrsin PT,(FO, tuple, nor-
mal) (orPT.(CQ, tuple()), the worst-case data complexity for
transformations is iPTIME (both forO normal or virtual). O

The decision problems also become simpler, to an extent.

Theorem 5.5: The emptiness, membership and equivalence prob-
lems are undecidable f&T,(FO, tuple, normal). The emptiness
problem forPT,(CQ, tuple, normal) is in PTIME; it issP-complete

for PT,(CQ, tuple, virtual). The membership and equivalence prob-
lems forPT,(CQ, tuple,O) areXt-complete, and iil5-complete,
respectively. O

PrROOF. The proof of Proposition 5] 2 remains intact for,(FO,
tuple, normal). Similarly, theeTIME upper bound for emptiness
of Theoren{ 5. trivially holds foPT,.(CQ, tuple, normal). Since
the NP lower bound proof of Theorefn §.3 for emptiness uses a
non-recursive transducer, the lower bound extendsTig(CQ, tu-
ple, virtual). Thenp upper bound of Theorefn 3.3 trivially holds
for PT.(CQ, tuple, virtual). Similarly, forPT,(CQ, tuple,O), the
> upper-bound proof of Theore@.S for membership extends to
PT.(CQ, tuple, virtual). For the equivalence problem for,(CQ,
tuple, normal), we prove thig% lower bound by reduction from the
V*3*v*-3SAT problem. We give &I5-time checking algorithm for
PT.(CQ, tuple, virtual), by characterizing transducer equivalence in
terms of (a) isomorphism between the dependency graphs of trans-
ducers pAGS), and (b) a form of equivalence @@ queries along
the paths in the twoAGs starting from the root. O

6. Expressiveness of Publishing Transducers

In this section, we characterize the expressive power of pub-
lishing transducers in terms of relations-to-tree mappings (i.e., tree
generation) and relations-to-relation mappings (i.e, relational query
languages).

6.1 Tree Generation versus Relational Languages

Although publishing transducers define mappings from rela-
tional databases to trees, they can also be considered as a relational
query language mapping relational databases to relations. To this
end, we fix a designated output lakel For any instancé of R,
the 7-transformation on/ yields a final tree with local storage
in Treep « s, from which the outpub-treer(I) is obtained by re-
moving local stores and transducer states (recall from Section 3).
Therelationinduced byr on I is then defined to be the union of all
the storesReg, (v) for all nodesv labeleda, in £. Therefore, we
refer tor as a relational query whenis viewed as a mapping from
instanced to the relation induced by on I. Whenr is viewed
as a relation-to-tree mapping, we refer#taas a tree generating
mapping.

We want to compare the expressive power of one class
PT(L1, S1, 01) with that of another clasBT(L2, Sz, O2) both as
a tree generation and a relational query language. We say that
PT(L1,S1,01) is contained inPT(L2, S2, O2) as a tree/relational
query language, denoted (L1, S1,01) C PT(L2, S2, O2), if
for any 1 in PT(L41,S1,0:) defined for a relational schenya,
there existg in PT(L2, S2, O2) for the sameR such that they de-
fine the same tree/relational query.

The two classes are said to bgquivalentin expressive power,
denoted byPT(L1, S1,01) = PT(L2, S2,02), if PT(L1,S1,01)

- PT(LQ7 Sa, 02) and PT(EQ, Sa, 02) C PT([:l, Sh 01) We say
that PT(L1, S1, O1) is properly contained irPT(L2, S2, O2), de-
noted byPT(L1,S1,01) C PT(L2, S2,02), if PT(L1,51,01) C
P-r(ﬁz7 SQ, 02) but F:'T(£17 Sl, 01) 7é PT(ﬁQ7 SQ, 02) These no-
tions extend to comparingT(L, S, O) vs. other tree generating
formalisms, and to comparirRr(L, S, O) vs. relational query lan-
guages.

We also characteriz€T(L, S, O) with respect to complexity
classes. TreatingT(L, S, O) as a relational query language, for
example, we consider threcognition problenfor its transducers
7: given a tuplex and an instancé of the schema for which is
defined, it is to determine whetheris in the relationR,(a,) in-
duced byr on I. We say thaPT(L, S, O) capturesa complexity
clas<C if the recognition problem for all transducersAm(L, S, O)
is in C and moreover, for any quegywhose recognition problem is
in C, there exists in PT(L, S, O) defined on the same scherlas
q, such thaty andr return the same output relation on all instances

of R.
Outline.

databasesPT(FP, tuple, O) and PT(FO, tuple, O) capturePTIME

We study the expressive power of all the classes anNdNLOGSPACE respectively. On unordered structures, since the

PT(Z, S, 0) defined in Sectiofi]3 with respect to relational query Parity queryeven is not expressible irFP, it is not definable in
and tree generation languages, in Secfioris 6.2ahd 6.3, respectively? T(FP, tuple,). We simulateDDATALOG and LINDATALOG in

We then investigate the expressive power of exisknt. publish-

PT(CQ, relation,O) and PT(CQ, tuple, O), respectively, and vice

ing languages in Sectign 6.4. The results in this section hold irre- V€rsa for LINDATALOG.

spectively of whether the queries ihhave explicit access to the
order< on the domairD, unless explicitly stated otherwise.

6.2 Expressiveness in Terms of Relational Queries

We start by treatingT(L, S, O) as a relational query language.
We first review two fragments of datalog. One fragmentiris
ear datalog(seee.g., [1]), denoted by LNDATALOG. It con-
sists of datalog programs in which each rule is of fopz) —
p1(Z1), ..., pn(Tn), and moreover, at most ope is anIDB predi-
cate. We allow somg; to be##. The other, referred to aetermin-
istic datalogand denoted bypDATALOG, is the class of programs
in which eachiDB predicate has only one rule of the form above
(its body may contain more than orzB predicate).

We useTCo[L] to denote a fragment of transitive closure logic:
the set of all formulagTCz 5 ©](a,b), wherep € L. Follow-
ing [14] one can verify thal Cy[CQ] = LINDATALOG.

The main result of Sectidn §.2 is given as follows.

Theorem 6.1: When treated as relational query languages,
1) PT(L, S, virtual) = PT(L, S, normal),
(2) PT(CQ, tuple,O) C PT(FO, tuple,O)
3) C PT(FP, tuple,O)
4) C PT(FO, relation()
(5) = PT(FP, relation,O),
(6) PT(CQ, tuple,O) C PT(CQ, relation,O)
@ C PT(FO, relation,0),
(8) PT(CQ, relation,0) € PT(FO, tuple,O),
where O is either normal or virtual. The containment in state-
ment (3) is proper iNLOGSPACE# PTIME. Moreover,
(a) PT(FO, relation,O) capturePSPACE

(b) PT(FP, tuple, O) = (inflationary) FP on ordered databases
and thus capturesTIME.

(c) PT(FO, tuple, O) = TCo[FO] on ordered databases, and
thus capturesiLOGSPACE On unordered databas@s(FO,
tuple,O) C NLOGSPACE

(d) PT(CQ, relation,0) D DDATALOG.
(e) PT(CQ, tuple,0) = LINDATALOG. 0

Among other things, this tells us the following in the relational

setting. Virtual nodes do not add expressive power (statement (1)) 4)

and thus we only need to consid®i(L, S, normal). In contrast, we

have to treat publishing transducers with relation stores and those(6)

with tuple stores separately (4, 6, 8). Whiledoes not add expres-
sive power oveFOin PT(L, relation,O), it does inPT(L, tuple,O)
(5, 3). Moreover, replacingQ with FO in PT(CQ, S, O) leads to
increase in expressiveness whers either relation or tuple (2, 7).

The rest of the results position the expressive power of these trans

ducersw.r.t. complexity classes and datalog fragments.

PROOF To show thaPT(FO, relation,O) capturesPSPACE we
first show that for each in PT(FO, relation, O), its recognition
problem can be determined by using nondeterministieAcETur-

Statement (1) holds because for any t¢e@duced by a trans-
ducer inPT(L, S, virtual), and for any normak-elementv in &,
removing virtual nodes frord does not change the content of the
registerReg, (v). Statement (5) is verified by simulatif@ queries
in PT(FO, relation, normal). Statements (4, 6) follow from (5) and
the fact that each transducerrm(L, tuple,O) is a special case of
PT(L, relation,O) in which for any querys(z, §), 7 is the empty
list. The containmentin (4) is proper since on unordered structures,
even is expressible irPT(FO, relation,O) but not inFP. We show
that the containment of (6) is proper by defining a transdader
PT(CQ, relation,O) that takes a relation encoding the edges of a
rooted graphG as input, expand€' into a tree, and adds a certain
node to the tree iff the root off has two particular descendants
on different branches aff. One can verify that is not express-
ible even inPT(FO, tuple, O) (this requires afEF-game argument
to show that the relational query defined bys not definable in
FO). From this also follows (8). To prove that the containments
in (2, 7) are proper, we give &0 queryq, which is clearly defin-
able inPT(FO, tuple,0), and show thag is not definable ifPT(CQ,
relation,O) due to the monotonicity a£Q queries. |

6.3 Tree Generating Power

For tree generation, we provide separation and equivalence re-
sults for various classes of publishing transducers, and establish
their connection with logical transducefs [8] and regular tree lan-
guages (specialize0TDs).

Equivalence and separation As opposed to Theorefn 6.1, Propo-
sition[6.2 below shows that when it comes to tree generation, virtual
nodes do add expressive power to publishing transducers. More-
over, if £ C L', thenPT(£’, S, normal) properly containBT(Z,

S, normal) whereas in the relational query settirg(FP, relation,
normal) =PT(FO, relation, normal). The other results in Proposi-
tion[6.3 are comparable to their counterparts in Thegren 6.1.

Proposition 6.2: For tree generation,
(1) PT(L, S, normal)C PT(L, S, virtual),
(2) PT(L, S, normal)c PT(L’, S, normal) if £ c L',

(3) PT(CQ, tuple, virtual)C PT(FO, tuple, virtual)
C PT(FP, tuple, virtual)

(5) PT(CQ, relation, virtual)C PT(FO, relation, virtual)
= PT(FP, relation, virtual),

(7) PT(L, tuple,0) C PT(L, relation,O).
(8) PT(CQ, relation, normal}Z PT(FP, tuple, virtual),

where L, L1, L2 are FP, FO or CQ, and O is normal or virtual.

“The containment in (4) is properMTIME ANLOGSPACE |

PROOF We prove that the containments in (1-5) are proper
as follows. For (1), we define; in PT(CQ, tuple, virtual) that
can generate &-tree in which the root has exponentially many

ing machine. Conversely, we simulate every partial fixpoint query children, which is not doable even by transducersijFP, re-
(known to capture PSPACE on ordered instances) using a trans-lation, normal). For (2-5), observe that by Theorgm] 6.1, there
ducer and show that a total order is definable in this class. Sim- exists a Boolean query in £’ not expressible iPT(Z, S, O) if

ilarly, we simulate each in PT(FP, tuple, O) (resp.PT(FO, tu-
ple, 0)) in FP(resp. inTCy[FQ]), and vice versa. Thus on ordered

PT(L, S, 0) is considered as a relational query language (for (4)
if PTIME #NLOGSPACH. We definers in PT(£’, S, normal) such

that o generates a nontrivial tree iff is satisfied. Statement (6)
holds since eachP query can be simulated ®T(FO, relation, vir-
tual) by using virtual nodes. The containment of (7) is proper since
transducers irPT(L, relation, O) can induce trees of exponential

A specialized>TD d over X is a triple (X', d’, g), whereX C
Y/, g is a mappingt’ — X, andd’ is aDTD over¥'. A X-
treet conforms tod if there exists &'-treet’ that satisfies!’ and
moreover,t = g(t'). We denote byL(d) the set of allX-trees

depth, as opposed to trees of polynomial depth induced by those inconforming tod.

PT(L, tuple,O); similarly for (8). O

Logical transducers. For a logicL, anL-tree-transduction defines
a mapping from relations over a scheR#o a tree with a sequence
of L-formulase., ¢« and(¢a).cx such that on every-structure

I, ¢.(I), < (I)ande,(I) define the edge relation, the ordering on
the siblings, and the-labeled nodes of the tree, respectively. To ex-

A specializedDTD d is said to be definable iRT(Z, S, O) if
there exists a publishing transdueein the class defined for some
relational schema such thatl(d) = 7(R).

The next result tells us that whehis FO or FP, PT(L, S, virtual)
is capable of defining all specializ&Ds, and thus all regular un-
ranked trees anSO definable trees. In contras®T(CQ, S, O)
does not have sufficient expressive power to define ev@s. We

press transformations of exponential size increase (like publishing defer a full treatment of the connection between publishing trans-

transducers cany. (I) defines ebAG, and we consider its unfold-

ducers €.9.,PT(FP, S, normal) andPT(FO, S, normal)) and regular

ing as a tree when making a comparison with publishing transduc- treellanguages to the full version of the paper due to the space con-
ers. First-order (resp. second-order) transductions are those wher&traint.

nodes of the output tree akeary tuples (respk-ary relations) over
the input structure, for some fixéd An £-transductiori is fixed-
depthwhen there is aif such that for any inpuf, 7'(I) is a tree

of depth at most. In a similar way to logical transductions, we
can also defin€-transductions (both first and second order) for a
complexity clas<C where there ar€-Turing machines to decide
the relationsp., ¢« and(¢a)acs.

Theorem 6.3:

1. When/. ranges ovecQ, FO andFP, everyL-transduction is
definable inPT(L, tuple, virtual).

. When £ ranges overFO and FP, every transducer in
PT.(L, tuple, virtual) is definable as a fixed-depif+
transduction.

. There is a recursive transducePiT(FO, tuple,O) that is not
definable as arO-transduction.

. When/Z ranges ovecQ, FO andFP, over unordered trees,
fixed-depth £-transductions are equivalent ®T,(L, tu-
ple, O).

. Over ordered input structureBT(FO, relation, virtual) and
PT(FP, tuple, virtual) contain thespAceEsecond-order and

PTIME first-order transductions. O

PROOF (1) A direct simulation using virtual nodes to express
arbitrary sequences of labels shows tha{L, tuple, virtual) are
at least as expressive @stransductions. (2) When transducers
are nonrecursive, there is no stop condition, am¢’, tuple, vir-
tual) corresponds precisely ttransductions generating trees of a
fixed depth. (3) This statement holds because recupsiyeo, tu-
ple, O) can express graph-reachability known not definabledn
(4) When disregarding the order of siblings, virtual nodes are no
longer needed and fixed deptb-transductions become equivalent
to PT.(FO, tuple,0). (5) PT(FO, relation, virtual) andPT(FP, tuple,
virtual) are quite expressive as they contain all transformations in
PSPACEandPTIME, respectively, over ordered structures. Here the
correspondence betwe&® and PTIME, and between partial fix-
point andPSPACEON ordered structures, is exploited. |

Regular tree languages.It is known [22] that a set of unranked
trees is regular iff it isMSO definable, and that a set of trees is
MSO definable iff it is the set of trees recognized by a specialized
DTD [25]. Recall that DTD d’ overX is defined by a set of rules of
the forma — «, whereqa is atag inX anda is a regular expression
overX. A X-treet conforms tod iff for eacha-elementv in ¢, the

list of labels ofchildren(v) is a string inc.

Theorem 6.4:When L is FO or FP, every specialize®TD overX
is definable inPT(L, tuple, virtual). There exigbTDs that are not
definable inPT(CQ, relation, virtual). O

PROOF. For each specializedTD d, we definer in PT(FO, tu-
ple, virtual) for a schem# encoding a graph such that all trees in
7(R) conform tod, and for anyt € L(d), there is an instanckof
R such that = 7(I). We show thabTDswith disjunctive rules are
not definable irPT(CQ, relation, virtual) due to the monotonicity of
CQqueries. O

6.4 Expressiveness of Existing Languages

We next study the expressiveness of existing publishing lan-
guages in the relational-query and tree generation settings.

Relational Query Languages.t can be verified that the results of
Theoren]{ 6L foPT(FP, tuple, normal)PT(FO, tuple, virtual) and
PT(CQ, relation, virtual) also hold fobBMS_XMLGEN andATGs,
respectively. The theorem below settles the issue”iQi(FO, tu-
ple, normal) EOR-XML, SQL-mapping, XPERANTO, SQL/XML),
PT.(CQ, tuple,O) (annotatecksD, RDB_mapping,TreeL).

Theorem 6.5: When treated as relational query languages,
PT.(FO, tuple,O) = FO, andPT,(CQ, tuple,O) = UCQ (UCQ de-
notes union of conjunctive queries wits, #"). O

PROOF Every UCQ query can be simulated iRT,(CQ, tu-
ple, O). Conversely, for each transduceiin PT,(CQ, tuple, O)
and a designated output tag, the output relatiorR,(a,) of a7-
transformation is computed by the union of géith querieswhere
each path query is the compositions of &@queries on a path in
the dependency graph effrom the root to a leaf node labeled.
Similarly, PT,.(FO, tuple,O) = FO can be verified. O

Tree generation. The proof for (1, 2) of Propositigh §.2 remains
intact for nonrecursive transducers. As an immediate corollary,
PT.(CQ, tuple, normal)C PT,(FO, tuple, normal) an®T,.(CQ, tu-
ple, normal)C PT.(CQ, tuple, virtual). Theorein 6] 3 has shown that
for unordered trees fixed-depEo-transductions are equivalent to
PT.(FO, tuple,O).

Publishing languages characterized by nonrecursive publishing
transducers do not have sufficient expressive power to defibs,
due to the bound on the depth of the trees induced. From The-
orem[6.4 it follows that specializedTDs are definable imMATGs
of [5].

7. Conclusion

We have proposed the notion of publishing transducers and
characterized several existi@IL publishing languages in terms

Fragments Equivalence| Emptiness | Membership Fragments Complexity/Language
PT(FP,S,O) (Th.[5.2) undecidable| undecidable| undecidable|| PT(FP, rl,O) (Th.|6.1) PSPACE
PT(FO,S,0) (Th.|5.2) || undecidable| undecidable| undecidable|| PT(FO, rl,O) (Th.|6.1) PSPACE
PT(CQ, tp, nm) (TH. 5{3)| undecidable| PTIME YP-complete| | PT(FP, tp,O) (Th.[6.1) | FP, PTIME (ordered database)
PT(CQ, rl, nm) (Thi 5.8)|| undecidable] PTIME undecidable| | PT(FO, tp,0) (Th.|6.1) | TCo[FO], NLOGSPACE(ordered)
PT(CQ,S, vr) (Th.|5.3) || undecidable| NP-complete| undecidable|| PT(CQ, rl,O) (Th.|6.1) O DDATALOG

PT..(FO, tp, nm) (Th| 55]| undecidable] undecidable| undecidable| | PT(CQ. tp,0) (Th.[6.1) | TCo[CQ], LINDATALOG
PT.(CQ, tp, nm) (Thl 5.5) I15-complete] PTIME >.P-complete| | PT,(FO, tp,O) (Th.|6.5) FO
PT.(CQ, tp, vr) (Th| 5.5)|| II5-complete| NP-complete| Xf-complete| | PT,(CQ, tp,0) (Th.|6.5) uCQ

Table 2: Complexity of decision problems §: relation or tuple; O:
normal or virtual; tp: tuple; rl: relation; nm: normal; vr: virtual)

of these transducers.
transducers, including both genemT(L, S, O) and nonrecur-
sivePT.(L, S, O) characterizing existing publishing languages, we

For a variety of classes of publishing

Table 3: Expressive power characterized in terms of
relational query languages

Problem Springer, 1997.
[8] B. Courcelle. Monadic second-order definable graph trans-
ductions: A surveyTCS 126(1):53-75, 1994.

have provided (a) a complete picture of the membership, equiva- [9] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity

lence and emptiness problems, (b) a comprehensive expressiveness
analysis in terms of both querying and tree generating power, as

and expressive power of logic programmidM Comput.
Sury, 33(3):374-425, 2001.

well as a number of separation and equivalence results. We expect[10] R. Fagin, P. Kolaitis, and L. Popa. Data exchange: getting to

these results will help the users decide what publishing languages

to use, and database vendors develop or improve commgneial
publishing languages.

The main results for the static analyses and querying power (for
relational queries only due to lack of space) are summarized in Ta-
bleg2 an{I B, respectively, annotated with their corresponding theo-

rems and conditions(g.,ordered). These tables show that differ-
ent combinations of logi€, storeS and outputO, as well as the

presence of recursion, lead to a spectrum of publishing transducers

with quite different complexity and expressive power.
The study of publishing transducers is still preliminary. An open

issue open question concerns, when treated as a relational query

language, whether or nBt(CQ, relation,0) capture DDATALOG?
We only know thatbDATALOG is containedPT(CQ, relation, O).
Another interesting topic is the typechecking problem for publish-

the coreTODS 30(1):174-210, 2005.

[11] M. F. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and
W. C. Tan. SilkRoute: A framework for publishing relational
data in XML.TODS 27(4):438-493, 2002.

[12] J. Flum and H. Ebbinghau§inite Model Theory Springer,
2nd edition, 1999.

[13] F. Gecseg and M. Steinby. Tree languagesHendbook of

Formal Languagesvolume 3. Springer, 1996.

[14] E. Gradel. On Transitive Closure Logic. [DSL, 1992.

[15] IBM. DB2 XML Extender.

http://www-3.ibm.com/software/data/db2/extended/xmlext/.

[16] R. Krishnamurthy, R. Kaushik, and J. F. Naughton. XML-
SQL query translation literature: The state of the art and open
problems. InXsym 2003.

ing transducers. Our preliminary results (not included due to lack [17] L. Libkin. Elements of Finite Model Thear$pringer, 2004.
of space) show that while this is undecidable in general, there are[18] B. Ludascher, P. Mukhopadhyay, and Y. Papakonstantinou. A

interesting decidable cases. This issue deserves a full treatment of

its own. Finally, we plan to investigate two-way and nondetermin-
istic publishing transducers.

Acknowledgments We thank Michael Benedikt, Christoph Koch
and Leonid Libkin for helpful discussions. Wenfei Fan is sup-
ported in part byEPSRC GR/S63205/01, GR/T27433/ahd BBSRC
BB/D006473/1 Floris Geerts is a postdoctoral researcher of the
FWO Vlaanderen and is supported in partdBSRC GR/S63205/01

8. References

[1] S. Abiteboul, R. Hull, and V. Vianu.Foundations of
DatabasesAddison-Wesley, 1995.

[2] N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Type-
checkingxmL views of relational databaseBOCL, 4, 2003.

[3] M. Arenas and L. Libkin. XML data exchange: consistency
and query answering. IRODS 2005.

[4] M. Benedikt and C. Koch. Interpreting tree-to-tree queries. In
ICALP, pages 552-564, 2006.

[5] M. Benedikt, C. Chan, W. Fan, R. Rastogi, S. Zheng and
A. Zhou. DTD-directed publishing with attribute translation
grammars. In/LDB, 2002.

transducer-based XML query processorVirDB, 2002.

[19] Microsoft. XML support in microsofsQL server 2005, 2005.
msdn.microsoft.com/library/en- us/dnsql90/html/sql2k5xml.asp/.

[20] T. Milo, D. Suciu, and V. Vianu. Typechecking for XML
transformersJCS$66(1):66—-97, 2003.

[21] F. Neven. On the power of walking for querying tree-
structured data. IRODS 2002.

[22] F. Neven and T. Schwentick. Query automata over finite trees.
TCS 275(1-2):633-674, 2002.

[23] Oracle. Oracle Database 10g Release 2 XML DB Whitepaper.
http://www.oracle.com/technology/tech/xml/ xmldb/index.html.

[24] C. H. PapadimitriouComputational ComplexityAW, 1994.

[25] Y. Papakonstantinou and V. Vianu. Type inference for views
of semistructured data. RODS 2000.

[26] J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey,
B. Lindsay, H. Pirahesh, and B. Reinwald. Efficiently pub-
lishing relational data as XML document¢LDB J, 10(2-
3):133-154, 2001.

[27] M. Spielmann.Abstract State Machines: Verification Prob-
lems and ComplexityPhD thesis, RWTH Aachen, 2000.

[28] R. van der Meyden. The complexity of querying indefinite

data about linearly ordered domaid€S$54(1), 1997.

[6] P. Bohannon, B. Choi, and W. Fan. Incremental evaluation of [29] M. Y. Vardi. The complexity of relational query languages

schema-directed XML publishing. BIGMOD, 2004.
[7] E.Borger, E. Gadel, and Y. Gurevichlhe Classical Decision

(extended abstract). BTOC pages 137-146, 1982.

	Introduction
	XML Trees with Local Storage
	Publishing Transducers
	Characterization of XML Publishing Languages
	Decision Problems and Complexity
	Decision Problems for Publishing Transducers
	Complexity of Existing Publishing Languages

	Expressiveness of Publishing Transducers
	Tree Generation versus Relational Languages
	Expressiveness in Terms of Relational Queries
	Tree Generating Power
	Expressiveness of Existing Languages

	Conclusion
	References

