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Abstract

We present a technique for refining the design of rela-

tional storage for XML data based on XML key propaga-

tion. Three algorithms are presented: one checks whether

a given functional dependency is propagated from XML keys

via a predefined view; the others compute a minimum cover

for all functional dependencies on a universal relation given

XML keys. Experimental results show that these algorithms

are efficient in practice. We also investigate the complex-

ity of propagating other XML constraints to relations, and

the effect of increasing the power of the transformation lan-

guage. Computing XML key propagation is a first step to-

ward establishing a connection between XML data and its

relational representation at the semantic level.

1 Introduction
Over the past five years, XML has become enormously

popular as a data exchange format. A common paradigm

is for a data provider to export its data using XML; on the

other end, the data consumer imports some or all of the

XML data and stores it using database technology. Since

the XML data being transmitted is often large in size and

fairly regular in structure, the database technology used is

frequently relational.

A problem with XML is that it is only syntax and does

not carry the semantics of the data. To address this problem,

a number of constraint specifications have recently been

proposed for XML which include a notion of keys; such

proposals have also found their way into XML-Data [18]

and XML Schema [28]. A natural question to ask, there-

fore, is how information about constraints can be used to

determine when an existing consumer database design is

incompatible with the data being imported, or to generate

de-novo a good consumer database. We illustrate the prob-

lem below.

Example 1.1: Suppose that the XML data (represented

as a tree) in Fig. 1 is being exchanged and that the ini-

tial design of the consumer database has a single ta-

ble Chapter with fields bookTitle, chapterNum

�
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bookTitle chapterNum chapterName

XML 1 Introduction

XML 10 Conclusion

XML 1 Getting Acquainted

(a) Chapter: the initial design

isbn chapterNum chapterName

123 1 Introduction

123 10 Conclusion

234 1 Getting Acquainted

(b) Chapter: a refined design

Figure 2. Sample relational instances

and chapterName (written Chapter(bookTitle,
chapterNum, chapterName)). The table is popu-

lated from the XML data as follows: For each book el-

ement, the value of the title subelement is extracted.

A tuple is then created in the Chapter relation for

each chapter subelement containing the title value

for bookTitle, the number value for chapterNum,

and the name value for chapterName (see Fig. 2(a)

for the resulting relational instance.) The key of the

Chapter table has been specified as bookTitle and

chapterNum. While importing this XML data, vi-

olations of the key are detected because two different

books have the same title (“XML”) and disagree on the

name of chapter one (“Introduction” versus “Getting Ac-

quainted”). After digging through the documentation ac-

companying the XML data, the database designers decide to

change the schema to Chapter(isbn, chapterNum,
chapterName) with a key of isbn and chapterNum
(populated in the obvious way from the XML data). The

resulting relational instance is shown in Fig. 2(b). While

importing the XML data, no violations of the key con-

straint are detected. However, the designers are not sure

whether they were lucky with this particular XML data set,

or whether such violations will never occur.

It turns out that given the following keys on the XML

data, the designers of the consumer database could prove

that the key of Chapter in their modified design is correct:

1. isbn uniquely identifies a book element.

2. Within each book, number is a key for chapter,

i.e., number is a key for chapter relative to book.

3. Each book has a unique title, and within each
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Figure 1. Tree representation of XML data

book, each chapter has a unique name.

That is, if these XML keys hold on the data being im-

ported, then � � � � � 
 �  � � � � � � � � 
 �  � � � � �  � � is a

functional dependency (FD) that is guaranteed to hold on

the Chapter relation generated (in other words, (isbn,
chapterNum) is a key of the relation). We refer to the FD

as one that is propagated from these XML keys.

In general, given a transformation to a predefined rela-

tional schema and a set � of XML keys, one wants to know

whether or not an FD is propagated from � via the trans-

formation. Let us refer to this problem as XML key prop-
agation. The ability to compute XML key propagation is

important in checking the consistency of a predefined rela-

tional schema for storing XML data. �

On the other hand, suppose that the relational database is

designed from scratch or can be re-designed to fit the con-

straints (and thus preserve the semantics) of the data being

imported. A common approach to designing a relational

database is to start with a rough schema and refine it into a

normal form (such as BCNF or 3NF [1]) using FDs. In our

scenario, we assume that the designer specifies the rough

schema by a mapping from the XML document. The FDs

over that rough schema must then be inferred from the keys

of the XML document using the mapping. However, it is

impractical to compute the set  of all the FDs propagated

since  is exponentially large in the number of attributes.

We would therefore like to find a minimum cover [1] of  ,

that is, a subset  " of  that is equivalent to  (i.e., all

the FDs of  can be derived from  " using Armstrong’s

Axioms) and is non-redundant (i.e., none of the FDs in  "
can be derived from other FDs in  " ).

Example 1.2: Returning to our example, suppose that the

database designers decide to start from scratch and initially

propose a schema of Chapter(isbn, booktitle,
author, chapterNum, chapterName), with the

obvious mapping from the data in Fig. 1. From the three

keys given earlier, the following minimum cover for

Chapter can be derived: 1) isbn � bookTitle, and

2) isbn,chapterNum � chapterName. Taking ad-

vantage of these FDs, the following BCNF decomposition

of the initial design would be produced: Book(isbn,
bookTitle), Chapter(isbn, chapterNum,

chapterName), and Author(isbn, author).

Note that isbn � author is not mapped from the keys

since a book may have several authors. �

Contributions. In this paper, we propose a framework for

improving consumer relational database design. Our ap-

proach is based on inferring functional dependencies from

XML keys through a given mapping (transformation) of

XML data to relations. The class of XML keys considered

includes those commonly found in practice, and is a subset

of those in XML Schema [27]. More specifically, we make

the following contributions:
$

A polynomial time algorithm for checking whether an

FD on a predefined relational database is propagated

from a set of XML keys via a transformation.
$

A polynomial-time algorithm that, given a universal

relation specified by a transformation rule and a set of

XML keys, finds a minimum cover for all the func-

tional dependencies mapped from XML keys.
$

Undecidability results that show the difficulty of XML

constraint propagation.
$

Experimental results which show that the algorithms

are efficient in practice.

Note that the polynomial-time algorithm for finding a mini-

mal cover from a set of XML keys is rather surprising, since

it is known that a related problem in the relational context –

finding a minimum cover for functional dependencies em-
bedded in a subset of a relation schema – is inherently ex-

ponential [16].

The undecidability results give practical motivation for

the restrictions adopted in this paper. In particular, one

result shows that it is impossible to effectively propagate

all forms of XML constraints supported by XML Schema,

which include keys and foreign keys, even when the trans-

formations are trivial. This motivates our restriction of con-

straints to a simple form of XML keys. Another undecid-

ability result shows that when the transformation language

is too rich, XML constraint propagation is also not fea-

sible, even when only keys are considered. Since XML

to relational transformations are subsumed by XML to

XML transformations expressible in query languages such

as XQuery [8], this negative result applies to most popular

XML query languages.

 



Related Work. In [14, 13], a chase/backchase method

is presented which can be used for determining constraint

propagation in a semistructured data model when views are

expressed in CRPQ (conjunctive regular path queries) and

dependencies are DERPDs (disjunctive embedded regular

path dependencies). However, the method does not com-

pute a minimum cover for propagated FDs; it is also too

general to be efficient for checking propagation of XML

keys. The CPI algorithm of [19] is orthogonal to our work

and derives constraints from DTDs. Our work also paral-

lels that of [2], which investigates propagation of type con-

straints through queries.

The problem of finding a cover for FDs embedded in a

subset of a relational schema has been studied in [16] and

shown to be inherently exponential. It is worth mentioning

that the problem of computing embedded FDs cannot be

reduced to ours since the XML key language cannot capture

relational FDs, and vice versa.

Approaches for using a relational database to store XML

data include [21, 24, 25, 5]. However, our framework and

algorithms are the first results on mapping XML constraints

through relational views. The transformation language de-

veloped in this paper is also similar to that of Stored [12]

and aspects of the new release of Oracle (9i) [22].

Organization. The next section describes the class of XML

keys considered and our transformation language. Section 3

states the constraint propagation problem and establishes

the undecidability results. Sections 4 and 5 present algo-

rithms for computing XML key propagation and minimum

cover. Experimental results are given in Section 6, followed

by our conclusions in Section 7. Complete details are given

in the full version of the paper [11].

2 XML Keys and Transformations
XML keys. To define a key we specify three things: 1) the

context in which the key must hold; 2) a target set on which

we are defining a key; and 3) the values which distinguish

each element of the target set. For example, the second key

specification of Example 1.1 has a context of book, a tar-

get set of chapter, and a single key value, @number.

Specifying the context node and target set involve path ex-

pressions.

The path language we adopt is a common fragment of

regular expressions [17] and XPath [10]:� � � � � � � � � 	 � � 	 	
where

�
is the empty path,

�
is a node label, “/” denotes

concatenation of two path expressions (child in XPath), and

“//” means descendant-or-self in XPath. To avoid confusion

we write � 	 	 �
for the concatenation of � ,

	 	
and

�
. A

path � is a sequence of labels
� � 	 � � � 	 � �

. A path expression�
defines a set of paths, while “

	 	
” can match any path. We

use � � �
to denote that � is in the set of paths defined by�

. For example, � � � � 	 � ! # % � ' 	 ( � * , � 	 	 ( � * ,
.

Following the syntax of [6]1 we write an XML key as:- � / 1 3 / 6 3 9 � � 3 � � � 3 � ; = > >
where

-
is the name of the key, path expressions

1
and6

are the context and target path expressions respectively,

and � � 3 � � � 3 � ; are the key paths. For the purposes of this

paper, we restrict the key paths to be simple attributesA B � 3 � � � 3 A B ; , and denote this class of keys as D F . A key

is said to be absolute if the context path
1

is the empty path�
, and relative otherwise.

Example 2.1: Using this syntax, the sample constraints

from Section 1 and others can be written as follows:

G - I � � / � 3 / 	 	 � � � � 3 9 A P R � ( = > > : within the context of

the entire document (
�

denotes the root) a book ele-

ment is identified by its
A P R � (

attribute. The book

node can occur anywhere in the tree.G - I S � / 	 	 � � � � 3 / W % � Y # , ' 3 9 A ( ! * � , ' = > > : within the

context of any subtree rooted at a book node, a chapter

is identified by its
A ( ! * � , ' attribute. The chapter

node must be immediately under the book node.G - I Z � / 	 	 � � � � 3 / # P # � , 3 9 = > > : each book has at most

one title; similarly,G - I ] � / 	 	 � � � � 	 W % � Y # , ' 3 / ( � * , 3 9 = > > for the name of

a chapter, andG - I _ � / 	 	 � � � � 	 W % � Y # , ' 	 R , W # P � ( 3 / ( � * , 3 9 = > > for

section name.G - I b � / 	 	 � � � � 	 W % � Y # , ' 3 / R , W # P � ( 3 9 A ( ! * � , ' = > > :

within the context of a chapter of a book, each section

is identified by its @
( ! * � , ' attribute.G - I d � / 	 	 � � � � 3 / � ! # % � ' 	 W � ( # � W # 3 9 = > > : a book can

have multiple authors, but at most one has contact in-

formation (the contact author). f
To define the meaning of an XML key, we use the following

notation: in an XML document (tree),
( g g � h h denotes the set

of node identifiers that can be reached by following path

expression � from the node with identifier
(

.
g g � h h is an

abbreviation for ' g g � h h , where ' is the root node of the tree.

Example 2.2: In Fig. 1,
g g � � � � h h � 9 j 3 j l = ,

j g g W % � Y # , ' h h �
9 m 3 n = and

g g 	 	 A ( ! * � , ' h h � 9 j q 3 j r 3 s t 3 s u 3 q s = . f
Definition 2.1: An XML tree

6
satisfies an XML keyv � / 1 3 / 6 3 9 A B � 3 � � � 3 A B ; = > > , denoted

6 � � v
, iff for

any
(

in
g g 1 h h and any

( � 3 ( S
in

( g g 6 h h , (1)
( �

and
( S

each

has a unique attribute
A B {

for all
P � g j 3 Y h , and (2)

if | � � / ( � � A B { > � | � � / ( S � A B { > for all
P � g j 3 Y h then( � � ( S

, where | � � / ( � � A B { > denotes the text value associ-

ated with the attribute
A B {

of
( �

. f
Example 2.3: The XML tree of Fig. 1 satisfies our

sample constraints. For example,
- I �

is satisfied sinceg g 	 	 � � � � h h � 9 j 3 j l = and | � � / j � A P R � ( > �� | � � / j l � A P R � ( > .

One can check
- I S

by verifying the absolute key

1We adopt this syntax for keys because it is more concise than that of
XML Schema.

 



� � � � � 	 � � � � � � � � � � � � � � �   
in the context of each of the

subtree rooted at 1 and the one rooted at 19; similarly for" $ %
to

" $ &
. '

This definition of keys has several salient features: First,

keys can be scoped within the context of the entire doc-

ument (an absolute key), or within the context of a sub-

document (a relative key). Second, the specification of keys

is orthogonal to the typing specification for the document

(e.g. DTD or XML Schema). The type of documents

will therefore be ignored throughout this paper. Combining

keys with schema information, as is done in XML Schema,

adds complexity to the inference problem. As demonstrated

by [3], it is NP-hard even to check whether XML Schema

keys are satisfiable, i.e., whether there exist any XML doc-

ument which satisfies those keys. In contrast, the keys stud-

ied here are always satisfiable [7].

Transformation Language. The transformation language

forms a core of many common transformations found

throughout the literature, in particular those of [25].

Definition 2.2: A transformation ( from XML data to

relations of schema ) * � + - � / / / � + 1  
is specified as� 4 5 6 8 � + -  � / / / � 4 5 6 8 � + 1   

, where each Rule(
+ >

), re-

ferred to as the table rule for
+ >

, is defined with:

?
a set @ >

of variables, in which A C is a distinguished

variable, referred to as the root variable;
?

a set of field rules
� D F H � D � � � A  J D L � � � �+ >  �

, where

A is a distinct variable in @ >
, and

� � � � + >  
denotes the

set of attributes in the schema of relation
+ >

;
?

a set of variable mapping rules of the form A T V W X ,

where A � V L @ >
and X is a path expression.

In addition, each variable A L @ >
is connected to the root�

; that is, A is specified with either A T A C W X in the rule,

or A T V W X and V is connected to the root
�
; moreover, for

any A T V W X , 1) X is a simple path (i.e. without //) unless

V is A C , and 2) no field rule is defined as
D F H � D � � � V  

when

there exists a variable A specified with A T V W X . '
Example 2.4: Expanding on Example 1.1, consider the fol-

lowing schema R (with keys underlined):

book(isbn, title, author, contact),

chapter(inBook, number, name),

section(inChapt, number, name).

A transformation ( from the XML data of Fig. 1 to R could

be specified as:

( = (Rule(book), Rule(chapter), Rule(section))

Rule(book) =
�

isbn: value( A -
), title: value( A _ ),

author: value( A %
), contact: value( A ` )

�
,

A a T A C //book, A - T A a /@isbn, A _ T A a /title,

A d T A a /author, A % T Ad /name, A ` T Ad /contact;

Rule(chapter) =
�

inBook: value( V -
), number:

value( V _ ), name: value( V %
)

�
,

r

book

chapter

section

name

Xr
r

book

Xr

//

@number

@number

Zc

Zs

Z3

Z1

Z2

//

title@isbn author

name contact

X1

Xb

Xa

X4

X2

X3

(b) Rule(section)(a) Rule(book)

Figure 3. Table trees

V a T A C //book, V - T V a /@isbn, V g T V a /chapter,

V _ T V g /@number, V % T V g /name;

Rule(section) =
�

inChapt: value( j -
), number:

value( j _ ), name: value( j %
)

�
,

j g T A C //book/chapter, j - T j g /@number,

j k T j g /section, j _ T j k /@number, j % T j k /name. '
Table trees. Throughout the remainder of the paper, we

will use an abstract representation of a table rule called a

table tree. The idea is that by treating “ W W ” as a special

node label, each table rule can be represented as a node-

labeled tree. For example, Fig. 3 depicts the table trees for4 5 6 8 � � o o p  
and

4 5 6 8 � q � � � r o �  
in Example 2.4. In a table

tree t u representing Rule(R), each variable in Rule(R)

corresponds to a unique node, and each node corresponds

to at most one variable.

Semantics. Given an XML tree t , each
4 5 6 8 � + >  

maps

t to an instance v >
of

+ >
. More specifically, given a vari-

able specification A T V W X , A ranges over V x x X y y ; A C is al-

ways interpreted as the root
�
. A field rule

D F H � D � � � A  
populates the

D
field with values in

� H � D � � � A  J A L
V x x X y y �

, where function
H � D � �

returns a string represent-

ing the pre-order traversal of the subtree rooted at A . Let� � � �+ >  * � D - � / / / � D | �
and each variable A be specified

with A T A } W X ~ . Then the instance v >
is generated by

v > * � � D - F H � D � � � A -  � / / / � D | F H � D � � � A |   J A C * � � A L
A } x x X ~ y y � A L @ > �

.

Example 2.5:
4 5 6 8 � q � � � r o �  

is interpreted as:

� � r � � 	 � � F H � D � � � j -  � � � � � � � F H � D � � � j _  �
� � � � F H � D � � � j %   J j g L � x x W W � o o p W � 	 � � � � � y y

j - L j g x x � � � � � � � y y � j k L j g x x q � � � r o � y y �
j _ L j k x x � � � � � � � y y � j % L j k x x � � � � y y � /

Referring to the XML tree t in Fig. 1,
H � D � � � �  

returns

(@number:1, name: (S: Introduction)). The interpretation

of the rule for section (Example 2.4) over t generates fol-

lowing instance:

section inChapt number name

1 1 Fundamentals

1 2 Attributes '

 



Several subtleties are worth mentioning. First, since

XML data is semistructured it is possible that for � � � � � ,

� 
 
 � � � is empty. In this case  � � � � � � � is defined to be null.

Second, if � 
 
 � � � has multiple elements, then to generate the

relation, an implicit Cartesian product is computed so that

all nodes in � 
 
 � � � are covered in the relation.

3 Problem Statement and Limitations
Key propagation. The question of key propagation asks if

given a transformation � from XML data to relations of a

fixed schema R and an XML tree � satisfying a set � of

XML keys, whether � � � � satisfies an FD � (on a schema �
in R). We write � 	 
 � � � � if the implication holds for all

XML trees satisfying � , and refer to � as an FD propagated

from � . With respect to a transformation specification lan-

guage, the key propagation problem is to determine, given

any � expressed in the language, any XML keys � and an

FD � , whether or not � 	 
 � � � � . Note that we do not

require the XML data to conform to any type specification.

A subtle issue arises from null values in � � � � , the re-

lations generated from an XML tree � via � . In particular,

there may exist � tuples in � � � � with FD � � � such that

their � or � fields contain null. The presence of null
complicates FD checking since comparisons of null with

any value do not evaluate to a Boolean value [23]. A brutal

solution is to restrict the semantics of the transformation �
so that a tuple is not included if it has a null field. Since

XML is semistructured, this could exclude a large number

of “incomplete” tuples from � � � � . We therefore adopt the

following semantics of FDs: � � � � satisfies FD � � � ,

denoted by � � � � 	 
 � � � , iff (1) for any tuple ! in � ,

if " $ � ! � contains null then so does " ' � ! � ; and (2) for

tuples ! ) + ! - in � , if neither ! ) nor ! - contains null and

" $ � ! ) � 
 " $ � ! - � , then " ' � ! ) � 
 " ' � ! - � . The motivation

behind the first condition is that an FD is possibly treated

as a key when normalizing the relational schema, and an

“incomplete key” � cannot determine complete � fields.

Another issue we should address is the simplicity of the

transformation language, which can only express projection

( " ), Cartesian product ( . ) and a limited form of set union

( / ). One might be tempted to develop a richer language

which can express all relational algebra operators: projec-

tion, selection ( � ), Cartesian product, set union and differ-

ence ( 0 ). Although these operators can be generalized to

XML trees, the following negative result holds:

Theorem 3.1: The key propagation problem from XML to

relational data is undecidable when the transformation lan-

guage can express all relational algebra operators. 1

The undecidablity is established by reduction from the

equivalence problem for relational algebra queries (see [11]

for a proof); the latter is a well-known undecidable prob-

lem [1]. In contrast, for our transformation language there

is a polynomial time algorithm in the size of � and � .

r
Xr

book

Y1

section

name

chapter

name

Xa

Y2

X2

X4

//
Xb

Yc

X1

@isbn

@number

@number

title author

name contact

X3

Zs
Z1

Z2

Figure 4. 2 4 6 8 � 9 �
Minimum cover. The problem of finding a minimum cover

is to compute, given a universal relation 9 and a set � of

XML keys, a minimum cover : ; for the set : = of all FDs

on 9 propagated from � . Guided by : ; , one can then

decompose 9 into a normal form as illustrated by Exam-

ple 1.2. This is analogous to techniques for designing rela-

tional databases [1]. In our context, a universal relation is

simply the collection of all the fields of interest, along with

a table rule that defines these fields.

Example 3.1: Recall the schema R and the transformation

given in Example 2.4. A universal relation 9 here is the

collection of all the fields of R, defined as follows:

U = (bookIsbn, bookTitle, bookAuthor, authContact,

chapNum, chapName, secNum, secName),

2 4 6 8 � 9 � = @ bookIsbn: value( � ) ), bookTitle: value( � - ),

bookAuthor: value( � A ), authContact: value( � B ),

chapNum: value( � ) ), chapName: value( � - ),

secNum: value( C ) ), secName: value( C - ) D ,

� E � � F //book, � ) � � E /@isbn, � - � � E /title,

� G � � E /author, � A � � G /name, � B � � G /contact,

� H � � E /chapter, � ) � � H /@number, � - � � H /name,

C J � � H /section, C ) � C J /@number, C - � C J /name

The table tree of 2 4 6 8 � 9 � is depicted in Fig. 4.

¿From the set of XML keys of Example 2.1 the following

minimum cover for the FDs on 9 can be computed:

bookIsbn � bookTitle,

bookIsbn � authContact,

bookIsbn, chapNum � chapName,

bookIsbn, chapNum, secNum � secName.

Guided by these FDs, we can decompose 9 into BCNF:

book(bookIsbn, bookTitle, authContact),

author(bookIsbn, bookAuthor),

chapter(bookIsbn, chapNum, chapName),

section(bookIsbn, chapNum, secNum, secName) 1

Although in the relational context algorithms have been

developed for computing a minimum cover for a set of

FDs [4, 16, 20], they cannot be used in our context since the

FDs must be computed from the XML keys � via the trans-

formation � , instead of being provided as input for those

relational algorithms. Furthermore, relational FDs are not

capable of expressing XML keys and vice versa.

 



Propagation of other XML constraints. XML Schema

supports keys and foreign keys. Although it is tempting to

develop algorithms to compute the propagation of both keys

and foreign keys, we have the following negative result:

Theorem 3.2: The propagation problem for XML keys and

foreign keys is undecidable for any transformation lan-

guage that can express identity mapping. �
The “identity” mapping is one in which the XML rep-

resentation of relations is mapped to the same relations (in

our language this corresponds to a small class of transfor-

mations defined with paths of length � ). The undecidability

result is established by reduction from implication of re-

lational keys and foreign keys, which is undecidable [15]

(see [11] for a reduction). Because of this we restrict our

attention to the propagation of XML keys.

4 Checking Key Propagation
Checking key propagation is nontrivial for a number of

reasons: First, XML data is semistructured in nature, which

complicates the analysis of key propagation by the pres-

ence of null values. Second, XML keys which are not in�
but are consequences of

�
may yield FDs on a relational

view. Thus key propagation involves XML key implica-

tion. Third, XML data is hierarchically structured and thus

XML keys are relative in their general form – they hold on

a sub-document. However, its relational view collapses the

hierarchical structures into a flat table and thus FDs are “ab-

solute” – they hold on the entire relational view. Thus one

needs to derive a unique identification of a sub-document

from a set of relative keys.

Before presenting our polynomial-time algo-

rithm for checking XML key propagation (Algo-

rithm propagation), we first discuss the notion of

a “keyed” node and the implication of XML keys.

Transitive set of XML keys. To uniquely identify a node

within the entire document we need a set of XML keys iden-

tifying unique contexts up to the root. To formalize this, we

use the following notion [7]: ( � � � 	 � � � � � � � ) immediately

precedes ( � � � 	 � � � � � � � ) if � � � � � � � � � . The precedes re-

lation is the transitive closure of the immediately precedes

relation. A set
�

of keys is transitive if for any relative key

( � � � 	 � � � � � � � ) in
�

there is an absolute key ( � � 	 � �� � � � � )

in
�

which precedes ( � � � 	 � � � � � � � ). We say that a node

is keyed if there exists a transitive set of keys to uniquely

identify the node.

Example 4.1: The set �  � � �  � � # is transitive since any

chapter in the document can be identified by providing

@isbn of a book and @number of a chapter. Thus every

chapter node is keyed. In contrast, �  � � # is not transitive

since with it alone there is no way to uniquely identify a

book in the document, which is necessary before identify-

ing a chapter of that book. �

Implication of XML keys. One aspect of key propagation

is to determine whether an XML key $ must hold provided

that a set
�

of XML keys holds, denoted by
� & � $ . In other

words,
� & � $ iff for any XML tree ' , ' satisfies $ as long

as ' satisfies all the keys in
�

. An algorithm for implica-

tion analysis, implication, can be found in [11]. The

algorithm takes as input a set
�

and $ of XML keys of ( )
and returnstrue iff

� & � $ . It is based on a set of inference

rules that, along the same lines as the Armstrong’s Axioms

for implication of FDs in relational databases, allows one to

derive key implication systematically. One example of the

rules is target-to-context: if 	 � � 	 � � � � � � � � � is a key then

so is 	 � � � � � 	 � � � � � � . Intuitively, the rule states that if �
can uniquely identify a set 2 of nodes in the entire tree ' ,

then it can also identify nodes of 2 in any subtree of ' ;

observe that for any nodes 3 4 6 6 � 7 7 and 3 � 4 3 6 6 � � 7 7 , the

subtree rooted at 3 � is a subtree of the one rooted at 3 . An-

other example of a trivial rule is epsilon: for any path � , it

is true that 	 � � 	 � � � # � � . Intuitively, it states that any subtree

has a unique root node. Algorithm implication deter-

mines whether or not
� & � $ in > 	 & � & � & $ & � � time, where& � &

and
& $ &

are the sizes of
�

and $ .

Table tree. Algorithm propagation uses the tree rep-

resentation of a transformation to bridge the gap between

XML keys and the FD @ to be checked. Without loss of gen-

erality, assume that @ is of the form A B D with D 4 G I I 	 L �
and A N G I I 	L � , and that for the relation L , Q R T V 	 L � is

� D X Y [ G D ] ^ 	 _ X � & a 4 6 b � c 7 # along with a set e of vari-

ables and mappings _ g i � k for each _ 4 e . In the

table tree ' l representing Q R T V 	 L � , any variable _ in e
has a unique node corresponding to it, referred to as the _ -

node. In particular, the _ n -node is the root of ' l . Observe

that for any _ � i 4 e , if the _ -node is a descendant of the

i -node in ' l , then there is a unique path in ' l from the

i -node to _ -node, which is a path expression. We denote

the path by k 	 i � _ � , which exists only if there are variables

_ � � q q q � _ r in e such that _ � � i , _ r � _ and for eacha 4 6 b � w x b 7 , _ X y � g _ X � k X is a mapping in Q R T V 	 L � . We

use } ^ ~ � ^ 3 } G 3 I ~ 	 i � to denote the set of all the variables

that are descendants of i ; we define G 3 � ^ ~ I � � ~ 	 i � simi-

larly. In particular, if _ is specified with _ g i � k then the

variable i is called the parent of _ , denoted by � G � ^ 3 I 	 _ � .

Referring to Fig. 3 (b), for example, _ n is the parent of � � ,

and k 	 _ n � � � � is � � � � � w � � � G � I ^ � .

Algorithm. The intuition behind Algo-

rithm propagation is as follows. Given an FD

@ � A B D on L , assume that D is specified with [ G D ] ^ 	 _ � ,

and that the table tree representing Q R T V 	 L � is ' l . Then� & � � @ iff (1) either @ is trivial, that is, D 4 A , or there

exists an ancestor I G � � ^ I of _ in ' l such that I G � � ^ I is

keyed with fields of A and moreover, _ is unique under

I G � � ^ I ; that is, there is a set of transitive keys that uniquely

identifies I G � � ^ I with only those attributes which define

 



Algorithm propagation

Input: XML keys � , FD � � � � 	 over 
 ,
and �  � � � 
 � in transformation � , in which 	 � � � 	 � ! � # � .
Output: true iff � & � ( 
 � � .
1. � + , ! . / 1 2 3 # 5 := + 6 	 ;
2. w:= x;
3. while 8 :� # < do
4. 8 := = � 2 ! + / � 8 � ;
5. � + , ! . / 1 2 3 # 5 := 8 � � � + , ! . / 1 2 3 # 5 ;
6. Ycheck := � F H 	 I ;
7. if 	 J �
8. then L ! M N 1 � + O := / 2 � ! ;
9. else L ! M N 1 � + O := P � 	 . ! ;
10. , 1 + / ! # / := # < ;
11. while � + , ! . / 1 2 3 # 5 :� + 6 	 do
12. / � 2 U ! / := V ! � O � � + , ! . / 1 2 3 # 5 � ;
13. W := H � � & 	 � J � � 	 � � � � 	 � ! � M � J 
 � 	 ! � 
 � �

M � / � 2 U ! / 
 � � is a variable mapping I

14. if not L ! M N 1 � + O
15. then if implication � � � � � � # < � , 1 + / ! # / � ,

� � � , 1 + / ! # / � / � 2 U ! / � � W � � �
16. then , 1 + / ! # / := / � 2 U ! / ;
17. if implication � � � � � � # < � / � 2 U ! / � �

� � � / � 2 U ! / � # � � H I � � �
18. then L ! M N 1 � + O := true;
19. if exist( � � # < � / � 2 U ! / � � W )
20. then � := H 	 � & 	 � J � � 	 � � � � 	 � ! � M � J 
 � 	 ! � 
 � �

M � / � 2 U ! / 
 � � is a variable mapping I
21. Ycheck := Ycheck F � ;
22. � + , ! . / 1 2 3 # 5 := / � 6 	 � � + , ! . / 1 2 3 # 5 � ;
23. return L ! M N 1 � + O and (Ycheck = H I );

function exist ( � , W )

Input: � : path expression; W : a set of attributes.
Output: true iff for all 	 J W and + J 3 3 � 5 5 , + � � 	 exists.
1. � := W ;
2. for each key � � � � � � � � � � � W � � � in � do
3. if � � � � 
 � � �
4. then � := � F W � ;
5. return ( � � H I );

Figure 5. XML key propagation algorithm
fields of  , and ! # $ & ( & * , . / 1 3 4 6 / 8 . & ( & / 1 3 4 6 / . * 8 . > @ 8 8 ;

(2) every field of  is defined with an attribute of some

ancestor of * that is required to exist. The first condition

asserts that for any A tuples / B and / C , if they agree on their

 fields and do not contain null, then they agree on theirD
fields. The second condition excludes the possibility that

in some A tuple / , the
D

field is defined while some of their

 fields are null.

Putting everything together, Algorithm propagation
is shown in Fig. 5. The algorithm first computes the list

of all the ancestors of * (Lines 1 to 5); it then traverses

the table-tree E G top-down along the ancestor path from

the root * , to * (Lines 11 to 22), and for each ancestor

/ 1 3 4 6 / in this path, checks if / 1 3 4 6 / is keyed (Lines 15).

The central part of the algorithm is to check whether there

is a set of transitive keys for / 1 3 4 6 / . To do so, it uses

variable H I K / 6 * / to keep track of the closest ancestor for

which a key has been found, and collects the attributes of

/ 1 3 4 6 / that populate fields in  in a set M . Thus / 1 3 4 6 / is

keyed iff ! # $ & ( & * , . H I K / 6 * / 8 . & ( & H I K / 6 * / . / 1 3 4 6 / 8 . M 8 8 ,

i.e., M is a key of / 1 3 4 6 / relative to its closest ancestor with

a key. XML key implication is checked by invoking Al-

gorithm implication mentioned above. If it holds, the

algorithm moves H I K / 6 * / down to / 1 3 4 6 / (Line 16; the cor-

rectness of this step is ensured by the target-to-context rule

given above); then, it sets the Boolean flag Q 6 R S I V K W to

true if * is unique under / 1 3 4 6 / (Line 17). To ensure that

all the fields of  are defined with attributes of ancestors of

* that are required to exist, it uses a variable Ycheck (with an

initial value of  Y > D @ ) and removes from Ycheck the field

names that correspond to the set M of attributes (Lines 19

to 21). The algorithm returns true iff Q 6 R S I V K W is true
and Ycheck becomes empty, i.e., the two conditions given

above are satisfied.

Example 4.2: To illustrate the algorithm, recall the trans-

formation [ of Example 2.4 and the set ! of XML keys

of Example 2.1. Consider FD: \ ] ^ _ a c e _ g i c g over re-

lation j I I Q defined by Rule(book), which is depicted in

Fig. 3 (a). Note that the field contact in the FD is spec-

ified with variable * k . Given ! , [ and the FD, the algo-

rithm computes the ancestors of * k , which consists of * , ,

* l and * m . Then, it first checks if * , is keyed by inspecting

! # $ & p . > @ 8 . Since this holds by the epsilon rule given

above, the algorithm then checks whether * l is keyed by in-

specting ! # $ & t t j I I Q . > v w x j K @ 8 . Since this is also true,

the algorithm proceeds to check whether * k is unique un-

der * l , i.e., whether ! # $ & t t j I I Q . & 1 V / | I 3 t H I K / 1 H / . > @ 8 8 .

This is also the case. In addition, the field isbn in the FD is

defined in terms of an attribute of * l that is required to exist.

That is, by the semantics of keys, & t t j I I Q . > v w x j K @ 8 re-

quires every j I I Q element to have an v w x j K attribute. Thus

the algorithm concludes that the FD is derived from ! via

[ and returns true.

Next, let us consider Rule(section) of Example 2.4,

represented by the table tree of Fig. 3 (b), and let } be

an FD: \ _ ~ � i � g . _ � � ^ � � a _ i � � over relation x 6 H / w I K .

After succesfully verifying that * , is keyed, the algo-

rithm checks whether its next ancestor is keyed, i.e.,

whether ! # $ & t t j I I Q t H | 1 � / 6 3 . > v K V � j 6 3 @ 8 . This

fails. Thus it attempts to verify another key relative to

the root: ! # $ & t t j I I Q t H | 1 � / 6 3 t x 6 H / w I K . > v K V � j 6 3 @ 8 ,

which fails again. At this point the algorithm concludes that

the FD cannot be derived from ! and returns false. �

The complexity of the algorithm is � & � C K � 8 , where �
and K are the sizes of XML keys ! and table tree E G , re-

  



spectively (see [11] for details as well as for a proof of cor-

rectness of the algorithm).

5 Computing Minimum Cover
In this section we present two algorithms for finding

a minimum cover for FDs propagated from XML keys.

The first algorithm is a direct generalization of Algo-

rithm propagation of Fig. 5, and always takes exponen-

tial time. We use this naive algorithm to illustrate the dif-

ficulties in connection with finding a minimum cover. The

second algorithm takes polynomial time in the size of input,

by reducing the number of FDs generated in the following

way: a new FD is inserted in the resulting set only if it can-

not be implied from the FDs already generated, using the

inference rules for FDs. To the best of our knowledge, this

is the first effective algorithm for finding a minimum cover

for FDs propagated from XML keys.

A Naive Algorithm. Algorithm propagation given in

the last section allows us to check XML key propagation.

Thus a naive algorithm for finding a minimum cover is to

generate each possible FD on � , check whether or not it is

in � � , the set of all the FDs mapped from the XML keys,

using Algorithm propagation, and then eliminate both

extraneous attributes and redundant FDs from � � using

standard relational database techniques; this yields a mini-

mum cover � � for � � . The algorithm, Algorithm naive,

can be found in [11]. It takes exponential time in the size

of � for any input since it computes all possible FDs on � .

It should be mentioned that the function invoked by the al-

gorithm for eliminating redundancy, Function minimize
given below [4], takes quadratic time in the size of its input

FDs, since FD implication can be checked in linear time us-

ing the Armstrong’s Axioms; but when invoked in naive,

the set of input FDs is exponentially large.

function minimize ( � )
Input: � : a set of FDs.
Output: A non-redundant cover of � .
1. for each � 
 � � � � � do /* eliminate extra attributes */
2. for each � � � 
 do
3. if � � � � 
 � � � � � � � �
4. then 
 := 
 � � � � � ;
5. # := � ; /* eliminate redundant FDs */
6. for each $ in � do
7. if � # � � $ � � � � $
8. then # := # � � $ � ;
9. return # ;

Obviously, Algorithm naive is too expensive to be

practical. The problem is that it needs to compute � � ,

which is exponential in the size of � even with trivial FDs

removed. This observation motivates us to develop an algo-

rithm that directly finds � � without computing � � .

A Polynomial-Time Algorithm. We next present a more

efficient algorithm for finding a minimum cover for all the

propagated FDs. The algorithm takes ( ) + ,- / 1
time, where

+ and
-

are the sizes of XML keys 2 , and the transforma-

tion 3 , respectively. The algorithm works as follows. Recall

that the transformation 4 6 7 9 ) � 1
can be depicted as a table

tree : , in which each variable ; in the set < of 4 6 7 9 ) � 1
is represented by a unique node, referred to as the ; -node.

The algorithm traverses : top-down starting from the root

of : , ; > , and generates a set � of FDs that is a cover of

� � , i.e., a superset of � � . More specifically, at each ; -

node encountered, it expands � by including certain FDs

propagated from 2 . It then removes redundant FDs from �
to produce a minimum cover � � .

The obvious question is what new FDs are added at each

; -node. As in Algorithm propagation, at each ; -node a

new FD @ B D is included into � only if (1) ; is keyed with

a set of attributes that define the fields in @ ; (2) the field D is

defined by the value of a node E and E is unique under ; .

Example 5.1: Recall the universal relation � defined by

the transformation 3 of Example 3.1, the table tree de-

picted in Fig. 4, and the set 2 of XML keys of Ex-

ample 2.1. An FD derived from 2 at the F H node isI K K L N O I Q S T U V W Y 6 [ S O 9 T Y 6 [ B O 9 T Y V [ 9 . The left-hand

side of the FD corresponds to a transitive set of keys for

the F ] node consisted of a section ^ - ` + b c d which is an

attribute of F ] , as well as a chapter ^ - ` + b c d and a book

^ f h b -
, which are a key of F ] ’s ancestor E j . The right-hand

side of the FD is defined by a node F H unique under F ] , byk m n
in 2 . Thus the key for the F ] node actually consists

of the key of its ancestor E j as well as a key for h c o q f s -
( ^ - ` + b c d ) relative to E j . u

Critical to the performance of the algorithm is to min-

imize the number of FDs added at each ; -node while en-

suring that no FDs in � � are missed. This is done in two

ways: First, we reduce our search for candidate FDs to those

whose left-hand side corresponds to attributes of keys in 2 .

Second, we observe that an ancestor q v d w c q of an ; -node

may have several keys, but that in creating a transitive key

for ; only one of them needs to be selected as long as the

following property is enforced: for any two transitive keysk y
and

k H of the ; -node, � includes @ y B D for each

D { @ H and @ H B D � for each D � { @ y
, where @ y S @ H are sets

of � fields defined by
k y

and
k H , respectively. Given this,

@ y
and @ H are equivalent by Armstrong’s Axioms.

There is a subtlety caused by the troublesome null
value. Let

k H be a transitive key for an ; -node,
k y

be a

transitive key for an ancestor E of ; , @ y
and @ H be the sets

of � fields defined by
k y

and
k H , respectively, and � be

another set of � fields. Then the following is a rule for

populating � : if ( @ y � � B D ) is in � and D is a � field

defined by a descendant F of ; , then ( @ H � � B D ) should

be also be included in � . The intuition behind this rule is

that a key for ; is also a key for its ancestor E , provided

that the existence of ; under E is assured. This is because

 







of in the power of six. Second, the algorithm needs less

than 35 seconds for 200 fields, and a little over 2 minutes

even for 500 fields. Since in most applications the num-

ber of fields in a relation is much less than 500, we can say

that Algorithm minimumCover performs well in practice.

Third, the performance of Algorithm minimumCover is

much better than Algorithm naive. For example, when

the number of fields is incremented by 5, the execution time

of minimumCover at most doubles, while for naive it

grows almost two-hundred-fold.

We next consider checking XML key propagation. An

algorithm for doing so, Algorithm propagation, was

presented in Section 4. An alternative algorithm can also

be developed by means of Algorithm minimumCover
as follows: Given a transformation � , a set of keys � ,

and an FD � � � � � , the algorithm first invokes

minimumCover( � 	 � ) to compute a minimum cover � 
of all the FDs propagated; it then checks whether or not � 
implies � using relational FD implication, and whether all

the fields in � are guaranteed to have a non-null value when

� is not null. It returns true iff these conditions are met.

In what follows, we refer to this generalized algorithm as

GminimumCover since the performance is roughly com-

parable to the original algorithm.

Our second experiment serves two purposes: to com-

pare the effectiveness of these two algorithms for check-

ing key propagation, and to study the impact of the

depth of table-tree (depth) on the performance of Algo-

rithms propagation and GminimumCover. Fig. 7(b)

depicts the execution time of these algorithms for field
= 15 and keys = 10 with depth varying from � to� �

. (These parameters were chosen based on the aver-

age tree depth found in real XML data [9].) The re-

sults in Fig. 7(b) reveal the following. First, Algo-

rithm propagation works well in practice: it takes

merely � � � �
second even when the table tree is as deep as� �

. Second, these algorithms are rather insensitive to the

change to depth. Third, propagation is much faster

then GminimumCover for checking key propagation, as

expected. Although the actual execution times of the algo-

rithms are quite different, the ratios of increase when the

depth of the table-tree grows are similar. This is because in

both algorithms the depth determines how many times Al-

gorithm implication is invoked, and because the com-

plexity of Algorithm implication is a function of the

size of the XML keys, which grows when the depth of the

table tree gets larger.

Our third experiment demonstrates how the number

of XML keys (keys) influences the performance of Al-

gorithms propagation and GminimumCover when

checking key propagation. The results (Fig. 7(c)) show

that increasing the number of keys has a bigger impact

on Algorithm GminimumCover than on propagation,

(a) Time for computing minimum cover

(b) Effect of depth of the table tree

(c) Effect of number of keys

Figure 7. Experimental results

 



in which the growth of the execution time is almost lin-

ear. In fact, additional experiments tell us that for depth
= 10 and keys = 50, Algorithm GminimumCover runs

in under 2 minutes for 200 fields, but when increasing

the number of keys to 100, its execution time is over 4

minutes for relations with 150 fields. In contrast, Algo-

rithm propagation runs in both settings in less than 5

seconds. In addition, for 1000 fields, which is the maximum

number of fields allowed by Oracle [22], the execution time

of propagation is 85 seconds on average for 50 keys,

and 142 seconds for 100 keys.

A closer look at Algorithm propagation reveals that

the constant ratio of increase is based on the time needed

for executing calls to Algorithm implication. That is,

if the depth of the table-tree is fixed, the number of calls

is roughly the same for the whole experiment; the increase

in running time is based on the the performance of Algo-

rithm implication, which depends on the size of the

XML keys. The performance of implication also has

an impact on the Algorithm GminimumCover. However,

the number of keys has a bigger influence in this algorithm

because for each node in the table-tree all the keys are an-

alyzed. Also, by increasing the number of XML keys, the

number of FDs in the resulting set is likely to grow, increas-

ing the execution time for eliminating redundant FDs by

calling minimize.

7 Conclusion
We have proposed a framework for refining the relational

design of XML storage based on XML key propagation.

For this purpose we have developed algorithms for checking

whether a functional dependency is propagated from XML

keys, and for finding a minimum cover for all functional

dependencies propagated from XML keys, along with com-

plexity results in connection with XML constraint propaga-

tion. Our experimental results show that these algorithms

are efficient and effective in practice. These algorithms can

be generalized and incorporated into relational storage tech-

niques published in the literature (e.g. [25, 26, 22]). Our

results are also useful in optimizing queries and in under-

standing XML to XML transformations.

Topics for future work include studying the propagation

of other forms of integrity constraints, and re-investigating

constraint propagation in the presence of types (e.g., XML

Schema).
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