

Edinburgh Research Explorer

Information preserving XML schema embedding

Citation for published version:
Fan, W & Bohannon, P 2008, 'Information preserving XML schema embedding' ACM Transactions on
Database Systems, vol. 33, no. 1. DOI: 10.1145/1331904.1331908

Digital Object Identifier (DOI):
10.1145/1331904.1331908

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
ACM Transactions on Database Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/1331904.1331908
https://www.research.ed.ac.uk/portal/en/publications/information-preserving-xml-schema-embedding(5f8e4782-926f-470e-8353-37abb4ce4892).html

4

Information Preserving XML
Schema Embedding

WENFEI FAN

University of Edinburgh and Lucent Technologies

and

PHILIP BOHANNON

Yahoo! Research

A fundamental concern of data integration in an XML context is the ability to embed one or more
source documents in a target document so that (a) the target document conforms to a target schema
and (b) the information in the source documents is preserved. In this paper, information preservation
for XML is formally studied, and the results of this study guide the definition of a novel notion
of schema embedding between two XML DTD schemas represented as graphs. Schema embedding
generalizes the conventional notion of graph similarity by allowing an edge in a source DTD schema
to be mapped to a path in the target DTD. Instance-level embeddings can be derived from the schema
embedding in a straightforward manner, such that conformance to a target schema and information
preservation are guaranteed. We show that it is NP-complete to find an embedding between two DTD

schemas. We also outline efficient heuristic algorithms to find candidate embeddings, which have
proved effective by our experimental study. These yield the first systematic and effective approach
to finding information preserving XML mappings.

Categories and Subject Descriptors: H.2.5 [Database Management]: Heterogeneous Databases—
Data translation

General Terms: Algorithms, Design, Languages, Management, Performance, Theory

Additional Key Words and Phrases: Data transformation, information integration, information
preservation, schema embedding, schema mapping, XML, XSLT

W. Fan is supported in part by ERSRC GR/S63205/01, ERSRC GR/T27433/01, BBSRC BB/
D006473/1 and NSFC 60228006.

1. INTRODUCTION

A central technical issue for the exchange, migration and integration of XML

data is to find mappings from documents of a source XML (DTD) schema to doc-
uments of a target schema. In practice such a mapping, referred to as an XML

mapping, often needs to (1) guarantee type-safety, that is, the target document
produced by the mapping should conform to the target schema; and (2) preserve
information, that is, the target documents should not lose original information
of the source data. Criteria for information preservation include: (1) invertibil-
ity [Hull 1986]: can one recover the source document from the target? and (2)
query preservation: for a certain XML query language, can all queries on source
documents in that language be answered on target documents by queries in the
same language? We now illustrate these concepts with an example.

Example 1.1. Consider two source DTDs S0, S1 and a target DTD S repre-
sented as graphs in Figure 1 (we omit the str–PCDATA– child under cno, credit,
title, year, term, instructor, gpa in Figure 1(c)). A document of S0 contains in-
formation of classes taught at a school, and a document of S1 contains student
data of the school. The user wants to map the document of S0 and the document
of S1 to a single instance of S, which is to collect data about courses and stu-
dents of the school in the last five years. Here we use edges of different types to
denote various constructs of a DTD, namely, solid edges for a concatenation type
(a unique occurrence of each child), dashed edges for disjunction (one and only
one child), and star edges (edges labeled ‘∗’) for Kleene star (zero or more child).

Here type safety requires that school documents produced by integrating
instances of S0 and S1 are guaranteed to conform to the target DTD S. Invertibil-
ity asks for the ability to reconstruct the original class and student documents
from an integrated school document, while query preservation requires the
ability to answer XML queries expressed in a language L (e.g., XPath) and posed
on class and student documents by equivalent queries that are expressed in
the same language L but are posed on the school document.

Type safety is typically necessary since it concerns whether or not XML map-
pings make sense. In many applications one also wants XML mappings to be
information preserving. For example, in data exchange between two schemas
or in data migration from one schema to another [Lenzerini 2002], one often
wants to reconstruct the source document and thus requires the XML mapping to
be invertible. As observed in Fagin [2006], inverse mappings are also useful in
developing new mappings via mapping composition. It is also common in prac-
tice that users care more about query answerability than the ability to restore
the original documents. As an example, in a P2P system [Kementsietsidis et al.
2003; Halevy et al. 2004], for any query Q posed on a local document residing
in one peer, one wants to be able to find the same query answer via a query Q ′

posed on another peer; furthermore, while Q ′ may be different from (yet equiv-
alent to) Q , Q ′ and Q should be expressible in the same query language L, for
example, XPath. In other words, the XML mappings from data at one peer to
another peer should be query preserving. Note that in query rewriting it is also
required that the rewritten query should be expressible in the same language

Fig. 1. Example: source and target schemas.

as that of the original query [Halevy 2000; Lenzerini 2002]. For all the reasons
that this requirement is important for query rewriting, it is also needed for
query preservation. In particular, the language in which the original query Q
is given may be only language supported by the system or is the language that
the user wants to use. Furthermore, the user should not be penalized by pay-
ing the higher price for evaluating and optimizing queries in a richer language
than that of the original query, for example, XQuery.

While one can certainly define XML mappings in a query language such
as XQuery or XSLT, such queries may be large and complex, and as a result
time-consuming to construct by hand. Worse still, type safety may be hard to

check for mappings defined in XQuery or XSLT [Alon et al. 1995]. In practice
one often wants a systematic methods to define XML mappings that are guar-
anteed to be type safe. When it comes to information preservation, a number
of fundamental questions are open. Can one determine whether an XML map-
ping is information preserving? Is there an efficient method to find informa-
tion preserving XML mappings, or better still, to define XML mappings that are
guaranteed to be invertible and/or query preserving w.r.t. a popular XML query
language, for example, XPath?

While type safety and information preservation are clearly desirable, an ad-
ditional feature is the ability to map documents of DTDs that have different
structures. A given source DTD may differ in structure from a desired target DTD.
This is commonly encountered in data integration, where the target DTD needs
to accommodate data from multiple sources and thus may not be similar to any
of the sources in structure; in Figure 1, for example, the school DTD is quite
different from the class and student DTDs.

Background. While information preservation has been studied for traditional
database transformations [Abiteboul and Hull 1988; Hull 1986; Miller et al.
1993, 1994], to our knowledge, no previous work has considered it for XML map-
pings. In fact, a variety of tools and models have been proposed for finding XML

mappings at schema- or instance-level [Doan et al. 2001; Madhavan et al. 2001;
Melnik et al. 2002; Melnik et al. 2003; Miller et al. 2001; Milo and Zohar 1998];
however, none has addressed invertibility and query preservation for XML. Most
tools either focus on highly similar structures, or adopt a strict graph similar-
ity model like simulation [Abiteboul et al. 2000] to match structures, which
is incapable of mapping DTDs with different structures such as those shown in
Figure 1, and can ensure neither invertibility nor query preservation w.r.t. XML

query languages. Another issue is that it is unclear that mappings found by
some of these tools guarantee type safety when it comes to complex XML DTDs.

Contributions. In response to the practical need, we investigate fundamental
questions associated with XML mappings. Furthermore, we propose a method
for defining XML mappings that are guaranteed to be both type safe and in-
formation preserving. Here information preservation will be characterized by
both invertibility and query preservation. More specifically, this work makes
the following contributions.

First, as criteria for information preservation we revisit the notions of in-
vertibility and query preservation Abiteboul and Hull 1988; Hull 1986; Miller
et al. 1993, 1994] for XML mappings. While the two notions coincide for rela-
tional mappings w.r.t. relational calculus [Hull 1986], we show that they are
in general different for XML mappings w.r.t. XML query languages. Furthermore,
we show that it is undecidable to determine whether or not an XML mapping
defined in a small fragment of XQuery or XSLT is information preserving.

Second, to cope with the undecidability result, we introduce an XML mapping
framework based on a novel notion of schema embeddings. A schema embed-
ding is a natural extension of graph similarity in which an edge in a source DTD

schema may be mapped to a path, rather than a single edge, in a target DTD.
For example, the source DTDs S0 and S1 of Figure 1 can both be embedded in

S, while there is no sensible mapping from them to S based on graph similar-
ity. From a schema embedding, an instance-level XML mapping can be directly
produced that has all the properties mentioned above. In particular, such map-
pings are invertible, query preserving w.r.t. regular XPath (an extension of XPath
introduced in Marx [2004]), and ensure type safety. As with schema-mapping
techniques for other data models, by automatically producing this mapping the
user is saved from the burden of writing and type-checking a complex mapping
query. Moreover, we show that the inverse and query translation functions for
the mapping are efficient.

Third, we provide an algorithm to translate queries posed against a source
schema into queries against the document as embedded in the target schema.
In order to accomplish this translation in low-polynomial time, we introduce
a mild augmentation of nondeterministic finite state automata to represent
regular XPath queries; based on this notion we then develop a schema-directed
translation algorithm producing an automaton for the target schema. While au-
tomaton may itself be translated into regular XPath, this translation subsumes
the translation of finite-state automata to regular expressions, an EXPTIME-
complete problem [Ehrenfeucht and Zeiger 1976].

Fourth, we provide algorithms to compute schema embeddings. We show
that it is NP-complete to find an embedding between two DTDs, even when the
DTDs are nonrecursive. Thus practical algorithms for finding embeddings are
necessarily heuristic. We have implemented our algorithms and conducted an
experimental study based on mapping schemas taken from real-life and bench-
mark sources to copies of these schemas with varying amounts of introduced
noise. These experiments verify the accuracy and efficiency of our heuristics on
schemas up to a few hundred nodes in size, supporting the practical applicability
of schema embedding. We omit the details of the algorithms and experimental
results due to the lack of space, but we suggest the reader consult [Bohannon
et al. 2005].

Schema embeddings are a promising tool for automatically computing in-
formation preserving XML mappings, and are particularly suited for common
information integration cases where the target schema is more general and
thus more complex than the source. To the best of our knowledge, this work is
the first to study information preservation in the generic XML context, and it
yields a systematic and effective approach to defining and finding type safe and
information preserving XML mappings.

Organization. The remainder of the article is organized as follows. Section 2
reviews DTDs and XPath, and revisits invertibility and query preservation for
XML mappings. Section 3 investigates basic properties of invertibility and query
preservation, establishing equivalence, separation and complexity results for
XML mappings. Section 4 defines the notion of schema embedding and shows
that schema embedding guarantees information preservation and type safety.
Section 5 shows that the problem of finding schema embedding is intractable,
and outlines our algorithms for computing schema-embedding candidates.
Related work is discussed in Section 6, followed by topics for future work in
Section 7.

2. DTDS, XPATH, INFORMATION PRESERVATION

In this section we review DTDs and (regular) XPath, and revisit the notions of
information preservation [Hull 1986; Miller et al. 1994] for XML.

2.1 DTDs

To simplify the discussion, consider DTDs of the form (E, P, r), where E is a
finite set of element types; r is a distinguished type in E, called the root type; P
defines the element types: and for each A in E, P (A) is a regular expression of
the form:

α ::= str | ε | B1, . . . , Bn | B1 + · · · + Bn | B∗

where str denotes PCDATA, ε is the empty word, B is a type in E (referred to as
a child of A), and ‘+’, ‘,’ and ‘∗’ denote disjunction (with n > 1), concatenation
and the Kleene star, respectively. We refer to A → P (A) as the production of
A. Note that this form of DTDs does not lose generality since any DTD S can be
converted to S′ of this form (in linear time) by introducing new element types,
and (regular) XPath queries on S can be rewritten into equivalent (regular)
XPath queries on S′ in PTIME [Benedikt et al. 2005].

Schema Graphs. We represent a DTD S as a labeled graph GS , referred to as
the graph of S. For each element type A in S, there is a unique node labeled
A in GS , referred to as the A node. From the A-node there are edges to nodes
representing child types in P (A), determined by the production A → P (A) of
A. There are three different types of edges indicating different DTD constructs.
Specifically, if P (A) is B1, . . . , Bn then there is a solid edge from the A node to
each Bi node, referred to as an AND edge; it is labeled with a position k if Bi

is the k-th occurrence of a type B in P (A) (the label can be omitted if Bi ’s are
distinct). If P (A) is B1 + · · · + Bn then there is a dashed edge from the A node
to each Bi node (w.l.o.g. assume that Bi ’s are distinct in disjunction), referred
to as an OR edge. If P (A) is B∗, then there is a solid edge with a “∗” label from
the A node to the B node, referred to as a STAR edge. When it is clear from the
context, we shall use the DTD and its graph interchangeably, both referred to as
S; similarly for A element type and A node.

A DTD is said to be recursive if and only if its graph is cyclic.
For example, Figure 1 shows graphs representing three DTDs, where

Figures 1(a) and 1(c) depict recursive DTDs.
An XML instance T of a DTD S is an ordered, node-labeled tree that conforms

to S. That is, (1) there is a unique node, the root, in T labeled with r; (2) each
node in T is labeled either with an E type A, called an A element, or with str,
called a text node; (3) each A element has a list of children of elements and
text nodes such that their labels are a word in the regular language defined by
P (A); and (4) each text node carries a string value (PCDATA) and is a leaf. We
denote by I(S) the set of all instances of S.

Two XML trees T1 and T2 are said to be equal, denoted by T1 = T2, if T1 and T2

are isomorphic by an isomorphism that is the identity on string values. More
specifically, for a node n1 in T1 and a node n2 in T2, we say that n1 and n2 are

equal, denoted by n1 = n2, if the following conditions are satisfied. (1) If both n1

and n2 are text nodes, then they carry the same string value. (2) If both n1 and
n2 are elements, then they are both labeled with the same tag and moreover,
their children are pairwise equal, i.e., their children are lists [v1, . . . , vk] and
[u1, . . . , uk], respectively, and vi = ui for all i ∈ [1, k]. We say that T1 = T2 if
r1 = r2, where r1 and r2 are the root nodes of T1 and T2, respectively. Intuitively,
if T1 and T2 are equal then they have the identical structure carrying the same
string values (observable values).

Assume a countably infinite set U of node ids. For each XML node v in T , we
assume that v is associated with a distinct node id id (v) ∈ U , and denote the
set of all node ids in T by dom(T). Note that a text node is also associated with
a node id and it carries PCDATA.

A DTD S is consistent if it has no useless element types, that is, each element
type of S appears in I(S). For standard context-free grammars (CFGs) it has
been well studied how to drop all useless types from a CFG [Hopcroft and
Ullman 1979], in quadratic time. Along the same lines we can convert any DTD

S to a consistent S′ in O(|S|2) time such that I(S′) = I(S). Thus in the sequel
we only consider consistent DTDs.

2.2 XPath and Regular XPath

We consider a class of regular XPath queries proposed and studied in Marx
[2004], denoted by XR and defined as follows:

p ::= ε | A | p/text() | p/p | p ∪ p | p∗ | p[q],

q ::= p | p/text() = ‘c’ | position() = k | ¬q | q ∧ q | q ∨ q,

where ε is the empty path (self), A is a label (element type), ‘∪’ is the union
operator, ‘/’ is the child-axis, and ∗ is the Kleene star; q is a qualifier, p is an
XR expressions, k is a natural number, c is a string constant, and ¬, ∧, ∨ are
the Boolean negation, conjunction and disjunction operators, respectively. We
shall use a special qualifier true, which always holds and is definable in XR

(e.g., [true] can be defined as [ε]).
An XPath [Clark and DeRose 1999] fragment of XR , denoted by X , is defined

by replacing p∗ with p//p in the definition above, where // is the descendant-
or-self axis.

A (regular) XPath query p is evaluated at a context node v in an XML tree
T ; its result, denoted by v[[p]], is the set consisting of (a) node ids in dom(T) of
those nodes reachable via p from v, and (b) string values (PCDATA) if p contains
a sub-query of the form p′/text(), e.g., when p is A//C/text() ∪ A/B [Clark and
DeRose 1999; Marx 2004]. We use p(T) to denote v[[p]] if v is the root node of T .
While node ids are non-printable, commercial systems typically provide APIs
that allow one to define a function f such that (a) it maps node ids in dom(T) to
observable values and (b) it behaves the same as the identity function on string
values (e.g., Xerces [Xerces and Xalan], Galax [Siméon and Fernandez]).

2.3 Invertibility and Query Preservation

For XML DTDs S1 and S2, a (data) instance mapping σd : I(S1) → I(S2) is invert-
ible if there exists an inverse σ−1

d of σd such that for any XML instance T ∈ I(S1),
σ−1

d (σd (T)) = T , where f (T) denotes the result of applying a function (or map-
ping, query) f to T . In other words, the composition σ−1

d ◦ σd is equivalent to
the identity mapping id, which maps an XML document to itself.

For an XML query language L, a mapping σd is query preserving w.r.t. L if
there exists a computable function Tr : L → L such that for any XML query
Q ∈ L and any T ∈ I(S1), Q(T) = Tr(Q) (σd (T)), i.e., Q = Tr(Q) ◦ σd .

In a nutshell, invertibility is the ability to recover the original source XML doc-
ument from the target document; query preservation w.r.t. L indicates whether
all queries of L on any source T of S1 can be effectively answered over σd (T),
that is, the mapping σd does not lose information of T when L queries are
concerned.

The notions of invertibility and query preservation are inspired by (calcu-
lus) dominance and query dominance that were proposed in Hull [1986] for
relational mappings and later studied in Abiteboul and Hull [1988] and Miller
et al. [1993, 1994]. In contrast to query dominance, query preservation is de-
fined w.r.t. a given XML query language that does not necessarily support query
composition. Invertibility is defined for XML mappings and it only requires σ−1

d
to be a partial function defined on σd (I(S1)).

We say that a mapping σd : I(S1) → I(S2) is information preserving w.r.t. L
if it is both invertible and query preserving w.r.t. L.

A subtle issue arises from query preservation w.r.t. regular XPath. As men-
tioned earlier, when a regular XPath query Q is evaluated on an XML tree T , its
result Q(T) may contain non-printable node ids. This is analogous to the oid-
observability problem associated with implicit oids in object-oriented databases
[Abiteboul et al. 1995]. We refine the semantics of query preservation w.r.t. regu-
lar XPath as follows. With an XML mapping σd : S1 → S2 we associate a (partial)
node id mapping idM() that, given an XML instance T of the source schema, maps
dom(σd (T)) to dom(T) and it is the identity mapping on string values (further-
more, idM() also recovers the original tag of the node v in T if idM() maps a node
from σd (T) to v; we omit this to simplify the discussion). We say that σd is query
preserving w.r.t. regular XPath if there exists a computable function Tr such that
for any regular XPath query Q and any T ∈ I(S1), Q(T) = idM(Tr(Q) (σd (T))),
i.e., idM() recovers the original query result Q(T) from Tr(Q) (σd (T)). This as-
sures that Q(T) and idM(Tr(Q) (σd (T))) return the same set of node ids (carrying
their original tags in T). Assuming a countably infinite set V of observable val-
ues, then for any function f that maps nodes ids in dom(T) to V and maps string
values to themselves, f (Q(T)) = f (Tr(Q) (σd (T))); that is, they yield the same
set of observable values no matter what printable values are associated with
those node ids via user-defined mapping function and system-provided APIs.

Example 2.1. Figure 2 depicts a source schema S1 (on the left) and a target
schema S2 (on the right). A mapping σd : I(S1) → I(S2) is indicated by the
arrows, while the inverses of the arrows denote the node id mapping idM().
Intuitively, given any T ∈ I(S1), an instance σd (T) is constructed such that its

Fig. 2. An example XML mapping.

id mapping idM() maps (a) the id of the root r2 of σd (T) to the id of the root r1 of
T ; (b) the id of the A child of r2 to the A child of r1; and inductively, (c) if the id
of element v′ in σd (T) is mapped to the id of an A element v in T , then the ids
of the child and the grandchild of v′ are mapped to the ids of the B, C children
of v, respectively, and the id of the great grandchild of v′ is mapped to the id of
the A child of the B child of v.

Consider an XPath query Q = A/B posed at the root r1 of T , and Q ′ = A/A
at the root r2 of σd (T). Then Q and Q ′ are equivalent w.r.t. idM(). Indeed, Q(T)
returns a single node id o, and Q ′(σd (T)) returns a single node id o′, where
idM(o′) = o.

This semantics of query equivalence can be implemented in, for exam-
ple, XSLT, as follows. Distinct ids can be generated for distinct nodes in T
via, for example, the generate-id() function of XSLT, which returns a (printable)
string value as the unique id of a node. As will be seen in Section 4.3, a mapping
σd () can be expressed in XSLT, which can be easily extended such that given
T , σd () also creates a unique id for each node in T and furthermore, associates
the id of each node in T with the id of the corresponding node in σd (T). This
produces the definition of idM(). This can also be used to display ids in query
result, that is, for each id in the query result, we can simply return its string
representation generated by generate-id(), a printable string.

To simplify the discussion and due to the space constraint, in the sequel, we
omit the construction of the id mapping idM() when it is clear from the definition
of σd , and simply write Q(T) = idM(Tr(Q) (σd (T))) as Q(T) = Tr(Q) (σd (T)). By
mapping a node v in T to a node v′ in σd (T), or copying v to v′, we mean that
we create a node v′ such that idM() maps the id of v to the id of v′.

3. INFORMATION PRESERVATION

In this section we establish basic results for the separation and equiva-
lence of the invertibility and query preservation of XML mappings, as well as
the complexity of determining whether a given XML mapping is information
preserving.

Invertibility and Query Preservation: Separation. It was shown [Hull 1986]
that calculus dominance and query dominance are equivalent for relational
mappings. In contrast, invertibility and query preservation do not necessarily
coincide for XML mappings and query languages. Recall the class X of XPath
queries defined in Section 2, which does not support query composition, identity
mapping (from XML documents to XML documents), or the ability to navigate a
recursive DTD based on certain patterns that are expressible in terms of the
Kleene closure p∗.

THEOREM 3.1. There exists an invertible XML mapping that is not query pre-
serving w.r.t. X ; and there exists an XML mapping that is not invertible but is
query preserving w.r.t. the class of X queries without position() qualifier.

PROOF. The proof consists of two parts.

(1) We first show that invertibility does not entail query preservation w.r.t. the
XPath fragment X . Recall the source DTD S1 and the target DTD S2 shown in
Figure 2:

S1 = ({r, A, B, C}, P1, r), where P1 consists of the following productions:
r → A, A → B, C, B → A + ε, C → ε,

S2 = ({r, A}, P2, r), where P2 consists of:
r → A, A → A + ε.

The mapping σd : I(S1) → I(S2) given in Example 2.1 can be expressed by
the function path() (see Section 4.1) from the edges of S1 to paths of S2 as
follows:

path(r, A) = A path(A, B) = A path(A, C) = A/A path(B, A) = A/A

For instance, given a B node v1 and its A child v2 in T , path(B, A) maps the
edge (v1, v2) in T to a path (v′

1, v′, v′
2) in σd (T), where v′

1, v′, v′
2 are all labeled

with A, and v′
1, v′

2 are mapped from v1, v2, respectively. That is, if v1 in T is
mapped to v′

1 in σd (T), then the child v2 of v1 in T is mapped to the node v′
2

in σd (T) that is reachable from v′
1 by following path(B, A) = A/A. In other

words, path(B, A) is relative to node v′
1.

Obviously σd is invertible: one can restore the original T from σd (T) by
generating T inductively top-down starting from the root r1 of T .

Now consider an X query Q = //B. An equivalent translation of Q over
σd (T) is to find all the elements in the A-chain of σd (T) that are reachable
from r2 via A3k+2. It is easy to prove by contradiction that A3k+2 is not
expressible in X , even with the position() qualifier. Thus σd is not query
preserving w.r.t. X .

(2) We next show that query preservation w.r.t. the XPath fragment X without
position() qualifiers does not entail invertibility. Consider a source DTD S1:

S1 = ({r, A}, P1, r), where P1 consists of:
r → A∗, A → str.

and assume that the target DTD S2 is identical to S1.
The mapping σd : I(S1) → I(S2) is such defined that for any T ∈ I(S1),

the root r1 of T is mapped to the root r2 of σd (T), the A children of r1

are mapped to the A children of r2 such that there is a bijection from the
A children of r1 to the A children of r2; however, the A-children of r2 are
ordered based on their string values (str).

All the X queries posed over T ∈ I(S1) are equivalent to one of the fol-
lowing forms of X queries: ε, A, A[q], where q is a Boolean formula defined
in terms of atomic formulas of the form text() = ‘c’. Since the identity map-
ping from X to X yields equivalent queries over σd (T) for these queries, the
mapping σd is query preserving w.r.t. X . However, σd is not invertible: one
cannot recover the original order of the A elements of r1 based on σd .

Invertibility and Query Preservation: Equivalence. We next identify sufficient
conditions for the two to coincide: the definability of the identity mapping from
XML documents to XML documents, and query composability (i.e., for any Q1, Q2

inL, Q2◦Q1 is also inL). Recall that the identity mapping is definable in neither
regular XPath nor XPath, because (regular) XPath does not return XML trees.

THEOREM 3.2. Let L be any XML query language and σd be a mapping:
I(S1) → I(S2).

—If the identity mapping id is definable in L and σd is query preserving w.r.t. L,
then σd is invertible.

—If L is composable, σd is invertible and σ−1
d is expressible in L, then σd is query

preserving w.r.t. L.

PROOF. We prove the two statements as follows.
(1) Suppose that σd is query preserving w.r.t. L. Then there exists a computable
function Tr : L → L such that for any Q ∈ L and any T ∈ I(S1), Q(T) =
Tr(Q) (σd (T)). Since id is in L, we have T = id (T) = Tr(id) (σd (T)) for any
T ∈ I(S1). That is, σ−1

d = Tr(id), and thus σd is invertible.

(2) Suppose that L is composable, σd is invertible and σ−1
d is in L. Then define

Tr : L → L to be Tr(Q) = Q ◦σ−1
d for any Q ∈ L. Obviously Tr is computable, and

Tr(Q) is in L since L is composable. Furthermore, for any Q ∈ L and T ∈ I(S1),
Q(T) = Q(σ−1

d (σd (T)) = Tr(Q) (σd (T)). Thus Tr is an effective query translation
function for L.

Recall the class XR of regular XPath queries defined in Section 2. Although
the identity mapping id is not definable inXR , we show below that query preser-
vation w.r.t. XR is a stronger property than invertibility: every node in a source
document can be uniquely identified by an XR query on the target document,
and thus can be recovered.

THEOREM 3.3. If an XML mapping σd is query preserving w.r.t. XR, then σd is
invertible. Conversely, there exists σd that is invertible but is not query preserving
w.r.t. XR.

PROOF. Suppose that σd : I(S1) → I(S2) is query preserving w.r.t. XR . We
show that σd is invertible by providing an algorithm for computing σ−1

d . Given
σd (T), the algorithm recovers T as follows. It first creates the root r1 of T ,
with id o given in idM(o, o′), where o′ is the id of the root r2 of σd (T). It then
recursively expands T top-down as follows, until T cannot be expanded further.

To expand T , for each node v created for T , it recovers the children of v based on
its type A, the production A → α of A in S1, and the query translation function
Tr : XR → XR . To do so it makes use of a subclass of XR , referred to as XR paths,
which are of the form ρ = η1/ . . . /ηk , where k ≥ 1, ηi is of the form A[q], and
q is either true or a position() qualifier. By induction on the length of the path
from r1 to v, one can easily verify that there is a unique XR path ρ such that
r1[[ρ]] is a singleton set {v}. The process of recovering the children of v is based
on the structure of α:
(1) α = A1, . . . , An. For each Ai, define an XR query Qi = Tr(ρ/Ai [position() =
k]), where k indicates the k-th occurrence of Ai element in α if it has multi-
ple Ai elements. Note that evaluating ρ/Ai[position() = k] at the root r1 of T is
equivalent to evaluating the query Ai[position() = k] at the context node v in T ,
which would return the k-th Ai child of v. Since σd is query preserving, eval-
uating Qi(σd (T)) at the root r2 of σd (T) yields the same answer as evaluating
ρ/Ai[position() = k] at the root r1 in T . Let vi be the single node returned by
Qi(σd (T)) at the root r2. Copy v1, . . . , vn to T as the children of v, and for each
i ∈ [1, n], proceed to expand the subtree at vi in the same way.
(2) α = A1 + · · · + An. For each Ai, let Qi = Tr(ρ/Ai). Evaluate Qi(σd (T)) at
the root r2 of σd (T) as in (1). Since σd is query preserving and T is an XML tree
that conform to S1, there exists one and only one i ∈ [1, n] such that Qi(σd (T))
returns a single note vi (and the Q j ’s return empty for j �= i). Copy vi to T as
the only child of v and proceed to expand the subtree at vi in the same way.
(3) α = B∗. For each natural number k, evaluate Qk(σd (T)) at the root r2 of
σd (T) as in (1), where Qk = Tr(ρ/B[position() = k]), until it reaches a k0 such
that Qk0 (σd (T)) = ∅. Since σd is query preserving and σd (T) is mapped from
an XML tree T that conforms to S1, Qk(σd (T)) at r2 of σd (T) yields the same
answer as evaluating the query B[position() = k] at the context node v in T ,
that is, there exists one and only one node vk returned by Qk(σd (T)) at r2 for
each k < k0, and for any k ≥ k0, Qk(σd (T)) = ∅. Copy vk to T as the k-th child of
v for all k < k0, and proceed to expand the subtree at each vk in the same way.
(4) α = str. Find the string value by evaluating Tr(ρ/text()) at the root r2 of
σd (T) as in (1).
(5) α = ε. Nothing needs be done here.

The children of v generated above have different identities from v because
no distinct nodes in T have the same identity and σd is query preserving. This
process terminates. Indeed, each step of the process expands T by copying
distinct nodes from σd (T), and σd (T) is a (finite) XML tree. One can verify that
T = σ−1

d (σd (T)), i.e., the algorithm above indeed computes σ−1
d . Thus σ−1

d is
computable and σd is invertible.

To show that invertibility does not necessarily lead to query preservation
w.r.t. XR , recall the DTDs S1 and S2 defined in the proof of Theorem 3.1 (1).
Consider a mapping σd : I(S1) → I(S2) such that for any T ∈ I(S1), the root r1

of T is mapped to the root r2 of σd (T), the A child of r1 is mapped to the A child of
r2; and inductively, if an A element v in T is mapped to an A element v′ in σd (T),
then the B, C children of v are also mapped to v′, and the A child of the B node
is mapped to the A child of v′, such that the number of A nodes in T is the same
as that in σd (T). Obviously, σd is invertible: given any σd (T) one can recover T

such that the number of A nodes in T is the same as that in σd (T), and each A
node in T has a B child followed by a C child. However, one cannot translate
an XR query (A/(B ∪ C))∗ over S1 to an equivalent XR query over S2.

Complexity. It is common to find XML mappings defined in XQuery or XSLT. A
natural and important question is to decide whether or not an XML mapping in
XQuery or XSLT is invertible or query preserving w.r.t. a query language L. Un-
fortunately, this is impossible for XML mappings defined in any language that
subsumes first-order logic (FO), such as XQuery, XSLT, even when L consists
of projection queries only. Thus it is beyond reach in practice to answer the
question for XQuery or XSLT mappings. That is, it is impossible to find a sys-
tematic method to determine an XML mapping defined in one of these languages
is information preserving or not.

THEOREM 3.4. It is undecidable to determine, given an XML mapping σd de-
fined in any language subsuming FO, whether or not (a) σd is invertible; and
(b) σd is query preserving w.r.t. projection queries.

These negative results are not surprising: as indicated by the proof below,
the undecidability results already hold for relational data transformations ex-
pressed in relational algebra (FO), and for relational projection queries. Similar
undecidability results have been established for relational and object-oriented
models [Hull 1986; Miller et al. 1994], and recently for mappings from XML to re-
lations [Barbosa et al. 2005], although query preservation was not investigated
there.

PROOF. It suffices to show that these problem are undecidable for relational
mappings defined in relational algebra (RA). For if it holds, the undecidability
carries over to XML mappings defined in FO since relational data can be coded
in XML and RA queries can be expressed in FO over XML trees.

We verify the undecidability by reduction from the equivalence problem for
RA queries. That is the problem to decide, given two RA queries Q1, Q2 : R1 →
R2, whether or not Q1 ≡ Q2, that is, whether or not for any relational database
I of R1, Q1(I) = Q2(I). This equivalence problem is undecidable [Abiteboul
et al. 1995].

(a) We first show that the invertibility problem is undecidable. Given two RA
queries Q1, Q2 : R1 → R2, we define a RA mapping V : R1 × R2 → R1 × R2,
as follows:

V = πR1 × (πR2 ∪ �(Q1, Q2)), �(Q1, Q2) = (Q1 \ Q2) ∪ (Q2 \ Q1).

Note that Q1 ≡ Q2 iff �(Q1, Q2) = ∅, that is, when �(Q1, Q2) always returns
an empty set.

We show that V is invertible iff Q1 ≡ Q2. If Q1 ≡ Q2, then �(Q1, Q2) = ∅.
Then V is the identity query and is certainly invertible. Conversely, if Q1 �≡ Q2,
then there exists an instance I of R1 such that �(Q1, Q2) (I) is nonempty.
Consider two distinct instances of R1 × R2: I1 = (I, �(Q1, Q2) (I)) and I2 =
(I, ∅). Since V (I1) = V (I2) = (I, �(Q1, Q2) (I)), V is not injective and thus is
not invertible (there exists no inverse function for V).

(b) We now show that query preservation for projection queries is undecidable.
Given two RA queries Q1, Q2 : R1 → R2, we use the same RA mapping V
given above to show that V is query preserving w.r.t. a fixed query iff Q1 ≡
Q2. Consider a fixed query Q = πR2 . First, suppose that Q1 ≡ Q2. Then one
can define Tr such that Tr(Q) = Q . This shows that V is query preserving
w.r.t. Q . Conversely, suppose that Q1 �≡ Q2. Suppose, by contradiction, that
there is a computable query translation function Tr such that Q ′ = Tr(Q). Recall
I1, I2 given above. Obviously, Q(I1) �= Q(I2), while Q ′(V (I1)) = Q ′(V (I2)) since
V (I1) = V (I2). Thus either Q(I1) �= Q ′(V (I1)) or Q(I2) �= Q ′(V (I2)); that is, Tr

does not translate Q to an equivalent query over the target, which contradicts
the assumption above. Thus V is not query preserving w.r.t. Q .

The undecidability suggests that we start with languages simpler than
XQuery and XSLT when studying information preserving XML mappings. In-
deed, understanding (regular) XPath query preservation is a necessary step
toward a full treatment of XML mappings defined in XQuery or XSLT, in which
XPath is embedded. The extension to regular XPath is particularly natural
for studying XSLT, where the recursive semantics of rule processing makes it
straightforward to express regular XPath queries in small stylesheets. Thus in
the remainder of the paper we shall focus on (regular) XPath, both for defining
XML mappings and for querying XML data.

4. SCHEMA EMBEDDINGS FOR XML

The negative results in Section 3 tell us that it is already hard to determine
whether or not an XML mapping is information preserving, not to mention find-
ing one. As remarked in Section 1, it is also nontrivial to check the type safety
of XML mappings. This motivates us to look for a class of XML mappings that are
guaranteed to be both information preserving and type safe.

We approach this problem by specifying XML mappings in terms of schema
level embeddings, and providing an automated derivation of instance-level
mappings from these embeddings. Our notion of schema embeddings is novel:
it extends the conventional notion of graph similarity by allowing an edge in
a source DTD to be mapped to a path in a target DTD. Intuitively, this allows a
“smaller” DTD to be embedded in a “larger” one.

In this section we define XML schema embeddings, present an algorithm for
deriving an instance-level mapping from a schema embedding, provide XSLT

coding of these instance-level mappings as well as their inverse, and verify
that the resulting mappings indeed ensure both type safety and information
preservation.

4.1 Schema Level Embeddings

Consider a source XML DTD schema S1 = (E1, P1, r1) and a target DTD S2 =
(E2, P2, r2). In a nutshell, a schema embedding σ is a pair of functions (λ, path)
that maps each A type in E1 to a λ(A) type in E2, and each edge (A, B) in S1 to a
unique path, path(A, B) in S2, from λ(A) to λ(B). Intuitively, if an A node u in the
source is mapped to a λ(A) node v in the target, then we map the B child of u to a
λ(B) descendant of v identified by the unique path(A, B) emanating from v. The

mapping must obey three correctness properties: (1) λ(A) must be semantically
compatible with A, i.e., λ(A) and A belong to the same “domain”, (2) path(A, B)
must have a “larger information capacity” than the edge (A, B)—for example, a
STAR edge can only be mapped to a path with at least one STAR edge, and (3) the
S2 paths mapped from sibling edges in S1 must be sufficiently distinct to allow
information to be preserved. To formally define these correctness conditions,
we first introduce some notation.

XR Paths. An XR path over a DTD S = (E, P, r) is an XR query of the form
ρ = η1/ . . . /ηk , where k ≥ 1, ηi is of the form A[q], and q is either true or a
position() qualifier, such that ρ represents a label path in S, carrying all the
position labels on the path. An XR path is called an AND path (resp. OR path, and
STAR path) if it is nonempty and consists of only solid or star edges (resp. of solid
edges and at least one dashed edge, and of solid edges and at least one edge
labeled ∗). Referring to Figure 1(c), for example, basic/class/semester is an AND

path and a STAR path, and mandatory/regular is an OR path.
An XR path ρ1 is called a prefix of another XR path ρ2 if ρ2 = ρ1/η j / . . . /ηk .

Schema Element Similarity. A similarity matrix for S1 and S2 is an |E1|×|E2|
matrix att of numbers in the range [0, 1]. For any A ∈ E1 and B ∈ E2, att(A, B)
indicates the suitability of mapping A to B as determined by human domain
experts or computed by an existing schema matching algorithm, e.g., [Athitsos
et al. 2005; Doan et al. 2001; Li and Clifton 2000]. We note that most previous
work on mapping construction has assumed an accurate set of attribute cor-
respondences; that is, att(A, B) ∈ {0, 1}. Supporting non-Boolean quality mea-
sures accrues several advantages with minimal increased complexity, since a
candidate embedding can be computed based on a machine-generated similar-
ity measure. First, the algorithm can be used in “best-effort” applications, and
second, attribute matches that participate in information-preserving mappings
can be preferred over others, even if resulting matching will be hand-checked
by a domain expert. Leveraging this, in the next section we shall formalize the
problem of finding a schema embedding as an optimization problem as com-
monly encountered in “best-effort” applications.

Type Mapping. A type mapping λ from S1 to S2 is a (total) function from E1

to E2; in particular, it maps the root of S1 to the root of S2, i.e., λ(r1) = r2. A type
mapping λ is valid w.r.t. a similarity matrix att if for any A ∈ E1, att(A, λ(A)) > 0.
Note that in general one could define validity in terms of a threshold θ , i.e., λ is
valid if att(A, λ(A)) > θ ; we assume θ = 0 in this paper to simplify the discussion.

Path Mapping. A path mapping from S1 to S2, denoted by σ : S1 → S2, is
a pair (λ, path), where λ is a type mapping and path is a function that maps
each edge (A, B) in S1 to an XR path, path(A, B), that is from λ(A) to λ(B)
in S2.

For a particular element type A in E1, we say that σ is valid for A if the
following conditions hold, referred to as the path type condition and the prefix-
free condition on path(A, B), based on the production A → P1(A) in S1:

—if P1(A) = B1, . . . , Bl , then for each i, path(A, Bi) is an AND path from λ(A) to
λ(Bi) that is not a prefix of path(A, Bj) for any j �= i;

Fig. 3. Path mappings for DTDs.

—if P1(A) = B1 + · · · + Bl , then for each i, path(A, Bi) is an OR path from λ(A) to
λ(Bi) that is not a prefix of path(A, Bj) for any j �= i 1;

—if P1(A) = B∗, then path(A, Bi) is a STAR path;
—if P1(A) = str, then path(A, str) is an AND path ending with text().

The following example illustrates why these conditions are necessary to im-
pose for deriving an instance-level mapping from σ .

Example 4.1. In Figure 3 a number of simple schema mapping examples
are presented to illustrate the validity conditions for schema embeddings. The
figure shows five scenarios, labeled “a” through “e.” Each scenario consists of a
source and a target DTD, with the schema graph of the source DTD on the left and
the target on the right. Except for Figure 3(c), types in the source are mapped
(by the type mapping λ) to types with the same name in the target, for example,
A is mapped to A′. In Figure 3(c), two source types are mapped to one target
type, in that both λ(B) = B′ and λ(C) = B′.

For Figure 3(a), there is no valid path mapping from the source DTD to the tar-
get, since path(A, B) and path(A, C) violate the path type condition; intuitively,
B and C must coexist in a source document while only one of B′ and C′ exists
in the target. Similarly, for Figure 3(b), the source cannot be mapped to the
target since the target cannot accommodate possibly multiple B elements in
the source. For Figure 3(c), a valid embedding is path(A, B) = B′[position() = 1]
and path(A, C) = B′[position() = 2]. For Figure 3(d), there is no valid embed-
ding since path(A, B) is a prefix of path(A, C), violating the prefix-free condition.
For Figure 3(e), a valid embedding is path(A, B) = A′/B′ (by unfolding the cycle
once) and path(A, C) = B′/C′.

Finally, we define XML schema embeddings as follows.

Schema Embedding. A schema embedding from S1 to S2 w.r.t. a similarity
matrix att is a path mapping σ = (λ, path) from S1 to S2 such that λ is valid
w.r.t. att, and σ is valid for every element A in E1.

Note that schema embedding takes into account the semantics of the source
and target schemas by means of the similarity matrix, on top of the syntactic
and structural correspondences between the two schemas.

1Abusing our normal form of DTDs, an optional type B can be specified as, for example, A → B + ε;
here path(A, B) simply needs to be an OR path since ε is not an element type and thus path(A, ε) is
undefined.

Example 4.2. Assume a similarity matrix att such that att(X , X ′) = 1 for
all X in the DTD S0 of Figure 1(a) and X ′ in S of Figure 1(c). Here the similarity
matrix att imposes no restrictions: any name in the source can be mapped to any
name in the target; thus the embedding here is decided solely on the DTD struc-
tures. The source DTD S0 can be embedded in the target S via σ1 = (λ1, path1)
defined as follows:

λ1(db) = school, λ1(class) = course, λ1(type) = category,
λ1(A) = A /* A: cno, title, regular, project, prereq, str */

path1(db, class) = courses/current/course
path1(class, cno) = basic/cno
path1(class, title) = basic/class/semester[position()=1]/title
path1(class, type) = category
path1(type, regular) = mandatory/regular
path1(type, project) = advanced/project
path1(regular, prereq) = required/prereq
path1(prereq, class) = course
path1(A, str) = text() /* A for cno, title */

Note that path1(A, B) is a path in S denoting how to reach λ1(B) from λ1(A); that
is, the path is relative to λ1(A) rather than starting from the root. For example,
path1(type, project) indicates how to reach project from a category context node
in S, where category is mapped from type in S0 by λ1.

In contrast, one cannot map S0 to S by graph similarity, which requires that
node A in the source is mapped (similar) to B in the target only if all children of
A are mapped (similar) to children of B. In other words, graph similarity maps
an edge in the source to an edge in the target.

The definition of schema embedding can be extended to support further re-
structuring “across hierarchies” such that a child B of a source type A is not
necessarily mapped to a descendant of λ(A) in the target; this can be achieved
via, for example, upward modality in path(A, B). It is also possible that an AND

edge does not have to be mapped to an AND path. We focus on the main idea of
schema embeddings in this paper and defer the extension to a later study.

Embedding Quality. There are many possible metrics. In this paper we con-
sider only a simple one: the quality of a schema embedding σ = (λ, path) w.r.t. att

is the sum of att(A, λ(A)) for A ∈ E1, and we say that σ is invalid if λ is invalid
w.r.t. att. We refer to this metric as qual(σ, att).

4.2 Instance Level Mapping

For a valid schema embedding σ = (λ, path) from S1 to S2, we give its semantics
by defining a (data) instance-level mapping σd : I(S1) → I(S2), referred to as
the XML mapping of σ . We define σd by presenting an algorithm that, given an
instance T1 of S1, computes an instance T2 = σd (T1) of S2.

Before presenting the full algorithm, we introduce two notions, the minimum
default instance of a target schema tag and the mapping fragment of a source
node. In a nutshell, the mapping fragment of a source node v is the subtree in

the target T2 that is “mapped” from the subtree of v in T1. The minimum default
instance of a target schema tag A is a fixed default instance of A, which will
be added to T2 by the instance-level mapping σd such that T2 is guaranteed to
conform to S2.

Minimum Default Instances. For a DTD S1 = (E1, P1, r1) and a particular
element type A ∈ E1, we fix a default instance of A. Recall from Section 2 that
we consider consistent DTDs only; as a result, instances of A exist. Among these
instances of A one can fix an arbitrary one and treat it as the default instance.
In other words, the default instance is a constant property of a single schema.
Below we present how we fix a default instance.

Assume a fixed order on the types (XML tags) of E1, and a fixed string value
#s. We compute the minimum default instance of A, denoted by mindef(A), in-
ductively based on the definition of A as follows. We associate a variable rank(A)
with A, having an initial value 1. (1) If P1(A) is str, then mindef(A) is a node
with label A carrying a str child with #s as its value, and we set rank(A) = 0.
(2) If P1(A) is B∗, then mindef(A) is a single A-node without any children, and
we set rank(A) = 0. We then repeat the following process until for all A ∈ E1,
rank(A) = 0. For each A ∈ E1 with rank(A) = 1, (3) if P1(A) is B1, . . . , Bn and
rank(Bi) = 0 for all i ∈ [1, n], we let mindef(A) be a node with label A and chil-
dren consisting of mindef(B1), . . . , mindef(Bn); or (4) if P1(A) is B1 + · · · + Bn

and one of Bi has rank(Bi) = 0, we let mindef(A) be mindef(Bj) such that Bj is
the smallest among all Bi ’s with rank(Bi) = 0 w.r.t. the order on the types in
E1. In both cases we set rank(A) = 0. Since S1 is consistent, in each iteration
there must exist some A satisfying (3) or (4) above. Upon the termination of the
process we have mindef(A) defined for all A ∈ E1.

Example 4.3. Given the XML mapping σd of the embedding defined in
Example 4.2, some example values of mindef might be:

mindef(student) =

<student>

<ssn> #s </ssn>

<name> #s </name>

<gpa> #s </gpa>

<taking> </taking>

</student>

mindef(prereq) = <prereq> </prereq>

mindef(category) =

<category>

<advanced>

<project> #s </project>

</advanced>

</category>

Production Fragments. For a source node v with type A in S1, we define
t = pfragA(v) to be an XML fragment, referred to as the production fragment of
v with respect to σd . The root rt of t is a node with label λ(A) and carrying the
same node identity as v. In addition, a set of “hot” leaf nodes hleaf(t) is defined,

Fig. 4. The production fragment of class in Example 4.2.

and with each such leaf, h, is associated a node from T1, src(h). Finally, during
the production of t, position information is associated with each node v ∈ t by
pos(v) (with the first child of a node numbered “1”). For example, nodes of type
class in Example 4.2 will have production fragments, as shown in Figure 4.
Here hleaf(t) = {category, cno, title}, shown in rectangles in the figure. Other
nodes correspond to the minimum definition of str nodes. Finally, pos(v) for each
node is shown as a number under the node.

Constructing Production Fragments. We now give the details of computing
the XML fragment t = pfragA(v), for a source node v of type A. First, the root rt

is created and set as the root of t, and pos(rt) is set to 1. Second, for each child
v′ of v in T1, we add ρ = path(A, B) to t, where v′ is of type B. In general, this
is accomplished by dividing ρ into a prefix ρ1 and a suffix ρ2, such that ρ1 is
the longest prefix of ρ that matches a path ρ ′ in t. Nodes u1, . . . , uk are created
for each of the k steps in ρ2 (|ρ2| = k), and pos(ui) is set to one of a) j where
the predicate [position() = j] appeared on the corresponding step of ρ2 or b) j
where the parent of ui is of type C in S2, ui is of type C′

j , and P2(C) is of the form
C′

1, . . . , C′
j , . . . , C′

m, and c) if neither (a) nor (b) holds, j where v′ is the j -th child
of v. Node u1 is then added as a child of u0, which is the lowest node t matching
ρ ′. Finally, uk is added to hleaf(t), and src(uk) is set to v′. (Note that u0 cannot
be in hleaf(t) due to the prefix-free property of valid schema embeddings.)

Once this process completes, the embedded nodes needed are present, but
ordering may be incorrect and some required nodes may be missing. To deal
with this, if any node u in t but not in hleaf(t) requires a child u′ of type C at
position i, but no such u′ exists with pos(u′) = i, then a copy of mindef(C) is
added as a child of u, and pos(m) where m is the root of the copy of mindef(C) is
set to i. Note that such a child can be required for a parent u that is associated
with AND node in the schema, or a parent that is associated with a STAR node
if some child u′′ with pos(u′′) > i. Finally, the children of nodes in t not copied
from some mindef are sorted into the pos order.

Instance Construction Algorithm. A construction algorithm, InstMap, for σd

is shown in Figure 5. In a nutshell, InstMap constructs T2 in a top down fashion,
by repeatedly replacing a hot node with the appropriate production fragment.
In the process, the node id mapping idM() is generated at line 6 to map the ids
of the nodes in T2 to the ids of the corresponding nodes in T1. Note that a node

Fig. 5. Algorithm InstMap.

in T1 is in H exactly once, and thus the algorithm trivially terminates in time
linearly proportional to the size of the larger of T1 and T2.

Example 4.4. Consider the XML mapping σd of the embedding defined in
Example 4.2. Given an instance T1 of S0 of Figure 1(a) and σd , algorithm InstMap

generates a tree T2 of S of Figure 1(c) as follows: InstMap first creates the root
school of T2, as a copy of the root db of T1, and marks school as a “hot” node
by adding it to H at line 2. The first time through the loop at lines 4–7, the
new root is chosen as h, and replaced with the production fragment of the
db node from T1. This fragment is rooted at a school node, and has a history
child and a current child. Since history is not involved in any pathi(db,B) for
any potential child of db, the minimum default instance of the history node
is used in this production fragment. Since history has an outgoing STAR edge,
this minimum default instance is in fact a single history node. For the current
node, the construction of the production fragment is more complicated. In fact,
it produces a child of current with label course for each class child of the original
root of T1. Since these nodes terminate a path in the mapping, they are in the
hleaf set for the production fragment just added to the tree, and thus they are
added to H at line 7 (and db is removed). The algorithm continues by selecting
one of the newly-created course nodes as h and replacing it with the production
fragment of the class node in T1. Note that at line 6 the node id mapping idM()
is generated accordingly to map the ids of the nodes in T2 to the ids of the
corresponding nodes in T1, in this case mapping the newly created course node
back to the source class node. The new production fragment for class follows the
form shown in Figure 4, and includes a basic subtree with cno as a “hot node,”
credit as a minimum default instance and a subtree under class of a single
semester. Under this node, title is again added to H as a “hot node,” while
year, term and professor are filled in with their respective minimum default
instances. The algorithm continues until the entire tree is created.

Correctness. We next show that σd is well defined. That is, given any T1 in
I(S1), σd (T1) is an XML tree and moreover, it is type safe; that is, it conforms to
S2. This is nontrivial due to the interaction between different paths defined for

disjunction types in the schema mapping σ , among other things. Consider, for
example, path(type, regular) in Example 4.2. The path requires the existence of
a regular child under a mandatory element m, which is in turn a child under
a category element c in an instance of S. Thus it rules out the possibility of
adding an advanced child under c or a lab child under m, perhaps requested by a
conflicting path in σ . However, Theorem 4.1 shows that the prefix-free condition
in the definition of valid path functions ensures that conflicting paths do not
exist. Theorem 4.1 also shows that σd is injective: it maps distinct nodes in T1

to distinct nodes in σd (T1), a property necessary for information preservation.

THEOREM 4.1. The XML mapping σd of a valid schema embedding σ : S1 →
S2 is well defined and injective.

PROOF. The proof consists of three parts. We first show that δ maps distinct
XR paths in S1 from r1 to distinct XR paths in S2 from r2. Then, using this we
show that σd is injective. Based on this we finally show that σd is well defined.

(1) We first define a function δ that maps XR paths from the root r1 in S1 to XR

paths from the root r2 in S2. Given an XR path ρ = A1[q1]/ . . . /Ak[qk] in S1

from r1, δ(ρ) is defined to be path(r1, A1)[q1]/ . . . /path(Ak−1, Ak)[qk], an XR

path in S2 from r2, by substituting path(Ai, Ai+1) for each Ai+1 in ρ.
We show that δ maps distinct XR paths in S1 from r1 to distinct XR paths

in S2 from r2. Let ρ1, ρ2 be distinct XR paths from r1 in S1. Consider the
following two cases. First, ρ1 is a prefix of ρ2. That is, ρ2 = ρ1/ρ where ρ is
nonempty since ρ1 and ρ2 are distinct. Then ρ is mapped to a nonempty XR

path in S2 by the definition of σ , and thus δ(ρ1) �= δ(ρ2); similarly if ρ2 is a
prefix of ρ1. Second, neither is ρ1 a prefix of ρ2 nor ρ2 is a prefix of ρ1. Then
there exist ρ , ρ ′

1, A[q], B1[q1] and B2[q2] such that ρ1 = ρ/A[q]/B1[q1]/ρ ′
1,

ρ2 = ρ/A[q]/B2[q2]/ρ ′
2, and B1[q1], B2[q2] are the first labels that differ in ρ1

and ρ2. Then B1, B2 are child types of A, A is either a concatenation type or
a disjunction type, and moreover, either B1, B2 are distinct labels, or q1, q2

indicate different positions of the same label. By the definition of schema
embedding, neither is path(A, B1) a prefix of path(A, B2) nor the other way
around. That is, path(A, B1) = �/η1/�1 and path(A, B2) = �/η2/�2 such that
η1 and η2 are distinct. Thus δ(ρ1) �= δ(ρ2).

(2) From (1) and the definition of σd it follows that σd is injective. Indeed,
any node in an XML tree is uniquely determined by an XR path from the
root. Thus by the definition of σd , any node v in T ∈ I(S1) is mapped to a
distinct node in σd (T). Indeed, this obviously holds if the parent of v is of
a concatenation or disjunction type or str; and moreover, if the type of the
parent v′ of v is defined with a Kleene star, the children of v′ are mapped to
distinct nodes preserving the original order, by the definition of σd .

(3) We next show that σd is type safe; that is, for any T ∈ I(S1), σd (T) conforms
to S2. One possible violation of S2 may occur when there exists an A-node
u in σd (T) such that A is a disjunction type A → B1 + · · · + Bk , and σd (T)
forces the presences of both Bi and Bj children of u. Then there must be
two nodes v1, v2 in T identified by XR paths ρ1, ρ2 from the root of T such
that v1, v2 are mapped to the Bi, Bj children of u, respectively; furthermore,

ρ1 = ρ/A′[q]/ρ ′
1, ρ2 = ρ/A′[q]/ρ ′

2, and v1, v2 have the lowest common ances-
tor v that is identified by ρ/A′[q] and is mapped to either u or an ancestor u′

of u by σd . If v is mapped to u then v must have a disjunction type by the defi-
nition of schema embedding, and thus v1, v2 cannot coexist. This contradicts
the assumption. Now assume that v is mapped to u′. Consider the following
cases of the production of A′, where A′ is the element type of v. (i) Obvi-
ously if A′ → ε or A′ → str, it is impossible for v to have descendants v1

and v2. (ii) If A′ → B′
1, . . . , B′

n, then both path(A′, B′
i) and path(A′, B′

j) must
be suffixes of the same XR path that is mapped from ρ/A′[q], ending with
A, since otherwise it would violate the path type condition given that A
is a disjunction type. However, this contradicts the prefix-free condition of
schema embedding since either path(A′, B′

i) is a prefix of path(A′, Bj) or the
other way around. (iii) If A′ → B′

1 + · · · + B′
n, then either v1, v2 cannot exist

at the same time, or v cannot be the lowest common ancestor of v1 and v2,
since v has one and only one child. Again this leads to contradiction. (iv) If
A′ → B∗, then by the definition of σd , v1, v2 cannot be mapped to nodes
that have a common ancestor u without violating the path type condition,
given that A has a disjunction type. This again contradicts the assumption.
Putting these together, the violation of S2 by OR paths cannot happen. Sim-
ilarly, it can be verified that violations cannot be caused by AND and STAR

paths either.

4.3 Instance Level Mapping with XSLT

While the given procedure clearly demonstrates that instance-level schema
embeddings can be computed in a straightforward and efficient manner, it re-
quires an implementation effort on the part of the user. In fact, the top-down
rule-driven style of computation on which instance-level embedding is based is
quite compatible with the widely used XML Stylesheet Language for Transfor-
mations (XSLT) [Clark 1999]. In this section, we sketch the construction of XSLT

stylesheets to effect both σd and σ−1
d , the construction of the original document.

To simplify the discussion we omit the concrete construction of node id mapping
idM(), which, as remarked earlier, can be easily incorporated.

XSLT Overview. We now present a (somewhat simplified) model of XSLT

stylesheet processing. In our model, an XSLT stylesheet X is a set of template
rules {ri}. Each rule, ri ∈ X , is a 3-tuple (match(ri), mode(ri), output(ri)), where
match(ri) is the match pattern of ri, mode(ri) is the mode of ri, and output(ri) is
the output-tree fragment of ri. The match pattern of a template rule, match(ri),
is a pattern [Clark 1999] and is essentially a subset of XPath expressions con-
taining only child, descendant, and attribute axes. The mode of a rule, mode(ri),
is a symbol that allows rules to be partitioned; that is, rule invocations must
match in mode as well as match pattern. If there is no mode attribute, the XSLT

processor will set it to a default value.
The output tree fragment for a rule, output(ri), controls the structure of the

rule’s output. Essentially, output(ri) is a well-formed fragment of XML, except
that some leaf-nodes of the fragment may be apply-template nodes. We use
apply(ri) to denote the set of apply-template nodes in the output fragment of

ri. An apply-templates node, aj , is a 2-tuple of the form (select(aj), mode(aj)),
where select(aj) is the select expression of aj , and mode(aj) is the mode of aj .

XSLT Processing Model. We will now informally describe the processing
model of XSLT; for a formal discussion see Wadler [2000]. An XSLT stylesheet
is executed against a source document Ts to produce a target document Tt . Doc-
ument processing revolves around a set C of source nodes in Ts, referred to as
context nodes. Associated with each node c ∈ C is a node t(c) in the (partially
constructed) Tt . Processing of Ts with XSLT stylesheet X proceeds in general
by selecting a node c from C and a processing rule ri ∈ x that matches c,
then replacing t(c) in Tt with a copy oi of output(ri). Each apply-template node
aj ∈ output(ri) is then visited, and the XPath expression select(aj) evaluated on
Ts, using c as the start node, to yield a sequence of source nodes, Rj . For each
node u in Rj (in order), a new dummy node t(u) is created, forming a sequence
of dummy target nodes, Gj . The apply-template node aj in oi is then replaced
by the sequence Gj , and Rj is added to C. This process continues until C is
empty.

An XSLT Template for σ−1
d . Consider computing σ−1

d (T) for a source DTD
S1 = (E1, P1, r1), target DTD S2 = (E2, P2, r2), mapping σ = (λ, path), and a
particular element type C = λ(A), where A ∈ E1 and C ∈ E2. We define invt(C)
to be one or more XSLT templates. The idea is to define a stylesheet comprised
of templates for each element in the image of S1 under λ, such that when
the stylesheet is run on an instance produced by the instance-level mapping
function σd applied to a tree, T1, it will compute the inverse, σ−1

d , recovering
T1. We now give the definition of each such template. For each such template
rC = invt(C), recall that we must define (match(rC), mode(rC), output(rC)). In this
construction match(rC) will be C, and mode(rC) will always be MDATA, a fixed
mode picked for the templates in σ−1

d . The output tree fragment, output(rC),
always has a root element er , labeled A, where C = λ(A). The sequence of
children of this node differs based on the form of P1(A), as follows:

(1) P1(A) is B1, . . . , Bn, then the children of er will be a sequence of apply-
template nodes, a1, . . . , an. For ai, select(ai) = path(A, Bi).

(2) P1(A) is B1+· · ·+Bn, then instead of a single template for invt of C, we create
n templates, rC1 , . . . rCn . Each rCi has as the match condition match(rCi) =
C[path(A, Bi)], which will match any C node with path(A, Bi) as an outgoing
path. Each of these rules has for its output tree a node er with label A, and
er will have a single child node that is an apply-template node, a, with
select(a) = path(A, Bi).

(3) P1(A) is B∗, then a single rule rC will be created. The root node of output(rC)
will be labeled A, and it will have a single child node that is an apply-
template node, a. The mode of a will be MDATA, and select(a) = path(A, B).
Note that on the target document, this selection path may return multiple
nodes.

(4) P1(A) is str, then a single rule rC will be created. The root node of
output(rC) will be labeled A, and it will have a single child node that is an
apply-template node, a. The mode of a will be MDATA, and select(a) = text().

Note that text() is an XPath function that returns true when applied to a str

node.

Finally, we add a template that matches a text node and generates an output
tree that is a copy of that node.

Example 4.5. Consider the target type course in Example 4.2 mapped to
source type class under σ−1

d . The XSLT template generated for course in the
implementation of σ−1

d would be:

<xsl:template match=“course” >

<class>

<xsl:apply-templates select=“basic/cno” />

<xsl:apply-templates select=“class/semester/title” />

<xsl:apply-templates select=“category” />

</class>

</xsl:template>

Note that this template follows closely the tree shown in Figure 4, with each
node in hleaf replaced with an apply-templates node. However, the form of
production fragments is not as simple with other nodes, and we now show the
two templates that are generated for category, since it is mapped to type which
is a disjunctive node with two children in S0:

<xsl:template match=“category[mandatory/regular]” >

<category>

<xsl:apply-templates select=“mandetory/regular” />

</category>

</xsl:template>

<xsl:template match=“category[advanced/project]” >

<category>

<xsl:apply-templates select=“advanced/project” />

</category>

</xsl:template>

Before defining an XSLT template for the instance-level mapping, σd , we in-
troduce template rules to generate default values for elements:

Minimum Default Templates. For a DTD S1 = (E1, P1, r1), and a particu-
lar element type A ∈ E1, we define mint(A) to be the minimum default tem-
plate, an XSLT template rA with match(rA) = ε, which will match any node, with
mode(rA) = MDATA, and with output(rA) = mindef(rA).

An XSLT Template for σd . We now outline the construction of an XSLT

stylesheet to compute σd . The general idea is to follow the construction al-
gorithm very closely, by providing one or more XSLT template rules for each
production in S1. The form of these rules takes advantage of regularities in
the form taken by pfragA(v) depending on the type of the production, P1(A). In
particular, the body of each rule will be one form taken by pfragA(v), and each
“hot” node in this form will be replaced by an apply-templates node. We now
describe the production of pfragA(v) in each case:

(1) P1(A) is B1, . . . , Bn. Note that, except for the node identity of the root node,
pfragA(v) is a constant tree, say tA, w.r.t. v. Accordingly, an XSLT template rule
rA can be constructed with match(rA) = ‘A’ and output(rA) = tA modified by
substituting an apply-templates node in output(rA) for each node in hleaf(tA).
In particular, for u ∈ hleaf(tA), we construct an apply template node au, with
select(au) = Bi if the type of src(u) would be Bi in an instantiation of this
fragment. (Default values for mode(ri) are used unless specified otherwise.)

(2) P1(A) is B1 + · · · + Bn. In this case, n template rules, rA,1, . . . , rA,n can be
constructed. The i-th template rule, rA,i, is constructed as follows. First,
we ensure that the variant is only fired when the correct child appears
in T1 by setting match(rA,i) = A[Bi]. The output fragment output(rA,i) is
then based on the single path path(A, Bi), and the single leaf node becomes
the only apply-templates node, aA,i, of rA,i. For this applytemplates node,
select(aA,i) = Bi.

(3) P1(A) is B∗. Since the number of children of v may vary, pfragA cannot be
precomputed in general. Note however, that by the definition of a valid path

function, ρ = path(A, B) is of the form λ(A)/C1/ . . . /Ck/Ck+1/ . . . /Cn/λ(B),
where Ck is the first type defined in terms of Kleene star in P2, i.e., P2(Ck) =
C∗

k+1 and no element type on λ(A)/C1/ . . . /Ck , except Ck , has production of
this form. Accordingly, pfragA will have a constant prefix corresponding to
λ(A)/C1/ . . . /Ck regardless of the number of children of v, and this fact can
be used to construct a pair of XSLT template rules rA, p (p for “prefix”) and rA,s

(s for “suffix”) for P1(A) as follows: For rA, p, match(rA, p) = A, and the body
output(rA, p) is a tree corresponding to the path λ(A)/C1/ . . . /Ck . A single
apply-templates node aA, p is added as a child of Ck , with select(aA, p) = B,
and unlike the other rules for a new mode, mode(aA, p) = MA. The sec-
ond template rule, rA,s has that match(rA,s) = B, mode(rA,s) = MA, and
output(rA,s) is a tree corresponding to the path Ck+1/ . . . /Cn (note it is the
responsibility of the next rule to generate the λ(B) node). As a child of the
final Cn element in tree, a single apply-templates node aA,s is added, with
select(aA,s) = B. Each node v of type B in the source document will be pro-
cessed by the rest of the stylesheet, and the result placed as a subtree, as
required.

(4) P1(A) is str. The treatment is the same as (1) except the last node of
path(A, str) in T2 is a text node holding the same value as the text node
in T1.

Example 4.6. Consider the source type class in Example 4.2 mapped to
target type course under σd . The XSLT template generated to effect σd for course
would be:

<xsl:template match=“class” >

<course>

<basic>

<xsl:apply-templates select=“cno” />

<credit> #s </credit>

<class>

<semester>

<xsl:apply-templates select=“title” />

<year> #s </year>

<term> #s </term>

<instructor> #s </instructor>

</semester>

</class>

</basic>

<xsl:apply-templates select=“type” />

</course>

</xsl:template>

Two templates are generated for type since it is a disjunctive node with two
children:

<xsl:template match=“type[regular]” >

<category>

<mandatory>

<apply-templates select=“regular” />

</mandatory>

</category>

</xsl:template>

<xsl:template match=“type[project]” >

<category>

<advanced>

<apply-templates select=“project” />

</advanced>

</category>

</xsl:template>

Finally, the prefix and suffix templates for db illustrate the handling of star
edges. Note that these templates use mode to ensure that no spurious matches
are made.

<xsl:template match=“db” > <!-- prefix template >

<school>

<courses>

<current>

<apply-templates mode=“M-db” select=“class” />

</current>

</courses>

</school>

</xsl:template>

<xsl:template match=“class” mode=“M-db” > <!-- suffix template >

<xsl:apply-templates select=“.” />

</xsl:template>

4.4 Translation of Regular XPath Queries

In this section, we introduce techniques for translating XR queries expressed
against the source schema S1 into queries against the target schema S2. In
particular, if Q is an XR query on S1, and σ is an embedding of S1 into S2 then
we would like to find a query Q ′ such that Q ′(σd (T)) = Q(T) for any instance
T of S1. We define next a query translation function Tr with just this property.
The approach we take is to translate Q into an automaton representation, and
use this representation as the basis for the translation.

To motivate the use of an automaton framework for query translation, con-
sider an apparently simpler translation based directly on the parse tree of Q .
Recall that XR queries use only the “child::” axis of XPath, albeit possibly in the
context of a Kleene-star. An appealing idea is to replace a step “child::A” in a
query with path(B, A) where B is A’s parent in S1. However, this simple trans-
lation is not generally correct. First, tags in a DTD do not have a unique parent,
and A might appear in the production of a number of elements, say B and C.
In this case, simple edge substitution is not sufficient to translate (B ∪ C)/A,
since in general path(B, A) �= path(C, A). Second, consider translating a query
(A1 ∪ A2 ∪ A3)/(B1 ∪ B2 ∪ B3). Since each path(Ai, Bj) is distinct, and may or
may not be defined, it is clear that nine paths may need to be matched when
this query is translated to S2, and thus simple textual substitutions will not
effectively map this query across σ . Simply substituting path(A, B) for A may
lead to incorrect translation.

Finally, we note that keeping the output in automata form is important to
the overall complexity of query translation. If the translated query Tr(Q) is
explicitly represented as an XR query, in the worst case it is of exponential size.
Indeed, the query translation problem subsumes the problem for translating
finite state automata to regular expressions, which is known to be exponential-
time complete [Ehrenfeucht and Zeiger 1976]. To overcome these difficulties,
we adopt a simple automaton (graph) representation of the translated queries,
along the same lines as solutions for traditional path problems [Tarjan 1981].
This allows us to translate XR queries on S1 to equivalent queries, represented
as automata, against S2 as embedded by σ in low polynomial time.

We now define a simple automaton representation of XR queries. We refer
to such an automaton as an annotated nondeterministic finite state automaton
(ANFA). As will be seen shortly, for each XR query Q posed on instances T of
S1, there exists an ANFA characterizing the equivalent XR query Tr(Q) on corre-
sponding target documents σd (T); furthermore, the size of the ANFA is bounded
by O(|Q | |σ | |S1|). Leveraging ANFA’s, we will then provide the definition of Tr.

Automaton Representation of XR Queries. We represent an XR query Q in
terms of a mild extension of non-deterministic finite state automaton (NFA), by
annotating states in a NFA with ANFA’s that represent qualifiers in Q . Formally,
the ANFA representing Q is defined to be MQ = (M , ν), where ν and M are
given as follows. (i) ν is a mapping, referred to as the annotation of MQ , from
a set of names {X i | i ∈ [1, m]} to a set of ANFA’s {Mi | i ∈ [1, m]}, and Mi is an
ANFA representing a subqualifier. Here a subquery of Q denotes a descendant
in Q ’s parse tree, and a subqualifier denotes a descendant in the parse tree of

Fig. 6. An ANFA representing the XR query Q ′.

a qualifier of Q . Note that m is the number of subqualifiers in Q , and thus is
no larger than the size |Q | of Q . (ii) M = (K , �, δ, s, F, θ), where K , �, δ, s, F
are the states, alphabet (the labels in Q), transition function, start state and
final states as in the standard NFA definition; and θ is a partial mapping from
K to “qualifiers” defined as

qx ::= X | X /text() = ‘c’ | position() = k | ¬X | X ∧ X | X ∨ X ,

where X is a name. That is, θ annotates a state in M with a qualifier qx .

Example 4.7. Consider a query Q ′ = courses/current/course[basic/cno/
text()=‘CS331’]/(category/mandatory/regular/required/prereq/course)∗. This
XR query is represented by the ANFA M shown in Figure 6, where M = (M , ν)
and ν(X) = M1.

More specifically, we define MQ based on the structure of Q as follows.

(a) If Q is ε, then M = ({s}, �, δ, s, {s}, θ), where δ(s, ε) is the only defined
transition (ε-transition). The mappings θ () and ν() are undefined.

(b) If Q is a label B, then M = ({s, f }, �, δ, s, { f }, θ), where δ(s, B) = { f } is the
only defined transition. The mappings θ () and ν() are undefined.

(c) If Q is Q1 ∪ Q2, assume that MQi = (MQi , νQi) is the ANFA representing Qi

for i ∈ [1, 2]. We define MQ as the union of MQ1 and MQ2 as for standard
NFA’s [Yu 1996], and θ () as the union of θ1() in MQ1 and θ2() in MQ2 ; similarly
for ν(). We assume w.l.o.g. that the name X q of a subqualifier q is uniquely
identified by q in both νQ1 and νQ2 .

As for standard NFA’s, MQ can be defined for Q1/Q2 and Q∗
1 in terms of

the concatenation and Kleene closure of ANFA’s, respectively.
Similarly, p/text() is a special case of Q1/Q2 in which Q2 is represented

by an ANFA with a single transition defined by str.
(d) If Q is p[q], assume that Mp = (M p, νp) and Mq = (Mq , νq) are the ANFA’s

representing p and q, respectively, where M p = (K p, �, δp, s, Fp, θp). We
define MQ to be (K p, �, δp, s, Fp, θ), where θ () is an extension of θp() by
letting θ (f) = X q , for all f ∈ Fp, and ν() be an extension of the union of νp

and νq by letting ν(X q) = Mq .
The remaining cases cover the translation of a qualifier (Boolean expres-

sion) q in an XR query (e.g., p[q]) to an ANFA form. Recall from Section 2.2
the definition of qualifiers. The translation of q is inductive based on the
structure of q, in which the ANFA for a subexpression of q may be constructed
by one of the cases (a)-(d) and the cases below.

Fig. 7. Problematic DTDs for Query Translation.

(e) If q is p, assume that Mp = (M p, νp) is the ANFA representing p. Then M is
defined as in (a), except that θ (s) = X p and ν(X p) = Mp.

(f) If q is p/text() = c, assume that Mp = (M p, νp) is the ANFA representing p.
Then Mq is defined as in case (a), except that θ (s) = [X p/text() = c] and
ν(X p) = Mp.

(g) If q is position() = k, then M is defined as in case (a), except that θ (s) =
[position() = k].

(h) If q is ¬q1, assume that Mq1 = (Mq1 , νq1) is the ANFA representing q1. Then
M is defined as in case (a), except that θ (s) = [¬X q1], and ν() is an extension
of νq by letting ν(X q1) = Mq1 .

(i) If q is q1 ∧ q2, assume that Mqi = (Mqi , νqi) is the ANFA representing qi for
i ∈ [1, 2]. We define Mq as in case (a), except that θ (s) = [X q1 ∧ X q2], and
ν() is an extension of the union of νq1 and νq2 by letting ν(X qi) = Mqi .
Similarly for the case when q is q1 ∨ q2.

Along the same lines as the translation from standard NFA’s to regular ex-
pressions [Yu 1996], one can restore an XR query Q from its ANFA representation
MQ . In fact it is easy to develop an algorithm for directly evaluating the ANFA

MQ on an XML tree following the semantics of XR query evaluation on XML

trees [Marx 2004]. Indeed, evaluation algorithms and optimization techniques
have been developed for a similar automaton representation of regular XPath
queries [Fan et al. 2007], which have shown to outperform several commercial
systems for evaluating XPath queries (to the best of our knowledge, a com-
mercial system for regular XPath is not yet in place). We do not elaborate the
evaluation algorithms as they are beyond the scope of this paper.

Schema-Directed Query Translation. We now present the definition of Tr. Re-
call that Tr is a mapping from XR queries to ANFA’s that, given any XML query
Q ∈ XR , yields an ANFA Tr(Q) representing an XR query Q ′ such that for any
T ∈ I(S1), Q(T) = Q ′(σd (T)). The translation function Tr combines the defi-
nition of ANFA’s MQ for a query Q with the mapping δ on XR paths given in
Section 4.2.

This translation is schema-directed in that a translation of each subexpres-
sion q of Q is made relative to each element type A appearing in schema S1.
To see why a schema-directed translation is required, consider the source and
target schemas of Figure 7. In this figure, a very simple schema embedding is
considered in which, for all tags X , Y , λ(X) = X and path(Y , X) = X (if (Y , X)
is an edge in the source schema), when X , Y range over r, A, B and C. One

might be tempted to think that query translation would be simple in this case,
and that Q itself would work on the target schema. Indeed, simply substitut-
ing path(Y , X) for each edge (Y , X) in the source schema would yield the same
query Q on target documents specified by the schema shown in Figure 7(b).
However, consider a query Q = r/(A ∪ B ∪ C)∗. Clearly, such a query does not
return any C children of B elements when run on S1, but will return such nodes
when run on σd (T), since the C-child of B is a required node and will be added
by the instance level mapping of Section 4.2. It is thus evident that the simple
translation strategy by substituting path(Y , X) for (Y , X) does not work. Our
schema-directed construction avoids such problems by matching target nodes
only when they will be generated by nodes in the source schema by σd ().

More specifically, given an XR query Q over S1, Tr(Q) is computed by using
the following functions. (i) For each element type A in E1 and each subquery
Q1 of Q , the local translation Trl (Q1, A) = (M , ν) is the ANFA presenting an
XR query Q2 over S2 such that for any instance T of S1 and any element a of
type A in T , the result of evaluating Q1 at a in T is the same as the result of
evaluating Q2 at a′ on σd (T), where a′ is mapped from a by σd . (ii) For each
final state f in M , the label lab(f , M , A) associates an element type of S1 with
f , which indicates the type of the elements reached via Q1 when evaluated at
an A element in an instance T of S1. As will be seen shortly, the construction of
the ANFA (M , ν) ensures that each final state f in M is associated with a single
type of S1.

To handle the case that Trl (Q1, A) will never return any nodes, we introduce
a special automaton Fail, which can be thought of as consisting of a single start
state with no transitions and no final states. Note that any automaton with no
final states is equivalent to Fail, and thus special cases can be introduced in
other rules below to handle the case that an automaton for a subexpression is
equivalent to Fail. However, to keep the presentation simple, we assume that a
standard useless state removal algorithm is run on each completed automaton,
which removes states that cannot reach a final state.

We compute Trl (Q1, A) and lab() based on the structure of query Q1 as follows.
(a) If Q1 is ε, Trl (Q1, A) is the ANFA as defined in case (1a), and lab(s, M , A) = A.
(b) If Q1 is a label B and path(A, B) is defined (i.e., B ∈ P (A)), then Trl (Q1, A)
is the ANFA coding the XR query path(A, B), and lab(f , M , A) = B, where f is
the (single) final state of M . If Q1 is a label B and path(A, B) is not defined,
then MQ1 is Fail.
(c) If Q1 is p1 ∪ p2, then Trl (Q1, A) is the union of the ANFA’s Trl (p1, A) and
Trl (p2, A), and the function lab() is the union of labels for the final states (if any)
of Trl (p1, A) and Trl (p2, A). We assume w.l.o.g. that Trl (p1, A) and Trl (p2, A) have
distinct final states.
(d) If Q1 is p1/p2, assume that Trl (p1, A) = (M1, ν1) and L(M1, A) is the set
of labels {lab(f , M1, A) | f is a final state of M1}. For each B ∈ L(M1, A), let
Trl (p2, B) = (MB, νB) be the ANFA representing the local translation of p2 at
context type B. Then the ANFA Trl (Q1, A) is defined to be (M , ν), where M is the
concatenation of M1 and all MB ’s by connecting via ε-transition the final state
f of M1 and the start state of MB if lab(f , M1, A) = B, ν is the union of ν1 and

all the νB ’s. The set F of final states of M is the union of the final states for the
MB ’s, and similarly the label function for the final states of M is defined to be
the union of those label functions for MB ’s.

Similarly for the case when Q1 is p/text(), except that here Trl (p2, B) repre-
sents the XR query path(B, str), and all the final states of Trl (p2, B)’s are merged
into a single final state fs, for which lab(fs, M , A) = str.

(e) If Q1 is p[q], assume that Trl (p, A) = (M p, νp) and L(M p, A) is the set
of labels {lab(f , M p, A) | f is a final state of M p}. For each B ∈ L(M p, A), let
Trl ([q], B) = (MB, νB) be the ANFA representing the local translation of [q] at
context type B. Then Trl (Q1, A) is defined to be (M , ν), where M is an extension
of M p such that for any final state f of M p, θ (f) = X B if lab(f , M p, A) = B,
and ν(X B) = Trl ([q], B). The label function of Trl (Q1, A) is the same as that of
Trl (p, A).

We now present the translation of qualifiers q.

(f) If q is p, then Trl (q, A) is defined as in case (2a), except that θ (s) = X p and
ν(X p) = Trl (p, A).

(g) If q is p/text() = c, then Trl (q, A) is defined as in case (2a), except that
θ (s) = [X /text() = c] and ν(X) = Trl (p, A).

(h) If q is position() = k , then Trl (q, A) is defined as in case (2a), except that
θ (s) = [position() = k].

(i) If q is ¬q1, then Trl (q, A) is defined as in case (2a), except that θ (s) = [¬X], and
ν() is an extension of νq1 by letting ν(X) = Trl (q1, A), where νq1 is the annotation
of Trl (q1, A).

(j) If q is q1 ∧q2, Trl (q, A) is defined as in case (2a), except that θ (s) = [X 1 ∧ X 2],
and ν() is an extension of the union of νq1 and νq2 by letting ν(X i) = Trl (qi, A),
where νqi is the annotation of Trl (qi, A) for i ∈ [1, 2].

Similarly for the case when q is q1 ∨ q2.

Finally we consider translation of Kleene-star constructs.

(k) If Q1 is p∗, the computation of Trl (Q1, A) requires an iteration. For each
element type B in S1, we define a Boolean flag visited(B), which is initially set
to false. The computation is conducted as follows. We first compute Trl (p, A) and
set visited(A) to true. Let M = (M , ν) be Trl (p, A). While there exists a final state
f in M such that (a) lab(f , M , A) = B, (b) visited(B) is false for some B in S1 and
(c) Trl (p, B) �= Fail, then assuming that Trl (p, B) = (MB, νB), the following three
steps are taken: (i) Concatenate M with MB by connecting f to the initial state
of MB via ε-transition and extend the states, transition function, final states
and the θ function of M by including the counterparts of MB. The initial state
of M remains unchanged. (ii) Set visited(B) to true. (iii) Extend ν by including
νB. This process is repeated at most |S1| times since each iteration marks at
least one element type in S1 to true. Upon the completion of the process, we
extend the final states of M by including its initial state (to capture the case of
p0), and define Trl (Q , A) to be M obtained as above.

Given these, we define Tr(Q) to be Trl (Q , r1). The proof of the following theo-
rem is straightforward by induction on the structure of Q .

THEOREM 4.2. The functions Trl (Q1, A) and lab() are well defined, and for
any instance T of S1, Q(T) = Q ′(σd (T)), where Q ′ is the XR query represented
by ANFA Tr(Q).

Example 4.8. Consider Q = class[cno/text()=‘CS331’]/(type/regular/prereq
/class)∗. Over the DTD S0 of Figure 1(a), this XR query is to find all the classes
that are (direct or indirect) prerequisites of CS331. It is translated to the ANFA

shown in Figure 6, which represents the XR query Q ′ given in Example 4.7.
Over the DTD S of Figure 1(c), Q ′ is equivalent to Q w.r.t. the mapping σd given
in Example 4.4, i.e. Q(T) = Q ′(σd (T)) for any T ∈ I(S0), when evaluated on T
with the root as the context node.

In contrast, the notion of graph similarity ensures neither invertibility nor
query preservation w.r.t. XR . As an example, the source and target schemas
in Figure 3(a) are bisimilar by the conventional definition of graph similar-
ity, which does not consider cardinality constraints of different DTD constructs.
However, there exists no instance-level mapping from the source to the target
with an inverse mapping or a query translation function.

4.5 Properties of Schema Embeddings

Theorem 4.1 has shown that the XML mapping σd of a valid schema embedding
σ is guaranteed to be type safe. We next show that σd and σ have all the other
desired properties.

Information Preservation. In contrast to Theorem 3.4, information preserva-
tion is guaranteed by schema embeddings. Recall the fragment XR of regular
XPath from Section 2.

THEOREM 4.3. The XML mapping σd of a valid schema embedding σ : S1 →
S2 is invertible and is query preserving w.r.t. XR. More precisely, (a) there exists
an inverse σ−1

d of σd that, given any σd (T), recovers T in O(|σd (T)|2) time; and
(b) there is a query translation function Tr that given any XR query Q over S1,
computes an XR query Tr(Q) equivalent w.r.t. σd over S2; furthermore, the query
Tr(Q) has a bounded size O(|Q | |σ | |S1|) and can be computed in O(|Q |2 |σ | |S1|2)
time if it is represented in an automaton format.

PROOF. To show that σd is invertible and query preserving w.r.t. XR , it suf-
fices to define a query translation function Tr : XR → XR . For if it holds, then σd

is query preserving w.r.t.XR and in addition, by Theorem 3.3 it is also invertible.
By Theorem 4.2, Tr is just such a query translation function.

For the complexity of the query translation function Tr, recall the definition
of Tr given in Section 4.4. Note that the set of final states in an ANFA is bounded
by |S1| and that the size of the ANFA Trl (Q1, A) is bounded by O(|Q | |path| |S1|),
which is less than O(|Q | |σ | |S1|). The computation of Trl (Q1, A) can be con-
ducted by dynamic programming, and it takes at most O(|Q |2 |σ | |S1|2) time to
compute Tr(Q).

The inverse function σ−1
d is defined along the same lines as the function in

the proof of Theorem 3.3. Given any σd (T) in I(S2), it takes at most O(|σd (T)|2)
time to compute the source instance T .

Multiple Sources. In contrast to graph similarity, it is possible to embed mul-
tiple source DTD schemas to a single target DTD, as illustrated by the example
below. This property is particularly useful in data integration.

Example 4.9. The embedding σ2 = (θ2, path2) below maps the source DTD

S1 of Figure 1(b) to the target DTD S of Figure 1(c).

λ2(db) = school
λ2(A) = A /* A: student, ssn, name, taking, cno */

path2(db, student) = students/student
path2(student, B) = B /* B: ssn, name, taking */
path2(taking, cno) = cno
path2(C, str) = text() /* C: ssn, name, cno */

Taken together with σ1 of Example 4.2, this allows us to integrate a course
document of S0 and a student document of S1 into a single school instance of
the target DTD S.

In general, given multiple source DTDs S1, . . . , Sn and a single target DTD S, it
is possible to define schema embeddings σi : Si → S to simultaneously map Si

to S. In a nutshell, this can be done as follows. Assume that Si = (Ei, ri, Pi), and
assume a certain order on S1, . . . , Sn. To simplify the discussion, first assume
that Ei ∩ E j = ∅ for all i �= j . We can then define a single source DTD S′ =
(E ′, r ′, P ′) such that E ′ = E1 ∪ . . . ∪ En, r ′ → P1(r1), . . . , Pn(rn) (following the
order on the source DTDs), and for each A ∈ E ′, P ′(A) = Pi(A) if Pi(A) is defined.
Intuitively, S′ merges multiple sources into a single source. Thus if there exists
an embedding σ from S′ to S, σ can be decomposed into σi : Si → S such
that the instance-level mapping σ i

d is invertible and query preserving w.r.t. XR .
In the general setting, if Ei and E j are not disjoint, one can define S′ as a
specialized DTD [Papakonstantinou and Vianu 2000] to preserve the element
type definitions of Pi and Pj on common element types. It is natural to extend
the definition of schema embedding to specialized DTDs.

One can treat the target schema S as a global schema, and the XML mappings
σi : Si → S as the definition of a global view of multiple sources S1, . . . Sn,
following the global-as-view approach. The invertibility of σi assures that the
view is exact [Lenzerini 2002]. The need for the query preservation is evident
in this context since one wants to be able to query the source data via the global
view. As observed in Fagin [2006], invertibility is also useful in defining new
views via mapping compositions, and in data migration where the user may
decide to “roll back” to the original data source; furthermore, it is helpful in
data provenance, when one needs to recover the original source to trace the
origin of certain data [Buneman et al. 2001].

Small Model Property. The result below gives us an upper bound on the
length |path(A, B)|, and allows us to reduce the search space when defining or
finding an embedding.

THEOREM 4.10. If there exists a valid schema embedding σ : S1 → S2, then
there exists one such that for any edge (A, B) in S1, l = |path(A, B)| ≤ (k+1) |E2|,

where S1 = (E1, P1, r1), S2 = (E2, P2, r2), and k is the size of the production
P1(A). More specifically,

— |path(A, B)| ≤ k |E2| if A is a concatenation type;
— |path(A, B)| ≤ (k + 1) |E2| if A is a disjunction type;
— |path(A, B)| ≤ 2 |E2| if A is a Kleene closure;
— |path(A, B)| ≤ |E2| if B is str.

PROOF. Suppose that there is a valid embedding σ : S1 → S2, where S1 =
(E1, P1, r1) and S2 = (E2, P2, r2), and σ = (λ, path). Consider an arbitrary edge
(A, B) in S1.
(1) A is a concatenation type. Then path(A, B) is an AND XR path that can be
simplified to one that contains at most k cycles, where k cycles may be necessary
to ensure that path(A, B) is not a prefix of any path(A, B′) for distinct subelement
types B, B′ of A. Any other cycles can be removed, and all of the k cycles can
be made simple cycles (i.e., a cycle that does not contain repeated labels), while
the modified σ remains well defined. Thus |path(A, B)| is bounded by k |E2|.
(2) A is a disjunction type. Then path(A, B) is a disjunction XR path that can be
simplified to one that contains at most k+1 simple cycles: k cycles to ensure that
path(A, B) is not a prefix of any path(A, B′), where B′ is another subelement type
of A, and an additional cycle to include a dashed edge. After the simplification
the modified σ remains well defined. Thus |path(A, B)| ≤ (k + 1) |E2|.
(3) A is defined to be a Kleene closure A → B∗. Then path(A, B) is a STAR XR

path, which can be simplified such that path(A, B) contains at most one simple
cycle (to include a star edge). Thus path(A, B) ≤ 2 |E2|.
(4) A is defined to be A → str. As in (1), path(A, B) is no longer than |E2|.

Transformation Language. The nice properties of schema embeddings sug-
gests a language for specifying XML transformations. Given two DTDs S1, S2, one
can specify a mapping from I(S1) to I(S2) by defining embedding σ = (λ, path),
that is, specifying a mapping λ from types of S1 to types of S2, and a mapping
from edges over S1 to XR paths over S2, both at the schema level in a declar-
ative manner. Such an embedding specification σ yields an XML mapping σd of
σ that guarantees the following: (1) it is type safe, that is, for any T ∈ I(S1),
σd (T) conforms to the target schema S2; (2) it is invertible, that is, there exists
a quadratic time function σ−1

d such that σ−1
d (σd (T)) = T for any T ∈ I(S1), and

(3) it is query preserving w.r.t. XR , that is, there is a query translation function
Tr such that for any Q ∈ XR and any T ∈ I(S1), Q(T) = Tr(Q) (σd (T)). This
language is able to capture XML DTD mappings commonly found in data migra-
tion and integration, and provides a practical approach to defining XML schema
mappings. One might want to define a mapping in a richer such as XQuery or
XSLT. However, this is hampered by the negative results of Section 3, which tell
us that the richer the language is, the more difficult it is to identify information-
preserving mappings. In addition, many XML mappings found in practice can be
expressed by annotating schemas with (regular) XPath expressions, along the
same lines as schema embedding.

5. COMPUTING SCHEMA EMBEDDINGS

In this section, we state the computation problem for schema embeddings and
briefly summarize several techniques for computing XML schema embeddings.
Details of these techniques, as well as an experimental evaluation, are pre-
sented in Bohannon et al. [2005].

The problem of computing XML schema embeddings is formally stated as
follows:

PROBLEM: Schema-Embedding
INPUT: Two DTDs schemas S1 and S2 and a similarity matrix att.
OUTPUT: A schema embedding σ : S1 → S2 valid w.r.t. att if one exists.

Here S1 = (E1, P1, r1) and S2 = (E2, P2, r2).
In practice, it is useful to find an embedding σ : S1 → S2 with as high a value

for qual(σ, att) as possible (recall from Section 4.1 for the definition of qual(σ, att)).
The ability to efficiently find good solutions to this problem will lead to an auto-
mated tool that, given two DTD schemas, can compute candidate embeddings to
recommend to users, or to rank schema matches that are known to participate
in an information-preserving embedding higher than those that are not.

It turns out that if att allows ambiguity, that is, if a single schema element
in S1 may map to more than one element of S2, then it is intractable to solve
Schema-Embedding. Worse still, it remains NP-hard for nonrecursive DTDs even
when they are defined in terms of concatenation types only.

THEOREM 5.1. The Schema-Embedding problem is NP-complete. It remains
NP-hard for nonrecursive DTDs defined with concatenation types only.

PROOF. An NP algorithm is as follows: guess a mapping, and then check
whether it is an embedding. Theorem 4.4 gives maximum sizes that need to
be guessed, and thus a mapping can be guessed in polynomial time. Checking
whether or not a mapping is a valid embedding can also be done in PTIME.

For the NP-hardness, it suffices to show that the problem is NP-hard for
nonrecursive DTDs, by reduction from 3SAT, which is NP-complete [Garey and
Johnson 1979]. An instance of 3SAT is a well-formed Boolean formula φ =
C1 ∧ · · · ∧ Cn of which we want to decide satisfiability.

Given an instance φ of 3SAT, we define two nonrecursive DTDs S1, S2 such
that φ is satisfiable iff there is a valid schema embedding from S1 to S2. We
define a similarity matrix att such that for all element types A in S1 and B in
S2, att(A, B) = 1, that is, there is no restriction on the mapping. Assume that
all the propositional variables in φ are x1, . . . , xm. We define S1, S2 as follows.

S1 = (E1, P1, r1), where
E1 = {r1, Z , W } ∪ {Ci | i ∈ [1, n]} ∪ {Ys | s ∈ [1, m]};
P1 is defined as:

r → C1, . . . , Cn, Y1, . . . , Ym,
Ci → Z , . . . , Z ; /* n + i occurrences of Z */
Ys → W, . . . , W /* 2n + s occurrences of W*/
A → ε /* for A ranging over W, Z */

Fig. 8. DTD schemas in the proof of Theorem 5.1.

S2 = (E2, P2, r2), where
E2 = {r2, W, Z } ∪ {Ci | i ∈ [1, n]} ∪ {X s, Ts, Fs | s ∈ [1, m]};
P2 is defined as:

r → X 1, . . . , X m,
X i → Ti , Fi , /* for i ∈ [1, m]*/
Ti → Ci1 , . . . , Cik , W, . . . , W /* all Ci j in which xi appears, and 2n + i occurrences of

W*/
Fi → C′

i1
, . . . , C′

ik , W, . . . , W /* all C′
i j

in which xi appears, and 2n + i occurrences
of W */

Ci → Z , . . . , Z ; /* n + i occurrences of Z */
A → ε /* for A ranging over W, Z .

The DTDs S1 and S2 are depicted in Figure 8(a) and 8(b), respectively. Note
that both S1, S2 are nonrecursive and are defined in terms of concatenation
types only. Intuitively, S2 encodes φ, and S1 is to assert the existence of a truth
assignment to x1, . . . , xm that satisfies all the clauses in φ. In both S1 and S2,
Ci is to code clause Ci, which has a “signature” consisting of n + i occurrences
of Z that is to ensure that Ci in S1 is mapped to Ci in S2. In S2, X j codes the
variable x j in φ, which may have either a true value or false, indicated by Ti and
Fi, respectively. In DTD S1, Y1, . . . , Ym also encode variables, and Ys can only
map to Ts or Fs (or some ancestor thereof) in S2 due to the number of W children
below Ys and Ts, Fs (technically, Ys could map to some Ts′ , s′ > s, but it is easy to
see that for every Ys to map successfully, it is necessary that Ys maps to Ts or Fs).

The mappings of the Ys elements are to code the “negation” of a truth
assignment μ to variables in φ: Ys is mapped to Fs if μ(xs) is true for some
j ∈ [1, m], and Ys is mapped to Ts if μ(xs) is false. To understand how this
coding works, consider that clauses are disjunctive, and thus clause Ci can
be satisfied by the correct assignment to any x j appearing in Ci (i.e. to true

if x j appears in Ci, and to false if x j appears in Ci). The paths into Ci thus
correspond to the failure by a particular variable’s assignment to satisfy Ci. If
every variable fails to satisfy Ci, then some Y j will be mapped to every ancestor
of Ci in S2, leaving no paths by which the Ci in S1 can be mapped to Ci in S2

without violating the prefix-free property. We now formalize this intuition.
We next show that S1, S2 are indeed a reduction from 3SAT, that is, there

is a valid embedding from S1 to S2 iff φ is satisfiable. First, suppose that φ is

satisfiable. Then there exists a truth assignment μ to x1, . . . , xm that satisfies
φ. We define an embedding σ = (λ, path) such that λ(Ci) = Ci, λ(Z) = Z ,
λ(W) = W , λ(Yi) = Fi and path(r1, Yi) = X i/Fi if μ(xi) is true, λ(Yi) = Ti and
path(r1, Yi) = X i/Ti if μ(xi) is false. Furthermore, path(r1, Ci) is a path ρi from
r2 to Ci in S2 such that there exists j ∈ [1, m] and X j /Tj is on ρi if clause Ci is
satisfied by μ(x j) = true, and X j /F j is on ρi if clause Ci is satisfied by μ(x j) =
false; since φ is satisfied by μ, there must exist such a variable x j for every Ci.
It is easy to verify that σ is indeed an embedding from S1 to S2.

Conversely, suppose that there exists a valid embedding σ = (λ, path) from
S1 to S2. Observe that σ must have the following properties. (1) for each x j

there exists Y j such that λ(Y j) = Vj , where Vj is either Tj or F j ; and (2) for
i ∈ [1, n], λ(Ci) is either Ci or Vj , where Vj is either Tj or F j , such that
λ(Y j) �= λ(Yk) and λ(Y j) is not an ancestor or self of λ(Ci) for k �= j , i �= j . This
is because, by the definitions of S1, S2, (1) λ(Ci) must have n + i descendants
of type Z , like Ci in S1; and (2) λ(Y j) must have 2n + j descendants of type W ,
and it may not be an ancestor of λ(Ys) or λ(Ci), and vice versa. We define a truth
assignment μ such that μ(xs) is true if λ(Ys) = Fs and μ(xs) is false if λ(Ys) = Ts.
As a result, for each clause Ci, λ(Ci) is either Z j or a child of Z j , where Z j is
a truth value Tj or F j ; furthermore, if Z j is true then λ(Y j) = F j , and if Z j is
false then λ(Y j) = Tj . That is, Ci is satisfied by the truth assignment μ. Thus
it is easy to verify that μ satisfies φ.

In light of the intractability result we develop efficient and accurate heuristic
algorithms for computing schema embedding candidates. Below we give an
outline of these algorithms. The reader is encouraged to consult Bohannon
et al. [2005] for the details of the algorithms and related experimental study.

5.1 Local Mappings

A local mapping is a schema mapping in which the domain is restricted to the
schema elements appearing in a single production of the source schema S1. We
say that two local mappings conflict if they assign some source element A to
different target elements in S2. Based on this observation, we decompose the
problem of computing schema embeddings to a) finding alternative local map-
pings (the Local-Embedding problem) and b) assembling non-conflicting local
mappings into a valid schema embedding (the Assemble-Embedding problem).
Unfortunately, each of these problems is independently NP-complete:

THEOREM 5.2. The Local-Embedding problem is NP-complete for nonrecur-
sive DTDs.

PROOF. The NP-hardness can be verified by reduction from 3SAT. We omit
the full proof for brevity, but note that it differs from the proof of Theorem 5.1
in that source elements are restricted to map to exactly two target elements,
rather than allowing them to map to any target element as in Theorem 5.1.

THEOREM 5.3. The Assemble-Embedding problem is NP-complete for nonre-
cursive DTDs.

PROOF. This proof is omitted for brevity. The lower bound is again verified by
reduction from 3SAT. This proof is similar in spirit to the proof of 5.1, but shows
that the more restrictive problem where local embeddings are fixed remains
NP-hard.

5.2 Computing Embeddings

In contrast to the previous results, it turns out that if λ is fixed (equivalently, att

is unambiguous), then a schema embedding, if it exists, can be computed in low
polynomial time. In other words, when the semantic correspondences between
tags in the source schema and tags in the target are unique, it is easy to identify
local embeddings, that is, embeddings in which the a single production in the
source schema is considered; furthermore, from the local embeddings a global
embedding can easily assembled. The central idea is that an unambiguous local
embedding can be found by solving the prefix-free path problem, which we define
as follows: Given a source node s and n target nodes t1 . . . tn, find n paths p1 . . . pn

such that a) each path originates at s, b) path pi terminates at ti, and c) no path
pi is a prefix of another path pj . This problem can be solved in polynomial time
on a DAG by a variant of depth-first search that, upon finding a path from s
to some target ti, returns from that search without marking ti as done. The
algorithm can be extended to handle cycles by first solving the problem on a
DAG of the connected components in S2. See Bohannon et al. [2005] for details.

This algorithm to find local embeddings given a fixed λ immediately yields an
algorithm to find global embeddings given a fixed λ. Furthermore, the ability to
find local embeddings can be generalized slightly to serve as part of a family of
heuristic approaches to solving the more general Schema-Embedding problem.
The idea is to randomly order the possible target matches for a source element
in order to generate a candidate local mapping, and then heuristically attempt
to assemble a global mapping. If the attempt fails, new random orderings can
be used in an attempt to find additional local mappings.

Assembling Schema Embeddings. Given the ability to find valid local embed-
dings, a complete schema embedding can be computed if a consistent assembly
of these local embeddings can be found, that is one in which all assembled local
embeddings agree on the mapping of S1 schema elements. We consider three
heuristic approaches to Assemble-Embeddings. The first two attempt to incre-
mentally assemble a full embedding by finding local embeddings for elements in
S1 in some order, either Random, or Quality-Ordered. In Random, as the name
implies, the elements of S1 are visited in random order. In Quality-Ordered,
a quality metric based on att is used to assign a quality to local embeddings,
and the elements of S1 are re-ordered according to decreasing quality. The
idea is to start with “better” mappings in an effort to find a good solution. The
final approach reduces the Assemble-Embeddings problem to that of finding
high-weight independent sets in a graph, and uses an existing heuristic solu-
tion to the latter problem [Busygin et al. 2002] to produce partial or complete
embeddings.

Experimental Results. Experimental results of running the above heuristics
on a variety of real-world schemas are reported in Bohannon et al. [2005].

The results show that the Random approach finds a high percentage of correct
solutions over a wide range of att accuracies, and that running times are in
the range of seconds or minutes. From this it seems reasonable that practical
tools for computing schema embeddings can be included in the data integration
process, and further, that it is practical to search for information-preserving
embeddings without asking humans to hand-check the results of the schema-
matching step first—that is, when there is ambiguity in the target element to
which some of the source elements should be mapped.

6. RELATED WORK

Other than Bohannon et al. [2005] and Barbosa et al. [2005], we are aware of no
previous work that has considered information preservation for XML DTD schema
mappings. Schema embedding was introduced in a preliminary version of this
article [Bohannon et al. 2005]. The recent work [Barbosa et al. 2005] studies
invertible XML-to-relation mappings that guarantee the source XML document to
remain valid in the presence of updates to the mapped relations. More specifi-
cally, it considers lossless and valid XML shredding into relations such that the
original XML documents can be recovered from their relational storage (invert-
ibility). Similar to Theorem 3.4, an undecidability result is given in Barbosa
et al. [2005] for deciding whether XML shredding into relations are invertible.
It characterizes DTDs in terms of datalog constraints and proposes a system-
atic approach to designing invertible XML shredding. The approach is based
on a recursive rewriting system by means of (atomic) equivalence-preserving
transformations, along the same lines as Abiteboul and Hull [1988] (see fur-
ther on). This work differs from ours in the following. (a) It focuses on XML-to-
relation mappings instead of XML-to-XML mappings. (b) It considers invertibility,
but not XML query preservation. (c) Its rewriting system is quite different from
the notion of schema embedding. Our notion of schema embedding extends
graph similarity and allows multiple source DTD schemas to be mapped to a
single structurally different target DTD. Furthermore, from a schema embed-
ding an instance mapping can be automatically derived and it guarantees both
invertibility and query preserving w.r.t. regular XPath queries. The ability of
finding information-preserving XML-to-XML mappings is important for data in-
tegration, migration [Lenzerini 2002] and P2P systems [Fuxman et al. 2005;
Kementsietsidis et al. 2003; Halevy et al. 2004], among other things.

Information preservation has been studied for nested relational and complex
data models [Abiteboul and Hull 1988; Hull 1986; Miller et al. 1993, 1994]. Hull
[1986] proposed several notions of dominance and studied their relationships in
the relational model. In particular, it established the equivalence between query
dominance (invertibility) and calculus dominance (the existence of an injective
mapping defined in relational calculus). This is consistent with Theorem 3.2,
which says that for any query language L, if L is composable and can express
the identity mapping, then the invertibility and query preservation w.r.t. L co-
incide; indeed, relational calculus is composable and can express the identity
mapping. The notions of relative information capacity were revisited in [Miller
et al. 1993, 1994], which showed, among other things, the invertibility in a

complex data model is undecidable, similar to Theorem 3.4. The focus of [Abite-
boul and Hull 1988; Miller et al. 1994] has mainly been on the information ca-
pacity of type constructs in complex data models that unlike DTDs, do not have
recursive constructs. Information preserving schema transformations have also
been studied there, based on local structural transformation rules that pre-
serve or augment information capacity. Our study of information preservation
is inspired by the prior work: our notions of invertibility and query preser-
vation are mild extensions of calculus dominance and query dominance [Hull
1986]. We revise these notions and study their basic properties for XML DTD

schemas and XML queries. Our focus is to develop the notion of DTD schema
embedding that preserves information by ensuring both effective invertible
mapping and efficient XML query translation, without employing a recursive
rewrite system that repeatedly applies local type construct transformation
rules.

A wide variety of techniques have been developed to solve different forms
of schema matching or mapping for relational, ER and object-oriented models
[Athitsos et al. 2005; Castano et al. 2001; Lakshmanan et al. 1996; Li and Clifton
2000; Palopoli et al. 1998]; see Rahm and Bernstein [2001] for a recent survey).
While these are not focused on XML DTD schema mapping, some techniques, such
as linguistic analyses and machine learning, are useful for finding name/label
similarity, which our algorithms take as input.

Closer to XML schema mapping are [Doan et al. 2001; Madhavan et al. 2001;
Melnik et al. 2002; Melnik et al. 2003; Miller et al. 2001; Milo and Zohar 1998].
LSD [Doan et al. 2001] proposes machine-learning techniques that make use
of instance-level information to determine XML DTD tag matching, which can
be used to compute similarity matrix att. Systems of [Madhavan et al. 2001;
Melnik et al. 2002; Melnik et al. 2003] target a wide class of schemas and
can be tailored to a variety of data models. The similarity flooding algorithm
of [Melnik et al. 2002] provides a novel schema matching tool based on graph-
similarity. Cupid [Madhavan et al. 2001] is a generic system that encompasses
a variety of techniques such as linguistic analyses and context dependencies.
Rondo [Melnik et al. 2003] proposes a powerful set of model mapping oper-
ators. For structure-level schema matching, these systems adopt graph simi-
larity to map a single source schema to a target. TransScm [Milo and Zohar
1998] considers instance-level mappings based on schema matching, and uses
a semi-automatic mechanism to match highly similar schemas. Clio [Miller
et al. 2001] also focuses on deriving instance translation from schema matching.
It specifies schema matches by inclusion dependencies from source to target,
from which a schema mapping can be derived by means of chase techniques
for reasoning about the dependencies. None of these considers information
preservation.

Query preservation is related to query rewriting and query answering us-
ing views, which have been extensively studied for conjunctive and datalog
queries in the relational model and for regular path queries on semistruc-
tured data ([Abiteboul and Duschka 1998; Calvanese et al. 2002; Levy et al.
1995]; see Halevy [2000] and Lenzerini [2002] for surveys). View-based query
rewriting (resp. answering) mainly studies whether a given query on the source

can be answered using materialized data from a set of views (lossless), by trans-
lating the query to an equivalent query (resp. in a particular language) on the
views. In contrast, query preservation deals with the issue whether all queries
in an (infinite) query language on an XML source can be rewritten to equivalent
queries over XML target (view). Moreover, the focus of this work is to generate XML

“views” that automatically preserves all the queries in an XML query language,
rather than to determine the losslessness of views. Note that Theorem 3.2 es-
tablishes a connection between invertibility and query rewriting; e.g., if the
query language L includes the identity query id, then a view σd is invertible
and σ−1

d is in L if and only if id has a rewriting in L using σd .
There has also been recent work on data exchange based on schema mapping

specified in terms of tuple generating dependencies (TGDs; see Kolaitis [2005]
for a survey). This line of research considers mostly schema mapping between
relational schemas, rather than XML schemas (except Arenas and Libkin [2005]).
The focus is to decide, given a schema mapping specified by TGDs from source
to target and TGDs on the target, as well as an instance of the source schema,
whether or not there exists a solution, that is, an instance of the target schema
that satisfies the TGDs? Furthermore, it investigates, in the presence of multiple
solutions, the existence of a universal solution (the most general one) and the
complexity to compute the universal solution. It aims to provide a guideline for
materializing target instances in the data exchange context. The connection
between universal solutions and certain query answers has also been explored.
While certain query answers concern all possible instantiations of the target
schema, our work focuses on the ability to restore the original source data and
to answer all queries in a language on source data by queries in the same
language on the target data. While Arenas and Libkin [2005] considers XML-
to-XML mappings, its focus is on the consistency and certain query answers in
connection with a given schema mapping defined via TGDs. This line of research
differs from our work in that we aim at providing a systematic method for
developing schema mappings that guarantee type safety, invertibility and query
preservation. A schema embedding, even a local one, is defined in terms of edge-
to-path mappings that are not expressible as TGDs. Invertible mappings and
their practical need are studied in Fagin [2006]. It differs from this work in
that it considers relation-to-relation mapping defined via TGDs; in contrast to
XML mappings of schema embedding, a mapping defined via TGDs may map a
source instance to multiple target instances; the focus of Fagin [2006] thus aims
to find an appropriate notion of inverse for such mappings.

7. CONCLUSIONS

We have revised information-preservation criteria for XML mappings, and have
established related separation, equivalence and complexity results. To cope
with the difficulties of determining information preservation, we have intro-
duced a novel notion of schema embedding for XML DTD schemas, from which
an instance-level XML mapping is automatically derived and is guaranteed to
be information preserving, type safe, and able to accommodate multiple source
schemas. While we show that finding a schema embedding is NP-complete, we

have provided heuristic algorithms to compute embeddings, which are efficient
and accurate as verified by our experimental results [Bohannon et al. 2005].

This is a first step toward developing a practical tool for lossless XML data
migration and integration. There is naturally much to be done. One open prob-
lem concerns how to extend the notion of schema embedding to accommodate
XML Schema [Fallside (W3C) 2000], as commonly found in practice. XML Schema
is more involved than DTDs: it supports not only a richer type system (e.g., with
inheritance) but also integrity constraints. Indeed, it is already undecidable to
determine whether or not a schema in XML Schema is consistent, i.e., whether
there exists an instance conforming to the schema [Fan and Libkin 2002]. As a
consequence, all the negative results of Section 3 remain intact for XML Schema,
and it is nontrivial to develop a simple yet clean notion of schema embedding
for XML Schema to capture both types and constraints. On the other hand, it is
natural and not very difficult to extend schema embedding to specialized DTDs
proposed in Papakonstantinou and Vianu [2000], an extension of DTDs.

Another extension is by allowing certain queries in XQuery in the path() func-
tion. The need for this is evident in practice. In data integration, for example,
one often wants to group certain source data elements together and map the
grouped data to a target element. Referring to schema S of Figure 1(c), for
example, one may want to group courses under taking of students in order to
map instances of S to a student document. This calls for a nontrivial extension
of the path() function to support upward traversal and also group-by. We are
currently investigating this extension.

A third open problem concerns query preservation w.r.t. practical XQuery
fragments. While the results of Section 3 carry over to any XQuery fragments
that subsume regular XPath expressions, the notion of schema embedding has
to be extended in order to ensure query preservation w.r.t. these richer query
languages. In this context it is not clear whether the lower bound of Theorem 5.1
is tight; in other words, it remains unknown whether or not the problem of
finding (extended) schema embedding is still in NP.

Finally, it is important to develop a notion of partial information preserva-
tion. In some applications one may find the notion of information preservation
studied in this work too strong: one often wants to select part of the source data
and require this part of data to be transformed to a target document without
loss of information, instead of insisting on lossless mapping of the entire source
data. We are currently revising the notions of invertibility and query preser-
vation in response to this need, and are developing specification languages for
users to identify the part of source data for which the information should be
preserved.

ACKNOWLEDGMENTS

We thank Michael Flaster and P. P. S. Narayan for designing, implement-
ing and experimenting with algorithms for finding schema embedding, which
can be found in the conference version [Bohannon et al. 2005]. We also thank
Renée Miller for discussions on information-preservation semantics. We thank
referees for helpful suggestions on simplifying and improving the article.

REFERENCES

ABITEBOUL, S., BUNEMAN, P., AND SUCIU, D. 2000. Data on the Web: From Relations to Semistructured
Data and XML. Morgan Kaufman.

ABITEBOUL, S. AND DUSCHKA, O. M. 1998. Complexity of answering queries using materialized
views. In Proceedings of ACM Symposium on Principles of Database Systems (PODS).

ABITEBOUL, S. AND HULL, R. 1988. Restructuring hierarchical database objects. Theoretical Com-
puter Science 62, 1-2, 3–38.

ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley.
ALON, N., MILO, T., NEVEN, F., SUCIU, D., AND VIANU, V. 1995. XML with data values: Typechecking

revisited. J. Comput. Syst, Sci. 66, 4, 688–727.
ARENAS, M. AND LIBKIN, L. 2005. XML data exchange: Consistency and query answering. In Pro-

ceedings of ACM Symposium on Principles of Database Systems (PODS).
ATHITSOS, V., HADJIELEFTHERIOU, M., KOLLIOS, G., AND SCLAROFF, S. 2005. Query-sensitive embed-

dings. In Proceedings of ACM SIGMOD Conference on Management of Data (SIGMOD).
BARBOSA, D., FREIRE, J., AND MENDELZON, A. 2005. Designing information-preserving mapping

schemes for XML. In Proceedings of International Conference on Very Large Databases (VLDB).
BENEDIKT, M., FAN, W., AND GEERTS, F. 2005. XPath satisfiability in the presence of DTDs. In

Proceedings of ACM Symposium on Principles of Database Systems (PODS).
BOHANNON, P., FAN, W., FLASTER, M., AND NARAYAN, P. P. S. 2005. Information preserving XML

schema embedding. In Proceedings of International Conference on Very Large Databases (VLDB).
BUNEMAN, P., KHANNA, S., AND TAN, W. C. 2001. Why and where: A characterization of data prove-

nance. In Proceedings of International Conference on Database Theory (ICDT).
BUSYGIN, S., BUTENKO, S., AND PARDALOS, P. M. 2002. A heuristic for the maximum independent

set problem based on optimization of a quadratic over a sphere. J. Comb. Optim. 6, 3, 287–297.
CALVANESE, D., GIACOMO, G. D., LENZERINI, M., AND VARDI, M. Y. 2002. Lossless regular views. In

Proceedings of ACM Symposium on Principles of Database Systems (PODS).
CASTANO, S., ANTONELLIS, V. D., AND DI VIMERCATI, S. D. C. 2001. Global viewing of heterogeneous

data sources. IEEE Trans. Data Knowl. Engin. 13, 2, 277–297.
CLARK, J. 1999. XSL Transformations (XSLT). W3C Recommendation. http://www.

w3.org/TR/xslt.
CLARK, J. AND DEROSE, S. 1999. XML Path Language (XPath). W3C Working Draft.
DOAN, A., DOMINGOS, P., AND HALEVY, A. Y. 2001. Reconciling schemas of disparate data sources:

A machine-learning approach. In Proceedings of ACM SIGMOD Conference on Management of
Data.

EHRENFEUCHT, A. AND ZEIGER, H. P. 1976. Complexity measures for regular expressions. J. Comput.
Syst. Sci. 12, 2, 134–146.

FAGIN, R. 2006. Inverting schema mappings. In Proceedings of ACM Symposium on Principles of
Database Systems (PODS).

FALLSIDE, D. C., Ed. 2000. XML Schema Part 0: Primer. World Wide Web Consortium (W3C).
http://www.w3.org/TR/xmlschema-0/ .

FAN, W., GEERTS, F., JIA, X., AND KEMENTSIETSIDIS, A. 2007. Rewriting regular xpath queries on
XML views. In IEEE International Conference on Data Engineering (ICDE).

FAN, W. AND LIBKIN, L. 2002. On XML integrity constraints in the presence of DTDs. J. ACM 49, 3,
368–406.

FUXMAN, A., KOLAITIS, P., MILLER, R., AND TAN, W. 2005. Peer data exchange. In Proceedings of
ACM Symposium on Principles of Database Systems (PODS).

GAREY, M. AND JOHNSON, D. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company.

HALEVY, A. Y. 2000. Theory of answering queries using views. SIGMOD Record 29, 4, 40–47.
HALEVY, A. Y., IVES, Z. G., MADHAVAN, J., MORK, P., SUCIU, D., AND TATARINOV, I. 2004. The Piazza

peer data management system. IEEE Trans. Data Knowl. Engin. 16, 7, 787–798.
HOPCROFT, J. E. AND ULLMAN, J. D. 1979. Introduction to Automata Theory, Languages and Com-

putation. Addision Wesley.
HULL, R. 1986. Relative information capacity of simple relational database schemata. SIAM J.

Comput. 15, 3, 239–265.

KEMENTSIETSIDIS, A., ARENAS, M., AND MILLER, R. 2003. Mapping data in peer-to-peer systems:
Semantics and algorithmic issues. In Proceedings of ACM SIGMOD Conference on Management
of Data (SIGMOD).

KOLAITIS, P. G. 2005. Schema mappings, data exchange, and metadata management. In Proceed-
ings of ACM Symposium on Principles of Database Systems (PODS).

LAKSHMANAN, L., SADRI, F., AND SUBRAMANIAN, I. N. 1996. SchemaSQL—a language for interoper-
ability in relational multi-database systems. In Proceedings of International Conference on Very
Large Databases (VLDB).

LENZERINI, M. 2002. Data integration: A theoretical perspective. In Proceedings of ACM Sympo-
sium on Principles of Database Systems (PODS).

LEVY, A. Y., MENDELZON, A. O., SAGIV, Y., AND SRIVASTAVA, D. 1995. Answering queries using views.
In Proceedings of ACM Symposium on Principles of Database Systems (PODS).

LI, W.-S. AND CLIFTON, C. 2000. SemInt: A tool for identifying attribute correspondences in het-
erogeneous databases using neural networks. Data Knowl. Engin. 33, 1, 49–84.

MADHAVAN, J., BERNSTEIN, P. A., AND RAHM, E. 2001. Generic schema matching with Cupid. In
Proceedings of International Conference on Very Large Databases (VLDB).

MARX, M. 2004. XPath with conditional axis relations. In Proceedings of the International Con-
ference on Extending Database Technology.

MELNIK, S., GARCIA-MOLINA, H., AND RAHM, E. 2002. Similarity flooding: A versatile graph match-
ing algorithm. In Proceedings of IEEE International Conference on Data Engineering (ICDE).

MELNIK, S., RAHM, E., AND BERNSTEIN, P. A. 2003. Rondo: A programming platform for generic
model management. In Proceedings of ACM SIGMOD Conference on Management of Data (SIG-
MOD).

MILLER, R. J., HERNÁNDEZ, M. A., HAAS, L. M., YAN, L.-L., HO, C. T. H., FAGIN, R., AND POPA, L. 2001.
The Clio project: Managing heterogeneity. SIGMOD Record 30, 1, 78–83.

MILLER, R. J., IOANNIDIS, Y. E., AND RAMAKRISHNAN, R. 1993. The use of information capacity in
schema integration and translation. In Proceedings of International Conference on Very Large
Databases (VLDB).

MILLER, R. J., IOANNIDIS, Y. E., AND RAMAKRISHNAN, R. 1994. Schema equivalence in heterogeneous
systems: Bridging theory and practice. Inform. Syst. 19, 1, 3–31.

MILO, T. AND ZOHAR, S. 1998. Using schema matching to simplify heterogeneous data translation.
In Proceedings of International Conference on Very Large Databases (VLDB).

PALOPOLI, L., SACCA, D., AND URSINO, D. 1998. Semi-automatic semantic discovery of properties
from database schemas. In Proceedings International Database Engineering & Applications Sym-
posium (IDEAS).

PAPAKONSTANTINOU, Y. AND VIANU, V. 2000. Type inference for views of semistructured data. In
Proceedings of ACM Symposium on Principles of Database Systems (PODS).

RAHM, E. AND BERNSTEIN, P. A. 2001. A survey of approaches to automatic schema matching. VLDB
J. 10, 4, 334–350.

SIMÉON, J. AND FERNANDEZ, M. Galax. http://db.bell-labs.com/galax.
TARJAN, R. E. 1981. Fast algorithms for solving path problems. J. ACM 28, 3, 594–614.
WADLER, P. 2000. A formal semantics for patterns in XSL. Tech. rep., Bell Labs.
XERCES AND XALAN. http://xml.apache.org.
YU, S. 1996. Regular languages. In G. Rosenberg and A. Salomaa, Eds. Handbook of Formal

Languages, Vol. 1. Springer.

