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Measurement-based and Universal Blind Quantum Computation

Anne Broadbent1, Joseph Fitzsimons1,2, Elham Kashefi 3 ∗

A Introduction

Traditionally, the main framework to explore quantum computation has been the circuit model
[Deu89], based on unitary evolution. This is very useful for complexity analysis [BV97]. There are
other models such as quantum Turing machines [Deu85] and quantum cellular automata [Wat95,
vD96, DS96, SW04]. Although they are all proved to be equivalent from the point of view of
expressive power, there is no agreement on what is the canonical model for exposing the key
aspects of quantum computation.

Recently, distinctly different models have emerged, namely adiabatic and topological quantum
computing. Both suggest different architectures, and fault tolerant schemes, and provide spe-
cific approaches to new applications and algorithms, and specific means to compare classical and
quantum computation. Another family of models, collectively called measurement-based quantum
computing (MBQC), has also received wide attention. MBQC is very different from the circuit
model where measurement is done only at the end to extract classical output. In measurement-
based quantum computing the main operation to manipulate information and control computation
is measurement [GC99, RB01, RBB03, Nie03]. This is surprising because measurement creates
indeterminacy, yet it is used to express deterministic computation defined by a unitary evolution.

More precisely, a computation consists of a phase in which a collection of qubits are set up in a
standard entangled state. Then measurements are applied to individual qubits and the outcomes
of the measurements may be used to determine further adaptive measurements. Finally – again
depending on measurement outcomes – local adaptive unitary operators, called corrections, are ap-
plied to some qubits; this allows the elimination of the indeterminacy introduced by measurements.
Conceptually MBQC highlights the role of entanglement and separates the quantum and classical
aspects of computation; thus it clarifies, in particular, the interplay between classical control and
the quantum evolution process.

The first structural feature of MBQC is a key factorisation property, namely that entanglement
can be done first, and then local measurements, can be reduced to confluence properties of a simple
algebraic rewriting system. This is captured by the Measurement Calculus [DKP07], one can think
of it as an “assembly language” for MBQC with a notation for such classically correlated sequences
of entanglements, measurements, and local corrections. Computations are organised in patterns,
we use the word “pattern” rather than “program”, because this corresponds to the commonly
used terminology in the physics literature. Measurement Calculus consists of local equations over

1Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, Canada.
2Materials Department, University of Oxford, Oxford, United Kingdom.
3School of Informatics, University of Edinburgh, Edinburgh, Scotland, United Kingdom.
∗Email: albroadb@iqc.ca, joe.fitzsimons@materials.ox.ac.uk, ekashefi@inf.ed.ac.uk

1



patterns that exploits some special algebraic properties of the entanglement, measurement and
correction operators. More precisely, it uses the fact that 1-qubit measurements are closed under
conjugation by Pauli operators and the entanglement command belongs to the normaliser of the
Pauli group. This calculus is sound in that it preserves the interpretation of patterns. Most
importantly, one can derive from it a simple algorithm (called standardisation) by which any general
pattern can be put into a standard form where entanglement is done first, then measurements, then
corrections.

The consequences of the existence of such a procedure are far-reaching. Since entangling comes
first, one can prepare the entire entangled state needed during the computation right at the start:
one never has to do “on the fly” entanglements. Furthermore, the rewriting of a pattern to standard
form reveals parallelism in the pattern computation. In a general pattern, one is forced to com-
pute sequentially and to strictly obey the command sequence, whereas, after standardisation, the
dependency structure is relaxed, resulting in lower computational depth complexity [BK09]. The
existence of a standard form for any pattern also has interesting corollaries beyond implementation
and complexity matters, as it follows from it that patterns using no dependencies, or using only the
restricted class of Pauli measurements, can only realise a unitary belonging to the Clifford group,
and hence can be efficiently simulated by a classical computer [DKP07].

The second structural feature of MBQC is captured by the notation of Flow [DK06]. Although
quantum measurements are inherently not deterministic, one can sometimes ensure the global
determinism of the computation using suitable dependencies between measurements. Flow asserts
that under a graph-theoretic condition on the entanglement underlying a given computation, it is
possible to construct such dependencies. This is a significant progress in the direct understanding
of the specifics of measurement-based information processing. Building on this criterion, and the
well known stabiliser formalism, a full characterisation of determinism is obtained [BKMP07].

Having obtained the rigourous mathematical model underlying MBQC, we then present how
this model suggests new techniques for designing quantum protocols. We present a protocol, called
Universal Blind Quantum Computation (UBQC) which allows a client to have a server carry out
a quantum computation for her such that the client’s inputs, outputs and computation remain
perfectly private, and where she does not require any quantum computational power or memory.
The client only needs to be able to prepare single qubits randomly chosen from a finite set and send
them to the server, who has the balance of the required quantum computational resources. UBQC
protocol is the first universal scheme which detects a cheating server, as well as the first protocol
which does not require any quantum computation whatsoever on the client’s side. The novelty of
UBQC protocol is in using the unique features of MBQC which allows one to clearly distinguish
between the quantum and classical aspects of a quantum computation.

B Preliminaries

We give a brief summary of quantum mechanics and quantum computing. We develop some of the
algebra, define some notations, and prove a couple of equations which are used in this chapter. The
reader will find the expository book of Nielsen and Chuang [NC00] useful for quantum computation
or the excellent book by Peres [Per95] for general background on quantum mechanics.

The vector spaces that arise in quantum mechanics are Hilbert spaces and are thus usually
written H; that is they have an inner product usually written 〈u, v〉 where u and v are vectors.
Following Dirac, it is customary to call elements of H kets and write them in the form |u〉 or
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whatever symbol is appropriate inside the half-bracket. The dual vectors are called bras and are
written 〈v|; the pairing thus can naturally be identified – conceptually and notationally – with the
inner product.

A hermitian operator A is one such that A = A† and a unitary operator U is one such that
U−1 = U †. A projection P is a linear operator such that P 2 = P and P = P †. A projection
operator can be identified with a subspace, namely its range. The eigenvalues of a hermitian
operator are always real. Suppose U is a unitary, and P a projection, then UPU † is also a
projection. The spectral theorem for hermitian operators states that if M is a hermitian operator,
λi are its eigenvalues and Pi are projection operators onto the corresponding eigenspaces then one
can write

M =
∑

i

λiPi.

If we have |i〉 as the normalised eigenvectors for the eigenvalues λi then we can write this in Dirac
notation as:

M =
∑

i

λi|i〉〈i|.

Finally we need to combine Hilbert spaces. Given two Hilbert spaces H with basis vectors
{ai|1 ≤ i ≤ n} and H′ with basis {bj |1 ≤ j ≤ m} we define the tensor product, written H ⊗ H′, as
the vector space of dimension n ·m with basis ai⊗bj . We almost never write the symbol ⊗ between
the vectors. In the Dirac notation this is always omitted and one writes, for example, |uv〉 instead
of |u〉 ⊗ |v〉.

The important point is that there are vectors that cannot be written as the tensor product of
vectors. This means that given a general element of H⊗H′ one cannot produce elements of H and
H′; this is very different from the cartesian product of sets. This is the mathematical manifestation
of entanglement.

A very important function on square matrices is the trace. The usual trace – i.e. the sum of
the diagonal entries – is basis independent and is actually equal to the sum of the eigenvalues,
counted with multiplicity. The trace of A is written tr(A) and satisfies the cyclicity property
tr(AB) = tr(BA); applying this repeatedly one gets

tr(A1 . . . An) = tr(Aσ(1) . . . Aσ(n))

where σ is a cyclic permutation. The explicit formula for the trace of A : V → V is tr(A) =∑
i〈i|A|i〉 where |i〉 is a basis for V . One often needs to compute a partial trace. Consider a linear

map L : V ⊗W → V ⊗W . Suppose that |vi〉 is a basis for V and |wi〉 is a basis for W then |viwj〉
is a basis for V ⊗W . Now we can define the partial trace over V as

trV (A) : W →W =
∑

i

〈vi|A|vi〉.

This corresponds to removing the V dependency; often we use the phrase “tracing out the V
component.”

We can now state the basic facts of quantum mechanics and will not discuss the experimental
basis for this framework. The key aspects of quantum mechanics are:

• the states of a quantum system form a Hilbert space,
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• when two quantum systems are combined, the state space of the composite system is obtained
as the tensor product of the state spaces of the individual systems, and

• the evolution of a quantum system is given by a unitary operator, and

• the effect of a measurement is indeterminate.

The first says that one can form superpositions of the states. This is one of the most striking
features of quantum mechanics. Thus states are not completely distinct as they are in classical
systems. The inner product measures the extent to which states are distinct. The fact that systems
are combined by tensor product says that there are states that of composite systems that cannot
be decomposed into individual pieces. This is the phenomenon of entanglement or non-locality.

Measurement is what gives quantum mechanics its indeterminate character. The usual case,
called projective measurements, is when the quantity being measured is described by a hermitian
operator M . The possible outcomes are the eigenvalues of M . If M is an observable (hermitian
operator) with eigenvalues λi and eigenvectors |φi〉 and we have a generic state |ψ〉 =

∑
i ci|φi〉

then the probabilities and expectation values of the measurement outcomes are given by:

• Prob(λi||ψ〉) = |ci|2

• E[M ||ψ〉] =
∑

i |ci|2λi =
∑

i cic̄i〈φi,Mφi〉 = 〈ψ,Mψ〉.

It is important to note that the effect of the measurement is that the projection operator Pi

is applied when the result λi is observed. The operator M does not describe the effect of the
measurement.

Quantum computation is carried out with qubits the quantum analogues of bits. Just as a bit
has two possible values, a qubit is a two dimensional complex Hilbert space, in other words it is
(isomorphic to) the two dimensional complex vector space C2. One works with a preferred basis,
physically this corresponds to two distinguishable states, like “spin up” and “spin down”. One
writes |0〉, and |1〉 for its canonical basis, so that any vector ψ can be written as α|0〉 + β|1〉 with
α, β in C. Furthermore, C2 can be turned into a Hilbert space with the following inner product:

〈α|0〉+ β|1〉, α′|0〉+ β′|1〉〉 := α?α′ + β?β′

where α? is the complex conjugate of α. One then obtains the norm of a vector as:

‖ψ‖ := 〈ψ,ψ〉
1
2 = (α?α+ β?β)

1
2

Given V a finite set, one writes HV for the Hilbert space ⊗u∈V C2; the notation means an n-fold
tensor product of the C2 where n is the size of V . A vector in HV is said to be decomposable if
it can be written ⊗u∈V ψu for some ψu ∈ C2. Such decomposable vectors will be written ε in the
sequel. Decomposable vectors can be represented by a map from V to C2, and we will use both
notations depending on which is more convenient. As we have noted before there are some vectors
that are not decomposable.

As in the case of C2, there is a canonical basis for HV , sometimes also called the computational
basis, containing decomposable vectors ε such that for all v ∈ V , ε(v) = |0〉 or ε(v) = |1〉.

The inner product on HV , according to the general definition given above, is defined on decom-
posable vectors as:

〈ε, ε′〉 :=
∏

v∈V 〈ε(v), ε′(v)〉
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Note that all vectors in the computational basis are orthogonal and of norm 1. The vectors of norm
1 are usually called unit vectors; we always assume that states are described by unit vectors as
noted before.

Here are some common states that arise in quantum computation:

|0〉 = | ↑〉 =
[

1
0

]
, |1〉 = | ↓〉 =

[
0
1

]
, |+〉 =

1√
2

[
1
1

]
, |−〉 =

1√
2

[
1
−1

]
.

It is easy to see that a linear operator is unitary if it preserves the inner product and hence the
norm. Thus unitaries can be viewed as maps from quantum states to quantum states.

Some particularly useful unitaries are the Pauli operators given by the following matrices in the
canonical basis of C2:

X =
(

0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
We note that all these operators are involutive, self-adjoint, and therefore unitaries. All these
matrices have determinant = −1. Some basic algebra of these matrices are given below. First they
all square to the identity.

X2 = Y 2 = Z2 = I.

The Pauli operators do not commute and we have the following relations:

XY = iZ Y X = −iZ [X,Y ] = 2iZ {X,Y } = 0
ZX = iY XZ = −iY [Z,X] = 2iY {Z,X} = 0
Y Z = iX ZY = −iX [Y, Z] = 2iX {Y, Z} = 0

Definition 1 Define the Pauli group, Pn, as the group consisting of tensor products of I, X, Y,
and Z on n qubits, with an overall phase of ±1 or ±i.

A very important related group is called the Clifford group.

Definition 2 The Clifford group, Cn, is the group of unitary operators that leave the Pauli group
invariant under conjugation, i.e. it is the normaliser of the Pauli group viewed as a subgroup of the
unitary group.

The Clifford group on n qubits can be generated by the Hadamard transform, the controlled-X
(CNOT ) or controlled-Z (∧Z), and the single-qubit phase rotation:

H = 1√
2

(
1 1
1 −1

)
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , ∧Z =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 , P =
(

1 0
0 i

)

The importance of the Clifford group for quantum computation is that a computation consisting
of only Clifford operations on the computational basis followed by final Pauli measurements can be
efficiently simulated by a classical computer, this is the Gottesman-Knill theorem [Got97, NC00].

In order to capture partial information about quantum systems one uses density matrices.
Before we describe density matrices we review some linear algebra in the bra-ket notation. Given
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a ket |ψ〉 the notation |ψ〉〈ψ| denotes the projection operator onto the one dimensional subspace
spanned by |ψ〉. If |ψi〉 is an orthonormal basis for H the identity matrix is written

∑
i |ψi〉〈ψi|. If

Q is a linear operator with eigenvalues qi and eigenvectors |qi〉, which form an orthonormal basis
for H, we can represent Q as

∑
i qi|qi〉〈qi|. A state |ψ〉 in H is called a pure state. If a and b are

distinct eigenvalues of some observable A with corresponding eigenvectors |a〉 and |b〉 it is perfectly
possible to prepare a state of the form 1√

2
(|a〉+ |b〉). A measurement of A on such a state will yield

either a or b each with probability 1
2 . However, it is also possible that a mixture is prepared. That

is to say instead of a quantum superposition a classical stochastic mixture is prepared. In order to
describe these we will use density matrices. For a system in a pure state |ψ〉, the density matrix is
just the projection operator |ψ〉〈ψ|.

What if the state is not known completely? Suppose that we only know that a system is one of
several possible states |ψ1〉, . . . , |ψk〉 with probabilities p1, . . . , pk respectively. We define the density
matrix for such a state to be

ρ =
k∑

i=1

pi|ψi〉〈ψi|.

The same formulas for the probability of observing a value qi , i.e. Tr(Piρ) and for the expectation
value of Q, i.e. Tr(Qρ) apply. One can check directly that a density matrix has the following two
properties.

Proposition 3 An operator ρ on H is a density matrix if and only if

• ρ has trace 1 and

• ρ is a positive operator, which means that it has only positive eigenvalues or, equivalently,
that for any x ∈ H we have 〈x, ρx〉 ≥ 0.

Furthermore, if ρ is a density operator, Tr(ρ2) ≤ 1 with equality if and only if ρ is a pure state
(i.e. a projection operator).

The axioms of quantum mechanics are easily stated in the language of density matrices. For
example, if evolution from time t1 to time t2 is described by the unitary transformation U and ρ
is the density matrix for time t1, then the evolved density matrix ρ′ for time t2 is given by the
formula ρ′ = UρU †. Similarly, one can describe measurements represented by projective operators
in terms of density matrices [NC00, Pre98]. Thus if a projector P acts on a state |ψ〉 then the
result is P |ψ〉; the resulting transformation of density matrices is |ψ〉〈7→ |P |ψ〉〈P |. For a general
density matrix ρ we have ρ 7→ PρP , note that since P is self-adjoint we do not have to write P †.

What are the legitimate “physical” transformations on density matrices? The legitimate trans-
formations obviously take density matrices to density matrices. They have to be positive maps
considered as maps between the appropriate ordered vector spaces. The appropriate ordered vector
spaces are the vector spaces of linear operators on H the Hilbert space of pure states. Unfortunately
the tensor product of two positive maps is not positive in general. The remedy is to require the
appropriate condition by fiat.

Definition 4 A completely positive map K is a positive map such that for every identity map
In : Cn → Cn the tensor product K ⊗ In is positive.

It is not hard to show that the tensor of completely positive maps is always a completely positive
map. The important result in this regard is the Kraus representation theorem [Cho75].
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Theorem 1 (Kraus) The general form for a completely positive map E : B(H1) → B(H2) is

E(ρ) =
∑
m

AmρA
†
m

where the Am : H1 → H2.

Here B(H) is the Banach space of bounded linear operators on H. If, in addition, we require that
the trace of E(ρ) ≤ 1 then the Am will satisfy∑

m

A†mAm ≤ I.

The following term is common in the quantum computation literature.

Definition 5 A superoperator T is a linear map from BV to BU that is completely positive and
trace preserving.

C MBQC - Syntax

We first develop a notation for 1-qubit measurement-based computations. The basic commands
one can use in a pattern are:

• 1-qubit auxiliary preparation Ni

• 2-qubit entanglement operators Eij

• 1-qubit measurements Mα
i

• and 1-qubit Pauli operators corrections Xi and Zi

The indices i, j represent the qubits on which each of these operations apply, and α is a
parameter in [0, 2π]. Expressions involving angles are always evaluated modulo 2π. These types of
command will be referred to as N , E, M and C. Sequences of such commands, together with two
distinguished – possibly overlapping – sets of qubits corresponding to inputs and outputs, will be
called measurement patterns, or simply patterns. These patterns can be combined by composition
and tensor product.

Importantly, corrections and measurements are allowed to depend on previous measurement
outcomes. It is known that patterns without these classical dependencies can only realise unitaries
that are in the Clifford group [DKP07]. Thus, dependencies are crucial if one wants to define a
universal computing model; that is to say, a model where all unitaries over ⊗nC2 can be realised.
It is also crucial to develop a notation that will handle these dependencies. This is what we do
now.

Preparation Ni prepares qubit i in state |+〉i. The entanglement commands are defined as
Eij := ∧Zij (controlled-Z), while the correction commands are the Pauli operators Xi and Zi.

Measurement Mα
i is defined by orthogonal projections on

|+α〉 := 1√
2
(|0〉+ eiα|1〉)

|−α〉 := 1√
2
(|0〉 − eiα|1〉)

7



followed by a trace-out operator. The parameter α ∈ [0, 2π] is called the angle of the measurement.
For α = 0, α = π

2 , one obtains the X and Y Pauli measurements. Operationally, measurements will
be understood as destructive measurements, consuming their qubit. The outcome of a measurement
done at qubit i will be denoted by si ∈ Z2. Since one only deals here with patterns where qubits
are measured at most once (see condition (D1) below), this is unambiguous. We take the specific
convention that si = 0 if under the corresponding measurement the state collapses to |+α〉, and
si = 1 if to |−α〉.

Outcomes can be summed together resulting in expressions of the form s =
∑

i∈I si which we
call signals, and where the summation is understood as being done in Z2. We define the domain
of a signal as the set of qubits on which it depends.

As we have said before, both corrections and measurements may depend on signals. Depen-
dent corrections will be written Xs

i and Zs
i and dependent measurements will be written t[Mα

i ]s,
where s, t ∈ Z2 and α ∈ [0, 2π]. The meaning of dependencies for corrections is straightforward:
X0

i = Z0
i = I, no correction is applied, while X1

i = Xi and Z1
i = Zi. In the case of dependent

measurements, the measurement angle will depend on s, t and α as follows:

t[Mα
i ]s := M

(−1)sα+tπ
i (1)

so that, depending on the parities of s and t, one may have to modify the α to one of −α, α + π
and −α+ π. These modifications correspond to conjugations of measurements under X and Z:

XiM
α
i Xi = M−α

i (2)
ZiM

α
i Zi = Mα+π

i (3)

accordingly, we will refer to them as the X and Z-actions. Note that these two actions commute,
since −α+ π = −α− π up to 2π, and hence the order in which one applies them does not matter.

As we will see later, relations (2) and (3) are key to the propagation of dependent corrections,
and to obtaining patterns in the standard entanglement, measurement and correction form. Since
the measurements considered here are destructive, the above equations actually simplify to

Mα
i Xi = M−α

i (4)
Mα

i Zi = Mα−π
i (5)

Another point worth noticing is that the domain of the signals of a dependent command, be it a
measurement or a correction, represents the set of measurements which one has to do before one
can determine the actual value of the command.

We have completed our catalog of basic commands, including dependent ones, and we turn
now to the definition of measurement patterns. For convenient reference, the language syntax is
summarised in Figure 1. We proceed now with the formal definition of a measurement pattern.

Definition 6 Patterns consists of three finite sets V , I, O, together with two injective maps ι :
I → V and o : O → V and a finite sequence of commands An . . . A1, read from right to left, applying
to qubits in V in that order, i.e. A1 first and An last, such that:

(D0) no command depends on an outcome not yet measured;

(D1) no command acts on a qubit already measured;
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S := 0, 1, si, S + S Signals
A := Ni Preparations

Eij Entanglements
t[Mα

i ]s Measurements
Xs

i , Z
s
i Corrections

Figure 1: 1-qubit based measurement language syntax

(D2) no command acts on a qubit not yet prepared, unless it is an input qubit;

(D3) a qubit i is measured if and only if i is not an output.

The set V is called the pattern computation space, and we write HV for the associated quantum
state space ⊗i∈V C2. To ease notation, we will omit the maps ι and o, and write simply I, O instead
of ι(I) and o(O). Note, however, that these maps are useful to define classical manipulations of
the quantum states, such as permutations of the qubits. The sets I, O are called respectively the
pattern inputs and outputs, and we write HI , and HO for the associated quantum state spaces. The
sequence An . . . A1 is called the pattern command sequence, while the triple (V, I,O) is called the
pattern type.

To run a pattern, one prepares the input qubits in some input state ψ ∈ HI , while the non-input
qubits are all set to the |+〉 state, then the commands are executed in sequence, and finally the result
of the pattern computation is read back from outputs as some φ ∈ HO. Clearly, for this procedure
to succeed, we had to impose the (D0), (D1), (D2) and (D3) conditions. Indeed if (D0) fails, then
at some point of the computation, one will want to execute a command which depends on outcomes
that are not known yet. Likewise, if (D1) fails, one will try to apply a command on a qubit that
has been consumed by a measurement (recall that we use destructive measurements). Similarly, if
(D2) fails, one will try to apply a command on a non-existent qubit. Condition (D3) is there to
make sure that the final state belongs to the output space HO, i.e., that all non-output qubits, and
only non-output qubits, will have been consumed by a measurement when the computation ends.

We write (D) for the conjunction of our definiteness conditions (D0), (D1), (D2) and (D3).
Whether a given pattern satisfies (D) or not is statically verifiable on the pattern command se-
quence. We could have imposed a simple type system to enforce these constraints but, in the
interests of notational simplicity, we chose not to do so.

Here is a concrete example:

H := ({1, 2}, {1}, {2}, Xs1
2 M

0
1E12N2)

with computation space {1, 2}, inputs {1}, and outputs {2}. To run H, one first prepares the first
qubit in some input state ψ, and the second qubit in state |+〉, then these are entangled to obtain
∧Z12(ψ1 ⊗ |+〉2). Once this is done, the first qubit is measured in the |+〉, |−〉 basis. Finally an X
correction is applied on the output qubit, if the measurement outcome was s1 = 1. We will do this
calculation in detail later, and prove that this pattern implements the Hadamard operator H.

In general, a given pattern may use auxiliary qubits that are neither input nor output qubits.
Usually one tries to use as few such qubits as possible, since these contribute to the space complexity
of the computation.
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A last thing to note is that one does not require inputs and outputs to be disjoint subsets of
V . This, seemingly innocuous, additional flexibility is actually quite useful to give parsimonious
implementations of unitaries [DKP05].

Next we described how one can combine patterns in order to obtain bigger ones. The first
way to combine patterns is by composing them. Two patterns P1 and P2 may be composed if
V1 ∩ V2 = O1 = I2. Provided that P1 has as many outputs as P2 has inputs, by renaming the
pattern qubits, one can always make them composable.

Definition 7 The composite pattern P2P1 is defined as:
— V := V1 ∪ V2, I = I1, O = O2,
— commands are concatenated.

The other way of combining patterns is to tensor them. Two patterns P1 and P2 may be tensored
if V1 ∩ V2 = ∅. Again one can always meet this condition by renaming qubits in such a way that
these sets are made disjoint.

Definition 8 The tensor pattern P1 ⊗ P2 is defined as:
— V = V1 ∪ V2, I = I1 ∪ I2, and O = O1 ∪O2,
— commands are concatenated.

In contrast to the composition case, all the unions involved here are disjoint. Therefore commands
from distinct patterns freely commute, since they apply to disjoint qubits, and when we say that
commands have to be concatenated, this is only for definiteness. It is routine to verify that the
definiteness conditions (D) are preserved under composition and tensor product.

Before turning to this matter, we need a clean definition of what it means for a pattern to
implement or to realise a unitary operator, together with a proof that the way one can combine
patterns is reflected in their interpretations.

D MBQC - Semantics

In this section we give a formal operational semantics for the pattern language as a probabilistic
labeled transition system. We define deterministic patterns and thereafter concentrate on them.
We show that deterministic patterns compose. We give a denotational semantics of deterministic
patterns; from the construction it will be clear that these two semantics are equivalent.

Besides quantum states, which are non-zero vectors in some Hilbert space HV , one needs a
classical state recording the outcomes of the successive measurements one does in a pattern. If we
let V stand for the finite set of qubits that are still active (i.e. not yet measured) and W stands
for the set of qubits that have been measured (i.e. they are now just classical bits recording the
measurement outcomes), it is natural to define the computation state space as:

S := ΣV,W HV × ZW
2 .

In other words the computation states form a V,W -indexed family of pairs q, Γ, where q is a
quantum state from HV and Γ is a map from some W to the outcome space Z2. We call this
classical component Γ an outcome map, and denote by ∅ the empty outcome map in Z∅

2 . We will
treat these states as pairs unless it becomes important to show how V and W are altered during a
computation, as happens during a measurement.

10



Operational semantics

We need some preliminary notation. For any signal s and classical state Γ ∈ ZW
2 , such that the

domain of s is included in W , we take sΓ to be the value of s given by the outcome map Γ. That is
to say, if s =

∑
I si, then sΓ :=

∑
I Γ(i) where the sum is taken in Z2. Also if Γ ∈ ZW

2 , and x ∈ Z2,
we define:

Γ[x/i](i) = x, Γ[x/i](j) = Γ(j) for j 6= i

which is a map in ZW∪{i}
2 .

We may now view each of our commands as acting on the state space S; we have suppressed V
and W in the first 4 commands:

q,Γ Ni−→ q ⊗ |+〉i,Γ
q,Γ

Eij−→ ∧Zijq,Γ

q,Γ
Xs

i−→ XsΓ
i q,Γ

q,Γ
Zs

i−→ ZsΓ
i q,Γ

V ∪ {i},W, q,Γ
t[Mα

i ]s

−→ V,W ∪ {i}, 〈+αΓ |iq,Γ[0/i]

V ∪ {i},W, q,Γ
t[Mα

i ]s

−→ V,W ∪ {i}, 〈−αΓ |iq,Γ[1/i]

where αΓ = (−1)sΓα + tΓπ following equation (1). Note how the measurement moves an index
from V to W ; a qubit once measured cannot be neasured again. Suppose q ∈ HV , for the above
relations to be defined, one needs the indices i, j on which the various command apply to be in V .
One also needs Γ to contain the domains of s and t, so that sΓ and tΓ are well-defined. This will
always be the case during the run of a pattern because of condition (D).

All commands except measurements are deterministic and only modify the quantum part of
the state. The measurement actions on S are not deterministic, so that these are actually binary
relations on S, and modify both the quantum and classical parts of the state. The usual convention
has it that when one does a measurement the resulting state is renormalised and the probabilities
are associated with the transition. We do not adhere to this convention here, instead we leave the
states unnormalised. The reason for this choice of convention is that this way, the probability of
reaching a given state can be read off its norm, and the overall treatment is simpler. As we will
show later, all the patterns implementing unitary operators will have the same probability for all
the branches and hence we will not need to carry these probabilities explicitly.

Denotational semantics

Let P be a pattern with computation space V , inputs I, outputs O and command sequence
An . . . A1. To execute a pattern, one starts with some input state q in HI , together with the
empty outcome map ∅. The input state q is then tensored with as many |+〉s as there are non-
inputs in V (the N commands), so as to obtain a state in the full space HV . Then E, M and
C commands in P are applied in sequence from right to left. We can summarise the situation as
follows:

HI

��

// HO

HI × Z∅
2

prep // HV × Z∅
2

A1...An // HO × ZV rO
2

OO

11



If m is the number of measurements, which is also the number of non outputs, then the run may
follow 2m different branches. Each branch is associated with a unique binary string s of length m,
representing the classical outcomes of the measurements along that branch, and a unique branch
map As representing the linear transformation from HI to HO along that branch. This map is
obtained from the operational semantics via the sequence (qi,Γi) with 1 ≤ i ≤ n+ 1, such that:

q1,Γ1 = q ⊗ |+ . . .+〉,∅
qn+1 = q′ 6= 0

and for all i ≤ n : qi,Γi
Ai−→ qi+1,Γi+1.

Definition 9 A pattern P realises a map on density matrices ρ given by ρ 7→
∑

sA
†
s(ρ)As. We

write [[P]] for the map realised by P.

Proposition 10 Each pattern realises a completely positive trace preserving map.

Proof. Later on we will show that every pattern can be put in a semantically equivalent form
where all the preparations and entanglements appear first, followed by a sequence of measurements
and finally local Pauli corrections. Hence branch maps decompose as As = CsΠsU , where Cs is a
unitary map over HO collecting all corrections on outputs, Πs is a projection from HV to HO rep-
resenting the particular measurements performed along the branch, and U is a unitary embedding
from HI to HV collecting the branch preparations, and entanglements. Note that U is the same on
all branches. Therefore, ∑

sA
†
sAs =

∑
s U

†Π†
sC

†
sCsΠsU

=
∑

s U
†Π†

sΠsU
= U †(

∑
s Πs)U

= U †U = I

where we have used the fact that Cs is unitary, Πs is a projection and U is independent of
the branches and is also unitary. Therefore the map T (ρ) :=

∑
sAs(ρ)A

†
s is a trace-preserving

completely-positive map (cptp-map), explicitly given as a Kraus decomposition. 2

Hence the denotational semantics of a pattern is a cptp-map. In our denotational semantics we
view the pattern as defining a map from the input qubits to the output qubits. We do not explicitly
represent the result of measuring the final qubits; these may be of interest in some cases. Techniques
for dealing with classical output explicitly are given by Selinger [Sel04] and Unruh [Unr05]. With
our definitions in place, we will show that the denotational semantics is compositional.

Theorem 2 For two patterns P1 and P2 we have [[P1P2]] = [[P2]][[P1]] and [[P1⊗P2]] = [[P2]]⊗ [[P1]].

Proof. Recall that two patterns P1, P2 may be combined by composition provided P1 has as many
outputs as P2 has inputs. Suppose this is the case, and suppose further that P1 and P2 respectively
realise some cptp-maps T1 and T2. We need to show that the composite pattern P2P1 realises T2T1.

Indeed, the two diagrams representing branches in P1 and P2:

HI1

��

// HO1 HI2

��

// HO2

HI1 × Z∅
2

p1// HV1 × Z∅
2

// HO1 × ZV1rO1
2

OO

HI2 × Z∅
2

p2// HV2 × Z∅
2

// HO2 × ZV2rO2
2

OO

12



can be pasted together, since O1 = I2, and HO1 = HI2 . But then, it is enough to notice 1) that
preparation steps p2 in P2 commute with all actions in P1 since they apply on disjoint sets of qubits,
and 2) that no action taken in P2 depends on the measurements outcomes in P1. It follows that
the pasted diagram describes the same branches as does the one associated to the composite P2P1.

A similar argument applies to the case of a tensor combination, and one has that P2⊗P1 realises
T2 ⊗ T1. 2

E MBQC - Universality

In this section we first introduce a simple parameterised family J(α) that generates all unitaries over
C2. By adding the unitary operator controlled-Z (∧Z) defined over C2⊗C2, one then obtains a set of
generators for all unitary maps over ⊗nC2. Both J(α) and ∧Z, have simple realisations in MBQC,
using only two qubits. As a consequence, one obtains an implementation of the controlled-U (∧U)
family of unitaries, using only 14 qubits. Combining these as building blocks, any general unitary
can be obtained by using relatively few auxiliary qubits [DKP05]. Furthermore, this building blocks
have an interesting property, namely that their underlying entanglement graphs have no odd-length
cycles, and such states have been shown to be robust against decoherence [DAB03].

Consider the following one-parameter family J(α):

J(α) := 1√
2

(
1 eiα

1 −eiα
)
,

we can see already that the Pauli spin matrices, phase and Hadamard operators can be described
using only J(α):

X = J(π)J(0) P (α) = J(0)J(α)
Z = J(0)J(π) H = J(0)

We will also use the following equations:

J(0)2 = I
J(α)J(0)J(β) = J(α+ β)
J(α)J(π)J(β) = eiαZ J(β − α)

The second and third equations are referred to as the additivity and subtractivity relations. Addi-
tivity gives another useful pair of equations:

XJ(α) = J(α+ π) = J(α)Z (6)

Any unitary operator U on C2 can be written:

U = eiαJ(0)J(β)J(γ)J(δ)

for some α, β, γ and δ in R. We will refer to this as a J-decomposition of U . To prove this note
that all three Pauli rotations are expressible in terms of J(α):

Rx(α) = e−i α
2 J(α)J(0) (7)

Ry(α) = e−i α
2 J(0)J(

π

2
)J(α)J(−π

2
) (8)

Rz(α) = e−i α
2 J(0)J(α) (9)

13



From the Z–X decomposition, we know that every 1-qubit unitary operator U can be written
as:

U = eiαRz(β)Rx(γ)Rz(δ)

and using equations (9) and (7) we get:

U = eiαe−i β+γ+δ
2 J(0)J(β)J(γ)J(δ)

We conclude in particular, that J(α) generates all 1-qubit unitary operators.
Next, we turn to the decomposition of ∧U in terms of J(α) and ∧Z. Subscripts to operators

indicate the qubit to which they apply, and we sometimes abbreviate Ji(α) as Jα
i .

Suppose U has J-decomposition eiαJ(0)J(β)J(γ)J(δ), then ∧U can also be decomposed as
follows:

∧U12 = J0
1J

α′
1 J0

2J
β+π
2 J

− γ
2

2 J
−π

2
2 J0

2 ∧Z12J
π
2
2 J

γ
2
2 J

−π−δ−β
2

2 J0
2 ∧Z12J

−β+δ−π
2

2

with α′ = α+ β+γ+δ
2 .

To prove the above decomposition, we first define auxiliary unitary operators:

A = J(0)J(β + π)J(−γ
2 )J(−π

2 )
B = J(0)J(π

2 )J(γ
2 )J(−π−δ−β

2 )
C = J(0)J(−β+δ−π

2 )

Then, using the additivity relation we obtain ABC = I. On the other hand, using both the
subtractivity relation and equations (6), we get:

AXBXC = J(0)J(β + π)J(−γ
2 )J(−π

2 )J(π)J(π
2 )J(γ

2 )J(−π−δ−β
2 )J(π)J(−β+δ−π

2 )
= e−i δ+β+γ

2 J(0)J(β)J(γ)J(δ)

Therefore one also has ei
2α+β+γ+δ

2 AXBXC = U .
Combining our two equations in A, B, C, we obtain ∧U12 = P1(α′)A2 ∧X12B2 ∧X12C2 with

α′ = α+ β+γ+δ
2 ; a decomposition which we can rewrite using our generating set:

P (α)1 = J0
1J

α
1

∧X12 = H2 ∧Z12H2 = J0
2 ∧Z12J

0
2

to obtain the above decomposition of ∧U .
Having all unitaries U over C2 and all unitaries of the form ∧U over C2 ⊗ C2 we can conclude

that:

Theorem 3 (Universality) The set {J(α),∧Z} generates all unitaries.

The following unitaries H = J(0), P (π
4 ) = J(0)J(π

4 ), and ∧X = J(0)∧ZJ(0), are known to be
approximately universal, in the sense that any unitary can be approximated within any precision
by combining these [NC00]. Therefore the set J(0), J(π

4 ) and ∧Z is also approximately universal.
It is easy to verify that the following patterns implement our generators

J (α) := Xs1
2 M

−α
1 E12

∧Z := E12

14



where in the first pattern 1 is the only input and 2 is the only output, while in the second both 1
and 2 are inputs and outputs (note that we are allowing patterns to have overlapping inputs and
outputs). Combining these two patterns, by composition and tensoring, will therefore generate
patterns realising all unitaries over ⊗nC2. These patterns are indeed among the simplest possible.
Remarkably, there is only one single dependency overall, which occurs in the correction phase of
J (α). No set of patterns without any measurement could be a generating set, since those can only
implement unitaries in the Clifford group.

F Measurement Calculus

We turn now to the structural result on MBQC asserting that the key factorisation property, namely
that entanglement can be done first, and then local measurements, can be reduced to confluence
properties of a simple algebraic rewriting system [DKP07].

The expressions appearing as commands are all linear operators on Hilbert space. At first
glance, the appropriate equality between commands is equality as operators. For the deterministic
commands, the equality that we consider is indeed equality as operators. This equality implies
equality in the denotational semantics. However, for measurement commands one needs a stricter
definition for equality in order to be able to apply them as rewriting rules. Essentially we have
to take into the account the effect of different branches that might result from the measurement
process. The precise definition is below.

Definition 11 Given two patterns P and P ′ we define P = P ′ if and only if for any branch s, we
have APs = AP

′
s , where APs and AP

′
s are the branch map As defined in Section D.

The first set of equations gives the means to propagate local Pauli corrections through the
entangling operator Eij .

EijX
s
i = Xs

i Z
s
jEij (10)

EijX
s
j = Xs

jZ
s
iEij (11)

EijZ
s
i = Zs

iEij (12)
EijZ

s
j = Zs

jEij (13)

These equations are easy to verify and are natural since Eij belongs to the Clifford group, and
therefore maps under conjugation the Pauli group to itself. Note that, despite the symmetry of
the Eij operator qua operator, we have to consider all the cases, since the rewrite system defined
below does not allow one to rewrite Eij to Eji. If we did allow this the rewrite process could loop
forever.

A second set of equations allows one to push corrections through measurements acting on the
same qubit. Again there are two cases:

t[Mα
i ]sXr

i = t[Mα
i ]s+r (14)

t[Mα
i ]sZr

i = t+r[Mα
i ]s (15)

These equations follow easily from equations (4) and (5). They express the fact that the measure-
ments Mα

i are closed under conjugation by the Pauli group, very much like equations (10),(11),(12)
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and (13) express the fact that the Pauli group is closed under conjugation by the entanglements
Eij .

Define the following convenient abbreviations:

[Mα
i ]s := 0[Mα

i ]s t[Mα
i ] := t[Mα

i ]0 Mα
i := 0[Mα

i ]0 Mx
i := M0

i My
i := M

π
2

i

Particular cases of the equations above are:

Mx
i X

s
i = Mx

i

My
i X

s
i = [My

i ]s = s[My
i ] = My

i Z
s
i

The first equation, follows from the fact that −0 = 0, so the X action on Mx
i is trivial; the second

equation, is because −π
2 is equal π

2 + π modulo 2π, and therefore the X and Z actions coincide on
My

i . So we obtain the following:

t[Mx
i ]s = t[Mx

i ] (16)
t[My

i ]s = s+t[My
i ] (17)

which we will use later to prove that patterns with measurements of the form Mx and My may
only realise unitaries in the Clifford group.

We now define a set of rewrite rules, obtained by orienting the equations above. Recall that
patterns are executed from right to left:

EijX
s
i ⇒ Xs

i Z
s
jEij EX

EijX
s
j ⇒ Xs

jZ
s
iEij EX

EijZ
s
i ⇒ Zs

iEij EZ
EijZ

s
j ⇒ Zs

jEij EZ
t[Mα

i ]sXr
i ⇒ t[Mα

i ]s+r MX
t[Mα

i ]sZr
i ⇒ r+t[Mα

i ]s MZ

to which we need to add the free commutation rules, obtained when commands operate on disjoint
sets of qubits:

EijA~k
⇒ A~k

Eij where A is not an entanglement
A~k
Xs

i ⇒ Xs
iA~k

where A is not a correction
A~k
Zs

i ⇒ Zs
iA~k

where A is not a correction

where ~k represent the qubits acted upon by command A, and are supposed to be distinct from
i and j. Clearly these rules could be reversed since they hold as equations but we are orienting
them this way in order to obtain termination. Condition (D) is easily seen to be preserved under
rewriting.

Under rewriting, the computation space, inputs and outputs remain the same, and so do the
entanglement commands. Measurements might be modified, but there is still the same number
of them, and they still act on the same qubits. The only induced modifications concern local
corrections and dependencies. If there was no dependency at the start, none will be created in the
rewriting process.

In order to obtain rewrite rules, it was essential that the entangling command (∧Z) belongs
to the normaliser of the Pauli group. The point is that the Pauli operators are the correction
operators and they can be dependent, thus we can commute the entangling commands to the
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beginning without inheriting any dependency. Therefore the entanglement resource can indeed be
prepared at the outset of the computation.

Write P ⇒ P ′, respectively P ⇒? P ′, if both patterns have the same type, and one obtains
the command sequence of P ′ from the command sequence of P by applying one, respectively any
number, of the rewrite rules of the previous section. We say that P is standard if for no P ′, P ⇒ P ′

and the procedure of writing a pattern to standard form is called standardisation. We use the word
“standardisation” instead of the more usual “normalisation” in order not to cause terminological
confusion with the physicists’ notion of normalisation.

One of the most important results about the rewrite system is that it has the desirable properties
of determinacy (confluence) and termination (standardisation). In other words, we will show that
for all P, there exists a unique standard P ′, such that P ⇒? P ′. It is, of course, crucial that the
standardisation process leaves the semantics of patterns invariant. This is the subject of the next
simple, but important, proposition,

Proposition 12 Whenever P ⇒? P ′, [[P]] = [[P ′]].

Proof. It is enough to prove it when P ⇒ P ′. The first group of rewrites has been proved to be
sound in the preceding subsections, while the free commutation rules are obviously sound. 2

We now begin the main proof of this section. First, we prove termination.

Theorem 4 (Termination) All rewriting sequences beginning with a pattern P terminate after
finitely many steps. For our rewrite system, this implies that for all P there exist finitely many P ′

such that P ⇒? P ′ where the P ′ are standard.

Proof. Suppose P has command sequence An . . . A1; so the number of commands is n. Let
e ≤ n be the number of E commands in P. As we have noted earlier, this number is invariant
under ⇒. Moreover E commands in P can be ordered by increasing depth, read from right to left,
and this order, written <E , is also invariant, since EE commutations are forbidden explicitly in
the free commutation rules.

Define the following depth function d on E and C commands in P:

d(Ai) =
{
i if Ai = Ejk

n− i if Ai = Cj

Define further the following sequence of length e, dE(P)(i) is the depth of the E-command of rank
i according to <E . By construction this sequence is strictly increasing. Finally, we define the
measure m(P) := (dE(P), dC(P)) with:

dC(P) =
∑

C∈P d(C)

We claim the measure we just defined decreases lexicographically under rewriting, in other words
P ⇒ P ′ implies m(P) > m(P ′), where < is the lexicographic ordering on Ne+1.

To clarify these definitions, consider the following example. Suppose P’s command sequence is
of the form EXZE, then e = 2, dE(P) = (1, 4), and m(P) = (1, 4, 3). For the command sequence
EEX we get that e = 2, dE(P) = (2, 3) and m(P) = (2, 3, 2). Now, if one considers the rewrite
EEX ⇒ EXZE, the measure of the left hand side is (2, 3, 2), while the measure of the right hand
side, as said, is (1, 4, 3), and indeed (2, 3, 2) > (1, 4, 3). Intuitively the reason is clear: the Cs are
being pushed to the left, thus decreasing the depths of Es, and concomitantly, the value of dE .
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Let us now consider all cases starting with an EC rewrite. Suppose the E command under
rewrite has depth d and rank i in the order <E . Then all Es of smaller rank have same depth in
the right hand side, while E has now depth d − 1 and still rank i. So the right hand side has a
strictly smaller measure. Note that when C = X, because of the creation of a Z (see the example
above), the last element of m(P) may increase, and for the same reason all elements of index j > i
in dE(P) may increase. This is why we are working with a lexicographical ordering.

Suppose now one does an MC rewrite, then dC(P) strictly decreases, since one correction is
absorbed, while all E commands have equal or smaller depths. Again the measure strictly decreases.

Next, suppose one does an EA rewrite, and the E command under rewrite has depth d and rank
i. Then it has depth d−1 in the right hand side, and all other E commands have invariant depths,
since we forbade the case when A is itself an E. It follows that the measure strictly decreases.

Finally, upon an AC rewrite, all E commands have invariant depth, except possibly one which
has smaller depth in the case A = E, and dC(P) decreases strictly because we forbade the case
where A = C. Again the claim follows.

So all rewrites decrease our ordinal measure, and therefore all sequences of rewrites are finite,
and since the system is finitely branching (there are no more than n possible single step rewrites
on a given sequence of length n), we get the statement of the theorem. 2

The next theorem establishes the important determinacy property and furthermore shows that
the standard patterns have a certain canonical form which we call the NEMC form. The precise
definition is:

Definition 13 A pattern has a NEMC form if its commands occur in the order of Ns first, then
Es , then Ms, and finally Cs.

We will usually just say “EMC” form since we can assume that all the auxiliary qubits are prepared
in the |+〉 state and we usually just elide these N commands.

Theorem 5 (Confluence) For all P, there exists a unique standard P ′, such that P ⇒? P ′, and
P ′ is in EMC form.

Proof. Since the rewriting system is terminating, confluence follows from local confluence by
Newman’s lemma, see, for example, [Bar84]. This means that whenever two rewrite rules can be
applied to a term t yielding t1 and t2, one can rewrite both t1 and t2 to a common third term t3,
possibly in many steps. Then the uniqueness of the standard form is an immediate consequence.

In order to prove the local confluence we look for critical pairs, that is occurrences of three
successive commands where two rules can be applied simultaneously. One finds that there are only
five types of critical pairs, of these the three involve the N command, these are of the form: NMC,
NEC and NEM ; and the remaining two are: EijMkCk with i, j and k all distinct, EijMkCl with
k and l distinct. In all cases local confluence is easily verified.

Suppose now P ′ does not satisfy the EMC form conditions. Then, either there is a pattern EA
with A not of type E, or there is a pattern AC with A not of type C. In the former case, E and
A must operate on overlapping qubits, else one may apply a free commutation rule, and A may
not be a C since in this case one may apply an EC rewrite. The only remaining case is when A
is of type M , overlapping E’s qubits, but this is what condition (D1) forbids, and since (D1) is
preserved under rewriting, this contradicts the assumption. The latter case is even simpler. 2

We have shown that under rewriting any pattern can be put in EMC form, which is what we
wanted. We actually proved more, namely that the standard form obtained is unique. However,
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one has to be a bit careful about the significance of this additional piece of information. Note first
that uniqueness is obtained because we dropped the CC and EE free commutations, thus having a
rigid notion of command sequence. One cannot put them back as rewrite rules, since they obviously
ruin termination and uniqueness of standard forms.

A reasonable thing to do, would be to take this set of equations as generating an equivalence
relation on command sequences, call it ≡, and hope to strengthen the results obtained so far, by
proving that all reachable standard forms are equivalent.

But this is too naive a strategy, since E12X1X2 ≡ E12X2X1, and:

E12X
s
1X

t
2 ⇒? Xs

1Z
s
2X

t
2Z

t
1E12

≡ Xs
1Z

t
1Z

s
2X

t
2E12

obtaining an expression which is not symmetric in 1 and 2. To conclude, one has to extend ≡
to include the additional equivalence Xs

1Z
t
1 ≡ Zt

1X
s
1 , which fortunately is sound since these two

operators are equal up to a global phase. Thus, these are all equivalent in our semantics of patterns.
We summarise this discussion as follows.

Definition 14 We define an equivalence relation ≡ on patterns by taking all the rewrite rules as
equations and adding the equation Xs

1Z
t
1 ≡ Zt

1X
s
1 and generating the smallest equivalence relation.

With this definition we can state the following proposition.

Proposition 15 All patterns that are equivalent by ≡ are equal in the denotational semantics.

This ≡ relation preserves both the type (the (V, I,O) triple) and the underlying entanglement
graph. So clearly semantic equality does not entail equality up to ≡. In fact, by composing
teleportation patterns one obtains infinitely many patterns for the identity which are all dif-
ferent up to ≡. One may wonder whether two patterns with same semantics, type and un-
derlying entanglement graph are necessarily equal up to ≡. This is not true either. One has
J(α)J(0)J(β) = J(α + β) = J(β)J(0)J(α) (where J(α) is defined in Section E), and this readily
gives a counter-example. We can now formally describe a simple standardisation algorithm.

Algorithm. Input: A pattern P on |V | = N qubits with command sequence AM · · ·A1.
Output: An equivalent pattern P ′ in NEMC form.

1. Commute all the preparation commands (new qubits) to the right side.

2. Commute all the correction commands to the left side using the EC and MC rewriting rules.

3. Commute all the entanglement commands to the right side after the preparation commands.

Note that since each qubit can be entangled with at most N − 1 other qubits, and can be
measured or corrected only once, we have O(N2) entanglement commands and O(N) measurement
commands. According to the definiteness condition, no command acts on a qubit not yet prepared,
hence the first step of the above algorithm is based on trivial commuting rules; the same is true
for the last step as no entanglement command can act on a qubit that has been measured. Both
steps can be done in O(N2) time. The real complexity of the algorithm comes from the second step
and the EX commuting rule. In the worst case scenario, commuting an X correction to the left
might create O(N2) other Z corrections, each of which has to be commuted to the left themselves.
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Thus one can have at most O(N3) new corrections, each of which has to be commuted past O(N2)
measurement or entanglement commands. Therefore the second step, and hence the algorithm, has
a worst case complexity of O(N5) time.

We conclude this subsection by emphasising the importance of the EMC form. Since the
entanglement can always be done first, we can always derive the entanglement resource needed for
the whole computation right at the beginning. After that only local operations will be performed.
This will separate the analysis of entanglement resource requirements from the classical control.
Furthermore, this makes it possible to extract the maximal parallelism for the execution of the
pattern since the necessary dependencies are explicitly expressed, see [BK09] for further discussion.
The EMC form also provides us with tools to prove general theorems about patterns, such as the
fact that they always compute cptp-maps and the expressiveness theorems [DKP07]. Finally, we
present later the first MBQC protocol designed using the EMC form which allows one to clearly
distinguish between the quantum and classical aspects of a quantum computation.

G Determinism

An important aspect of MBQC is the way the inherent randomness of the measurement outcomes
can be accounted for, so that the overall computation remains deterministic. This is accomplished
by conditioning the basis of certain measurements upon the outcome of others, introducing a
measurement order. We present first various notions of determinism. A pattern is said to be
deterministic if it realises a cptp-map that sends pure states to pure states. This is equivalent
to saying that for a deterministic pattern branch maps are proportional, that is to say, for all
q ∈ HI and all s1, s2 ∈ Zn

2 , As1(q) and As2(q) differ only up to a scalar. The class of deterministic
patterns include projections. A more restricted class contains all the unitary and unitary embedding
operators: a pattern is said to be strongly deterministic when branch maps are equal (up to a global
phase), i.e. for all s1, s2 ∈ Zn

2 , As1 = eiφs1,s2As2 . These are the patterns implementing quantum
algorithms and hence understanding their structural properties is of particular interest.

Proposition 16 If a pattern is strongly deterministic, then it realises a unitary embedding.

Proof. Define T to be the map realised by the pattern. We have T =
∑

sA
†
sAs. Since the pattern

in strongly deterministic all the branch maps are the same. Define A to be 2n/2As, then A must
be a unitary embedding, because A†A = I. 2

An important sub-class of deterministic patterns are robust under the changes of the angles: a
pattern is said to be uniformly deterministic if it is deterministic for all values of its measurement
angles. In another words a uniformly deterministic pattern defines a class of quantum operators
that can be performed given the same initial entanglement resources. On the other hand it is known
that if we fix the angle of measurements to be Pauli the obtained operators is in Clifford group
[DKP07]. That means uniform determinism allow us to associate to a family of quantum operators
a canonical pattern implementing a Clifford operator, a potential valuable abstract reduction for
the study of quantum operators.

Finally a pattern is said to be stepwise deterministic if it is deterministic after performing each
single measurement together with all the corrections depending on the result of that measurement.
In another words a pattern is stepwise deterministic if after each single measurements there exists a
set of local corrections depending only on the result of this measurements to be performed on some
or all of the non-measured qubits that will make the two branches equal (up to a global phase).
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A variety of methods for constructing measurement patterns have been already proposed [RBB03,
HEB04, CLN05a] that guarantee determinism by construction. We introduce a direct condition on
graph states which guarantees a strong form of deterministic behaviour for a class of MBQC pat-
terns defined over them [DK06]. Remarkably, this condition bears only on the geometric structure
of the entangled graph states.

Let us define an open graph state (G, I,O) to be a state associated with an undirected graph
G together with two subsets of nodes I and O, called inputs and outputs. We write V for the set
of nodes in G, Ic, and Oc for the complements of I and O in V , NG(i) for the set of neighbours of
i in G, i ∼ j for (i, j) ∈ G, and EG :=

∏
i∼j Eij for the global entanglement operator associated

to G. In what follows, x ∼ y denotes that x is adjacent to y in G, NIc denotes the sequence of
preparation commands

∏
i∈Ic Ni.

Definition 17 A flow (f,�) for an open graph state (G, I,O) consists of a map f : Oc → Ic and
a partial order � over V such that for all x ∈ Oc:

(i) x ∼ f(x);

(ii) x � f(x);

(iii) for all y ∼ f(x), x � y .

As one can see, a flow consists of two structures: a function f over vertices and a matching
partial order over vertices. In order to obtain a deterministic pattern for an open graph state with
flow, dependent corrections will be defined based on function f . The order of the execution of the
commands is given by the partial order induced by the flow. The matching properties between the
function f and the partial order � will make the obtained pattern runnable. Figure 2 shows an
open graph state together with a flow, where f is represented by arcs from Oc (measured qubits,
black vertices) to Ic (prepared qubits, non boxed vertices). The associated partial order is given by
the labelled sets of vertices. The coarsest order � for which (f,�) is a flow is called the dependency
order induced by f and its depth (4 in Figure 2) is called flow depth.

The existence of a causal flow is a sufficient condition for determinism. First we need the
following simple lemma which describes an essential property of graph state.

Lemma 18 For any open graph (G, I,O) and any i ∈ Ic,

EGNIc = XiZNG(i)EGNIc

Proof. The proof is based on equations 10, 12 of the Measurement Calculus, and the additional
equation XiNi = Ni, which follows from the fact that Ni produces a qubit in the |+〉 state which
is a fix point of X.

EGNIc = EGXiNIc

=
(∏

(k,l)∈G,k 6=i,l 6=iEk,l

) (∏
j∈NG(i)Ei,j

)
XiNIc

=
(∏

(k,l)∈G,k 6=i,l 6=iEk,l

) (
Xi

∏
j∈NG(i) Zj

) (∏
j∈NG(i)Ei,j

)
NIc

=
(
Xi

∏
j∈NG(i) Zj

)
EGNIc

= XiZNG(i)EGNIc
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Figure 2: An open graph state with flow. The boxed vertices are the input qubits and the white
vertices are the output qubits. All the non-output qubits, black vertices, are measured during the
run of the pattern. The flow function is represented as arcs and the partial order on the vertices is
given by the 4 partition sets.

2

The operator Ki := Xi(
∏

j∈NG(i) Zj) is called graph stabiliser [HEB04] at qubit i and the
above lemma proves KiEGNIc = EGNIc . Note that this equation is slightly more general than the
common graph stabiliser [HEB04] as it can be applied to open graph states where input qubits are
prepared in arbitrary states.

Theorem 6 Suppose the open graph state (G, I,O) has flow f , then the pattern:

Pf,G,~α :=
∏

i∈Oc

�
(
Xsi

f(i)

∏
k∼f(i)

k 6=i

Zsi
k M

αi
i

)
EG

where the product follows the dependency order � of f , is uniformly and strongly deterministic,
and realises the unitary embedding:

UG,I,O,~α := 2|O
c|/2

( ∏
i∈Oc

〈+αi |i
)
EG

Proof. The proof is based on anachronical patterns, i.e. patterns which do not satisfy the
D0 condition (see section C) saying that no command depends on an outcome not yet measured.
Indeed, in the anachronical pattern Mα

i Z
si
i , the command Zsi

i depends on the outcome si whereas
the qubit i is not yet measured. However, by relaxing the D0 condition, we have the following
equation:

〈+α|i = Mα
i Z

si
i

Indeed, if si = 0 the measurement realises the projection 〈+α|i, and if si = 1 the measurement
realises the projection 〈−α|i = 〈+α|iZi. Thus, any correction-free pattern

∏
i∈Oc M

αi
i EGNIc can

be turned into an anachronical strongly deterministic pattern
∏

i∈Oc M
αi
i Zsi

i EGNIc which realises
UG. The rest of the proof consists in transforming this anachronical pattern into a pattern which
satisfies the D0 condition:
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∏
i∈Oc M

αi
i Zi

si
EGNIc =

∏
i∈Oc M

αi
i Zsi

i

(
Xsi

f(i)

∏
j∈NG(f(i)) Z

si
j

)
EGNIc

=
∏≺

i∈Oc

(
Xsi

f(i)

∏
j∈NG(f(i))r{i} Z

si
j

)
Mαi

i EGNIc

Lemma 18 and condition 3 of the causal flow are used in the previous equation for eliminating the
command Zi

si
, whereas conditions 1 and 2 ensure that the pattern satisfies the D0 condition.2

The intuition of the proof is that entanglement between two qubits i and j converts an anachron-
ical Z correction at i, given in the term Mα

i Z
si
i , into a pair of a ‘future’ X correction on qubit j.

The existence of the flow is only a sufficient condition for determinism which assign to every single
measured qubit a unique correcting vertices f(i). A natural generalisation is to consider a set of
vertices as a correcting set which leads to a full characterisation of determinism [BKMP07].

Having obtained the rigourous mathematical model underlying MBQC, we can now present
how this model suggests new techniques for designing quantum protocols.

H Universal Blind Quantum Computing

When the technology to build quantum computers becomes available, it is likely that it will only
be accessible to a handful of centres around the world. Much like today’s rental system of super-
computers, users will probably be granted access to the computers in a limited way. How will a user
interface with such a quantum computer? Here, we consider the scenario where a user is unwilling
to reveal the computation that the remote computer is to perform, but still wishes to exploit this
quantum resource. The solution is Universal Blind Quantum Computing (UBQC) protocol [BFK09]
that allows a client Alice (who does not have any quantum computational resources or quantum
memory) to interact with a server Bob (who has a quantum computer) in order for Alice to obtain
the outcome of her target computation such that privacy is preserved. This means that Bob learns
nothing about Alice’s inputs, outputs, or desired computation. The privacy is perfect, does not rely
on any computational assumptions, and holds no matter what actions a cheating Bob undertakes.
Alice only needs to be able to prepare single qubits randomly chosen from a finite set and send
them to the server, who has the balance of the required quantum computational resources. After
this initial preparation, Alice and Bob use two-way classical communication which enables Alice
to drive the computation by giving single-qubit measurement instructions to Bob, depending on
previous measurement outcomes. Note that if Alice wanted to compute the solution to a classical
problem in NP, she could efficiently verify the outcome. An interfering Bob is not so obviously
detected in other cases. UBQC uses an authentication technique which performs this detection.

The UBQC protocol is constructed using the unique feature of MBQC that separates the clas-
sical and quantum parts of a computation, leading to a generic scheme for blind computation of
any circuit without requiring any quantum memory for Alice. This is fundamentally different from
previously known classical or quantum schemes. UBQC can be viewed as a distributed version of
an MBQC computation (where Alice prepares the individual qubits, Bob does the entanglement
and measurements, and Alice computes the classical feedforward mechanism), on top of which ran-
domness is added in order to obscure the computation from Bob’s point of view. This is the first
time that a new functionality has been achieved thanks to MBQC (other theoretical advances due
to MBQC appear in [RHG06, MS08]). From a conceptual point of view, this shows that MBQC
has tremendous potential for the development of new protocols, and maybe even of algorithms.
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UBQC can be used for any quantum circuit and also works for quantum inputs or outputs. We
now give some applications.

• Factoring. Factoring is a prime application of UBQC: by implementing Shor’s factoring
algorithm [Sho97] as a blind quantum computation, Alice can use Bob to help her factor a
product of large primes which is associated with an RSA public key [RSA78]. Thanks to
the properties of UBQC, Bob will not only be unable to determine Alice’s input, but will be
completely oblivious to the fact that he is helping her factor.

• BQP-complete problem. UBQC could be used to help Alice solve a BQP-complete problem, for
instance approximating the Jones polynomial [AJL06]. There is no known classical method to
efficiently verify the solution; this motivates the need for authentication of Bob’s computation,
even in the case that the output is classical.

• Processing quantum information. Alice may wish to use Bob as a remote device to manipulate
quantum information. Consider the case where Alice is participating in a quantum protocol
such as a quantum interactive proof. She can use UBQC to prepare a quantum state, to
perform a measurement on a quantum system, or to process quantum inputs into quantum
outputs.

• Quantum prover interactive proofs. UBQC can be used to accomplish an interactive proof for
any language in BQP, with a quantum prover and a nearly-classical verifier, where the verifier
requires the power to generate random qubits chosen from a fixed set. Moreover, UBQC can
be adapted to provide a two-prover interactive proof for any problem in BQP with a purely
classical verifier. The modification requires that the provers share entanglement but otherwise
be unable to communicate. Guided by the verifier, the first prover measures his part of the
entanglement in order to create a shared resource between the verifier and the second prover.
The remainder of the interaction involves the verifier and the second prover who essentially
run the main protocol.

In the classical world, Feigenbaum introduced the notion of computing with encrypted data [Fei86],
according to which a function f is encryptable if Alice can easily transform an instance x into in-
stance x′, obtain f(x′) from Bob and efficiently compute f(x) from f(x′), in such a way that Bob
cannot infer x from x′. Following this, Abadi, Feigenbaum and Kilian [AFK89] gave an impossibil-
ity result: no NP-hard function can be computed with encrypted data (even probabilistically and
with polynomial interaction), unless the polynomial hierarchy collapses at the third level.

Ignoring the blindness requirement of UBQC yields an interactive proof with a BQP prover
and a nearly-classical verifier. This scenario was first proposed in the work of [ABE08], using very
different techniques based on authentication schemes. Their protocol can be also used for blind
quantum computation. However, their scheme requires that Alice have quantum computational
resources and memory to act on a constant-sized register. A related classical protocol for the
scenario involving a P prover and a nearly-linear time verifier was given in [GKR08].

Returning to the cryptographic scenario, still in the model where the function is classical and
public, Arrighi and Salvail [AS06] gave an approach using quantum resources. The idea of their
protocol is that Alice gives Bob multiple quantum inputs, most of which are decoys. Bob applies
the target function on all inputs, and then Alice verifies his behaviour on the decoys. There are
two important points to make here. First, the protocol only works for a restricted set of classical
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functions called random verifiable: it must be possible for Alice to efficiently generate random
input-output pairs. Second, the protocol does not prevent Bob from learning Alice’s private input;
it provides only cheat sensitivity.

The case of a blind quantum computation was first considered by Childs [Chi05] based on the
idea of encrypting input qubits with a quantum one-time pad [AMTW00, BR03]. At each step,
Alice sends the encrypted qubits to Bob, who applies a known quantum gate (some gates requiring
further interaction with Alice). Bob returns the quantum state, which Alice decrypts using her key.
Cycling through a fixed set of universal gates ensures that Bob learns nothing about the circuit.
The protocol requires fault-tolerant quantum memory and the ability to apply local Pauli operators
at each step, and does not provide any method for the detection of malicious errors.

The UBQC protocol [BFK09] is the first protocol for universal blind quantum computation
where Alice has no quantum memory that works for any quantum circuit and assumes Alice has a
classical computer, augmented with the power to prepare single qubits randomly chosen in

{1/
√

2
(
|0〉+ eiθ|1〉

)
| θ = 0, π/4, 2π/4, . . . , 7π/4} .

The required quantum and classical communication between Alice and Bob is linear in the size of
Alice’s desired quantum circuit. Interestingly, it is sufficient for our purposes to restrict Alice’s
classical computation to modulo 8 arithmetic! Similar observations in a non-cryptographic context
have been made in [AB09]. Except for an unavoidable leakage of the size of Alice’s data [AFK89],
Alice’s privacy is perfect. We provide an authentication technique to detect an interfering Bob with
overwhelming probability; this is optimal since there is always an exponentially small probability
that Bob can guess a path that will make Alice accept.

All previous protocols for blind quantum computation require technology for Alice that is today
unavailable: Arrighi and Salvail’s protocol requires multi-qubit preparations and measurements,
Childs’ protocol requires fault-tolerant quantum memory and the ability to apply local Pauli oper-
ators at each step, while Aharonov, Ben-Or and Eban’s protocol requires a constant-sized quantum
computer with memory. In sharp contrast to this, from Alice’s point of view, UBQC can be
implemented with physical systems that are already available and well-developed. The required
apparatus can be achieved by making only minor modifications to equipment used in the BB84 key
exchange protocol [BB84].

I The Brickwork States

The family of graph states called cluster states [RB01] is universal for MBQC, however, the method
that allows arbitrary computation on the cluster state consists in first tailoring the cluster state
to the specific computation by performing some computational basis measurements. If one was to
use this principle or any arbitrary graph sates for blind quantum computing, Alice would have to
reveal information about the structure of the underlying graph. Instead UBQC uses a new family
of states called the brickwork states (Figure 3) which are universal for X − Y plane measurements
and thus do not require the initial computational basis measurements. Other universal graph states
for that do not require initial computational basis measurements have appeared in [CLN05b].

Definition 19 A brickwork state Gn×m, where m ≡ 5 (mod 8), is an entangled state of n × m
qubits constructed as follows (see also Figure 3):
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Figure 3: The brickwork state, Gn×m. Qubits |ψx,y〉 (x = 1, . . . , n, y = 1, . . . ,m) are arranged
according to layer x and row y, corresponding to the vertices in the above graph, and are originally
in the |+〉 = 1√

2
|0〉+ 1√

2
|1〉 state. Controlled-Z gates are then performed between qubits which are

joined by an edge.

1. Prepare all qubits in state |+〉 and assign to each qubit an index (i, j), i being a column
(i ∈ [n]) and j being a row (j ∈ [m]).

2. For each row, apply the operator ctrl-Z on qubits (i, j) and (i, j + 1) where 1 ≤ j ≤ m− 1.

3. For each column j ≡ 3 (mod 8) and each odd row i, apply the operator ctrl-Z on qubits
(i, j) and (i+ 1, j) and also on qubits (i, j + 2) and (i+ 1, j + 2).

4. For each column j ≡ 7 (mod 8) and each even row i, apply the operator ctrl-Z on qubits
(i, j) and (i+ 1, j) and also on qubits (i, j + 2) and (i+ 1, j + 2).

Theorem 7 (Universality) The brickwork state Gn×m is universal for quantum computation.
Furthermore, we only require single-qubit measurements under the angles {0,±π/4,±π/2}, and
measurements can be done layer-by-layer.

Proof. It is well-known that the set U = {ctrl-X,H, π
8 } is a universal set of gates; we

will show how the brickwork state can be used to compute any gate in U . Recall the rotation
transformations: X(θ) = e

iθX
2 and Z(θ) = e

iθZ
2 .

Consider the measurement pattern and underlying graph state given in Figure 4. The implicit
required corrections are implemented according to the flow condition [DK06] which guarantees
determinism, and allows measurements to be performed layer-by-layer. The action of the measure-
ment of the first three qubits on each wire is clearly given by the rotations in the right-hand part of
Figure 4 [BB06]. The circuit identity follows since ctrl-Z commutes with Z(α) and is self-inverse.

By assigning specific values to the angles, we get the Hadamard gate (Figure 5), the π/8 gate
(Figure 6) and the identity (Figure 7). By symmetry, we can get H or π/8 acting on logical qubit 2
instead of logical qubit 1.

In Figure 8, we give a pattern and show using circuit identities that it implements a ctrl-X.
The verification of the circuit identities is straightforward. Again by symmetry, we can reverse the
control and target qubits. Note that as long as we have ctrl-Xs between any pair of neighbours,
this is sufficient to implement ctrl-X between further away qubits.

26



α

α′

β

β′

γ

γ′

0

0

=

Rz(α)

Rz(α
′)

Rx(β)

Rx(β′)

Rz(γ)

Rz(γ
′)

Figure 4: Pattern with arbitrary rotations. Squares indicate output qubits.
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Figure 5: Implementation of a Hadamard gate.

We now show how we can tile the patterns as given in Figures 4 through 8 (the underlying graph
states are the same) to implement any circuit using U as a universal set of gates. In Figure 9, we
show how a 4-qubit circuit with three gates, U1, U2 and U3 (each gate acting on a maximum of two
adjacent qubits) can be implemented on the brickwork state G9,4. We have completed the top and
bottom logical wires with a pattern that implements the identity. Generalising this technique, we
get the family of brickwork states as given in Figure 3 and Definition 19. 2

Here we only consider approximate universality. This allows us to restrict the angles of prepa-
ration and measurement to a finite set and hence simplify the description of the protocol. However
one can easily extend UBQC to achieve exact universality as well, provided Alice can communicate
real numbers to Bob.
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Figure 6: Implementation of a π/8 gate.
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Figure 7: Implementation of the identity.
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Figure 8: Implementation of a ctrl-X.
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Figure 9: Tiling for a 4-qubit circuit with three gates.
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J The UBQC Protocol

Suppose Alice has in mind a unitary operator U that is implemented with a pattern on a brickwork
state Gn×m (Figure 3) with measurements given as multiples of π/4. This pattern could have been
designed either directly in MBQC or from a circuit construction. Each qubit |ψx,y〉 ∈ Gn×m is
indexed by a column x ∈ {1, . . . , n} and a row y ∈ {1, . . . ,m}. Thus each qubit is assigned: a
measurement angle φx,y, a set of X-dependencies Dx,y ⊆ [x− 1]× [m], and a set of Z-dependencies
D′

x,y ⊆ [x−1]× [m] . Here, we assume that the dependency sets Xx,y and Zx,y are obtained via the
flow construction [DK06]. During the execution of the pattern, the actual measurement angle φ′x,y

is a modification of φx,y that depends on previous measurement outcomes in the following way:
let sX

x,y = ⊕i∈Dx,ysi be the parity of all measurement outcomes for qubits in Xx,y and similarly,
sZ
x,y = ⊕i∈D′

x,y
si be the parity of all measurement outcomes for qubits in Zx,y. Then φ′x,y =

(−1)sX
x,yφx,y + sZ

x,yπ . Protocol 1 implements a blind quantum computation for U . Note that
we assume that Alice’s input to the computation is built into U . In other words, Alice wishes to
compute U |0〉, her input is classical and the first layers of U may depend on it.

Protocol 1 Universal Blind Quantum Computation

1. Alice’s preparation
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {|+θx,y〉 = 1√
2
(|0〉 + eiθx,y |1〉) | θx,y = 0, π/4, . . . , 7π/4} and

sends the qubits to Bob.

2. Bob’s preparation

2.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m

(see Definition 19).

3. Interaction and measurement
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

3.1 Alice computes φ′x,y where sX
0,y = sZ

0,y = 0.

3.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′x,y + θx,y + πrx,y .

3.3 Alice transmits δx,y to Bob. Bob measures in the basis {|+δx,y〉, |−δx,y〉}.
3.4 Bob transmits the result sx,y ∈ {0, 1} to Alice.

3.5 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

The universality of Protocol 1 follows from the universality of brickwork state for measurement-
based quantum computing. Correctness refers to the fact that the outcome of the protocol is the
same as the outcome if Alice had run the pattern herself. The fact that Protocol 1 correctly com-
putes U |0〉 follows from the commutativity of Alice’s rotations and Bob’s measurements in the
rotated bases. This is formalised below.
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Theorem 8 (Correctness) Assume Alice and Bob follow the steps of Protocol 1. Then the
outcome is correct.

Proof. Firstly, since ctrl-Z commutes with Z-rotations, steps 1 and 2 do not change the under-
lying graph state; only the phase of each qubit is locally changed, and it is as if Bob had done the
Z-rotation after the ctrl-Z. Secondly, since a measurement in the |+φ〉, |−φ〉 basis on a state |ψ〉
is the same as a measurement in the |+φ+θ〉, |−φ+θ〉 basis on Z(θ)|ψ〉, and since δ = φ′ + θ + πr,
if r = 0, Bob’s measurement has the same effect as Alice’s target measurement; if r = 1, all Alice
needs to do is flip the outcome. 2

We now define and prove the security of the protocol. Intuitively, we wish to prove that whatever
Bob chooses to do (including arbitrary deviations from the protocol), his knowledge on Alice’s
quantum computation does not increase. Note, however that Bob does learn the dimensions of the
brickwork state, giving an upper bound on the size of Alice’s computation. This is unavoidable:
a simple adaptation of the proof of Theorem 2 from [AFK89], confirms this. We incorporate
this notion of leakage in our definition of blindness. A quantum delegated computation protocol
is a protocol by which Alice interacts quantumly with Bob in order to obtain the result of a
computation, U(x), where X = (Ũ , x) is Alice’s input with Ũ being a description of U .

Definition 20 Let P be a quantum delegated computation on input X and let L(X) be any function
of the input. We say that a quantum delegated computation protocol is blind while leaking at most
L(X) if, on Alice’s input X, for any fixed Y = L(X), the following two hold when given Y :

1. The distribution of the classical information obtained by Bob in P is independent of X.

2. Given the distribution of classical information described in 1, the state of the quantum system
obtained by Bob in P is fixed and independent of X.

Definition 20 captures the intuitive notion that Bob’s view of the protocol should not depend
on X (when given Y ); since his view consists of classical and quantum information, this means
that the distribution of the classical information should not depend on X (given Y ) and that for
any fixed choice of the classical information, the state of the quantum system should be uniquely
determined and not depend on X (given Y ). We are now ready to state and prove our main
theorem. Recall that in Protocol 1, (n,m) is the dimension of the brickwork state.

Theorem 9 (Blindness) Protocol 1 is blind while leaking at most (n,m).

Proof. Let (n,m) (the dimension of the brickwork state) be given. Note that the universality of
the brickwork state guarantees that Bob’s creating of the graph state does not reveal anything on
the underlying computation (except n and m).

Alice’s input consists of
φ = (φx,y | x ∈ [n], y ∈ [m])

with the actual measurement angles

φ′ = (φ′x,y | x ∈ [n], y ∈ [m])

being a modification of φ that depends on previous measurement outcomes. Let the classical
information that Bob gets during the protocol be

δ = (δx,y | x ∈ [n], y ∈ [m])
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and let A be the quantum system initially sent from Alice to Bob.
To show independence of Bob’s classical information, let θ′x,y = θx,y + πrx,y (for a uniformly

random chosen θx,y) and θ′ = (θ′x,y | x ∈ [n], y ∈ [m]). We have δ = φ′ + θ′, with θ′ being uniformly
random (and independent of φ and/or φ′), which implies the independence of δ and φ.

As for Bob’s quantum information, first fix an arbitrary choice of δ. Because rx,y is uniformly
random, for each qubit of A, one of the following two has occurred:

1. rx,y = 0 so δx,y = φ′x,y + θ′x,y and |ψx,y〉 = 1√
2
(|0〉+ ei(δx,y−φ′x,y)|1〉.

2. rx,y = 1 so δx,y = φ′x,y + θ′x,y + π and |ψx,y〉 = 1√
2
(|0〉 − ei(δx,y−φ′x,y)|1〉.

Since δ is fixed, θ′ depends on φ′ (and thus on φ), but since rx,y is independent of everything else,
without knowledge of rx,y (i.e. taking the partial trace of the system over Alice’s secret), A consists
of copies of the two-dimensional completely mixed state, which is fixed and independent of φ. 2

There are two malicious scenarios that are covered by Definition 20 and that we explicitly
mention here. Suppose Bob has some prior knowledge, given as some a priori distribution on
Alice’s input X. Since Definition 20 applies to any distribution of X, we can simply apply it to
the conditional distribution representing the distribution of X given Bob’s a priori knowledge; we
conclude that Bob does not learn any information on X beyond what he already knows, as well
as what is leaked. The second scenario concerns a Bob whose goal it is to find Alice’s output.
Definition 20 forbids this: learning information on the output would imply learning information on
Alice’s input.

Note that the protocol does not allow Alice to reveal to Bob whether or not she accepts the result
of the computation as this bit of information could be exploited by Bob to learn some information
about the actual computation. In this scenario, Protocol 4 can be used instead.

K Quantum Inputs and Outputs

We can slightly modify Protocol 1 to deal with both quantum inputs and outputs. In the former
case, no extra channel resources are required, while the latter case requires a quantum channel from
Bob to Alice in order for him to return the output qubits. Alice will also need to be able to apply
X and Z Pauli operators in order to undo the quantum one-time pad. Note that these protocols
can be combined to obtain a protocol for quantum inputs and outputs.

Consider the scenario where Alice’s input is the form of m physical qubits and she has no
efficient classical description of the inputs to be able to incorporate it into Protocol 1. In this
case, she needs to be able to apply local Pauli-X and Pauli-Z operators to implement a full one-
time pad over the input qubits. The first layer of measurements are adapted to undo the Pauli-X
operation if necessary. By the quantum one-time pad, Theorem 8 and Theorem 9, this modified
protocol, given in Protocol 2 is still correct and private.

Here we assume that Alice already has in her hands the quantum inputs: unless she receives
the inputs one-by-one, she requires for this initial step some quantum memory. She also needs to
be able to apply the single-qubit gates as described above. Note that this is only asking slightly
more than Alice choosing between four single-qubit gates, which would be the minimum required
in any blind quantum computation protocol with quantum inputs.

Suppose Alice now requires a quantum output, for example in the case of blind quantum state
preparation. In this scenario, instead of measuring the last layer of qubits, Bob returns it to Alice,
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Protocol 2 Universal Blind Quantum Computation with Quantum Inputs

1. Alice’s input preparation
For the input column (x = 0, y = 1, . . . ,m) corresponding to Alice’s input

1.1 Alice applies Z0,y(θ0,y) for θ0,y ∈R {0, π/4, 2π/4, . . . , 7π/4}.

1.2 Alice chooses i0,y ∈R {0, 1} and applies Xi0,y

0,y . She sends the qubits to Bob.

2. Alice’s auxiliary preparation
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

2.1 Alice prepares |ψx,y〉 ∈R {|+θx,y〉 | θx,y = 0, π/4, 2π/4, . . . , 7π/4} and sends the qubits to
Bob.

3. Bob’s preparation

3.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state G(n+1)×m.

4. Interaction and measurement
For each column x = 0, . . . , n
For each row y = 1, . . . ,m

4.1 Alice computes φ′x,y with the special case φ′0,y = (−1)i0,yφ0,y.

4.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′x,y + θx,y + πrx,y .

4.3 Alice transmits δx,y to Bob.

4.4 Bob measures in the basis {|+δx,y〉, |−δx,y〉}.
4.5 Bob transmits the result sx,y ∈ {0, 1} to Alice.

4.6 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.
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who performs the final layer of Pauli corrections. The following theorem shows a privacy property
on the quantum states that Bob manipulates.

Theorem 10 At every step of Protocol 1, Bob’s quantum state is one-time padded.

Proof. During the execution of the protocol the value of sX and sZ are unknown to Bob since
they have been one-time padded using the random key r at each layer. Due to the flow construc-
tion [DK06], each qubit (starting at the third column) receives independent Pauli operators, which
act as the full quantum one-time pad over Bob’s state. Since our initial state is |+〉, and since
the first layer performs a hidden Z-rotation, it follows that the qubits in the second layer are also
completely encrypted during the computation. 2This result together with Theorems 8 and 9 proves
the correctness and privacy of Protocol 3 that deals with quantum outputs.

L Authentication and Fault-Tolerance

We now focus on Alice’s ability to detect if Bob is not cooperating. There are two possible ways in
which Bob can be uncooperative: he can refuse to perform the computation (this is immediately
apparent to Alice), or he can actively interfere with the computation, while pretending to follow
the protocol. It is this latter case that we focus on detecting. The authentication technique enables
Alice to detect an interfering Bob with overwhelming probability (strictly speaking, either Bob’s
interference is corrected and he is not detected, or his interference is detected with overwhelming
probability). Note that this is the best that we can hope for since nothing prevents Bob from
refusing to perform the computation. Bob could also be lucky and guess a path that Alice will
accept. This happens with exponentially small probability, hence our technique is optimal.

In the case that Alice’s computation has a classical output and that she does not require
fault-tolerance, a simple protocol for blind quantum computing with authentication exists: execute
Protocol 1, on a modification of Alice’s target circuit: she adds N randomly placed trap wires that
are randomly in state |0〉 or |1〉 (N is the number of qubits in the computation). If Bob interferes,
either his interference has no effect on the classical output, or he will get caught with probability
at least 1

2 (he gets caught if Alice finds that the output of at least one trap wire is incorrect). The
protocol is repeated s times (the traps are randomly re-positioned each time); if Bob is not caught
cheating, Alice accepts if all outputs are identical; otherwise she rejects. The probability of an
incorrect output being accepted is at most 2−s.

Protocol 4 is more general than this scheme since it works for quantum outputs and is fault-
tolerant. If the above scheme is used for quantum inputs, they must be given to Alice as multiple
copies. Similarly (but more realistically), if Protocol 4 is to be used on quantum inputs, these
must already be given to Alice in an encoded form as in step 2 of Protocol 4 (because Alice has
no quantum computational power). In the case of a quantum output, it will be given to Alice in a
known encoded form, which she can pass on to a third party for verification.

The theory of quantum error correction provides a natural mechanism for detecting unintended
changes to a computation, whereas the theory of fault-tolerant computation provides a way to
process information even using error-prone gates. Unfortunately, error correction, even when com-
bined with fault-tolerant gate constructions is insufficient to detect malicious tampering if the error
correction code is known. As evidenced by the quantum authentication protocol [BCG+02], error
correction encodings can, however, be adapted for this purpose.
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Protocol 3 Universal Blind Quantum Computation with Quantum Outputs

1. Alice’s auxiliary preparation
For each column x = 1, . . . , n− 1
For each row y = 1, . . . ,m

1.1 Alice prepares |ψx,y〉 ∈R {|+θx,y〉 | θx,y = 0, π/4, 2π/4, . . . , 7π/4} and sends the qubits to
Bob.

2. Alice’s output preparation

2.1 Alice prepares the last column of qubits |ψn,y〉 = |+〉 (y = 1, . . . ,m) and sends the qubits
to Bob.

3. Bob’s preparation

3.1 Bob creates an entangled state from all received qubits, according to their indices, by
applying ctrl-Z gates between the qubits in order to create a brickwork state Gn×m.

4. Interaction and measurement
For each column x = 1, . . . , n− 1
For each row y = 1, . . . ,m

4.1 Alice computes φ′x,y where sX
0,y = sZ

0,y = 0 for the first column.

4.2 Alice chooses rx,y ∈R {0, 1} and computes δx,y = φ′x,y + θx,y + πrx,y .

4.3 Alice transmits δx,y to Bob.

4.4 Bob measures in the basis {|+δx,y〉, |−δx,y〉}.
4.5 Bob transmits the result sx,y ∈ {0, 1} to Alice.

4.6 If rx,y = 1 above, Alice flips sx,y; otherwise she does nothing.

5. Output Correction

5.1 Bob sends to Alice all qubits in the last layer.

5.2 Alice performs the final Pauli corrections ZsZ
n,yXsX

n,y .
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Protocol 4 Blind Quantum Computing with Authentication (classical input and output)

1. Alice chooses C, where C is some nC-qubit error-correcting code with distance dC. The
security parameter is dC.

2. In the circuit model, starting from circuit for U , Alice converts target circuit to fault-tolerant
circuit:

2.1 Use error-correcting code C. The encoding appears in the initial layers of the circuit.

2.2 Perform all gates and measurements fault-tolerantly.

2.3 Some computational basis measurements are required for the fault-tolerant implemen-
tation (for verification of ancillae and non-transversal gates). Each measurement is
accomplished by making and measuring a pseudo-copy of the target qubit: a ctrl-X is
performed from the target to an ancilla qubit initially set to |0〉, which is then measured
in the Z-basis.

2.4 Ancilla qubit wires are evenly spaced through the circuit.

2.5 The ancillae are re-used. All ancillae are measured at the same time, at regular intervals,
after each fault-tolerant gate (some outputs may be meaningless).

3. Within each encoded qubit, permute all wires, keeping these permutations secret from Bob.

4. Within each encoded qubit, add 3nT randomly interspersed trap wires, each trap being a
random eigenstate of X, Y or Z (nT of each). For security, we must have nT ∝ nC; for
convenience, we choose nT = nC. The trap qubit wire (at this point) does not interact with
the rest of the circuit. The wire is initially |0〉, and then single-qubit gates are used to create
the trap state. These single-qubit gates appear in the initial layers of the circuit.

5. Trap qubits are verified using the same ancillae as above: they are rotated into the compu-
tational basis, measured using the pseudo-copy technique above, and then returned to their
initial basis.

6. Any fault-tolerant measurement is randomly interspersed with verification of 3nT random
trap wires. For this, identity gates are added as required.

7. For classical output, the trap wires are rotated as a last step, so that the following measure-
ment in the computational basis is used for a final verification.

8. Convert the whole circuit above to a measurement-based computation on the brickwork state,
with the addition of regular Z-basis measurements corresponding to the measurements on
ancillae qubits above. Swap and identity gates are added as required, and trap qubits are left
untouched.

9. Perform the blind quantum computation:

9.1 Execute Protocol 1, to which we add that Alice periodically instructs Bob to measure
in Z-basis as indicated above.

9.2 Alice uses the results of the trap qubit measurements to estimate the error rate; if it is
below the threshold (see discussion in the main text), she accepts, otherwise she rejects.
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UBQC proceeds along the following lines. Alice chooses an nC-qubit error correction code C with
distance dC. (The values of nC and dC are taken as security parameters.) If the original computation
involves N logical qubits, the authenticated version involves N(nC + 3nT ) (with nT = nC), logical
qubits: throughout the computation, each logical qubit is encoded with C, while the remaining
3NnT qubits are used as traps to detect an interfering Bob. The trap qubits are prepared as a first
step of the computation in eigenstates of the Pauli operators X, Y and Z, with an equal number
of qubits in each state.

The protocol also involves fault-tolerant gates, for some of which it is necessary to have Bob
periodically measure qubits [ZCC07]. In order to accomplish this, the blind computation protocol
is extended by allowing Alice to instruct Bob to measure specific qubits within the brickwork state
in the computational basis at regular intervals. These qubits are chosen at regular spacial intervals
so that no information about the structure of the computation is revealed. It should be noted that
in Protocol 4, we allow Alice to reveal to Bob whether or not she accepts the final result.

UBQC can also be used in the scenario of non-malicious faults: because it already uses a fault-
tolerant construction, the measurement of trap qubits in Protocol 4 allows for the estimation
of the error rate (whether caused by the environment or by an adversary); if this error rate is
below a certain threshold (this threshold is chosen below the fault-tolerance threshold to take
into account sampling errors), Alice accepts the computation. As long as this is below the fault-
tolerance threshold, an adversary would still have to guess which qubits are part of the code, and
which are traps, so Theorem 13 also holds in the fault-tolerant version. The only difference is
that the adversary can set off a few traps without being detected, but he must still be able to
correctly guess which qubits are in the encoded qubit and which are traps. Increasing the security
parameters will make up for the fact that Bob can set off a few traps without making the protocol
abort. This yields a linear trade-off between the error rate and the security parameter. Note that
the brickwork state (Figure 3) can be extended to multiple dimensions, which may be useful for
obtaining better fault-tolerance thresholds [Got00]. While the quantum Singleton bound [KL00]
allows error correction codes for which dC ∝ nC, it may be more convenient to use the Toric
Code [Kit97] for which dC ∝ √

nC, as this represents a rather simple encoding while retaining a
high ratio of dC to nC. For the special case of deterministic classical output, a classical repetition
code is sufficient and preferable as such an encoding maximises nC.

Theorem 11 (Fault Tolerance) Protocol 4 is fault-tolerant.

Proof. By construction, the circuit created in step 2.1 is fault-tolerant. Furthermore, the per-
mutation of the circuit wires and insertion of trap qubits (steps 2.2 and 2.3) preserves the fault
tolerance. This is due to the fact that qubits are permuted only within blocks of constant size.
The fault-tolerant circuit given in step 2.1 can be written as a sequence of local gates and ctrl-X
gates between neighbours. Clearly permutation does not affect the fidelity of local operations. As
qubits which are neighbours in the initial fault-tolerant circuit become separated by less than twice
the number of qubits in a single block, the maximum number of nearest-neighbour ctrl-X gates
required to implement ctrl-X from the original circuit is in O(nC + 3nT ) (the size of a block).
(If required, the multi-dimensional analogue of the two-dimensional brickwork state can be used
in order to substantially reduce this distance.) As this upper bound is constant for a given imple-
mentation, a lower bound for the fault-tolerance threshold can be obtained simply be scaling the
threshold such that the error rate for this worst-case ctrl-X is never more than the threshold for
the original circuit. Thus, while the threshold is reduced, it remains non-zero.
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Step 8 converts the fault-tolerant circuit to a measurement pattern; it is known that this
transformation retains the fault-tolerance property [ND05, AL06]. Finally, in step 9, distributing
the fault-tolerant measurement pattern between Alice and Bob does not disturb the fault tolerance
since the communication between them is only classical. 2

Theorem 12 (Blindness) Protocol 4 is blind while leaking at most (n,m).

Proof. Protocol 4 differs from Protocol 1 in the following two ways: Alice instructs Bob to
perform regular Z-basis measurements and she reveals whether or not she accepts or rejects the
computation. It is known that Z measurements change the underlying graph state into a new
graph state [HEB04]. The Z measurements in the protocol are inserted at regular intervals and
their numbers are also independent of the underlying circuit computation. Therefore their action
transforms the generic brickwork state into another generic resource still independent of Alice’s
input and the blindness property is obtained via the same proof of Theorem 9. Finally, from
Alice’s decision to accept or reject, only information relating to the trap qubits is revealed to
Bob, since Alice rejects if and only if the estimated error rate is too high. The trap qubits are
uncorrelated with the underlying computation (in the circuit picture, they do not interact with the
rest of the circuit) and hence they reveal no information about Alice’s input. 2

In the following theorem, for simplicity, we consider the scenario with zero error rate; a proof
for the full fault-tolerant version is similar.

Theorem 13 (Authentication) For the zero-error case of Protocol 4, if Bob interferes with an
authenticated computation, then either he is detected except with exponentially small probability (in
the security parameter), or his actions fail to alter the computation.

Proof. If Bob interferes with the computation, then in order for his actions to affect the outcome of
the computation without being detected, he must perform a non-trivial operation (i.e. an operation
other than the identity) on the subspace in which the logical qubits are encoded. Due to the fault-
tolerant construction of Alice’s computation (Theorem 11), Bob’s operation must have weight at
least dC. Due to discretisation of errors, we can treat Bob’s action as introducing a Pauli error
with some probability p.

If a Pauli error acts non-trivially on a trap qubit then the probability of this going undetected
is 1/3. Pauli operators which remain within the code space must act on at least dC qubits. As Bob
has no knowledge about the roles of qubits (Theorem 12), the probability of him acting on any
qubit is equal. As the probability of acting on a trap is 3nT /(nC +3nT ), for each qubit upon which
he acts non-trivially, the probability of Bob being detected is 2nT /(nC +3nT ). Thus the probability
of an M -qubit Pauli operator going undetected is below (1− 2nT /(nC + 3nT ))M . Since nT = nC,
the minimum probability of Bob affecting the computation and going undetected is ε = 2−dC . 2

M Entangled Servers

As stated before, one can view UBQC as an interactive proof system where Alice acts as the verifier
and Bob as the prover. An important open problem is to find an interactive proof for any problem in
BQP with a BQP prover, but with a purely classical verifier. Protocol 4 makes progress towards
finding a solution by providing an interactive proof for any language in BQP, with a quantum
prover and a BPP verifier that also has the power to generate random qubits chosen from a fixed
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set and send them to the prover. This perspective was first proposed by Aharonov, Ben-Or and
Eban [ABE08], however their scheme demands a more powerful verifier.

Protocol 5 is a solution to another closely related problem, namely the case of a purely
classical verifier interacting with two non-communicating entangled provers. The idea is to adapt
Protocol 1 so that one prover (that we now call a server) is used to prepare the random qubits
that would have been generated by Alice in the original protocol, while the other server is used
for universal blind quantum computation. Using the authenticated protocol (Protocol 4) between
Alice and the second server, Alice will detect any cheating servers as clearly, any cheating by Server
1 is equivalent to a deviation from the protocol by Server 2, which is detected in step 2 of the
protocol, (the proof is directly obtained from Theorem 13). On the other hand, since Server 2
has access to only half of each entangled state, from his point of view, his sub-system remains in
a completely mixed state independently of Server 1’s actions and the blindness of the protocol is
obtained directly from Theorem 12.

Protocol 5 Universal Blind Quantum Computation with Entangled Servers
Initially, Servers 1 and 2 share |Φ+

x,y〉 = 1√
2
(|00〉+ |11〉) (x = 1, . . . , n, y = 1, . . . ,m).

1. Alice’s preparation with Server 1
For each column x = 1, . . . , n
For each row y = 1, . . . ,m

1.1 Alice chooses
θ̃x,y ∈R {0, π/4, 2π/4, . . . , 7π/4}

and sends it to Server 1, who measures his part of |Φ+
x,y〉 in |±θ̃x,y

〉.
1.2 Server 1 sends mx,y, the outcome of his measurement, to Alice.

2. Alice’s computation with Server 2

2.1 Alice runs the authenticated blind quantum computing protocol (Protocol 4) with
Server 2, taking θx,y = θ̃x,y +mx,yπ.
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