

Edinburgh Research Explorer

Conditional Dependencies: A Principled Approach to Improving
Data Quality

Citation for published version:
Fan, W, Geerts, F & Jia, X 2009, Conditional Dependencies: A Principled Approach to Improving Data
Quality. in Dataspace: The Final Frontier: 26th British National Conference on Databases, BNCOD 26,
Birmingham, UK, July 7-9, 2009. Proceedings. vol. 5588, Springer Berlin Heidelberg, pp. 8-20. DOI:
10.1007/978-3-642-02843-4_4

Digital Object Identifier (DOI):
10.1007/978-3-642-02843-4_4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Dataspace: The Final Frontier

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979157?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-02843-4_4
https://www.research.ed.ac.uk/portal/en/publications/conditional-dependencies-a-principled-approach-to-improving-data-quality(c332f74d-51dd-4ac8-9f3f-e75a5c8a0632).html

Conditional Dependencies: A Principled
Approach to Improving Data Quality

Wenfei Fan1 and Floris Geerts2 and Xibei Jia2,!

1 University of Edinburgh and Bell Laboratories
2 University of Edinburgh

Abstract. Real-life date is often dirty and costs billions of pounds to
businesses worldwide each year. This paper presents a promising ap-
proach to improving data quality. It effectively detects and fixes inconsis-
tencies in real-life data based on conditional dependencies, an extension
of database dependencies by enforcing bindings of semantically related
data values. It accurately identifies records from unreliable data sources
by leveraging relative candidate keys, an extension of keys for relations
by supporting similarity and matching operators across relations. In con-
trast to traditional dependencies that were developed for improving the
quality of schema, the revised constraints are proposed to improve the
quality of data. These constraints yield practical techniques for data re-
pairing and record matching in a uniform framework.

1 Introduction

Real-world data is often dirty: inconsistent, inaccurate, incomplete and/or stale.
Dirty data may have disastrous consequences for everyone. Indeed, the following
are real-life examples in the US, taken from [23]: (a) 800 houses in Montgomery
County, Maryland, were put on auction block in 2005 due to mistakes in the
tax payment data of Washington Mutual Mortgage. (b) Errors in a database of
a bank led thousands of completed tax forms to be sent to wrong addresses in
2005, effectively helping identity thieves get hold of the names and bank account
numbers of various people (c) The Internal Revenue Service (irs) accused people
for overdue tax caused by errors in the irs database. There is no reason to believe
that the scale of the problem is any different in the UK, or in any society that
is dependent on information technology.

The costs and risks of dirty data are being increasingly recognized by all indus-
tries worldwide. Recent statistics reveal that enterprises typically find data error
rates of approximately 1%–5%, and for some companies it is above 30% [28]. It is
reported that dirty data costs us businesses 600 billion dollars annually [10], and
that erroneously priced data in retail databases alone costs us consumers $2.5
billion each year [12]. It is also estimated that data cleaning accounts for 30%-
80% of the development time and budget in most data warehouse projects [29].
! Fan and Geerts are spported in part by EPSRC EP/E029213/1. Fan is also supported

in part by a Yangtze River Scholar Award. Jia is supported by an RSE Fellowship.

While the prevalent use of the Web has made it possible to extract and integrate
data from diverse sources, it has also increased the risks, on an unprecedented
scale, of creating and propagating dirty data.

There has been increasing demand for data quality tools, to add accuracy
and value to business processes. A variety of approaches have been put forward:
probabilistic, empirical, rule-based, and logic-based methods. There have been
a number of commercial tools for improving data quality, most notably ETL
tools (extraction, transformation, loading), as well as research prototype systems,
e.g., Ajax, Potter’s Wheel, Artkos and Telcordia (see [2,23] for a survey). Most
data quality tools, however, are developed for a specific domain (e.g., address
data, customer records). Worse still, these tools often heavily rely on manual
effort and low-level programs that are difficult to write and maintain [27].

To this end, integrity constraints yield a principled approach to improving
data quality. Integrity constraints, a.k.a. data dependencies, are almost as old as
relational databases themselves. Since Codd introduced functional dependencies
in 1972, a variety of constraint formalisms have been proposed and widely used to
improve the quality of schema, via normalization (see [13] for a survey). Recently,
constraints have enjoyed a revival, for improving the quality of data.

Constraint-based methods specify data quality rules in terms of integrity con-
straints such that errors and inconsistencies in a database emerge as violations
of the constraints. Compared to other approaches, constraint-based methods en-
joy several salient advantages such as being declarative in nature and providing
the ability to conduct inference and reasoning. Above all, constraints specify a
fundamental part of the semantics of the data, and are capable of capturing
semantic errors in the data. These methods have shown promise as a system-
atic method for reasoning about the semantics of the data, and for deducing and
discovering data quality rules, among other things (see [7,14] for recent surveys).

This paper presents recent advances in constraint-based data cleaning. We fo-
cus on two problems central to data quality: (a) data repairing, to detect and fix
inconsistencies in a database [1], and (b) record matching [11], to identify tuples
that refer to the same real-world entities. These are undoubted top priority for
every data quality tool. As an example [23], a company that operates drug stores
successfully prevents at least one lawsuit per year that may result in at least a mil-
lion dollars award, by investing on a tool that ensures the consistency between the
medication histories of its customers and the data about prescription drugs. As
another example, a recent effort to match records on licensed airplane pilots with
records on individuals receiving disability benefits from the US Social Security Ad-
ministration revealed forty pilots whose records turned up on both databases [23].
Constraints have proved useful in both data repairing and record matching.

For constraints to be effective for capturing errors and matching records in
real-life data, however, it is necessary to revise or extend traditional database
dependencies. Most work on constraint-based methods is based on traditional
constraints such as functional dependencies and inclusion dependencies. These
constraints were developed for schema design, rather than for data cleaning.
They are not capable of detecting errors commonly found in real-life data.

In light of this, we introduce two extensions of traditional constraints, namely,
conditional dependencies for capturing consistencies in real-life data (Section 2),
and relative candidate keys for record matching (Section 3).

While constraint-based functionality is not yet available in commercial tools,
practical methods have been developed for data cleaning, by using the revised
constraints as data quality rules. We present a prototype data-quality system,
based on conditional dependencies and relative candidate keys (Section 4).

The area of constraint-based data cleaning is a rich source of questions and
vitality. We conclude the paper by addressing open research issues (Section 5).

2 Adding Conditions to Constraints

One of the central technical questions associated with data quality is how to
characterize the consistency of data, i.e., how to tell whether the data is clean
or dirty. Traditional dependencies, such as functional dependencies (fds) and
inclusion dependencies (inds), are required to hold on entire relation(s), and
often fail to capture errors and inconsistencies commonly found in real-life data.

We circumvent these limitations by extending fds and inds through enforcing
patterns of semantically related values; these patterns impose conditions on what
part of the data the dependencies are to hold and which combinations of values
should occur together. We refer to these extensions as conditional functional de-
pendencies (cfds) and conditional inclusion dependencies (cinds), respectively.

2.1 Conditional Functional Dependencies

Consider the following relational schema for customer data:

customer (CC, AC, phn, name, street, city, zip)

where each tuple specifies a customer’s phone number (country code CC, area
code AC, phone phn), name and address (street, city, zip code). An instance D0

of the customer schema is shown in Fig. 1.
Functional dependencies (fds) on customer relations include:

f1: [CC, AC, phn] → [street, city, zip], f2: [CC, AC] → [city].

That is, a customer’s phone uniquely determines her address (f1), and the coun-
try code and area code determine the city (f2). The instance D0 of Fig. 1 satisfies
f1 and f2. In other words, if we use f1 and f2 to specify the consistency of cus-
tomer data, i.e., to characterize errors as violations of these dependencies, then
no errors or inconsistencies are found in D0, and D0 is regarded clean.

A closer examination of D0, however, reveals that none of its tuples is error-
free. Indeed, the inconsistencies become obvious when the following constraints
are considered, which intend to capture the semantics of customer data:

cfd1: ([CC = 44, zip] → [street])
cfd2: ([CC = 44, AC = 131, phn] → [street, city = ‘edi’, zip])
cfd3: ([CC = 01, AC = 908, phn] → [street, city = ‘mh’, zip])

CC AC phn name street city zip
t1: 44 131 1234567 Mike Mayfield NYC EH4 8LE
t2: 44 131 3456789 Rick Crichton NYC EH4 8LE
t3: 01 908 3456789 Joe Mtn Ave NYC 07974

Fig. 1. An instance of customer relation

Here cfd1 asserts that for customers in the uk (CC = 44), zip code uniquely
determines street. In other words, cfd1 is an “fd” that is to hold on the subset
of tuples that satisfies the pattern “CC = 44”, e.g., {t1, t2} in D0. It is not a
traditional fd since it is defined with constants, and it is not required to hold
on the entire customer relation D0 (in the us, for example, zip code does not
determine street). The last two constraints refine the fd f1 given earlier: cfd2

states that for any two uk customer tuples, if they have area code 131 and have
the same phn, then they must have the same street and zip, and moreover, the
city must be edi; similarly for cfd3.

Observe that tuples t1 and t2 in D0 violate cfd1: they refer to customers in the
uk and have identical zip, but they differ in street. Further, while D0 satisfies
f1, each of t1 and t2 in D0 violates cfd2: CC = 44 and AC = 131, but city "= edi.
Similarly, t3 violates cfd3.

These constraints extend fds by incorporating conditions, and are referred
to as conditional functional dependencies (cfds). cfds are introduced in [16] to
capture inconsistencies in a single relation. As shown by the example above, cfds
are capable of detecting errors and inconsistencies commonly found in real-life
data sources that their traditional counterparts are not able to catch.

2.2 Conditional Inclusion Dependencies

We next incorporate conditions into inclusion dependencies (inds). Consider the
following two schemas, referred to as source and target:

Source: order (asin, title, type, price)
Target: book (isbn, title, price, format) CD (id, album, price, genre)

The source database contains a single relation order, specifying various types
such as books, CDs, DVDs, ordered by customers. The target database has two
relations, book and CD, specifying customer orders of books and CDs, respec-
tively. Example source and target instances D1 are shown in Fig. 2.

To detect errors across these databases, one might be tempted to use inds:

order (title, price) ⊆ book (title, price), order (title, price) ⊆ CD (album, price).

One cannot expect, however, to find for each book item in the order table a
corresponding cd item in the CD table; this might only hold provided that the
book is an audio book. That is, there are certain inclusion dependencies from the
source to the target, but only under certain conditions. The following conditional
inclusion dependencies (cinds) correctly reflect the situation:

cind1: (order (title, price, type =‘book’) ⊆ book (title, price)),
cind2: (order (title, price, type =‘cd’) ⊆ CD (album, price)),
cind3: (CD (album, price, genre =‘a-book’) ⊆ book (title, price, format =‘audio’)).

Here cind1 states that for each order tuple t, if its type is ‘book’, then there must
exist a book tuple t′ such that t and t′ agree on their title and price attributes;
similarly for cind2. Constraint cind3 asserts that for each CD tuple t, if its genre
is ‘a-book’ (audio book), then there must be a book tuple t′ such that the title
and price of t′ are identical to the album and price of t, and moreover, the format
of t′ must be ‘audio’.

asin title type price
t4: a23 Snow White CD 7.99
t5: a12 Harry Potter book 17.99

(a) Example order data

isbn title price format
t6: b32 Harry Potter 17.99 hard-cover
t7: b65 Snow White 7.99 paper-cover

(b) Example book data

id album price genre
t8: c12 J. Denver 7.94 country
t9: c58 Snow White 7.99 a-book

(c) Example CD data

Fig. 2. Example order, book and CD data

While D1 of Fig 2 satisfies cind1 and cind2, it violates cind3. Indeed, tuple t9
in the CD table has an ‘a-book’ genre, but it cannot find a match in the book
table with ‘audio’ format. Note that the book tuple t7 is not a match for t9:
although t9 and t7 agree on their album (title) and price attributes, the format of
t7 is ‘paper-cover’ rather than ‘audio’ as required by cind3.

Along the same lines as cfds, conditional inclusion dependencies (cinds)
are introduced [5], by extending inds with conditions. Like cfds, cinds are
required to hold only on a subset of tuples satisfying certain patterns. They
are specified with constants, and cannot be expressed as standard inds. cinds
are capable of capturing errors across different relations that traditional inds

cannot detect.

2.3 Extensions of Conditional Dependencies

cfds and cinds can be naturally extended by supporting disjunction and in-
equality. Consider, for example, customers in New York State, in which most
cities (CT) have a unique area code, except nyc and li (Long Island). Further,
nyc area codes consist of 212, 718, 646, 347 and 917. One can express these as:

ecfd1: CT "∈ {nyc, li} → AC
ecfd2: CT ∈ {nyc} → AC ∈ {212, 718, 646, 347, 917}

where ecfd1 asserts that the fd CT → AC holds if CT is not in the set {nyc, li};
and ecfd2 is defined with disjunction: it states that when CT is nyc, AC must
be one of 212, 718, 646, 347, or 917.

An extension of cfds by supporting disjunction and inequality has been de-
fined in [4], referred to as ecfds. This extension is strictly more expressive than
cfds. Better still, as will be seen shortly, the increased expressive power does
not make our lives harder when it comes to reasoning about these dependencies.

2.4 Reasoning about Conditional Dependencies

To use cfds and cinds to detect and repair errors and inconsistencies, a number
of fundamental questions associated with these conditional dependencies have to
be settled. Below we address three most important technical problems, namely,
the consistency, implication and axiomatizability of these constraints.

Consistency. Given a set Σ of cfds (resp. cinds), can one tell whether the
constraints in Σ are dirty themselves? If the input set Σ is found inconsistent,
then there is no need to check the data quality rules against the data at all.
Further, the analysis helps the user discover errors in the rules.

This can be stated as the consistency problem for conditional dependencies.
For a set Σ of cfds (cinds) and a database D, we write D |= Σ if D |= ϕ for all
ϕ ∈ Σ. The consistency problem is to determine, given Σ defined on a relational
schema R, whether there exists a nonempty instance D of R such that D |= Σ.

One can specify arbitrary fds and inds without worrying about consistency.
This is no longer the case for cfds.

Example 1. Consider a set Σ0 of cfds of the form ([A = x → [B] = x̄), where
the domain of A is bool, x ranges over true and false, and x̄ indicates the negation
of x. Then there exists no nonempty instance D such that D |= Σ0. Indeed, for
any tuple t in D, no matter what t[A] takes, cfds in Σ0 force t[A] to take the
other value from the finite domain bool. !

Table 1 compares the complexity bounds for the static analyses of cfds, ecfds

and cinds with their traditional counterparts. It turns out that while for cinds
the consistency problem is not an issue, for cfds it is nontrivial. Worse, when
cfds and cinds are put together, the problem becomes undecidable, as opposed
to their trivial traditional counterpart. That is, the expressive power of cfds
and cinds comes at a price of higher complexity for reasoning about them.

Implication. Another central technical problem is the implication problem:
given a set Σ of cfds (resp. cinds) and a single cfd (resp. cind) ϕ defined
on a relational schema R, it is to determine whether or not Σ entails ϕ, denoted
by Σ |= ϕ, i.e., whether for all instances D of R, if D |= Σ then D |= ϕ. Effec-
tive implication analysis allows us to deduce new cleaning rules and to remove
redundancies from a given set of rules, among other things.

As shown in Table 1, the implication problem also becomes more intriguing
for cfds and cinds than their counterparts for fds and inds.

In certain practical cases the consistency and implication analyses for cfds
and cinds have complexity comparable to their traditional counterparts. As
an example, for data cleaning in practice, the relational schema is often fixed,
and only dependencies vary and are treated as the input. In this setting, the

Table 1. Complexity and finite axiomatizability

Dependencies Consistency Implication Fin. Axiom
cfds np-complete conp-complete Yes
ecfds np-complete conp-complete Yes
fds O(1) O(n) Yes

cinds O(1) exptime-complete Yes
inds O(1) pspace-complete Yes

cfds + cinds undecidable undecidable No
fds + inds O(1) undecidable No

in the absence of finite-domain attributes
cfds O(n2) O(n2) Yes
cinds O(1) pspace-complete Yes
ecfds np-complete conp-complete Yes

cfds + cinds undecidable undecidable No

consistency and implication problems for cfds (resp. cinds) have complexity
similar to (resp. the same as) their traditional counterparts; similarly when no
constraints are defined with attributes with a finite domain (e.g., bool).

Axiomatizability. Armstrong’s Axioms for fds can be found in almost every
database textbook, and are essential to the implication analysis of fds. A finite
set of inference rules for inds is also in place. For conditional dependencies the
finite axiomatizability is also important, as it reveals insight of the implication
analysis and helps us understand how data quality rules interact with each other.

This motivates us to find a finite set I of inference rules that are sound and
complete for implication analysis, i.e., for any set Σ of cfds (resp. cind) and a
single cfd (resp. cind) ϕ, Σ |= ϕ iff ϕ is provable from Σ using I.

The good news is that when cfds and cinds are taken separately, they are
finitely axiomatizable [16,5]. However, just like their traditional counterparts,
when cfds and cinds are taken together, they are not finitely axiomatizable.

3 Extending Constraints with Similarity

Another central technical problem for data quality is record matching, a.k.a.
record linkage, merge-purge, data deduplication and object identification. It is
to identify tuples from (unreliable) relations that refer to the same real-world
object. This is essential to data cleaning, data integration and credit-card fraud
detection, among other things. Indeed, it is often necessary to correlate infor-
mation about an object from multiple data sources, while the data sources may
not be error free or may have different representations for the same object.

A key issue for record matching concerns how to determine matching
keys [2,11], i.e., what attributes should be selected and how they should be
compared in order to identify tuples. While there has been a host of work on the
topic, record matching tools often require substantial manual effort from human
experts, or rely on probabilistic or learning heuristics (see [2,23,11] for surveys).

Constraints can help in automatically deriving matching keys from matching
rules, and thus improve match quality and increase the degree of automation.
To illustrate this, consider two data sources, specified by the following schemas:

card (c#, ssn, fn, ln, addr, tel, email, type),
billing (c#, fn, sn, post, phn, email, item, price).

Here a card tuple specifies a credit card (number c# and type) issued to a card
holder identified by ssn, fn (first name), ln (last name), addr (address), tel
(phone) and email. A billing tuple indicates that the price of a purchased item is
paid by a credit card of number c#, issued to a holder that is specified in terms
of forename fn, surname sn, postal address post, phone phn and email.

Given an instance (Dc, Db) of (card,billing), for fraud detection, one has to
ensure that for any tuple t ∈ Dc and t′ ∈ Db, if t[c#] = t′[c#], then t[Yc] and
t′[Yb] refer to the same holder, where Yc = [fn, ln, addr, tel, email], and Yb =
[fn, sn, post, phn, email]. Due to errors in the data sources, however, one may
not be able to match t[Yc] and t′[Yb] via pairwise comparison of their attributes.
Further, it is not feasible to manually select what attributes to compare. Indeed,
to match tuples of arity n, there are 2n possible comparison configurations.

One can leverage constraints and their reasoning techniques to derive “best”
matching keys. Below are constraints expressing matching keys, which are an
extension of relational keys and are referred to relative candidate keys (rcks):

rck1: card[ln] = billing[sn] ∧ card[addr] = billing[post] ∧ card[fn] ≈ billing[fn]
→ card[Yc] " billing[Yb]

rck2: card[email] = billing[email] ∧ card[addr] = billing[post] → card[Yc] " billing[Yb]
rck3: card[ln] = billing[sn] ∧ card[tel] = billing[phn] ∧ card[fn] ≈ billing[fn]

→ card[Yc] " billing[Yb]

Here rck1 asserts that if t[ln, addr] and t′[sn, post] are identical and if t[fn] and
t′[fn] are similar w.r.t. a similarity operator ≈, then t[Yc] and t′[Yb] match,
i.e., they refer to the same person; similarly for rck2 and rck3. Hence instead of
comparing the entire Yc and Yb lists of t and t′, one can inspect the attributes
in rck1–rck3. If t and t′ match on any of rck1–rck3, then t[Yc] and t′[Yb] match.

Better still, one can automatically derive rcks from given matching rules.
For example, suppose that rck1 and the following matching rules are known,
developed either by human experts or via learning from data samples: (a) if
t[tel] and t′[phn] match, then t[addr] and t′[post] should refer to the same address
(even if t[addr] and t′[post] might be radically different); and (b) if t[email] and
t′[email] match, then t[fn, ln] and t′[fn, sn] match. Then rck2 and rck3 can be
derived from these rules via automated reasoning.

The derived rcks, when used as matching keys, can improve match quality:
when t and t′ differ in some pairs of attributes, e.g., ([addr], [post]), they can still
be matched via other, more reliable attributes, e.g., ([ln,tel,fn], [sn,phn,fn]). In
other words, true matches may be identified by derived rcks, even when they
cannot be found by the given matching rules from which the rcks are derived.

In contrast to traditional constraints, rcks are defined in terms of both equal-
ity and similarity; further, they are defined across multiple relations, rather than

on a single relation. Moreover, to cope with unreliable data, rcks adopt a dy-
namic semantics very different from its traditional counterpart.

Several results have been established for rcks [14]. (1) A finite inference
system has been proposed for deriving new rcks from matching rules. (2) A
quadratic-time algorithm has been developed for deriving rcks. (3) There are
effective algorithms for matching records based on rcks.

rcks have also proved effective in improving the performance of record match-
ing processes. It is often prohibitively expensive to compare every pair of tuples
even for moderately sized relations [11]. To handle large data sources one of-
ten needs to adopt (a) blocking: partitioning the relations into blocks based on
certain keys such that only tuples in the same block are compared, or (b) win-
dowing: first sorting tuples using a key, and then comparing the tuples using a
sliding window of a fixed size, such that only tuples within the same window are
compared (see, e.g., [11]). The match quality is highly dependent on the choice
of keys. It has been experimentally verified that blocking and windowing can be
effectively conducted by grouping similar tuples by (part of) rcks.

4 Improving Data Quality with Dependencies

While constraints should logically become an essential part of data quality tools,
we are not aware of any commercial tools with this facility. Nevertheless, we
have developed a prototype system, referred to as Semandaq, for improving the
quality of relational data [17]. Based on conditional dependencies and relative
candidate keys, the system has proved effective in repairing inconsistent data and
matching non-error-free records when processing real-life data from two large us
companies. Below we present some functionalities supported by Semandaq.

Discovering data quality rules. To use dependencies as data quality rules, it
is necessary to have techniques in place that can automatically discover depen-
dencies from sample data. Indeed, it is often unrealistic to rely solely on human
experts to design data quality rules via an expensive and long manual process.

This suggests that we settle the profiling problem. Given a database instance
D, it is to find a minimal cover of all dependencies (e.g., cfds, cinds) that hold
on D, i.e., a non-redundant set of dependencies that is logically equivalent to the
set of all dependencies that hold on D. That is, we want to learn informative and
interesting data quality rules from data, and prune away trivial and insignificant
rules based on a threshold specified by users.

Several algorithms have been developed for discovering cfds [6,18,22]. Se-
mandaq has implemented the discovery algorithms of [18].

Reasoning about data quality rules. A given set S of dependencies, either
automatically discovered or manually designed by domain experts, may be dirty
itself. In light of this we have to identify consistent dependencies from S, to be
used as data quality rules. This problem is, however, nontrivial. As remarked
in Section 2.4, it is already intractable to determine whether a given set S is
consistent when S consists of cfds only. It is also intractable to find a maximum
subset of consistent rules from S.

Nevertheless, we have developed an approximation algorithm for finding a
set S′ of consistent rules from a set S of possibly inconsistent cfds [16], while
guaranteeing that S′ is within a constant bound of the maximum consistent
subset of S. Semandaq supports this reasoning functionality.

Detecting errors. After a consistent set of data quality rules is identified, the
next question concerns how to effectively catch errors in a database by using the
rules. Given a set Σ of data quality rules and a database D, we want to detect
inconsistencies in D, i.e., to find all tuples in D that violate some rule in Σ.

We have shown that given a set Σ of cfds and cinds, a fixed number of SQL

queries can be automatically generated such that, when being evaluated against
a database D, the queries return all and only those tuples in D that violate
Σ [4,16]. That is, we can effectively detect inconsistencies by leveraging existing
facility of commercial relational database systems. This is another feature of
Semandaq.

Repairing errors. After the errors are detected, we want to automatically edit
the data, fix the errors and make the data consistent. This is known as data
repairing as formalized in [1]. Given a set Σ of dependencies and an instance D
of a database schema R, it is to find a candidate repair of D, i.e., an instance
D′ of R such that D′ satisfies Σ and D′ minimally differs from the original
database D [1]. This is the method that us national statistical agencies, among
others, have been practicing for decades for cleaning census data [20,23].

Several repair models have been studied to assess the accuracy of re-
pairs [1,3,8,30] (see [7] for a survey). It is shown, however, that the repairing
problem is already intractable when traditional fds or inds are considered [3].
Nevertheless, repairing algorithms have been developed for fds and inds [3] and
for cfds [9].

Semandaq supports these methods. It automatically generates candidate re-
pairs and presents them to users for inspection, who may suggest changes to
the repairs and the data quality rules. Based on users input, Semandaq further
improves the repairs until the users are satisfied with the quality of the repaired
data. This interactive nature guarantees the accuracy of the repairs found.

Record matching. Semandaq supports rck-based methods outlined in
Section 3, including (a) specification of matching rules, (b) automatic derivation
of top k quality rcks from a set of matching rules, for any given k, (c) record
matching based on rcks, and (d) blocking and windowing via rcks. Compared
to record matching facilities found in commercial tools, Semandaq leverages
rcks to explore the semantics of the data and is able to find more accurate
matches, while significantly reducing manual effort from domain experts.

5 Open Problems and Emerging Applications

The study of constraint-based data cleaning has raised as many questions as it
has answered. While it yields a promising approach to improving data quality
and will lead to practical data-quality tools, a number of open questions need
to be settled. Below we address some of the open research issues.

The interaction between data repairing and record matching. Most commercial
tools either support only one of these, or separate the two processes. However,
these processes interact with each other and often need to be combined. The need
is particularly evident in master data management (mdm), one of the fastest
growing software markets [24]. In mdm for an enterprise, there is typically a
collection of data that has already been cleaned, referred to as master data or
reference data. To repair databases by capitalizing on available master data it is
necessary to conduct record matching and data repairing at the same time.

To this end conditional dependencies and relative candidate keys allow us
to conduct data repairing and record matching in a uniform constraint-based
framework. This calls for the study of reasoning about conditional dependencies
and relative candidate keys taken together, among other things.

Incomplete information. Incomplete information introduces serious problems to
enterprises: it routinely leads to misleading analytical results and biased deci-
sions, and accounts for loss of revenues, credibility and customers. Previous work
either assumes a database to be closed (the Closed World Assumption, CWA,
i.e., all the tuples representing real-world entities are assumed already in place,
but some data elements of the tuples may be missing), or open (the Open World
Assumption, OWA, i.e., a database may only be a proper subset of the set of
tuples that represent real-world entities; see, e.g., [25,26]). In practice, however,
a database is often neither entirely closed nor entirely open. In mdm environ-
ment, for instance, master data is a closed database. Meanwhile a number of
other databases may be in use, which may have missing tuples or missing data
elements, but certain parts of the databases are constrained by the master data
and are closed. To capture this we have proposed a notion of relative information
completeness [15]. Nevertheless practical algorithms are yet to be developed to
quantitatively assess the completeness of information w.r.t. user queries.

Repairing distributed data. In practice a relation is often fragmented, vertically
or horizontally, and is distributed across different sites. In this setting, even
inconsistency detection becomes nontrivial: it necessarily requires certain data
to be shipped from one site to another. In other words, SQL-based techniques for
detecting cfd violations no longer work. It is necessary to develop error detection
and repairing methods for distributed data, to minimize data shipment. Another
important yet challenging issue concerns the quality of data that is integrated
from distributed, unreliable sources. While there has been work on automatically
propagating data quality rules (cfds) from data sources to integrated data [19],
much more needs to be done to effectively detect errors during data integration
and to propagate corrections from the integrated data to sources.

The quality of Web data. Data quality issues are on an even larger scale for data
on the Web, e.g., XML and semistructured data. Already hard for relational data,
error detection and repairing are far more challenging for data on the Web. In
the context of XML, for example, the constraints involved and their interaction
with XML Schema are far more intriguing than their relational counterparts,

even for static analysis, let alone for data repairing. In this setting data quality
remains, by and large, unexplored (see, e.g., [21]). Another open issue concerns
object identification, i.e., to identify complex objects that refer to the same real-
world entity, when the objects do not have a regular structure. This is critical
not only to data quality, but also to Web page clustering, schema matching, pat-
tern recognition, plagiarism detection and spam detection, among other things.
Efficient techniques for identifying complex objects deserve a full exploration.

References

1. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: PODS (1999)

2. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Tech-
niques. Springer, Heidelberg (2006)

3. Bohannon, P., Fan, W., Flaster, M., Rastogi, R.: A cost-based model and effective
heuristic for repairing constraints by value modification. In: SIGMOD (2005)

4. Bravo, L., Fan, W., Geerts, F., Ma, S.: Increasing the expressivity of conditional
functional dependencies without extra complexity. In: ICDE (2008)

5. Bravo, L., Fan, W., Ma, S.: Extending dependencies with conditions. In: VLDB
(2007)

6. Chiang, F., Miller, R.: Discovering data quality rules. In: VLDB (2008)
7. Chomicki, J.: Consistent query answering: Five easy pieces. In: Schwentick, T.,

Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1–17. Springer, Heidelberg (2006)
8. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple

deletions. Inf. Comput. 197(1-2), 90–121 (2005)
9. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency

and accuracy. In: VLDB (2007)
10. Eckerson, W.: Data quality and the bottom line: Achieving business success

through a commitment to high quality data. The Data Warehousing Institute
(2002)

11. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. TKDE 19(1), 1–16 (2007)

12. English, L.: Plain English on data quality: Information quality management: The
next frontier. DM Review Magazine (April 2000)

13. Fagin, R., Vardi, M.Y.: The theory of data dependencies - An overview. In: ICALP
(1984)

14. Fan, W.: Dependencies revisited for improving data quality. In: PODS (2008)
15. Fan, W., Geerts, F.: Relative information completeness. In: PODS (2009)
16. Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional depen-

dencies for capturing data inconsistencies. TODS 33(2) (June 2008)
17. Fan, W., Geerts, F., Jia, X.: SEMANDAQ: A data quality system. based on con-

ditional functional dependencies. In: VLDB, demo (2008)
18. Fan, W., Geerts, F., Lakshmanan, L., Xiong, M.: Discovering conditional functional

dependencies. In: ICDE (2009)
19. Fan, W., Ma, S., Hu, Y., Liu, J., Wu, Y.: Propagating functional dependencies

with conditions. In: VLDB (2008)
20. Fellegi, I., Holt, D.: A systematic approach to automatic edit and imputation.

J. American Statistical Association 71(353), 17–35 (1976)

21. Flesca, S., Furfaro, F., Greco, S., Zumpano, E.: Querying and repairing inconsistent
XML data. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng,
Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 175–188. Springer, Heidelberg (2005)

22. Golab, L., Karloff, H., Korn, F., Srivastava, D., Yu, B.: On generating near-optimal
tableaux for conditional functional dependencies. In: VLDB (2008)

23. Herzog, T.N., Scheuren, F.J., Winkler, W.E.: Data Quality and Record Linkage
Techniques. Springer, Heidelberg (2007)

24. Loshin, D.: Master Data Management, Knowledge Integrity Inc. (2009)
25. Imieliński, T., Lipski Jr., W.: Incomplete information in relational databases.

J. ACM 31(4), 761–791 (1984)
26. van der Meyden, R.: Logical approaches to incomplete information: A survey. In:

Chomicki, J., Saake, G. (eds.) Logics for Databases and Information Systems, pp.
307–356 (1998)

27. Rahm, E., Do, H.H.: Data cleaning: Problems and current approaches. IEEE Data
Eng. Bull. 23(4), 3–13 (2000)

28. Redman, T.: The impact of poor data quality on the typical enterprise. Commun.
ACM 41(2), 79–82 (1998)

29. Shilakes, C., Tylman, J.: Enterprise information portals. Merrill Lynch (1998)
30. Wijsen, J.: Database repairing using updates. TODS 30(3), 722–768 (2005)

	Conditional Dependencies: A Principled Approach to Improving Data Quality
	Introduction
	Adding Conditions to Constraints
	Conditional Functional Dependencies
	Conditional Inclusion Dependencies
	Extensions of Conditional Dependencies
	Reasoning about Conditional Dependencies

	Extending Constraints with Similarity
	Improving Data Quality with Dependencies
	Open Problems and Emerging Applications

