-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Incorporating cardinality constraints and synonym rules into
conditional functional dependencies

Citation for published version:

Chen, W, Fan, W & Ma, S 2009, 'Incorporating cardinality constraints and synonym rules into conditional
functional dependencies' Information Processing Letters, vol. 109, no. 14, pp. 783-789. DOI:
10.1016/).ipl.2009.03.021

Digital Object Identifier (DOI):
10.1016/}.ipl.2009.03.021

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Information Processing Letters

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/28979154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.ipl.2009.03.021
https://www.research.ed.ac.uk/portal/en/publications/incorporating-cardinality-constraints-and-synonym-rules-into-conditional-functional-dependencies(d6304042-2a69-4143-8185-58ccc86c3551).html

Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 108, Number 14, 30 June 20058 155N (020-0190

Information
Processing Letters

Devoted to the rapid publication of short contributions
1o information processing

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Information Processing Letters 109 (2009) 783-789

www.elsevier.com/locate/ipl

Contents lists available at ScienceDirect

Information Processing Letters

i
Information
Processing Letters

Incorporating cardinality constraints and synonym rules into conditional

functional dependencies

Wenguang Chen?, Wenfei Fan®%*, Shuai MaP

@ Peking University, China
b University of Edinburgh, UK
€ Bell Laboratories, USA

ARTICLE INFO ABSTRACT

Article history:

Received 20 December 2008

Received in revised form 22 March 2009
Accepted 23 March 2009

Available online 26 March 2009
Communicated by J. Chomicki

We propose an extension of conditional functional dependencies (CFDs), denoted by
CFDSs, to express cardinality constraints, domain-specific conventions, and patterns of
semantically related constants in a uniform constraint formalism. We show that despite the
increased expressive power, the satisfiability and implication problems for CFD‘s remain
NP-complete and coNP-complete, respectively, the same as their counterparts for CFDs. We

also identify tractable special cases.

Keywords:

Computational complexity
Databases

Specification languages

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Conditional functional dependencies (CFDs) have re-
cently been studied for detecting inconsistencies in rela-
tional data [14]. These dependencies are an extension of
functional dependencies (FDs) by enforcing patterns of se-
mantically related data values. In contrast to traditional
FDs that were developed for improving the quality of
schema, CFDs aim to improve the quality of the data. That
is, CFDs are to be used as data-quality rules such that er-
rors and inconsistencies in the data can be detected as
violations of these dependencies.

While CFDs are capable of capturing more errors than
traditional FDs, they are not powerful enough to detect cer-
tain inconsistencies commonly found in real-life data. To
illustrate this, let us consider an example.

Example 1.1. Consider a relation schema:

sale(FN: string, LN: string, street: string,

* Corresponding author.
E-mail address: wenfei@inf.ed.ac.uk (W. Fan).

0020-0190/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2009.03.021

city: string, state: string, country: string,
zip: string, item: string, type: string),

where each tuple specifies an item of a certain type pur-

chased by a customer. Each customer is specified by her

name (FN, LN) and address (street, city, state, country, zip).

An instance Dy of the sale schema is shown in Fig. 1.
CFDs on sale data include the following:

¢1: ([country, zip] — street, t}), and) = (UK, _||)

¢2: (country — state, t,zg), where tf, = (UK || N/A).

Here ¢, asserts that for customers in the UK, zip code
uniquely determines street. It uses a tuple t}] to specify

«

a pattern: country = UK, zip = ‘_' and street = ‘_’, where
‘’ can take an arbitrary value. It is an “FD” that is to
hold on the subset of tuples that satisfies the pattern, e.g.,
{t1,t3} in Dy, rather than on the entire Dg (in the US, for
example, zip does not determine street). It is not a tra-
ditional FD since it is defined with constants. Similarly,
¢- assures that for any address in the UK, state must be
N/A (non-applicable); this is enforced by pattern tuple tﬁ:
country = UK and state = N/A.

When these CFDs are used as data quality rules, one
can see that either t; or t3 is “dirty”: they violate the

784 W. Chen et al. / Information Processing Letters 109 (2009) 783-789

FN LN street city state country zip item type
t;: Joe Brady Mayfield EDI N/A UK EH4 8LE (D1 regular
t: Mark Webber Crichton EDI NY United Kingdom EH4 8LE CD2 sale
t3: John Hull Queen EDI N/A UK EH4 8LE (D3 regular
ty: William Smith 5th Ave NYC NY us 10016 book1l sale
ts: Bill Smith 5th Ave NYC NY us 10016 book2 sale
tg: Bill Smith 5th Ave NYC NY us 10016 book3 sale

Fig. 1. An instance of the sale relation schema.

rule ¢1. Indeed, t; and t3 are about customers in the UK
and they have the same zip; however, they have different
streets.

A closer examination of Dg reveals that tuple t, is not
error-free either. Indeed, t; is about a transaction for a
UK customer, but (a) its state is NY rather than N/A, and
(b) while its zip is the same as that of t; and t3, it has
a street not found in t; or t3. However, these violations
cannot be detected by ¢; and ¢,. Indeed, these CFDs are
specified with the pattern country = UK, and do not apply
to tuples with country = “United Kingdom”. Although UK
and United Kingdom refer to the same country, they are
not treated as equal by the equality operator adopted by
CFDs and FDs. In other words, CFDs and FDs do not ob-
serve domain-specific abbreviations and conventions.

Another issue concerns cardinality constraints commonly
found in practice, which require that the number of tuples
with a certain pattern does not exceed a predefined bound.
An example is that each customer is allowed to purchase
at most two distinct items on sale (with type = sale). As
another example, on a school database, one may want
to specify that a CS student can register for at most six
courses each semester. These constraints can be expressed
as neither FDs nor CFDs.

These practical concerns highlight the following ques-
tions. Can one extend CFDs to express cardinality con-
straints and synonym rules (domains-specific abbreviations
and conventions)? Can we find an extension such that it
does not increase the complexity for reasoning about these
dependencies? Indeed, we want a balance between the ex-
pressive power needed to deal with these issues, and the
complexity for static analyses of the dependencies.

Contributions. We answer these questions in this paper,
by providing the following.

(1) We propose an extension of CFDs, denoted by CFDCs,
that is able to express cardinality constraints, synonym
rules and patterns of semantically related values of
CFDs in a uniform constraint formalism. For example,
all constraints we have seen so far can be expressed
as CFDSs.

(2) We establish complexity bounds for the satisfiabil-
ity problem and the implication problem associated
with CFDCs. The satisfiability problem is to determine
whether a set ¥ of CFDs has a nonempty model, i.e.,
whether the data quality rules in X make sense. The
implication problem is to decide whether a set X of
CFD¢s entails another CFD¢ ¢, i.e., whether the rule ¢
is redundant given the rules in X.

We show that despite the increased expressive power
of CFDSs, their satisfiability and implication problems
are NP-complete and coNP-complete, respectively, the
same as their counterparts for CFDs [14].

We identify special cases where the satisfiability and
implication analyses of CFDs are in PTIME. That is, in
these practical settings we are able to reason about
CFDSs efficiently.

w

We contend that CFDs yield a better tool than CFDs
for detecting errors, without increasing the complexity of
static analyses.

Related work. To our knowledge, no previous work has
studied extensions of CFDs to capture cardinality con-
straints and synonym rules.

Constraint-based data cleaning was introduced in [4],
which proposed to use dependencies, e.g., FDs, inclusion
dependencies (INDs) and denial constraints, to detect er-
rors in real-life data (see, e.g., [12] for a comprehensive
survey). As an extension of traditional FDs, CFDs were de-
veloped in [14], which showed that the satisfiability prob-
lem and implication problem for CFDs are NP-complete
and coNP-complete, respectively. There have been exten-
sions of CFDs to support disjunction and negation [9], and
ranges of values in pattern tuples [16]. These extensions
address issues quite different from the focus of CFD¢s, and
will be further discussed in Section 5. Algorithms have
been developed for discovering CFDs [11,16] and for re-
pairing data based on CFDs [13]. There have also been a
variety of extensions of FDs [6,8,19] (see [14] for a detailed
discussion about the differences between these extensions
and CFDs). To the best of our knowledge, no previous work
has studied how to extend CFDs or FDs to express cardinal-
ity constraints, abbreviations and conventions.

Synonym rules have been studied for record match-
ing [2,3] in the form of transformation rules. However, no
previous work has studied how to express these in depen-
dencies, or their impact on the static analyses of depen-
dencies.

Cardinality constraints have been studied for rela-
tional data [18] to constrain the domains of attributes,
and for object-oriented databases to restrict the extents
of classes [10]. Numerical dependencies [17], which gen-
eralize FDs with cardinality constraints, have also been
proposed for schema design. These constraints differ from
CFDSs in that they cannot constrain tuples with a pattern
specified in terms of constants. Query answering has been
investigated for aggregate queries, FDs and denial con-
straints [5,7], which differ from this work in that neither
these dependencies can express cardinality constraints, nor

W. Chen et al. / Information Processing Letters 109 (2009) 783-789 785

the impact of cardinality constraints on the satisfiability
and implication analyses has been considered.

Organization. Section 2 defines CFDs, followed by their
satisfiability and implication analyses in Sections 3 and 4,
respectively. Open issues are discussed in Section 5.

2. CFDs: An extension of CFDs

Consider a relation schema R defined over a set of at-
tributes, denoted by attr(R). For each attribute A € attr(R),
its domain is specified in R, denoted as dom(A). As will be
seen in Sections 3 and 4, the domains of attributes have
substantial impact on the complexity of satisfiability and
implication analyses of CFDCs.

CFDfs. A CFD¢ ¢ defined on schema R is a triple R(X — Y,
tp, ¢), where (1) X — Y is a standard FD, referred to as the
FD embedded in @; (2) t, is a tuple with attributes in X
and Y, referred to as the pattern tuple of ¢, where for each
Ain XUY, tp[A] is either a constant ‘a’ in dom(A), or an
unnamed (yet marked) variable ‘_’ that draws values from
dom(A); and (3) c is a positive integer. We refer to ¢ also
as a conditional functional dependency.

Intuitively, t, specifies a pattern of semantically related
values for X and Y attributes: for any tuple t in an in-
stance of R, if t[X] has the pattern t,[X], then t[Y] must
observe the pattern t,[Y]. Furthermore, for all those tuples
t such that t[X] has pattern t,[X], if we group t[Y] values
by t[X], then the number of distinct values in (i.e., the car-
dinality of) each group is not allowed to exceed the bound
c. In particular, when ¢ =1, t[X] uniquely determines t[Y],
i.e, the FD embedded in ¢ is enforced on those tuples
having a t,[X] pattern.

If A occurs in both X and Y, we use t,[A[] and tp[AR]
to indicate its occurrence in X and Y, respectively. We sep-
arate the X and Y attributes in t, with ‘||’, and denote X
as LHS(p) and Y as RHS(¢). We write ¢ as (X — Y, tp,0)
when R is clear from the context.

Example 2.1. CFDs ¢ and ¢ of Example 1.1 can be ex-
pressed as CFD®s below, in which tll, and tlz, are pattern
tuples given in Example 1.1:

@1 := ([country, zip] — street, tl]), 1),
@2: (country — state, t2,1).

The cardinality constraint described in Example 1.1 can
also be written as a CFD® ¢3: (fd, t3,2), where FD fd and

p?
pattern tuple t3 are:

fd : FN, LN, street, city, state, country, zip, type — item,
tf, =y, salE),

assuring that no customer may purchase more than two
distinct items with type = sale.

Semantics of CFD¢s. To give the semantics of CFD‘s, we
first extend the equality relation and revise the match op-
erator of [14].

An extension of equality. We use a finite binary relation R,
to capture synonym rules. For values a and b, R.(a,b) in-
dicates that a and b refer to the same real-world entity.
For example, R (“William”, “Bill") and R.(“United King-
dom”, “UK”). We assume without loss of generality that R,
is symmetric: if R.(a,b) then R.(b,a). However, R, may
not be transitive: from R.(“New York State”, “NY”) and
R:(“NY”, “New York City”) it does not follow that R.(“New
York State”, “New York City”).

In the sequel we assume that R, is predefined, as com-
monly found in practice.

We define a binary operator = on constants such that
for any values a and b, a = b iff (1) Rc(a,b) or a =b,
(2) b =a, or (3) there exists a value c¢ such that a =c and
b = c. For example, “United Kingdom” = “UK".

The operator = naturally extends to tuples: (aq,...,ak)
= (b1, ...,by) iff for all i € [1,k], a; = b;. Observe that
given a fixed R, whether a =b can be decided in poly-
nomial time.

Matching operator. We revise the binary operator =< of [14]
defined on constants and ‘" as follows: nq < 1 if either
(a) n1 and 7y are constants and 11 = 12, or (b) one of
11, M2 is ‘_". The operator =< extends to tuples, e.g., (a,b)
= (,b) but (a,b) # (L, c) if b#c.

Semantics. Based on = and x, we now give the semantics
of CFD ¢ =R(X — Y, tp, 0).

An instance D of schema R satisfies ¢, denoted by
D = ¢, iff for each tuple t in D, if t[X] =< tp[X], then
(1) t[Y] =< tplY], and (2) |7y (ox=¢x;D)I < ¢, ie., for all tu-
ples t’ in D such that t’[X] = t[X], there exist at most ¢
distinct t'[Y] values. Here 7w and o are the projection and
selection operators in relational algebra, respectively; and
|S| denotes the cardinality of a set S in which no two ele-
ments a, b are comparable by a = b.

Intuitively, ¢ is a constraint defined on the set of tuples
Dy, ={t|teD, t[X]<tp[X]} such that (a) for each t € D,
the pattern t,[Y] is enforced on t[Y]; (b) for each set of
tuples in D, grouped by X attribute values, the number
of their distinct Y values is bounded by the constant c;
that is, ¢ expresses a cardinality constraint on the Y val-
ues of those tuples grouped by X; and (c) synonym rules
are captured by the extension = of the equality relation.
Note that ¢ is defined on the subset D, of D identified by
tp[X], rather than on the entire D.

An instance D of R satisfies a set X of CFDs, denoted by
DE X, if D =¢ for each ¢ in X.

Example 2.2. Assume that R, consists of (“United King-
dom”, “UK”) and (“William”, “Bill”). Recall instance Dg
of Fig. 1 and CFD‘s ¢, ¢, and ¢3 of Example 2.1. Ob-
serve the following: (a) tuple t; in Dy violates ¢;, since
ta[country] < UK but t,[state] % N/A; (b) t1,t> and t3 vio-
late @1 since they are UK records with the same zip code,
but they have different streets; (c) ts4, t5 and tg violate s,
since they agree on name and address (note that William
= Bill), all have type = sale, but they have three distinct
items, beyond the bound 2.

786 W. Chen et al. / Information Processing Letters 109 (2009) 783-789

Three special cases of CFD‘s are worth mentioning.
(a) Traditional FDs are CFDs in which c¢ is 1 and the pat-
tern tuple consists of ‘_’ only. (b) CFDs of [14] are CFD‘s
in which c is fixed to be 1. (c) Constant CFD‘s are CFD‘s
in which the pattern tuples consist of constants only, i.e.,
they do not contain *_’

3. The satisfiability analysis

A central technical problem associated with CFDs is
the satisfiability problem.

The satisfiability problem for CFD®s is to determine,
given a set X of CFD‘s on a schema R, whether or not
there exists a nonempty instance D of R such that D = X.
The set X' is said to be satisfiable if such an instance exists.

Intuitively, the satisfiability problem is to decide wheth-
er a set of CFDs makes sense or not. When CFDs are used
as data quality rules, the satisfiability analysis helps us de-
tect whether the rules are dirty themselves.

Any set of FDs is satisfied by a nonempty relation. In
contrast, the satisfiability problem becomes NP-complete
for CFDs [14]. Since CFDs subsume CFDs, the satisfiability
problem for CFDSs is at least as hard as for CFDs.

Example 3.1. Consider a schema R(A, B, C), and a set X
consisting of three CFDs defined on R: v = (A — B,
(true || b), 1), Y2 = (A — B, (false || b), 1), and ¥3 = (C — B,
(_I'b), 1), where dom(A) is Boolean, and b # b’. Then X
is not satisfiable. Indeed, for any nonempty instance D of
R and any tuple t in D, 3 requires t[B] to be b’ no mat-
ter what value t[C] is, whereas 1 and v force t[B] to be
b no matter whether t[A] is true or false.

The intractability. Despite the increased expressive power,
CFD‘s do not complicate the satisfiability analysis. Indeed,
the satisfiability problem for CFD‘s remains in NP. The
proof for the result below is an extension of Theorem 3.2
in [14], its counterpart for CFDs.

Theorem 3.1. The satisfiability problem for CFDs is NP-com-
plete.

Proof. It is known that the satisfiability problem is already
NP-hard even for constant CFDs [14]. Since CFDs subsume
CFDs, the NP lower bound for CFDs carries over to CFDSs.

We show the upper bound by presenting an NP algo-
rithm that, given a set X of CFDs on a schema R, checks
whether X is satisfiable. Similar to CFDs [14], CFD‘s have a
small model property: if there is a nonempty instance D of
R such that D = X, then for any t € D, {t} is an instance
of R and {t} = X. Thus it suffices to consider single-tuple
instances {t} for deciding whether X' is satisfiable.

Assume without loss of generality that attr(R) =
{A1, ..., Ap}. For each i € [1,n], define the active domain
of A; to be a set adom(A;) consisting of all constants of
tp[A;] for all pattern tuples t, in X, plus an extra dis-
tinct value in dom(A;) (if there exists one). Then it is easy
to verify that X is satisfiable iff there exists a mapping p
that assigns a value in adom(A;) to t[A;] for each i € [1,n]
such that D = {(p(t[A1]), ..., p(t[An]))} and D = X.

Based on these, we give the NP algorithm as follows:
(a) Guess a single tuple t of R such that t[A;] € adom(A;)
for each i € [1,n]. (b) Check whether {t} = X. If so it re-
turns “yes”, and otherwise it repeats steps (a) and (b). Note
that step (b) involves checking whether x = y, which can
be done in PTIME in the sizes of ¥ and R, where R. is
the relation given in the definition of =. Hence the algo-
rithm is in NP, and so is the satisfiability problem. O

A tractable case. As shown by Example 3.1, the complexity
is introduced by attributes in CFD®s with a finite domain.
This motivates us to consider the following special case.

A set X of CFDC is said to be bounded by a constant k
if at most k attributes in the CFDs of X have a finite do-
main. In particular, when k =0, all CFD®s in X are defined
in terms of attributes with an infinite domain.

Bounded CFD¢s make our lives much easier. Indeed, an
extension of the proof of Proposition 3.5 in [14] suffices to
show the following.

Proposition 3.2. It is in PTIME to determine whether a set X of
CFDSs is satisfiable if X is bounded by a constant k.

Proof. When X is bounded by k, we develop a PTIME al-
gorithm to determine whether X is satisfiable, which is
based on a modified chase (see, e.g., [1] for the chase),
and the small model property identified in the proof of
Theorem 3.1. The algorithm is an extension of the one for
CFDs (Proposition 3.5 in [14]) to further deal with finite
domain attributes and the = operator. Assume without
loss of generality that X is defined on a schema R, and
only attributes A; in CFD¢s of X have a finite domain, for
ie[l,k].

The algorithm checks whether there exists a tuple ¢ of
R such that t = X. Initially t[A] is a distinct variable x4
for each A € attr(R). For all i € [1, k] and for each value in
dom(A;) assigned to x4, the algorithm does the following.

(a) For each CFD ¢ = R(X — Y,tp,c) in X, chase ¢
using ¢: if t[X] < t,[X], then change t[Y] such that t[Y] =<
tp[Y] as long as t[Y] does not already contain a constant
that does not match the corresponding field in t,[Y].

Here we extend the match operator =< to accommodate
variables xp: xp =< _, but xg % 17 when 7 is a constant or a
variable.

(b) For each attribute B € attr(R), if t[B] is still xg after
step (a), assign a distinct value from dom(B) to xg, which
does not appear in X and R; note that dom(B) must be
infinite in this case by the definition of t.

(c) If t = X then return “yes”; “no” is returned if for all
possible valuations to x4, for i € [1, k], it cannot instantiate
t such that t = .

The algorithm is in O(|X|%|R¢|m¥) time, i.e., in PTIME
when k is fixed, where |X| is the size of X, |R.| is the
size of R. (in the definition of =), and m is the maximum
cardinality of finite domains adom(A;) for i € [1, k].

We next show that the algorithm returns “yes” if and
only if X is satisfiable.

If the algorithm returns “yes”, there exists a tuple t
such that t = X. Thus X is satisfiable.

Conversely, if X is satisfiable, there exists a tuple t
such t = X. We show that the algorithm returns “yes”.

—

W. Chen et al. / Information Processing Letters 109 (2009) 783-789 787

Initialize a tuple t’ such that t'[A;] = t[A;] for i € [1,K],
and t’[A] = x4 for the rest of attributes A € attr(R). After
step (a), for each attribute A € attr(R), if t'[A] is a constant,
then t'[A] = t[A]. Moreover, there exist no conflicts since
t = Y. The assignments at step (b) are irrelevant since
t'[B]’s instantiated at that step are not constrained by pat-
tern tuples in X, and thus have no impact on whether {t’}
satisfies X. Thus after step (b), {t'} = ¥, and the algorithm
returns “yes”. 0O

4. The implication analysis

We next investigate another central technical problem
associated with CFD¢s.

Consider a set X of CFDs and a single CFD¢ defined on
the same schema R. We say that X implies ¢, denoted by
Y = o, iff for all instances D of R, if D = X then D = ¢.
We consider without loss of generality satisfiable X' only.

The implication problem for CFDs is to determine, given
a set X of CFDs and a CFD¢ defined on the same schema,
whether ¥ = ¢.

The implication analysis helps us identify and eliminate
redundant data quality rules.

As examples of the implication analysis, we present two
simple results.

Proposition 4.1. For any CFD®s of the form:

¢: RX =Y, tp,0), ¢ RX— Y, tp,C)

@) p ¢ ifc<c;and

(b) if ¢ is a constant CFD, ¢ = ¢’ even when ¢’ =1 and
c>c.

Proof. (a) This can be easily verified by the definition
of CFD¢s. (b) We show that for any instance D of R, if
D = ¢ then D = ¢’. Observe that for any tuple t € D, if
t[X1=tp[X], then t[Y]=tp[Y]. Hence for all tuples t’ in D,
if t'[X] = t[X], then t'[Y]=tp[Y], ie., |7y (Oxzqx D) < 1.
Thus D =¢’. O

The intractability. We know that the implication problem
for CFDs is coNP-complete [14]. Below we show that the
upper bound remains intact for CFD‘s, along the same
lines as its CFD counterpart (Theorem 4.3 in [14]).

In the rest of the section we consider a set X of CFDs
and a CFD® ¢ = R(X — Y, tp, c¢) such that c is bounded by
a polynomial in the sizes of X' and ¢. This assumption is
acceptable since in practice, c is typically fairly small.

Theorem 4.2. The implication problem for CFDs is coNP-
complete.

Proof. The implication problem for constant CFDs is coNP-
hard [14]. The lower bound carries over to CFDs, which
subsume CFDs.

We show that the problem is in coNP by presenting an
NP algorithm for its complement, i.e., for deciding whether
XY & . The algorithm is based on a small model prop-
erty: if ¢ =R(X — Y, tp,c) and X |~ ¢, then there exists

an instance D of R with at most ¢ + 1 tuples such that
D E ¥ and D }~ ¢. That is, D consists of ¢ + 1 tuples t1,
..., teq1 such that for all i, j € [1,c + 1], ;[X] < tp[X] and
ti[X]=t;[X], but either there exists | € [1, ¢+ 1] such that
tlY1 % tplY], or for all i # j, t;[Y] # t;[Y]. Thus it suf-
fices to consider instances D with c+1 tuples for deciding
whether ¥ p& ¢.

Assume that attr(R) = {A1, ..., Ap}. For each i € [1,n],
let adom(A;) be a set consisting of (a) all constants of
tp[Ai] for all pattern tuples t, in ¥ U {¢}, and (b) c +1
extra distinct values in dom(A;) if they exist; if dom(A;) is
finite and does not have c + 1 extra values, let adom(A;)
be dom(A;). Then one can verify that X £ ¢ iff there
exist mappings p1, ..., pc+1 such that p; maps t[A;] to
a value in adom(Aj) for each j e [1,n], D = {(p1(t[A1]),

s PLELARD), -, (Pes1 (ETATD), .., Pet1 (t[ARD)), D b=
and D ~ ¢.

Based on these, we give the NP algorithm as follows:
(a) Guess ¢+ 1 tuples ty,...,tcy1 of R such that tj[Ai] €
adom(A;) for each i € [1,n] and j € [1,c + 1]. (b) Check
whether {ti,...,tc+1} satisfies X, but not ¢. If so the al-
gorithm returns “yes”, and otherwise it repeats steps (a)
and (b). As argued in the proof of Theorem 3.1, step (b)
can be done in PTIME in the sizes of ¥, ¢ and R.. Fur-
thermore, c is bounded by a polynomial by assumption. As
a result, the algorithm is in NP and thus the implication
problem is in coNP. O

Special cases. Proposition 3.2 shows that for a set of CFD‘s
bounded by a constant k, the satisfiability analysis is in
PTIME. This is no longer the case for the implication prob-
lem.

Theorem 4.3. It is coNP-complete to decide, given CFD¢s X and
@, whether ¥ |= ¢ when X U {¢} is bounded by a constant
k=3.

Proof. The problem is in coNP by Theorem 4.2. We show
that it is coNP-hard by reduction from 3SAT to the com-
plement of the problem (i.e., to decide whether X [~ ¢),
where 3SAT is NP-complete (cf. [15]). Consider an instance
¢ =C1 A--- A Cyp of 3SAT, where all the variables in ¢ are
X1,...,Xm, Cj is of the form yj, vV yj, V yj;, and moreover,
for i € [1,3], yj; is either xp; or kp; for pji € [1,m]; here
we use Xp; to indicate the occurrence of a variable in lit-
eral i of clause C;. Given ¢, we construct a relation schema
R, an empty relation R, and a set X' U{¢} of CFDs defined
on R, such that ¢ is satisfiable iff X' j= .

(1) We define schema R(C, V¢, X, Vy, Z), where dom(C)
= {1,...,n}, dom(V.) = {(b1bab3) | b1,b2,b3 € {0,1}},
dom(X) = {x1, ..., xm}, which is the set of variables in ¢,
and moreover, both dom(Vy) and dom(Z) are integer. Intu-
itively, for each R tuple t, t[C], t[V,], t[X], t[Vx] and t[Z]
specify a clause C, a truth assignment & (one of the eight
to its three variables), one of the three variables in C, the
truth value of the variable and the truth value of C deter-
mined by &.

(2) Let the set X of CFDs be X1 U Xy U X3 U X4,

(a) X7 encodes the relationships among attributes C,
V¢, X and V. For each variable in a clause C; (1< j<n)
and each value (b1byb3) in dom(V,), there is a CFD¢ in X7.

788 W. Chen et al. / Information Processing Letters 109 (2009) 783-789

Thus there are 38 CFD s for each clause C; in X1, and in
total, there are 24 xn CFD®s in X.

Each CFD¢ for clause C;=yj, Vyj, V¥j, is of the form
of R((C, V¢, X — Vy), tp, 1) such that t,[C] = j, tp[Vc] =
(b1b2b3), and t,[X] =Xp;; (1 <i<3). The value of t,[Vy]
is decided by the value of t,[V] such that t,[Vx] = b; if
¥j; =Xp; and otherwise tp[Vx]=1—Db; if yj =Xp.

For example, if C; =xp,, V Xp,, V Xp;; such that 1 <
Pj1,Pj2, pj3 < m, then some possible pattern tuples are
(J, (010), xp,, 0), (j, {010), xp,, 0), and (j, (010), xp ;, 0).

(b) X, prevents certain variables from appearing in
clauses. For each clause C; and each variable x; not in Cj,
two CFD‘s are included in X3: wuj;1 = R(C,X — Z),
(J,xi 1), 1) and pji2=RU(C, X — Z),(j, i |l 0), 1). Thus
no tuple t satisfies t[C] = j and t[X] = x;, since otherwise
Wji1 forces t[Z]=1 and puj; forces t[Z] = 0. There are
(m —3) *xn CFDs in Xy.

(c) X3 encodes the relationship between the truth
assignment V. of clause C and its corresponding truth
value Z of C. For clause C; and each h e dom(V.), wy =
R(Ve — Z,tp,, 1) is in X3, where tp, [Vc]=h, tp,[Z] =0
if h = (000), i.e,, C is not satisfied by the corresponding
truth assignment h, and t,,[Z] =1 otherwise. In total, X3
consists of eight CFDCs.

(d) X4 includes 1 =R(C — V., (C [|_),1) and pup =
R(X — Vi, (_|l 0, 1), ensuring that for each clause C and
each variable X, there is at most one truth assignment.

(3) CFD¢ ¢ is defined as R((Z — C,X),(1 | _,),
3%n—1). Intuitively, ¢ assures that no more than 3xn—1
tuples in an instance of R can have truth value 1 for their
clauses.

Observe that X' consists of (m+21)*n-+ 10 CFDs. Thus
the reduction is in PTIME.

We now show that ¢ is satisfiable iff X [~ ¢. Suppose
first that ¢ is satisfiable. Then there exists a truth assign-
ment p that makes ¢ true. Based on p, we construct an
instance D of R with 3xn tuples as follows. For each clause
Cj=1Yyj, VYj, VYj and each variable xp, (i €[1,3]) in
Cj, we create a tuple t, where (a) t[C] = j; (b) t[X]=xp;
(c) t[Z] =15 (d) t[Vx] =1 if X, is assigned true by p,
and otherwise t[Vyx] =0; (e) t[V.] = (b1b2b3) such that for
each i €[1,3], b; =1 if yj, is assigned true by p, and oth-
erwise b;j = 0. That is, t[V.] is determined by p to all of
its three variables. Observe that D = X but D [~ ¢. Hence
2.

Conversely, if X (= ¢, then there exists an instance D of
R consisting of 3 % n tuples such that D = X but D [~ ¢.
Observe that there exist at most n distinct values for at-
tribute C, and each value of C can be associated with at
most three distinct values of attribute X. Based on this,
we define a truth assignment p such that p(x;) = true if
7y, (0x=x;D) = {1} and p(x;) = false otherwise. Observe
that by D = X, (a) my,(0x=x D) (i € [1,m]) contains ex-
actly one element, (b) wy (oc=;D) (j € [1,n]) contains one
element, and (c) mcy,.v,(D) has 3 xn elements. Indeed,
since D = ¥, the truth assignment p makes ¢ true. Thus
¢ is satisfiable. O

The proof of Theorem 4.3 actually yields a stronger re-
sult. Recall that a CFD® R(X — Y, tp,c) is a CFD of [14]
when ¢ =1.

Corollary 4.4. It remains coNP-complete to decide, given a set
X of CFDs and a CFD¢ ¢, whether X |= ¢ when X U {¢} is
bounded by a constant k = 3.

Not all is lost. Below we identify two tractable spe-
cial cases. It should be remarked that while the second
case below can find a counterpart for CFDs (Corollary 4.4
of [14]), its proof is quite different from that of [14].
Putting this and Corollary 4.4 together, one can tell that
the extension of the equality operator and the presence
of cardinality constraints take their toll in the implication
analysis.

Proposition 4.5. It is in PTIME to decide, given a set X of CFDs
and a CFD¢ @, whether X = ¢ when X U {¢} is bounded by a
constant k and one of the following conditions holds:

1. ¢ is a CFD while X is a set of CFD¢s; or
2. X isaset of CFDs, ¢ is a CFD¢ and k = 0, i.e., all attributes
in X or ¢ have an infinite domain.

Proof. Observe that X [~ ¢ iff there exists a nonempty
instance D of the schema R on which ¥ and ¢ are de-
fined, such that D = X' U {—¢}. Thus it suffices to develop
a PTIME algorithm to check the satisfiability of X U {—¢}.

Assume that ¢ is R(X — Y, t,0).

(1) Since ¢ is a CFD, the proof of Theorem 4.2 tells
us that X U {—¢} is satisfiable iff there exists an in-
stance D1 of R such that D consists of two tuples t; and
t, D1 = 2, t1[X] < tp[X] and t1[X] = t2[X], but either
t1[Y] # t2[Y], or there exists | € [1,2] such that t;[Y] #
tp[Y]. In light of these, a minor extension of the PTIME al-
gorithm given in the proof of Proposition 3.2 suffices to
check whether X U {—¢} is satisfiable. Assume without
loss of generality that X is defined on a schema R, and
only attributes A; in CFDs of X have a finite domain, for
ie[l,k].

The algorithm checks whether there exists an instance
D1 = {t1,t2} such that D; = ¥, but D; [~ ¢. Initially, for
each attribute A € X, t1[A] and t,[A] are the same distinct
variable x4 if t,[A] is ‘', and t1[A] = t2[A] =t,[A] if t,[A]
is a constant. For each other attribute A in attr(R) (but not
in X), t1[A] and t;[A] are two distinct variables x4 and ya,
respectively.

For all i € [1,k] and for each instantiation of variables
xa; and y 4, with values in dom(A;), the algorithm does the
following.

(a) For each CFD¢ ¢/ = R(X' — Y/, t;, ¢") in X, chase D4
using ¢'. If t;[X'] < t;,[X/] (i € [1,2]), then change t;[Y’]
such that t;[Y'] < t;[Y’], as long as there exists no at-
tribute A € Y’ such that t;[A] is already a constant that
does not match t;[A]. Moreover, if t1[X'] = t2[X'] and
¢’ <c, then change t1[Y'] =t,[Y’] as long as there exists
no attribute A € Y’ such that t1[A] and t3[A] are already
constants and t1[A] # t;[A]. Here c =1 since ¢ is a CFD.

(b) For each attribute B € attr(R), if t;[B] (i €[1,2]) is a
variable after step (a), assign a distinct value from dom(B)
to tij[B]; note that dom(B) must be infinite in this case.

(c)If D1 = X and D1 } @, then return “yes”.

W. Chen et al. / Information Processing Letters 109 (2009) 783-789 789

The algorithm returns “no” if for all possible valuations
to x4, and ya,; for i € [1,k], it cannot instantiate D¢ such
that D1 = X but D (= ¢.

From these it follows that the algorithm returns “yes”
iff X £~ . In addition, similar to the proof of Proposi-
tion 3.2, it is easy to see that the algorithm is in PTIME
in the sizes of X, ¢, relation R. (in the definition of =),
and the maximum cardinality of the k finite domains.

(2) A PTIME algorithm similar to the one given in the
proof of (1) suffices to check whether ¥ U {—¢} is sat-
isfiable. Here the algorithm operates on ¢ + 1 tuples, as
described in the proof of Theorem 4.2. Since X consists
of CFDs only, the chase of the tuples using CFDs in X is
straightforward. Since all the attributes in X' or ¢ have an
infinite domain, we no longer need to check valuations to
those variables denoting attributes with a finite domain.
One can verify that the algorithm is in PTIME. O

5. Concluding remarks

We have proposed CFDs and shown that CFD¢s have
the following properties. (a) CFDs are able to express CFDs
of [14], cardinality constraints, and domain-specific abbre-
viations and conventions in a uniform constraint formal-
ism. (b) CFDs do not complicate the static analyses: the
satisfiability and implication problems for CFDs have the
same complexity bounds as their counterparts for CFDs.

One topic for future work is to develop a uniform con-
straint language to express CFD s and other extensions of
CFDs, e.g., [9,16]. Such a language, however, comes at a
price of higher complexity bounds: Proposition 3.2, for ex-
ample, will no longer hold. This issue deserves a full treat-
ment. Another topic is to revise the algorithms for com-
puting a minimum cover of a set of CFDs [14], discovering
CFDs [11,16] and for repairing data based on CFDs [13], by
using CFD®s instead of CFDs.

Acknowledgements

We thank the anonymous reviewers for their helpful
comments. Fan and Ma are supported in part by EPSRC

E029213/1. Fan is a Yangtze River Scholar at Harbin Insti-
tute of Technology.

References

[1] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-
Wesley, 1995.

[2] R. Ananthakrishna, S. Chaudhuri, V. Ganti, Eliminating fuzzy dupli-
cates in data warehouses, in: VLDB, 2002.

[3] A. Arasu, S. Chaudhuri, R. Kaushik, Transformation-based framework
for record matching, in: ICDE, 2008.

[4] M. Arenas, L.E. Bertossi, J. Chomicki, Consistent query answers in in-
consistent databases, in: PODS, 1999.

[5] M. Arenas, LE. Bertossi, J. Chomicki, X. He, V. Raghavan,]. Spin-
rad, Scalar aggregation in inconsistent databases, Theoret. Comput.
Sci. 296 (3) (2003) 405-434.

[6] M. Baudinet, J. Chomicki, P. Wolper, Constraint-generating dependen-
cies, J. Comput. System Sci. 59 (1) (1999) 94-115.

[7] L. Bertossi, L. Bravo, E. Franconi, A. Lopatenko, The complexity and
approximation of fixing numerical attributes in databases under in-
tegrity constraints, Inform. Systems 33 (4) (2008) 407-434.

[8] P.D. Bra, J. Paredaens, Conditional dependencies for horizontal de-
compositions, in: ICALP, 1983.

[9] L. Bravo, W. Fan, F. Geerts, S. Ma, Increasing the expressivity of con-
ditional functional dependencies without extra complexity, in: ICDE,
2008.

[10] D. Calvanese, M. Lenzerini, On the interaction between ISA and car-
dinality constraints, in: ICDE, 1994.

[11] F. Chiang, RJ. Miller, Discovering data quality rules, in: VLDB, 2008.

[12] J. Chomicki, Consistent query answering: Five easy pieces, in: ICDT,
2007.

[13] G. Cong, W. Fan, F. Geerts, X. Jia, S. Ma, Improving data quality: Con-
sistency and accuracy, in: VLDB, 2007.

[14] W. Fan, E Geerts, X. Jia, A. Kementsietsidis, Conditional functional
dependencies for capturing data inconsistencies, ACM Trans. on
Database Systems 33 (1) (2008).

[15] M. Garey, D. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman, 1979.

[16] L. Golab, H.J. Karloff, F. Korn, D. Srivastava, B. Yu, On generating near-
optimal tableaux for conditional functional dependencies, in: VLDB,
2008.

[17] J. Grant, J. Minker, Normalization and axiomatization for numerical
dependencies, Inform. and Control 65 (1) (1985) 1-17.

[18] P.C. Kanellakis, On the computational complexity of cardinality con-
straints in relational databases, Inform. Process. Lett. 11 (2) (1980)
98-101.

[19] M.J. Maher, Constrained dependencies, Theoret. Comput. Sci. 173 (1)
(1997) 113-149.

