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Abstract
Graph pattern matching is typically defined in terms of sub-
graph isomorphism, which makes it an np-complete prob-
lem. Moreover, it requires bijective functions, which are
often too restrictive to characterize patterns in emerging ap-
plications. We propose a class of graph patterns, in which
an edge denotes the connectivity in a data graph within a
predefined number of hops. In addition, we define matching
based on a notion of bounded simulation, an extension of
graph simulation. We show that with this revision, graph
pattern matching can be performed in cubic-time, by pro-
viding such an algorithm. We also develop algorithms for in-
crementally finding matches when data graphs are updated,
with performance guarantees for dag patterns. We experi-
mentally verify that these algorithms scale well, and that the
revised notion of graph pattern matching allows us to iden-
tify communities commonly found in real-world networks.

1. Introduction
Graph pattern matching is to find all matches in a data

graph G for a given pattern graph P . It has been increas-
ingly used in computer vision, knowledge discovery, biology,
cheminformatics, dynamic network traffic, and recently, so-
cial networks and intelligence analysis (e.g., [4, 6, 7, 27, 31]).

Graph pattern matching is typically defined in terms of
subgraph isomorphism: it is to find all subgraphs of G that
are isomorphic to P (see [13] for a survey). That is, a match
of P is a subgraph G′ of G such that there exists a bijective

function f from the nodes of P to the nodes of G′, and (a)
for each node v in G′, v and f(v) have the same label, and
(b) there exists an edge from v to v′ in P if and only if
(f(v), f(v′)) is an edge in G′. This makes graph pattern
matching np-complete, and hinders its scalability in finding
exact matches. Moreover, a bijective function is often too
restrictive to identify patterns in emerging applications, as
illustrated by the following real-life example taken from [19].

Example 1.1: Consider the structure of a drug trafficking
organization [19], depicted as a pattern graph P0 in Fig. 1.
A “boss” (B) oversees the operations through a group of
assistant managers (AM). An AM supervises a hierarchy of
low-level field workers (FW), up to 3 levels as indicated by
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Figure 1: Drug trafficking: Pattern and data graph

the edge label 3. The FWs deliver drugs, collect cash and
run other errands. They report to AMs directly or indirectly,
while the AMs report directly to the boss. The boss may also
convey messages through a secretary (S) to the top-level FWs
(denoted by the edge label 1).

A drug ring G0 is shown in Fig. 1 in which A1, . . . , Am

are AMs, while Am is both an AM and the secretary (S).
One wants to identify all suspects involved in the drug

ring [19], by finding matches of P0 in G0. However, graph
pattern matching via subgraph isomorphism would not be
able to find these. Indeed, observe the following.

(1) Nodes AM and S in P0 should be mapped to the same

node Am in G0, which is not allowed by a bijection.

(2) The node AM in P0 corresponds to multiple nodes
A1, . . . , Am in G0. This relationship cannot be captured
by a function from the nodes of P0 to the nodes of G0. This
suggests that we should use relations instead of functions

when characterizing certain communities (matches).

(3) The edge from AM to FW in P0 indicates that an AM

supervises FWs within 3 hops. It should be mapped to a
path of a bounded length in G0 rather than to an edge. In a
variety of applications one wants to inspect the connectivity
of a pair of nodes via a path of an arbitrary length [10, 16, 29]
or with a bound on the number of hops (e.g., 3, 1 in P0) [5,
10, 31]. Edge-to-edge mapping of subgraph isomorphism is
not able to specify such connectivity in a data graph. 2

These tell us that graph pattern matching via subgraph
isomorphism is often too strict to identify communities in
real-world networks, not to mention its intractability.

Contributions. We propose a revision of the traditional
notion of graph pattern matching, to reduce its complexity
and to characterize patterns in emerging applications.

(1) We introduce a notion of bounded simulation for match-
ing a class of graph patterns (Section 2). In such a pattern
graph, each node specifies a search condition on the con-
tent of the node. An edge is labeled with either a constant
k or a ∗, denoting the connectivity of a pair of nodes in a
data graph that is bounded within k hops or unbounded,
respectively. Bounded simulation is an extension of graph
simulation [15]. In contrast to its traditional counterpart,
the revised pattern matching is to find a maximum bounded
simulation relation rather than functions, and it maps edges
in a pattern to paths with various bounds in a data graph.
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(2) We show that the revised graph pattern matching can
be performed in cubic time (Section 3), as opposed to the
np-completeness of the traditional notion. We provide an
O(|V ||E|+ |Ep||V |2 + |Vp||V |)-time algorithm for computing
exact matches, for a pattern graph P = (Vp, Ep) and a data
graph G = (V, E). This is comparable to the complexity
of graph simulation, which is in O((|V | + |Vp|)(|E| + |Ep|))
time [15]. Indeed, in practice pattern P is typically much
smaller than data graph G, and |E| could be |V |2.

(3) The cubic-time complexity is still prohibitively expensive
for finding matches in large data graphs. In light of this we
develop incremental algorithms for pattern matching when
a data graph G is updated by a sequence of edge deletions
and insertions (Section 4). These allow us to find matches in
G once, and then efficiently maintain the matches when G is
updated, without recomputing the entire matches starting
from scratch. We show that when patterns are dags (di-
rected acyclic graphs) but data graphs are possibly cyclic,
the algorithms have performance guarantee: the computa-
tion is only conducted in the areas that are necessarily af-
fected by the updates, minimizing unnecessary recomputa-
tion. It is yet unknown whether there exists any incremental
algorithm with performance guarantee for cyclic patterns.

(4) Using three real-life datasets and synthetic data, we ex-
perimentally verify the effectiveness and scalability of our
matching algorithms (Section 5). We find that the revised
notion of graph pattern matching is able to accurately iden-
tify far more communities in YouTube than its traditional
counterpart. We show that the matching algorithm is quite
efficient. It scales well with the sizes of data graphs and pat-
terns. Moreover, the incremental algorithm outperforms the
batch algorithm when up to 3200 edges are updated. These
yield a promising method for pattern matching in practice.

All the proofs and detailed analyses are in the appendix.

Related work. Graph pattern matching has proved useful
in a variety of areas [13]. It is typically based on subgraph
isomorphism [4, 6, 7, 27, 31]. In light of the intractability
of the problem, approximate solutions have been studied to
find inexact matches (see [13, 25] for surveys). In contrast,
we revise graph pattern matching by introducing bounded
simulation and a richer class of graph patterns, to capture
patterns commonly found in practice in polynomial time.
We shall further elaborate the differences in Section 2.

There has also been a host of work on reachability queries
(e.g., [10, 16, 29]), to decide whether there exists a path
from a node to another in a graph, as well as work on dis-
tance queries (e.g., [5, 10]), to compute the distance between
a pair of nodes. In contrast, we study pattern graphs in
which each edge denotes the connectivity of a pair of nodes
and moreover, possibly carries a bound on the length of the
paths. Query languages have also been developed for graphs
(e.g., [14, 23]), which differ from this work in that the focus is
on language constructs for expressing graph queries, rather
than on the complexity and algorithms for (incrementally)
finding matches in a data graph for a pattern.

Closer to this work are [18, 11, 12, 31]. A notion of weak
similarity was addressed in [18], which extends simulation
by mapping an edge to an unbounded path. It focuses on
subgraph similarity, an np-complete problem. Extensions
of subgraph isomorphism were studied in [11, 12] for xml

schema mapping and for Web site matching, which also al-

low edge-to-path mappings, but are still np-complete. None
of these supports bounded connectivity or search conditions.
Recently, bounded connectivity in graph patterns was con-
sidered in [31]. It differs from this work in the following. (a)
Patterns of [31] impose the same bound on all edges. In con-
trast, we study patterns in which edges may carry various

bounds or are unbounded at all, and moreover, nodes spec-
ify search conditions based on their contents. (b) Match-
ing in [31] is based on an extension of subgraph isomor-
phism, which remains np-complete, whereas we define pat-
tern matching in terms of bounded simulation, a cubic-time

problem. (c) To find matches, [31] explores joins and prun-
ing, which are very different from our methods. (d) [31] does
not study incremental algorithms for pattern matching.

Graph simulation has been used in e.g., process calculus
[18], structural index [17] and Web site classification [9]. An
algorithm for computing graph simulation on a single graph
was proposed in [15]. Our matching algorithm (Section 3)
is a nontrivial extension of [15] to find matches in a graph
for a pattern graph; it employs shortest path computation
to handle bounded connectivity, among other things.

Incremental algorithms have been developed for various
applications (see [22] for a survey). As observed in [21], the
complexity of an incremental algorithm is more accurately
characterized in terms of the size of the area affected by up-
dates, rather than the size of the entire input. We adopt this
complexity measure. Incremental algorithms for the short-
est path problem were provided in [20, 21]. We develop
incremental algorithms for computing matches (Section 4),
which make use of a procedure from [20, 21]. Incremental
algorithms have also been developed for bisimulation [24,
30]. In contrast to our incremental methods, (a) these algo-
rithms are based on an equivalence relation on a single graph
inherent to bisimulation, which does not exist in bounded
simulation, and (b) they are unbounded, i.e., they may con-
duct computation outside of the areas affected by updates.

2. Graph Pattern Matching Revised
Below we first define data graphs and pattern graphs. We

then introduce the notion of bounded simulation. Finally,
we state the revised graph pattern matching problem.

2.1 Data Graphs and Pattern Graphs

A data graph is a directed graph G = (V, E, fA), where
(1) V is a finite set of nodes; (2) E ⊆ V × V , in which
(u, u′) denotes an edge from node u to u′; and (3) fA(u) is
a function such that for each node u in V , fA(u) is a tuple
(A1 = a1, . . . , An = an), where ai is a constant, and Ai is
referred to as an attribute of u, written as u.Ai = ai.

Intuitively, the attributes of a node carry the content of
the node, e.g., label, keywords, blogs, comments, rating [1].

We shall use the following notations. (1) A path ρ in graph
G is a sequence of nodes v1/ . . . /vn such that (vi, vi+1) is an
edge in G for each i ∈ [1, n − 1]. (2) The length of the path
ρ, denoted by len(ρ), is n− 1, i.e., it is the number of edges
in ρ. (3) The path ρ is nonempty if len(ρ) ≥ 1. Abusing
notations for trees, we refer to v2 as a child of v1 (or v1 as a
parent of v2), and vi as a descendant of v1 for i ∈ [2, n].

Patterns. A pattern graph is defined as P = (Vp, Ep, fv, fe),
where (1) Vp and Ep are the set of nodes and the set of
directed edges, respectively, as defined for data graphs; (2)
fv is a function defined on Vp such that for each node u,
fv(u) is the predicate of u, defined as a conjunction of atomic
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Figure 2: Bounded simulation

formulas of the form A op a; here A denotes an attribute, a is
a constant, and op is a comparison operator <,≤, =, 6=, >,≥;
(3) fe is a function defined on Ep such that for each edge
(u, u′), fe(u, u′) is either a positive integer k or a symbol ∗.

When fv(u) specifies a node label A only, we simply write
fv(u) as A. We also omit fe(u, u′) when it is 1.

Intuitively, the predicate fv(u) of a node u specifies a
search condition. As will be seen shortly, an edge (u, u′) in
a pattern P is mapped to a path ρ in a data graph G, and
fe(u, u′) is a bound on the length of ρ when it is not ∗.

Traditional graph patterns [13] are a special case of the
patterns defined above, when (1) a node has a unique at-
tribute, its label, and (2) all edges have the same bound 1.
In [31] the same bound δ (≥ 1) is also imposed on all edges,
and a node carries its label as its only attribute.

Example 2.1: Figure 1 (a) depicts a pattern P0, in which
an edge is labeled with either 1 or 3. Each node denotes a
suspect, with its predicate (omitted from the figure) defined
in terms of characterizations discovered by law enforcement,
such as his track-record and the density of contacts [19].

As another example, P1 in Fig. 2 is a pattern taken from
social matching [26]. In P1, each node denotes a person,
with a predicate specifying her job title and hobby. To start
up a company, user A wants to find in, e.g., Facebook, (1)
a software engineer (SE) and (2) a human-resource (HR) ex-
pert, both within 2 hops; and (3) sale department managers
(DM) who are within 1 hop of SE and 2 hops of HR, are
connected to A through a chain of friends, and play golf.

Pattern P2 in Fig. 2 depicts a pattern in e.g., Twitter or
Google Wave. Each node in P2 denotes a person, with a
predicate specifying her academic field, e.g., CS, Bio (biol-
ogy), Med (Medicine) and Soc (Sociology). If a person in G2

works in an area included in an specified academic field, then
the person satisfies the predicates specifying the field. As-
sume that nodes DB and AI have attributes ‘dept’=CS; Gen
(genetics) and Eco (ecology) have attributes ‘dept’=Bio. A
CS person B wants to find collaborators in biology (within
2 hops), sociology (3 hops) and in medicine who are mu-
tually connected to B via chains of friends. In addition,
the Biology researchers should have connections to people
in sociology (2 hops) and medicine (3 hops). 2

2.2 Bounded Graph Simulation

We now introduce bounded simulation. Consider a data
graph G = (V, E, fA) and a pattern P = (Vp, Ep, fv, fe).

Bounded simulation. The graph G matches the pattern
P via bounded simulation, denoted by P E G, if there exists
a binary relation S ⊆ Vp × V such that for each (u, v) ∈ S:

(1) the attributes fA(v) of v satisfies the predicate fv(u) of
u; that is, for each atomic formula A op a in fv(u), v.A = a′

is defined in fA(v) and moreover, a′op a; and

(2) for each edge (u, u′) in Ep, there exists a nonempty path

ρ = v/ . . . /v′ in G such that (a) (u′, v′) ∈ S, and (b) len(ρ) ≤
k if fe(u, u′) is a constant k.

We refer to the relation S as a match in G for P .
Intuitively, (u, v) ∈ S if (1) the node v in G satisfies the

search condition specified by fv(u) in P , and (2) each edge
(u, u′) in P is mapped to a nonempty path ρ = v/ . . . /v′ in
G, such that the length of ρ is bounded by k if fe(u, u′) = k.
If fe(u, u′) = ∗, len(ρ) is not bounded. Observe that the
child u′ of u is mapped to a descendant v′ of v via S.

Note that there exists a path ρ from u to u′ with len(ρ) ≤ k

iff the shortest path from u to u′ is no longer than k, i.e.,

the distance from u to u′ is no larger than k.

Example 2.2: In Fig. 1, a match S0 in G0 for P0 maps B to
B, AM to A1, . . . , Am, S to Am, and FW to all the W nodes.

Next consider graphs and pattern graphs given in Fig. 2.

(1) P1 E G1. Indeed, a match S1 in G1 for P1 is by mapping
(a) A to A, (b) SE to both (HR, SE) and SE, (c) HR to HR

and (HR, SE), and (d) DM to both (DM,’golf’) nodes in G1.
Here both HR and SE in P1 are mapped to the same node
(HR, SE) in G1, and DM is mapped to two nodes (DM, ’golf’)

in G1. Further, the edge (A, SE) in P1 is mapped to paths in
G1. These are not allowed by bijective functions. One can
verify that P1 is not isomorphic to any subgraph of G1.

(2) P2 E G2. A match S2 in G2 for P2 is by mapping CS to
DB, Bio to Gen and Eco, Med to Med, and Soc to Soc. However,
P2 is not isomorphic to any subgraph of G2. Here CS cannot
be mapped to AI since there is no path within 3 hops from
AI to Soc as required by the edge (CS, Soc) in P2.

(3) P2 5 G3, where G3 is the same as G2 except that the
edge (DB, Gen) is dropped. Indeed, CS can no longer find a
match in G3 that is within 3 hops to Soc. 2

Remark. Observe the following. (1) A match S is a relation

rather than a function. Hence, for each u in Vp there may
exist multiple nodes v in V such that (u, v) is in S, i.e., each
node in P is mapped to a nonempty set of nodes in G.

(2) Graph simulation [15] is a special case of bounded simu-
lation, by only allowing patterns in which (a) all the nodes
carry their labels as the only attributes, and (b) all the edges
are labeled 1, i.e., only edge-to-edge mappings are allowed.

(3) As opposed to subgraph isomorphism, bounded simula-
tion supports (a) simulation relations rather than bijective
functions, (b) predicates specifying search conditions based
on the contents of nodes, and (c) edges to be mapped to
(bounded) paths instead of edge-to-edge mappings.

(4) One can readily extend data graphs and patterns by
incorporating edge colors to specify, e.g., various relation-
ships [1]. We can extend bounded simulation by requiring
match on edge colors, to enforce relationships in a pattern
to be mapped to the same relationships in a data graph.

Maximum match. There may be multiple matches in a
graph G for a pattern P . Nevertheless, below we show that
there exists a unique maximum match in G for P . That is,
there exists a unique match SM in G for P such that for any
match S in G for P , S ⊆ SM (see the appendix for a proof).

Proposition 2.1: For any graph G and pattern P , if P E

G, then there is a unique maximum match in G for P . 2

Intuitively, SM captures all nodes of a community that
match the pattern P in a network G. Note that the car-
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dinality |SM | of SM is bounded: |SM | ≤ |V ||Vp|, where V

(resp. VP ) is the set of nodes in G (resp. P ). For instance,
the matches S0, S1, S2 of Example 2.2 are maximum.

Result graph. We introduce result graphs to represent
maximum matches. The result graph Gr = (Vr, Er) is a
graph representation of the maximum match S in G for P =
(Vp, Ep), where (1) Vr is the set of nodes of G in S, and (2)
there is an edge er = (v1, v2) ∈ Er if and only if there is an
edge (u1, u2) ∈ Ep, such that (u1, v1) ∈ S and (u2, v2) ∈ S.

Example 2.3: Consider the result graph Gr for the pattern
P2 of G2 in Example 2.2, shown in Fig. 3(a). (1) The graph
Gr contains all nodes in G2 that are mapped to some pattern
node in P2, and (2) each edge in Gr corresponds to a pattern
edge in P2, e.g., edge (DB, Soc) in Gr denotes a path of length
3 from DB to Soc, corresponding to (CS, Soc) in P2.

We also consider a pattern P ′ and a data graph from
YouTube video network (see Section 5 for details), in which
each node denotes a video with attributes such as submit-
ter, category, length, rate and “age” (the number of days
since uploaded), and edges represent a recommendation re-
lation. A pattern P ′ is to find the videos longer than 2 min-
utes and are more than one year old (p3), recommending
videos having comments less than 16 items and having been
viewed 700 times (p2), and from which the videos uploaded
by “neil010” is recommended (p4); moreover, from videos
matching p4, both videos in category “People” with rating
score larger than 4.5 (p1) and videos in category “Travel &
Places” with less than 30 ratings (p5) are recommended.

Figure 3(b) depicts the result graph G′

r, which represents
the maximum match found in the network. Observe that (1)
one pattern node can be mapped to multiple data nodes, in
different components, e.g., node p1 in P ′ is mapped to 3
nodes in G′

r, and (2) different pattern nodes can be mapped
to a single data node, e.g., video presented by node 2499
satisfies the predicates carried in both p2 and p3.

Moreover, while graph matching via subgraph isomor-
phism may produce exponential matched subgraphs, result
graphs represent results more succinctly. 2

2.3 The Graph Pattern Matching Problem

Based on graph patterns and bounded simulation given
above, we revise graph pattern matching as follows.

The graph pattern matching problem is to find, given any
data graph G and pattern graph P , the maximum match in
G for P if P E G.

By Proposition 2.1, the problem is well defined.

3. An Algorithm for Graph Pattern Matching
We next investigate the graph pattern matching problem.

The main result of this section is the following.

Theorem 3.1: For any pattern graph P = (Vp, Ep, fv, fe)

Input: Pattern P = (Vp, Ep, fv , fe) and data graph G = (V, E, fA).
Output: The maximum match S if P E G, and ∅ otherwise.

1. compute the distance matrix M of G;
2. for each (u′, u) ∈ Ep and each x ∈ V do

3. compute anc(fe(u′, u), fv(u′), x), desc(fe(u′, u), fv(u′), x);
4. for each u ∈ Vp do

5. mat(u) := {x | x ∈ V, fA(x) satisfies fv(u),
and out-degree(x) 6= 0 if out-degree(a) 6= 0};

6. premv(u) := {x | x ∈ V, out-degree(x) 6= 0, and
6 ∃(u′, u) ∈ Ep (x′ ∈ mat(u), fA(x) satisfies fv(u′),
and len(x/ · · · /x′) ≤ fe(u′, u))};

7. while (there exists a node u ∈ Vp with premv(u) 6= ∅) do

8. for (each (u′, u) ∈ Ep and each z ∈ premv(u) ∩ mat(u′)) do

9. mat(u′) := mat(u′) \ {z};
10. if (mat(u′) = ∅) then return ∅;
11. for each u′′ with (u′′, u′) ∈ Ep do

12. for (z′ ∈ anc(fe(u′′, u′), fv(u′′), z) ∧ z′ /∈ premv(u′)) do

13. if (desc(fe(u′′, u′), fv(u′), z′) ∩ mat(u′) = ∅)
14. then premv(u′) := premv(u′) ∪ {z′};
15. premv(u) := ∅;
16. S := ∅;
17. for (u ∈ Vp and x ∈ mat(u)) do S := S ∪ {(u, x)};
18. return S;

Figure 4: Algorithm Match

and data graph G = (V, E, fA), it is in O(|V ||E|+|Ep||V |2+
|Vp||V |) time to decide whether P E G, and if so, to compute

the maximum match in G for P . 2

As remarked earlier, it takes O((|V | + |Vp|)(|E| + |Ep|))
time to decide graph simulation from P to G [15]. This
tells us that bounded simulation does not make our lives
much harder since (1) P is typically much smaller than G

in practice, and (2) |E| is in O(|V |2) in the worst case. As
opposed to the np-hardness of its traditional counterpart via
subgraph isomorphism, the revised notion of graph pattern
matching allows us to find matches in polynomial time.

We next prove Theorem 3.1 by providing an algorithm for
graph pattern matching with the desired properties.

Algorithm. The algorithm, referred to as Match, is shown
in Fig. 4. Given P and G, it returns a maximum match S

in G for P if P E G, and it returns empty set ∅ otherwise.
Before illustrating the algorithm, we first present nota-

tions it uses. We use u, u′ to denote nodes in the pattern
P , and x, y, z for nodes in the data graph G. (1) We use
a distance matrix M to maintain the distances between all
pairs of nodes in G. (2) For each node u in the pattern
P , we use a set mat(u) to record nodes in G that may
match u, and a set premv(u) for those nodes that cannot
match any parent of u. (3) For each node x ∈ V and edge
(u′, u) ∈ Ep, anc(fe(u

′, u), fv(u′), x) records nodes x′ in the
graph G such that (i) the distance from x′ to x is within
the bound imposed by fe, i.e., len(x′/ · · · /x) ≤ fe(u

′, u),
and (ii) fA(x′) satisfies the predicate fv(u′) defined on u′;
similarly for desc(fe(u, u′), fv(u′), x), for descendants of x.

Algorithm Match first computes the distance matrix M for
G (line 1). Using M , it then computes anc() and desc() by
inspecting the predicates and bounds specified in P (lines 2-
3). For each pattern node u ∈ Vp, Match also initializes
mat(u) and premv(u) based on P and M (lines 4-6).

For each parent node u′ of u (i.e., (u′, u) ∈ Ep), Match

then refines mat(u′) by removing those nodes in G that can-
not match u′, namely, nodes z ∈ premv(u) (lines 8-9). More-
over, it utilizes z to identify nodes z′ that cannot match any
parent u′′ of u′, and includes z′ in premv(u′) (lines 11-14).
More specifically, z′ is not a candidate match of u′′ if z is
the only descendant of z′ that is within the bound fe(u

′′, u′),
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satisfies the predicate fv(u′), and is in mat(u′).
The process (lines 7-15) iterates until no mat() can be

reduced, i.e., if premv(u) is empty for all pattern node u (line
7). The nodes remaining in mat(u) are those that match u,
and are collected in S, which is returned as the match (lines
16-18). If mat(u) is empty for any u ∈ Vp in the process, u

cannot find a match in G, and Match returns ∅ (line 10).
Please reference appendix for a running example.

Correctness and Complexity. We show that algo-
rithm Match correctly finds the maximum match if it ex-
ists, and it has the complexity bound O(|V ||E|+ |Ep||V |2 +
|Vp||V |), as stated in Theorem 3.1 (see the appendix for a
detailed analysis and for a proof sketch of Theorem 3.1).

4. Incremental Graph Pattern Matching
Although way better than intractable, the cubic-time

complexity bound of Match is still too high for us to com-
pute matches in large data graphs. Worse still, in practice
data graphs are frequently modified [3]. It is too costly to
recompute matches every time when the graphs are updated.

This motivates us to study the incremental graph pattern

matching problem, referred to as IGPM. Given a graph pat-
tern P , a data graph G, the maximum match S in G for
P , and a list δ of updates (edge deletions and insertions) to
G, it is to compute the maximum match S′ in G′ for P if
P E G′. Here G′ is the updated G, denoted by G ⊕ δ.

The idea is to maximally reuse S when computing S′. The
rational behind this is that δ is typically small in practice.
Hence S′ is often only slightly different from S, i.e., S′ =
S⊕∆ while ∆ is small. It is far less costly to find the change
∆ to S than recomputing the entire S′ starting from scratch.

The main result of this section is the following.

Theorem 4.1: The incremental graph matching problem

is solvable in O(|AFF1| |AFF2|
2) time for dag patterns and

(possibly cyclic) data graphs. 2

As will be seen shortly, AFF1 and AFF2 are areas in a
data graph G that are affected by updates δ. They are much

smaller than G and S when δ is small. That is, IGPM can be
solved more efficiently than computing matches in graphs.
This suggests that we compute matches in G once, and then
incrementally maintain the matches when G is updated.

To show Theorem 4.1, we first define AFF1 and AFF2. We
then present algorithms for handling unit updates (a single
edge deletion or insertion). Finally we provide an algorithm
for batch updates and dag patterns, with the desired bound.

4.1 Affected Areas and Performance Guarantee

As observed in [21], the complexity of an incremental al-
gorithm should be measured by the size |AFF| of the changes

in the input and the output, rather than the size of the entire
input. Indeed, |AFF| represents the costs that are inherent
to the incremental problem itself, i.e., the amount of work
absolutely necessary to be performed for the problem.

An incremental problem is said to be bounded if it can be
solved by an algorithm for which the complexity is a function
of |AFF| alone. It is unbounded otherwise. Unfortunately,
IGPM is unbounded (see the appendix for a proof).

Proposition 4.2: The incremental graph matching problem

is unbounded even when pattern graphs are dags. 2

However, a closer look at IGPM suggests that we revise
its AFF. Over a period of time, G is updated and yields

Input: Pattern P = (Vp, Ep, fv , fe), data graph G = (V, E, fA),
the old maximum match S, the distance matrix M of G,
and an edge e to be deleted from G.

Output: The new maximum match S and the updated M .

1. AFF1 := UpdateM(G, M, e); wSet := ∅;

2. for all (v′, v) ∈ AFF1 do

3. for all (u′, u) ∈ Ep having v′ ∈ mat(u′) and v ∈ mat(u) do

4. if desc(fe(u′, u), fv(u), v′) ∩ mat(u) = ∅ then

5. wSet.push((u′, v′));
6. while (wSet 6= ∅) do

7. (u′, v′) := wSet.pop();
8. mat(u′) := mat(u′) \ { v′ }; S:= S \ { (u′, v′) };
9. for all (u′′, u′) ∈ Ep do

10. for all v′′ ∈ anc(fe(u′′, u′), fv(u′′), v′) ∩ mat(u′′) do

11. if desc(fe(u′′, u′), fv(u′), v′′) ∩ mat(u′) = ∅ then

12. wSet.push((u′′, v′′));

13. if there is a pattern node u having mat(u) = ∅ then S := ∅;
14. return S and M .

Figure 5: Algorithm Match−

a sequence of graphs G1, . . . , Gn. It is likely that for some
i < n, P E Gi+1 but P 6E Gi, i.e., the match Si in Gi for P is
∅. The empty Si does not help us when computing the match
Si+1 in Gi+1 for P . Hence besides Si, one needs to maintain
a distance matrix M so that Si+1 can be incrementally found
by using Si and M , no matter whether P E Gi or not [24].

In light of this, we treat M also as an input of IGPM, and
identify affected areas as follows: (1) AFF1 is the set of node
pairs (v′, v) in data graph G such that the distance between
them is changed by δ, i.e., the changes to M ; (2) AFF2 is
the difference between the new match S′ and the old S, i.e.,

the set of matches (u, v) added to or removed from S, along
with nodes that are adjacent to u in P or to v in G.

In Section 4.3 we provide an algorithm for IGPM, referred
to as IncMatch, with performance guarantee: its complexity
is a function that depends only on |AFF1| and |AFF2|. We
focus on patterns P that are dags but allow data graphs G

to be cyclic. It is open whether there exists a bounded algo-
rithm w.r.t. AFF1 and AFF2 for cyclic P and batch updates.

4.2 Incremental Algorithms for Unit Updates

To present IncMatch, we first give algorithms to handle a
single edge deletion or insertion, in O(|AFF1| |AFF2|

2) time.

Edge deletion. In Fig. 5, we give an incremental algorithm
for handling a singe edge deletion, denoted by Match−.

The algorithm takes as input a general pattern P , a data
graph G, the maximum match S in G for P , the distance
matrix M of G, and a single edge e to be deleted from G.
It works as follows. (1) It first computes AFF1 and updates
M by using procedure UpdateM (line 1). UpdateM incre-
mentally finds shortest paths, developed by [21] (see the ap-
pendix). (2) For each affected pair (v′, v) ∈ AFF1, Match−

identifies matches (u′, v′) directly affected by the distance
change of (v′, v) (lines 2-5). (3) It then recursively finds all
matches (u′′, v′′) affected by (u′, v′), and updates S accord-
ingly (lines 6-12). These matches constitute AFF2, and are
processed using a stack wSet. UpdateM returns the updated
maximum match S in G\{e} for P and the updated matrix
M of G \ {e} (line 14). If for some pattern node u, mat(u)
becomes empty, i.e., P 5 G \ {e}, S is ∅ (line 13).

We identify AFF2 based on the following. (1) The distance
of a pair (v′, v) in AFF1 can only be increased by the dele-
tion. Hence, given (v′, v) ∈ AFF1 with increased distance,
if v′ ∈ mat(u′) and v ∈ mat(u) for a pattern edge (u′, u)
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before the deletion, then (v′, u′) can be removed from S if
(a) the distance from v′ to v in the updated M is larger
than fe(u

′, u), and (b) v′ has no descendant vs other than
v in the updated G such that vs can match pattern node u

(lines 2-4). (2) After (u′, v′) is removed, a match (u′′, v′′) in
S is affected if (a) u′′ is a parent of u′ and v′′ is an ancestor
of v′, and (b) v′′ has no descendant other than v′ that can be
a match of u′. Using the same method as above (lines 9-12),
Match− checks whether (u′′, v′′) should be removed from S.

The algorithm works on general patterns and data graphs
(see a running example in the appendix).

Lemma 4.3: For (possibly cyclic) patterns and data graphs,

Match− is in O(|AFF1| |AFF2|
2) time for unit deletion. 2

Edge insertion. Along the same lines, we develop an incre-
mental algorithm for handling single edge insertion, denoted
by Match+. In contrast to Match−, an insertion may de-
crease the distance between nodes in G. As a result, instead
of finding and removing invalid matches from S, Match+

identifies increments to S incurred by the insertion. How-
ever, this may introduce new cycles to G, which need a
“global” check. In light of this, the algorithm only works for
acyclic patterns (see the appendix for the details of Match+).

Lemma 4.4: For dag patterns and (cyclic) data graphs,

Match+ is in O(|AFF1| |AFF2|
2) time for unit insertion. 2

4.3 Incremental Algorithm for Batch Updates

We next present IncMatch, an incremental algorithm for
processing a list δ of edge deletions and insertions (see the
appendix for the algorithm and its analysis).

Instead of processing updates in δ one by one, IncMatch

first computes AFF1 and updates M by taking the entire δ

as a batch. It then finds changes to the old match S by
identifying matches in AFF2 affected by node pairs in AFF1.

More specifically, the algorithm computes AFF1 and up-
dates M by invoking procedure UpdateBM. The procedure
is an extension of an algorithm of [20] that incrementally
maintains shortest paths (see the appendix). Based on AFF1

and the updated M , IncMatch updates S as follows. (a) For
each pair (v′, v) ∈ AFF1 with increased distance, it iden-
tifies matches (u′, v′) affected directly or indirectly by the
distance change of (v′, v), and updates S accordingly, along
the same lines as Match−. (b) For each pair in AFF1 with
decreased distance, IncMatch updates S following Match+.
After all affected matches in AFF2 are found, it returns the
new match S and the updated M .

We show in the appendix that IncMatch correctly com-
putes the new S and M , and that it is in O(|AFF1| |AFF2|

2)
time, for dag patterns and (possibly cyclic) data graphs.

5. Experimental Evaluation
We next present an experimental study of our matching

methods. Using both real-life and synthetic data, we con-
ducted three sets of experiments to evaluate (1) the effec-
tiveness, (2) the efficiency and scalability of algorithm Match

for graph pattern matching, and (3) the benefits and per-
formance of algorithm IncMatch for incremental matching.

Experimental setting. We used real-life data to evaluate
the effectiveness of our methods in real world, and synthetic
data to vary graph characteristics, for an in-depth analysis.

(1) Real-life data. The first two real-life datasets were

taken from a Web site1. (a) Matter records co-authorships
among scientists in the Condensed Matter Archive. (b)
PBlog contains Weblogs on us politics, connected via
hyperlinks. (c) The third real-life graph is a crawled
YouTube graph, as remarked earlier in Example 2.3.
The sizes of these real-life graphs are as follows:

Matter Pblog YouTube

|V | 16726 1490 14829
|E| 47594 19090 58901

(2) Synthetic data. We used the C++ boost graph generator
to produce data graphs, with 3 parameters: the number of
nodes, the number of edges, and a set of node attributes.

(3) Pattern generator. We implemented a generator to pro-
duce patterns, controlled by 4 parameters: the number of
nodes, the number of edges, an upper bound k on path
lengths, and a data graph G. Each edge has a bound with
either ∗ or k′, where k−c ≤ k′ ≤ k and c is a small constant.

(4) Implementation. We have implemented the following in
C++: (1) Match and IncMatch; (2) two variants of Match,
BFS and 2-hop, which use breadth-first search (BFS) to
compute node distances and leverage 2-hop labeling [8] to
prune disconnected nodes, respectively; these were to ex-
plore whether the existing techniques could help bounded
simulation; and (3) SubIso and VF2, two graph pattern
matching algorithms for subgraph isomorphism [28].

All experiments were run on a machine with an AMD

Athlon 64 × 2 Dual Core 2.30GHz CPU and 2GB of RAM,
using Windows Vista. For each experiment, 20 patterns
were generated and tested. The average result is reported.

Experimental results. We next present our findings.

Exp-1: Effectiveness and flexibility. In this set of
experiments, we first evaluated the effectiveness of Match

vs. SubIso and VF2 in identifying sensible matches in
YouTube. We then investigated the impact of varying the
number of pattern edges on matching, using synthetic data.

Effectiveness. We constructed 20 patterns for YouTube.
Two sample patterns and their result graphs are shown in
Fig. 6(a). The pattern P1 is to find “music” videos with a
high rating (p1), which are linked to videos of user “FWPB”
within 2 hops (p2); the node p2 is within 3 hops to videos
uploaded by “Ascrodin” (p3), which are less than 500 days
old and are in turn connected to p2 within 4 hops. The pat-
tern P2 is to find all “comedy” videos from user “Gisburgh”
(p6), which are referenced by both “politics” (p4) or “sci-
ence” videos (p5) within 3 hops, and have links to “people”
videos within 2 hops (p7).

We ran Match and SubIso on YouTube for each pattern.
We then inspected the matches found to verify their effec-
tiveness, in terms of the result graphs returned by Match,
and the subgraphs isomorphic to the pattern from SubIso.
We find the following. (1) For 2 out of 20 patterns, SubIso

cannot find any matches, while Match returned 9 matches
in average per pattern node, which is more sensible than
SubIso. These happened even when the bound k was set to 1
to favor SubIso. (2) When SubIso did not fail, Match always

identified more meaningful matches than SubIso. Indeed,
SubIso found only 1 match for each pattern node, Match

found in average 5 matches per pattern node. For instance,
partial matches found by Match were abstracted as S1 and
S2 in Fig. 6(a), which were missed by SubIso.

1http://www-personal.umich.edu/mejn/netdata/
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Figure 6: Experimental Results

We further compared Match with VF2, an widely used
algorithm for efficiently identifying isomorphic subgraphs.
The YouTube data was also used. Figure 6(b) shows the
result for their efficiency comparison. In the x-axis, the
three numbers (n1, n2, n3) are used to represent |Vp|, |Ep|
and k, respectively, denoting a pattern P (|Vp|, |Ep|, k). The
curve Match(Total) is the elapsed time including the time for
computing distance matrix, while the other curve for Match

excludes the time (i.e., the bottom curve). Recall that the
matrix was computed only once, and shared by all patterns.
This tells that the matching process is much faster than
VF2 in practice. Moreover, Figure 6(c) shows the number
of distinct matches found via VF2 and Match. In all cases,
Match finds much more matches than VF2.

Flexibility. We investigated the impact of varying pattern
edges Ep on matching, using synthetic data.

We used a data graph with 20K nodes, 40K edges, and 2K
different node attributes. We fixed |Vp| and k, and varied
|Ep| by adding new edges. The result is shown in Fig. 6(d),
in which the x-axis represents the number of edges added,
and the y-axis gives the number of matches found. When
only 1 edge was added (x = 1), the graph could match
all patterns. After 8 edges were added (x = 8), however,

the graph failed in matching most nodes. This tells that
adding pattern edges imposes new constraints on patterns,
and hence, increases the difficulty of matching, as expected.

Exp-2: Efficiency and scalability. We evaluated the
efficiency of Match, BFS and 2-hop using real-life datasets
and synthetic data, and their scalability using synthetic data
with various edge sets. In these experiments, the distance
matrix M and 2-hop labeling were precomputed and shared
by all patterns, and thus their costs were not counted.

Figure 6(e) shows the results for real-life data Matter,
PBlog and YouTube, with two patterns each. From the re-
sults we can see that Match clearly outperformed the other
approaches, i.e., the use of distance matrix was effective.
In most cases, there were a number of nodes that were
not reachable from a given node, and hence, 2-hop effec-
tively pruned those nodes and did better than BFS. When
there were only few candidate matches to be checked, all
approaches had similar performance, e.g., for Matter.

To further evaluate the efficiency of different approaches,
we fixed the number of nodes |V |, and varied the number
of edges |E| from 20K to 60K. The results are reported
in Figures 6(f), 6(g) and 6(h), in which the x-axis indicates
various patterns when their sizes |Vp| (= |Ep|) ranged from
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4 to 10. The results show that 2-hop was effective when |E|
is small (20K). However, when |E| was 40K (Fig. 6(g)) or
60K (Fig. 6(h)), 2-hop was not very useful since most nodes
were connected. In all the cases, Match performed the best.

The results also tell us that Match is insensitive to the in-
crease of the size |E|. This is because Match needs constant
time to check the distance between any pair of nodes, irrel-
evant of the bound k, by taking advantage of the distance
matrix. In light of this, Match scales well with |E|.

Exp-3: Incremental performance. In the third set of
experiments we used the YouTube data to evaluate the ben-
efits of the incremental algorithm IncMatch, given a list δ

of updates (edge deletions and insertions). We compared
the performance of IncMatch with that of Match; the latter
had to recompute the distance matrix when δ was incurred,
of which the cost was counted. The results are given in
Fig. 6(i), Fig. 6(j) and Fig 6(k), which also show the size of
AFF (the sum of |AFF1| and |AFF2|).

By varying |δ| from 400 to 3200, Figure 6(i) shows that
IncMatch outperformed Match when |δ| ≤ 2800, but Match

did better for larger δ. The larger the δ is, the larger size of
the average affected area is, as expected.

Figures 6(j) and 6(k) show the impact of edge deletions
and edge insertions, respectively. The results tell us that
IncMatch is not sensitive to edge deletions (Fig. 6(j)), but
on the other hand, edge insertion has a stronger impact
(Fig. 6(k)). These confirmed our observation in Section 4,
where we envisage that edge insertions introduce more com-
plications than deletions.

Summary. We find the followings. (1) The revised notion
of graph pattern matching is able to identify far more sen-
sible matches in real-world than the conventional approach
can find. (2) Our algorithms are efficient and scale well
with the size of data graphs, and with the size of pattern
graphs. (3) Our incremental algorithm efficiently processes
batch updates δ when δ is reasonably large.

6. Conclusion
We have proposed a revision of graph pattern matching,

based on (1) pattern graphs that specify search conditions
and (bounded) connectivity, and (2) bounded simulation.
This yields a cubic-time method for finding matches, as op-
posed to the intractability of its counterpart via subgraph
isomorphism. Moreover, it is able to capture more patterns
in emerging applications. We have also provided incremen-
tal algorithms for dag patterns and general data graphs,
with performance guarantee. Our experimental results have
verified the scalability and effectiveness of our methods.

We are currently experimenting with real-life datasets in
various domains, to identify areas in which the revised pat-
tern matching is most effective. Another topic is to develop
a bounded incremental algorithm for cyclic patterns (if it
exists). We are also to extend our methods by supporting
ranges on hops and edge colors to specify various relation-
ships. Finally, we are exploring optimization techniques to
improve the matching and incremental matching methods.
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Appendix: Algorithms, Examples and Proofs

Proof Sketch of Proposition 2.1

(1) We first show that there exists a maximum match, which
is the union of all matches in G for P . (2) We then show
the uniqueness by contradiction. That is, if there exist two
distinct maximum matches S1 and S2, then S3 = S2 ∪ S1 is
a match that is larger than both S1 and S2.

From (1) and (2) Proposition 2.1 immediately follows. 2

Running Example for Algorithm Match

We show how Match computes the maximum match in graph
G2 for pattern P2 of Example 2.2. For each node u in P2,
Match initializes mat() and premv() as follows:

P2 mat() premv()
CS {DB, AI} {DB,AI,Gen,Chem,Eco}
Med {Med} {Med,Gen,Eco,Chem}
Bio {Gen, Eco} {Med,Gen,Eco,Chem}
Soc {Soc} {AI,Med,Chem}

Algorithm Match then repeatedly removes from mat()
those nodes that do not make a match, by using premv().
For instance, AI is removed from mat(CS): while AI is a can-
didate match for CS, it cannot reach Soc within 3 hops, as
indicated by AI ∈ premv(Soc). Match terminates when all
nodes in P2 has an empty premv() set, and it returns the
match S2 given in Example 2.2, which is maximum.

Similarly, one can use Match to find the maximum match
in G0 for P0 (Fig. 1) and the match in G1 for P1 (Fig. 2).

Now consider G3 described in Example 2.2. Then DB is in
premv(Med) and premv(Soc), and all nodes in mat(CS) will be
removed by Match. This is, for CS no match can be found,
and Match returns ∅ to indicate that P2 5 G3. 2

Proof Sketch of Theorem 3.1

We prove Theorem 3.1 by showing that (1) algorithm Match

correctly computes the maximum match S in G for P , and
that (2) it is in O(|V ||E| + |Ep||V |2 + |Vp||V |) time.

(1) Correctness. (i) Algorithm Match always terminates. In-
deed, for each node u in P , mat(u) decreases monotonically
in the process. (ii) The algorithm returns a match S in G for
P iff P E G. One can verify that after the while loop (lines
7-15), for each x remaining in mat(u), x is a match of u. (iii)
The match S is maximum because (a) Match starts with all
possible match candidates for each node u in P ; and (b) the
loop only drops those nodes that cannot possibly match u.

(2) Complexity. Algorithm Match consists of three phases:
pre-processing (lines 1-6), match computation (lines 7-15),
and result collection (lines 16-18). One can verify that these
phases take O(|Ep||V |2 + |Vp||V |+ |V ||E|) time, O(|Ep||V |2)
and O(|Vp||V |) time, respectively. In particular, by using
bfs search for each node of G [2], the distance matrix M can
be computed in O(|V |(|V |+|E|)) time. Hence the algorithm
is in O(|V ||E| + |Ep||V |2 + |Vp||V |) time. 2

Running Example for Algorithm Match−

Consider P1 and G1 of Fig. 2, and the match S1 in G1 for
P1 given in Example 2.2. We show how Match− updates S1

after (SE, (HR,SE)) is removed from G1.
Match− first updates the distance matrix M of G1 and

computes affected node pairs in AFF1 (line 1). It then iden-

tifies those in AFF1 that may affect S1: (SE, (DM, ’golf’)r) and
((DM, ’golf’)l, A) (lines 2-3). Match− finds that (DM, ’golf’)l

has no descendant that matches A. Hence ((DM, ’golf’), (DM,

’golf’)l) is added to wSet (line 5) and is removed from S1 (line
8). At this point AFF2 contains ((DM,’golf’), (DM, ’golf’)l),
and S1 is shown as mat1() in the table below:

P1 mat1() mat2()
(A) (A) (A)
(SE) (SE),(HR,SE) (HR,SE)
(HR) (HR),(HR,SE) (HR),(HR,SE)
(DM, ’golf’) (DM, ’golf’)r (DM, ’golf’)r

As (DM, ’golf’)l is no longer a match of (DM,’golf’), Match−

checks whether SE, a parent of (DM,’golf’) in P1, is still
mapped to SE in G1 (lines 6-12). Since SE has no descen-
dant in G1 that matches (DM,’golf’), (SE, SE) is affected and
removed from S1. Match− also checks (A, A). As A in G1 still
has descendant (HR,SE) that matches the pattern node SE,
(A, A) is not affected. Now S1 becomes mat2() in the table
above, with ((DM,’golf’),(DM, ’golf’)l) and (SE, SE) in AFF2.

Since (SE, SE) is no longer a match, the test at line 3 is
false for (SE, (DM, ’golf’)r), and Match− terminates. Match−

returns M and S′

1, where S′

1 is the old S1 of Example 2.2
with ((DM,’golf’), (DM, ’golf’)l) and (SE, SE) removed.

In contrast to algorithm Match of Fig. 4, Match− only
checks (SE, (DM, ’golf’)r), ((DM, ’golf’)l, A) in AFF1, i.e., those
that may affect S1. Moreover, it only inspects those matches
in S1 that may be affected, i.e., ((DM,’golf’),(DM, ’golf’)l),
(SE, SE) and (A, A). In other words, Match− does not perform
redundant checks or unnecessary recomputation. 2

Algorithm IncMatch for Batch Updates

We provide Algorithm IncMatch and show that it is correct
and is in O(|AFF1| |AFF2|

2) time. Below we first present
the procedures of IncMatch that are not included in Sec-
tion 4, including UpdateM (UpdateBM) and Match+. We
then present IncMatch, and verify its correctness and com-
plexity, which involves the analysis of algorithms Match−

and Match+.

Incrementally update the distance matrix. We first illus-
trate UpdateM (UpdateBM), for incrementally maintaining
the distance matrix M of a data graph G in the presence of
a single update (a list of updates).

Procedure UpdateM. Given a graph G and an edge (s, t)
to be deleted, UpdateM [21] works in two phases. (1) It
finds all source-sink pairs in AFF1. To do this, UpdateM

first finds all affected sink nodes v to which the distance
from s changes, by following a breadth first order. For each
affected sink v, UpdateM then finds all sources v′ from which
the distance to v changes. In this way UpdateM identifies
all source-sink pairs that has the distance changed after the
update. (2) UpdateM then updates the distance for each
(v′, v) ∈ AFF1. To do this, for each affected sink v, UpdateM

computes for each source v′ the new distance. UpdateM

dynamically maintains for each sink a priority queue, con-
taining the distance from the affected children of v′ to v

that needs to be updated. During the updating process the
old distances are replaced first by selecting the minimum
distance from the unaffected child or the updated affected
child of v′ to v. Then the priority queue is recursively up-
dated to propagate the new distances. The recursive process
terminates when the distance of all affected source v′ to sink
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v has been updated. Similarly it handles edge insertions.

Procedure UpdateBM. The procedure is an extension of
algorithm SWSF FP of [20], which incrementally maintains
single source shortest path problem upon a list of updates.

Given a list δ of updates (s1, t1) . . . (sk, tk), where (si, ti)
is an edge that can either be deleted or inserted to data
graph G, UpdateBM first invokes SWSF FP for each si to
identify the affected sink nodes vi for si, and for each ti

to identify the affected source nodes v′

i. Then UpdateBM

applies SWSF FP to each sink vi and source v′

i respectively
to update the distance matrix.

Algorithm SWSF FP is to first identify direct changes to
sinks t that are end nodes of δ; for each affected sink t,
SWSF FP compares the old distance from s and newly com-
puted distance in terms of the neighbors nearest to s0. In
this way SWSF FP identifies a set of specially defined sink
nodes, which can be directly assigned the correct distance,
by choosing the old distance or newly computed distance.
Starting from these sinks, SWSF FP updates all affected
sinks accordingly, in a Dijkstra-like procedure.

Complexity. We say, for complexity analysis, that a node v

is in 1 hop of v′ in data graph G if there is a path between
v′ and v in G. Indeed, it is in constant time to obtain
the neighbors as well as the nodes having paths from or
to v, referencing distance matrix of G. We next elaborate
the measurements for the sizes of AFF1 and AFF2 given in
Section 4. (1) |AFF1| is the number of affected source-sink
pairs in AFF1. (2) |AFF2| is the total number of (a) all
pattern nodes u having (u, v) ∈ AFF2 with nodes within 2
hops of u in P ; (b) all nodes v in data graph G that match u,
with nodes within 2 hops of v in G; and (c) all the adjacent
edges to the nodes in (a) and (b) in P and G, respectively.

Following [21], it can be verified that UpdateM is bounded
by O(||AFF1||2 + |AFF1| log|AFF1|), where ||AFF1||2 is de-
fined as the extended size in the same sense for |AFF2|, i.e.,

the total number of affected nodes and the nodes within
2 hops in G, with all the adjacent edges considered. Fol-
lowing [20], one can show that UpdateBM is bounded by
O(||AFF1|| log||AFF1||), where ||AFF1|| is the sum of |AFF1|
and the number of all edges adjacent to nodes in AFF1.

The size of updates δ is bounded by |AFF1| [21], and hence
the complexity bounds above already contains parameter |δ|.

Incremental algorithm for handling single edge insertion. We
provide procedure Match+ in Fig. 7. It maintains M as an
auxiliary structure. Moreover, for each pattern node u ∈ Vp,
Match+ maintains a candidate match set can(u), consisting
of nodes v in which fA(v) satisfies fv(u) and v /∈ mat(u),
i.e., candidate matches of u.

Match+ first invokes procedure UpdateM to identify AFF1

and update M . With edge insertion, the distance of a pair
(v′, v) in AFF1 can only be decreased, and a new match
(u′, v′) may appear if v′ ∈ can(u′) and v ∈ mat(u) for some
(u′, u) ∈ Ep. Given (v′, v) with a smaller distance, Match+

first identifies all such u′ that may have new matches, and
further checks if (u′, v′) can be added into S. Similar to
Match−, Match+ further computes, for each v′, the possi-
bly propagated affected matches by recursively checking the
parent of u′ and ancestors of v′. More specifically, if (u′, v′)
is identified to be a new match, Match+ recursively checks
all pattern edges (u′′, u′) and all nodes in can(u′′), as with
v′ a newly generated match for u′, a subset of can(u′′) may
become matches of u′′. Match+ terminates when no more

Input: pattern P = (Vp, Ep, fv , fe), data graph G = (V, E, fA),
the maximum match S, the distance matrix M of G,
an edge e to be inserted.

Output: the maximum match S if P E G ∪ {e} (∅ otherwise),
the updated M

1. AFF1 := UpdateM(G, M, e);
2. wSet := ∅;

3. for all (v′, v) ∈ AFF1 do

4. for all (u′, u) ∈ Ep having v′ ∈ can(u′) and v ∈ mat(u) do

5. if for all (u′, us) ∈ Ep

desc(fe(u′, us), fv(us), v′) ∩ mat(us) 6= ∅ then

6. wSet.push((u′, v′));
7. while (wSet 6= ∅) do

8. (u′, v′) := wSet.pop();
9. mat(u′) := mat(u′) ∪ v′};
10. can(u′) := can(u′) ∪ { v′ };
11. S:= S ∪ { (u′, v′) };
12. for all (u′′, u′) ∈ Ep do

13. for all v′′ ∈ anc(fe(u′′, u′), fv(u′′), v′) ∩ mat(u′′) do

14. if for all (u′′, u′

s) ∈ Ep

desc(fe(u′′, us), fv(u′

s), v
′′) ∩ mat(u′

s) 6= ∅ then

15. wSet.push((u′′, v′′));

16. return S and M .

Figure 7: Algorithm Match+

matches can be added to S for all pattern nodes. The pro-
cess is bounded, as no more matches can be added into S

when the set can() become empty for all pattern nodes.

Running Example for Algorithm Match+

Consider P2 and G2 of Fig. 2, and the match S2 in G2

for P2 given in Example 2.2. Now suppose the Gen person
in G2 become interested in and follows the topic Soc person
studies, with edge (Gen, Soc) is inserted to G2. We show how
Match+ updates S2.

Match− first updates the distance matrix M of G2 and
computes affected node pairs in AFF1 (line 1). It then iden-
tifies those in AFF1 that may affect S2 (lines 3-4), in this
case, (AI, Soc). Match+ further finds that (a) AI ∈ can(CS),
and (b) Soc is within 3 hops of AI after edge (Gen, Soc) is
inserted (lines 5-6). Thus AI is a new match for CS, and is
added to S2 (line 11), while mat() and can() sets are updated
accordingly (lines 9-10). We show mat1() (resp. mat2()) as
mat() before (resp. after) the edge insertion as follows.

P2 mat1() mat2()
(Med) (Med) (Med)
(CS) (DB) (DB),(AI)
(Soc) (Soc) (Soc)
(Bio) (Gen) (Eco)

As can() is empty for every pattern node, there is no more
possible new matches found in the while loop of Match+

(lines 7-15). Match+ then returns S2 as the updated match.

Algorithm IncMatch. The algorithm is shown in Fig. 8.

(1) IncMatch invokes procedure UpdateBM given earlier [20],
to update M and identify AFF1 upon batch updates.

(2) IncMatch checks each pair in AFF1 to further update
S: (a) for each pair (v′, v) ∈ AFF1 with increased distance,
IncMatch updates S by invoking a part of Match− (lines 3-
12). Once an affected match (u′, v′) is found, IncMatch

moves v′ to can(u′) (as defined in Match+) instead of sim-
ply dropping it from mat(u′) as in Match−; (b) for each pair
(v′, v) ∈ AFF1 with decreased distance, IncMatch updates
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Input: Pattern P = (Vp, Ep, fv , fe), data graph G = (V, E, fA),
the maximum match S, the distance matrix M of G, and
a set of updates δ.

Output: The maximum match S if P E G ⊕ δ, and ∅ otherwise.

1. AFF1 = UpdateBM(G, M, δ);
2. for each (v′, v) ∈ AFF1 do

3. if the distance from v′ to v increases after applying δ then

4. invoke Match− (lines 3-12) to update S;
5. else

6. invoke Match+ (lines 4-15) to update S;

7. if there is a pattern node u having mat(u) = ∅ then

8. S := ∅;
9. return S.

Figure 8: Algorithm IncMatch

S by invoking a part of Match+ (lines 3-12). This process
repeats until all source-sink pairs (v′, v) ∈ AFF1 have been
processed, and IncMatch returns the updated S. 2

Proof Sketch of Theorem 4.1

We prove Theorem 4.1 by showing that (1) Algo-
rithm IncMatch is correct, and that (2) it indeed runs in
O(|AFF1| |AFF2|

2) time.

(1) Correctness. We first show that IncMatch correctly
maintains the match S, by proving that the result of
IncMatch upon δ, denoted as Sinc, is the same as Sr, which
is the final result of applying |δ| times of Match+ (Match−)
w.r.t. each of the single edge insertion (deletion) update in
δ. Observe that the correctness of IncMatch relies on the cor-
rectness of Match+ and Match− (to be shown in Lemmas 4.3
and 4.4, respectively). As the correctness of Match+ and
Match− is guaranteed, the correctness of IncMatch follows.

Denote by Gj the modified graph applying δ, and Sincj

(resp. Srj ) the match from IncMatch (resp. applying Match+

and Match− j times) . The correctness of IncMatch can be
shown by induction on the size of δ.

(1) IncMatch works exactly as Match+ or Match− when δ

contains a single update; thus the correctness holds for |δ|
= 1, i.e., Sinc1 = Sr1 .

(2) Suppose IncMatch is correct when |δ| = j. We next show
Srj+1 = Sincj+1 where |δ| = j + 1.

Let δ1 ⊆ δ with size j, and an arbitrary single update
δj+1 = δ \ δ1. Let Sinc′

j+1
= IncMatch(P, Gj , δj+1, Sincj ).

We show that Sincj+1 = Sinc′
j+1

. Indeed, if there is (u, v) ∈

Sincj+1 and (u, v) 6∈ Sinc′
j+1

, then there must exist a pair

(v, v′) of nodes in G such that the distance of which is and

is not affected by δ; this leads to a contradiction. Thus
Sincj+1 ⊆ Sinc′

j+1
. Similarly, Sinc′

j+1
⊆ Sincj+1 . Thus

Sincj+1 = Sinc′
j+1

.

From the assumption and (1), the correctness of IncMatch

holds for Sj , thus Sinc′
j+1

= IncMatch(P, Gj , δj+1, Sincj ) =

IncMatch(P, Gj , δj+1, Srj ). This is equivalent to the result

from Match+(P, Gj , δj+1, Sj) if δj+1 is an edge insertion, or
Match−(P, Gj , δj+1, Sj) if δj+1 is an edge deletion. In either
case, Sincj+1 = Srj+1 holds.

Putting these together, we have shown that Sincj+1 =
Srj+1 holds. Thus Sinc = Sr holds for δ with any size.

(2) Complexity. The algorithm works in two phases: updat-
ing M and finding AFF1; and updating S with AFF1.

The algorithm uses procedure UpdateBM, which is in

O(||AFF1|| log||AFF1||) time. IncMatch uses either Match+

or Match− to update S. As Match+ and Match− are
both bounded by O(|AFF1| |AFF2|

2) (to be shown in Lem-
mas 4.3 and 4.4, respectively), IncMatch is also bounded by
O(|AFF1| |AFF2|

2) at this phase. The total time of IncMatch

is thus bounded by O(||AFF1|| log||AFF1|| + |AFF1| |AFF2|
2),

which is further bounded by O(|AFF1| |AFF2|
2). 2

Proof Sketch of Proposition 4.2

We show that IGPM is unbounded by reduction from the
problem of incremental single-source reachability (ISSR) [21].
Given a directed graph G0(V0, E0), a distinguished node
s0 ∈ V , and a set of updates δ, ISSR incrementally main-
tains Vr (resp. Vn) as the set of nodes that are reachable
(resp. not reachable) from s0. It is known that ISSR is un-
bounded w.r.t. LPA, the class of locally persistent algorithms

used in a complexity hierarchy for incremental graph prob-
lems [21]. Given an I(G0, s0, δ) of ISSR, we construct an
instance of IGPM in linear-time, such that the former has a
solution iff the latter has one. 2

Proof Sketch of Lemma 4.3

We prove Lemma 4.3 by showing Algorithm Match− cor-
rectly finds the maximum match if it exists, and (2) it has
the complexity bound stated Lemma 4.3.

(1) Correctness. We first show the correctness of Match−.
Let S− be the match returned by Match−, and Sr the match
returned by the batch algorithm Match on G ⊕ δ. We show
that AFF2 = S \Sr by showing AFF2 ⊆ S \Sr and S \Sr ⊆
AFF2. Since S− ⊆ S, and AFF2 = S \S−, we have Sr = S−.

The computation of AFF2 is based on the following. (1)
The distance of a pair (v′, v) in AFF1 can only be increased
by the deletion. Hence, given (v′, v) ∈ AFF1 with increased

distance, if v′ ∈ mat(u′) and v ∈ mat(u) for a pattern edge
(u′, u) before the deletion, then (v′, u′) can be removed from
S if (a) the distance from v′ to v in the updated M is larger
than fe(u

′, u), and (b) v′ has no descendant vs other than
v in the updated G such that vs can match pattern node u

(lines 2-4). (2) After (u′, v′) is removed, a match (u′′, v′′) in
S is affected if (a) u′′ is a parent of u′ and v′′ is an ancestor
of v′, and (b) v′′ has no descendant other than v′ that can be
a match of u′. Using the same method as above (lines 9-12),
Match− checks whether (u′′, v′′) should be removed from S.

(2) Complexity. Match− consists of three phases: (i) updat-
ing M and computing AFF1(line 1), (ii) updating matches
affected by AFF1 (lines 2-12), and (iii) collecting the match
result (lines 13-14).

(i) Match− uses UpdateM to identify AFF1 and update M ,
which is bounded by O(|AFF1| |AFF2|

2).

(ii) Match− finds and updates the affected matches with
updated M and AFF1 (lines 2-12). The total time for (ii) is
O(|AFF1|+|AFF1| |AFF2|+|AFF1| |AFF2|

2), which is bounded
by O(|AFF1| |AFF2|

2).

(iii) The time to check and return updated S is bounded by
the size of affected matches, thus by O(|AFF2|).

Combining (i), (ii) and (iii), the total time of Match− is
bounded by O(||AFF1||2+|AFF1| log|AFF1|+|AFF1| |AFF2|

2),
which is further bounded by O(|AFF1| |AFF2|

2). 2

Proof Sketch of Lemma 4.4

We prove Lemma 4.4 by showing Algorithm Match+ cor-
rectly finds the maximum match if it exists, and (2) it has
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the complexity bound stated Lemma 4.4.

(1) Correctness. Let S+ be the match returned by Match+,
and Sr be the match returned by Match on G ⊕ δ. As S ⊆
S+, we show that AFF2 = Sr \ S by showing that AFF2 ⊆
Sr \ S and Sr \ S ⊆ AFF2.

The computation of AFF2 is based on the following. As
P is a dag, a new match (u′, v′) ∈ AFF2 can only be pro-
duced by either (1) s ∈ can(u′), t ∈ mat(u) for a pattern
edge (u′, u) before an edge insertion, and (s, t) ∈ AFF1 with
decreased distance making s match u′ (line 4 of Match+),
or (2) v′ matches u′ since all children of u′ find matches in
descendants of v′ produced in (1) or (2).

(2) Complexity. Match+ works in the following three phases.
(1) Match+ updates M and finds AFF1 within time bounded
by O(|AFF1||AFF2|

2) (line 1), as remarked earlier. (2)
Match+ then identifies all the matches directly affected by
AFF1 (lines 2-3), in time O(|AFF1| |AFF2|

2), as for each pair
(u′, v′), Match+ checks the nodes in G within 2 hops from v′

to determine whether v′ can match u′. (3) It further takes
in total O(|AFF1| |AFF2|

2) time to determine whether a pair
(u′′, v′′) is a match due to newly added matches. Thus, the
total time of Match+ is bounded by O(|AFF1| |AFF2|

2).

Details for Implementation

Next, we first describe the details for generating graph pat-
terns. We then give some explanation about 2-hop labeling,
which was used in our experimental study to improve the
algorithm Match.

More about pattern generator. Recall that a pattern gen-
erator takes 4 parameters for generating a pattern P =
(Vp, Ep): the number of nodes |Vp|, the number of edges
|Ep|, an upper bound k for pattern edges, and a data graph
G. The generator was designed towards producing positive

patterns, i.e., the graph G matches the pattern P . The
generation process is as follows:

(1) For i ∈ [1, |Vp|], we iteratively generate pattern node vi

in iteration i. If i = 1, we randomly pick one graph node
x1 ∈ V , and generate v1 based on x1 such that x1 satisfies

v1. When i > 1, we select one pattern node vj where j < i

as a base node. Note that we record a graph node xj for
each pattern node vj . Based on xj , we traverse on graph G

within k′ hops to reach another graph node xi 6= xj . Here,
k − c ≤ k′ ≤ k + c where c is a small constant, in order to
assign various bounds on pattern edges. When xi is found, a
pattern node vi is generated upon xi, and a pattern edge will
be generated from vj to vi, with the bound k′. Alternatively,
the symbol ∗ could be assigned for edge (vj , vi), meaning
unbounded.

(2) In the process above, if each edge is bounded, we assure
that current pattern with |Vp| nodes and |Vp| − 1 edges is
a positive pattern, i.e., a pattern that will be matched by
G. Then, for i ∈ [1, |Ep| − |Vp| + 1], we randomly pick two
pattern nodes and generate an edge between them, until the
number of pattern edges reaches |Ep|. The edge bound is
assigned similarly to that in (1). Notably, in this process, we
do not guarantee the positiveness of the generated pattern.

2-hop labeling. In our experimental study we evaluated two
versions of Match. The first one built a distance matrix for
a data graph G, as described in Section 3. The matrix was
used to find the distance between any two graph nodes in
constant time. Alternatively, we generated 2-hop encodes

for graph G, used as a filter for finding distance between
two graph nodes x, y. It works as follows, if via the labels
L(x) of x and L(y) of y, we know that node x can reach y,
a breath first search will be invoked to compute the exact
distance from x to y.

The basic idea behind 2-hop labeling is as follows. Given
a graph G = (V, E), a 2-hop reachability labeling [10] over
G is a set of labels L(v) for each node v ∈ V , where
L(v) = (Lin(v), Lout(v)) with Lin(v), Lout(v) ⊆ V . To an-
swer whether a node u reaches a node v, it suffices to check
Lout(u) and Lin(v). The node u reaches v iff the intersec-
tion of Lout(u) and Lin(v) is not empty. We leverage the
approach proposed in [8] for computing 2-hop encodes over
G.

Additional Experimental Results

Flexibility for various bounds. As a supplement for Exp-1 in
Section 5, we study the impact of varying bounds k on the
graph pattern matching problem.

Fixing two parameters, the number of pattern nodes |Vp|
and the number of pattern edges |Ep|, we varied k from 4 to
20. The results are reported in Fig. 9. This figure visualizes
the average number of pattern nodes that found a match in
G. The number is enclosed in a circle ◦, and the circles are
scaled proportionally to the number. Consider P (12, 11, k).
There are no matches when k < 9; there are 38 matches
when k = 9, and 110 when k = 12. When k > 13, however,
the number of matches is not increased and is hence omitted
from Fig. 9. This tells us that increasing bound k induces
more matches, up to a point when no new matches can be
added by increasing k.

36 70 96 104 110

25 62 80 84 92

28 50 60 67 70

42 50 54 57

34 36 38P (4, 3, k)

P (6, 5, k)

P (8, 7, k)

P (10, 9, k)
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4 5 6 7 8 9 10 11 12 13
Bound(k)

Figure 9: Effectiveness for various bounds

Statistics on |AFF| and |Gr|. As a supplement for Exp-2 and
Exp-3 in Section 5, we give some statistic results as follows.

(1) We evaluated |Gr|, the average size of result graphs gen-
erated in Exp-2. Each generated result graph has around 70
data nodes and 174 edges, for patterns of size (4, 4, 3) over
the Youtube network. This number varies w.r.t. the pattern
size, the number of predicates and the edge bound.

(2) We evaluated the average size of pairs in |AFF1|, which
can possibly affect the matches, denoted as |AFFr|, and
|AFF2|. In the result shown in Figure 6(k), in all cases
|AFF1| is much larger than |AFF2|. In this test, |AFF2| is
around 500 in total, which is much larger than |AFFr| that
is less than 10. This shows that (a) although |AFF1| may
be large in practice, only around less than 1% of AFF1 will
affect the match result, and (b) |AFF2| is much less than
|AFF1| in practice, which indicates that bounded simulation
is relatively not sensitive to the data graph updates, even
when there are a large number of pairwise distance changes.
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