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Abstract This paper investigates constraints for matching
records from unreliable data sources. (a) We introduce a class
of matching dependencies (mds) for specifying the seman-
tics of unreliable data. As opposed to static constraints for
schema design, mds are developed for record matching, and
are defined in terms of similarity predicates and a dynamic
semantics. (b) We identify a special case of mds, referred to
as relative candidate keys (rcks), to determine what attri-
butes to compare and how to compare them when matching
records across possibly different relations. (c) We propose
a mechanism for inferring mds, a departure from traditional
implication analysis, such that when we cannot match records
by comparing attributes that contain errors, we may still
find matches by using other, more reliable attributes. More-
over, we develop a sound and complete system for inferring
mds. (d) We provide a quadratic-time algorithm for infer-
ring mds and an effective algorithm for deducing a set of
high-quality rcks from mds. (e) We experimentally verify
that the algorithms help matching tools efficiently identify
keys at compile time for matching, blocking or window-
ing and in addition, that the md-based techniques effectively
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improve the quality and efficiency of various record matching
methods.
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1 Introduction

Record matching is the problem of identifying tuples in one
or more relations that refer to the same real-world entity. This
problem is also known as record linkage, merge-purge, data
deduplication, duplicate detection and object identification.
The need for record matching is evident. In data integra-
tion, it is necessary to collate information about an object
from multiple data sources [31]. In data cleaning it is crit-
ical to eliminate duplicate records [7]. In master data man-
agement, one often needs to identify links between input
tuples and master data [32]. The need is also highlighted by
payment card fraud, which cost $4.84 billion worldwide in
2006 [27]. In fraud detection, it is a routine process to cross-
check whether a card user is the legitimate card holder.

Record matching is a longstanding issue that has been
studied for decades. A variety of approaches have been pro-
posed for record matching: probabilistic (e.g., [20,29,46,
48]), learning-based [13,36,42], distance-based [22], and
rule-based [2,24,31] (see [15] for a recent survey).

No matter what approach to use, one often needs to decide
what attributes to compare and how to compare them. Real
life data is typically dirty (e.g., a person’s name may appear
as “Mark Clifford” and “Marx Clifford”) and may not have a
uniform representation for the same object in different data
sources. To cope with these, it is often necessary to hinge on
the semantics of the data. Indeed, domain knowledge about
the data may tell us what attributes to compare. Moreover, by
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SSN c# FN LN addr tel email gender type
t1: 111 079172485 Mark Clifford 908-1111111 mc@gm.com M master
t2: 222 191843658 David Smith

10 Oak Street, MH, NJ 07974
620 Elm Street, MH, NJ 07976 908-2222222 dsmith@hm.com M visa

c# FN LN post phn email gender item price
t3: 111 Marx Clifford 908 mc null iPod 169.99
t4: 111 Marx Clifford NJ 908-1111111 mc null book 19.99
t5: 111 M. Clivord

10 Oak Street, MH, NJ 07974

10 Oak Street, MH, NJ 07974 1111111 mc@gm.com null PSP 269.99
t6: 111 M. Clivord NJ 908-1111111 mc@gm.com null CD 14.99

(a)

(b)

Fig. 1 Example credit and billing relations. a Example credit relation Ic; b Example billing relation Ib

analyzing the semantics of the data, we can deduce alternative
attributes to inspect such that when matching cannot be done
by comparing attributes that contain errors, we may still find
matches by using other, more reliable attributes. This is illus-
trated by the following example.

Example 1 Consider two data sources specified by the fol-
lowing relation schemas:

credit (c#, ssn, fn, ln,addr, tel,email,gender, type),

billing (c#, fn, ln,post,phn,email,gender, item,price).

Here, a credit tuple specifies a credit card (with number
c# and type) issued to a card holder who is identified by ssn,
fn (first name), ln (last name), addr (address), tel (phone),
email, and gender. A billing tuple indicates that the price of
a purchased item is paid by a credit card of number c#, used
by a person specified in terms of name (fn, ln), gender,
postal address (post), phone (phn), and email. An example
instance (Ic, Ib) of (credit, billing) is shown in Fig. 1.

For payment fraud detection, one needs to check whether
for any tuple t in Ic and any tuple t ′ in Ib, if t[c#] = t ′[c#],
then t[Yc] and t ′[Yb] refer to the same person, where Yc and
Yb are two attribute lists:

Yc = [fn, ln,addr, tel,gender],
Yb = [fn, ln,post,phn,gender].

That is, we have to determine whether the card holder
(identified by t[Yc]) and the card user (t ′[Yb]) are the same
person. If t[c#] = t ′[c#] but t[Yc] and t ′[Yb] do not match,
then the chances are that a payment card fraud has been
committed.

However, due to errors in the data sources, one may not
be able to match t[Yc] and t ′[Yb] via pairwise comparison of
their attributes, i.e., it is not straightforward to decide t[Yc]
and t ′[Yb] actually refer to the same person. In the instance
of Fig. 1, for example, billing tuples t3 − t6 and credit tuple
t1 actually refer to the same card holder. However, no match
can be found when we check whether the Yb attributes of
t3 − t6 and the Yc attributes of t1 are identical.

Domain knowledge about the data suggests that we only
need to compare ln, fn and address when matching t[Yc]
and t ′[Yb] [24]: if a credit tuple t and a billing tuple t ′ have

the same address and last name, and if their first names are
similar (although they may not be identical), then the two
tuples refer to the same person. That is, ln, fn and address,
together with two equality operators and a similarity predi-
cate ≈d , are a “key” for matching t[Yc] and t ′[Yb]:

ϕ1: If t[ln, addr] = t ′[ln, post] and if t[fn] and t ′[fn] are
similar w.r.t. ≈d , then t[Yc] and t ′[Yb] are a match.

Such a matching key tells us what attributes to compare
and how to compare them in order to match t[Yc] and t ′[Yb].
By comparing only the attributes in ϕ1, we can now match
t1 and t3, although their fn, tel, email and gender attributes
are not pairwise identical.

A closer examination of the data semantics further sug-
gests the following: for any credit tuple t and billing tuple t ′,

ϕ2: if t[tel] = t ′[phn], then we can identify t[addr] and
t ′[post], i.e., they should be changed by taking the same
value in any uniform representation of the address.

ϕ3: if t[email] = t ′[email], then we can identify t[ln, fn]
and t ′[ln, fn].

None of these makes a key for matching t[Yc] and t ′[Yb],
i.e., we cannot match entire t[Yc] and t ′[Yb] by just com-
paring their email or phone attributes. Nevertheless, putting
them together with the matching key ϕ1 given above, we can
infer the following new matching keys:

rck2: ln, fn and phone, to be compared with =,≈d ,=
operators, respectively,
rck3: address and email, to be compared via =, and
rck4: phone and email, to be compared via =.

These three deduced keys have added value. While we
cannot match t1 and t4 − t6 by using the initial matching key
ϕ1, we can match these tuples based on the deduced keys.
Indeed, using key rck4, we can now match t1 and t6 in Fig. 1:
they have the same phone and email, and can thus be identi-
fied, although their name, gender and address attributes are
radically different. That is, although there are errors in those
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attributes, we are still able to match the records by inspecting
their email and phone attributes. Similarly, we can match t1
and t4, and t1 and t5 using rck2 and rck3, respectively. ��

The example highlights the need for effective techniques
to specify and reason about the semantics of data in unreliable
relations for record matching. One can draw an analogy of
this to our familiar notion of functional dependencies (fds).
Indeed, to identify a tuple in a relation we use candidate
keys. To find the keys we first specify a set of fds, and then
infer keys by the implication analysis of the fds. For all the
reasons that we need fds and their reasoning techniques for
identifying tuples in a clean relation, it is also important to
develop (a) dependencies to specify the semantics of data in
relations that may contain errors and (b) effective techniques
to reason about these dependencies.

One might be tempted to use fds in record matching.
Unfortunately, fds and other traditional dependencies are
defined on clean (error-free) data, mostly for schema design
(see, e.g., [1]). In contrast, for record matching, we have to
accommodate errors and different representations in differ-
ent data sources. As will be seen shortly, in this context,
we need a form of dependencies quite different from their
traditional counterparts, and a reasoning mechanism more
intriguing than the standard notion of implication analysis.

The need for identifying what attributes to compare
[29,45] and moreover, the need for dependencies in record
matching [5,12,24,38,45] have long been recognized. It is
known that matching keys typically assure high match accu-
racy [15]. However, no previous work has studied how to
specify and reason about dependencies for matching records
across unreliable data sources.

Contributions. This paper proposes a class of dependencies
for record matching and provides techniques for reasoning
about such dependencies.

(1) Our first contribution is a class of matching depen-
dencies (mds) of the form: if some attributes match
then identify some other attributes. For instance, all
the semantic relations (ϕ1, ϕ2, ϕ3, rck2, rck3, rck4) we
have seen in Example 1 can be expressed as mds. In
contrast to traditional dependencies, matching depen-
dencies have a dynamic (update) semantics to accom-
modate errors in unreliable data sources. They are
defined in terms of similarity operators and across pos-
sibly different relations.

(2) Our second contribution is a formalization of matching
keys, referred to as relative candidate keys (rcks). rcks

are a special class of mds that match tuples by compar-
ing a minimum number of attributes. For instance, the
matching keys ϕ1, rck2, rck3 and rck4 given in Exam-
ple 1 are rcks relative to (Yc,Yb). The notion of rcks

substantially differs from traditional candidate keys for

relations: they aim to identify tuples across possibly
different, unreliable data sources.

(3) Our third contribution is a generic reasoning mecha-
nism for deducing mds from a set of given mds. For
instance, the keys rck2, rck3 and rck4 of Example 1
can be deduced from the mds ϕ1, ϕ2 and ϕ3. In light of
the dynamic semantics of mds, the reasoning is a depar-
ture from our familiar terrain of traditional dependency
implication.

(4) Our fourth contribution is a sound and complete infer-
ence system for deducing mds from a set of given mds,
along the same lines as the Armstrong’s Axioms for the
implication analysis of fds (see, e.g., [1]). The infer-
ence of mds is, however, more involved than its fds

counterpart: it consists of nine rules, instead of three
axioms.

(5) Our fifth contribution is an algorithm for determining
whether an md can be deduced from a set of mds.
Despite the dynamic semantics of mds and the use
of similarity operators, the deduction algorithm is in
O(n2) time, where n is the length of mds (see e.g., [1]
for discussions about the length of dependencies).
This complexity bound is comparable to the traditional
implication analysis of fds.

(6) Our sixth contribution is an algorithm for deducing a
set of rcks from mds. Recall that it takes exponen-
tial time to enumerate all candidate keys from a set of
fds [33]. For the same reason, it is unrealistic to com-
pute all rcks from mds. To cope with this, we introduce
a quality model such that for any given number k, the
algorithm returns k high-quality rcks w.r.t. the model,
in O(kn3) time, where n is as above.

We remark that the reasoning is efficient: it is done at
the schema level and at compile time, and n is the size of
mds (analogous to the size of fds), which is typically much
smaller than that of data on which matching is conducted.

(7) Our final contribution is an experimental study. We first
evaluate the scalability of our reasoning algorithms and
find them quite efficient. For instance, it takes less than
50 seconds to deduce 50 high-quality rcks from a set
of 2000 mds. Moreover, we evaluate the impacts of
rcks on the quality and performance of two record
matching methods: statistical and rule-based. Using
real-life data scraped from the Web, we find that rcks

improve match quality by up to 20%, in terms of pre-
cision (the ratio of true matches correctly found to all
matches returned, true or false) and recall (the ratio
of true matches correctly found to all matches in the
data, correctly found or incorrectly missed). In many
cases, rcks improve the efficiency as well. In addi-
tion, rcks are also useful in blocking and windowing,
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Fig. 2 Our work in record matching and schema matching context

two of the widely used optimization techniques for
matching records in large relations (see below). We
find that blocking and windowing based on (parts of,
i.e., a subset of attributes in) rcks consistently lead
to better match quality than their counterparts without
using rcks, with 10% improvement.

Applications. As illustrated in Fig. 2, this work does not aim
to introduce another record matching algorithm. It is to com-
plement existing methods and to improve their match quality
and efficiency, in particular when dealing with large, unre-
liable data sources. Taken together with automated methods
for schema matching and techniques for dependency discov-
ery, this work aims to provide effective techniques to find
keys for matching, blocking and windowing.

Matching. Naturally rcks provide matching keys: they
tell us what attributes to compare and how to compare them.
As observed in [29], to match tuples of arity n, there are
2n possible comparison configurations. Thus it is unrealis-
tic to enumerate all matching keys exhaustively and then
manually select “the best keys” among possibly exponen-
tially many candidates. In contrast, rcks are automatically
deduced from mds at the schema level and at compile time.
In addition, rcks reduce the cost of inspecting a single pair
of tuples by minimizing the number of attributes to compare.

Better still, rcks improve match quality. Indeed, deduced
rcks add value: as we have seen in Example 1, while tuples
t4 − t6 and t1 cannot be matched by the given key, they are
identified by the deduced rcks. The added value of deduced
rules has long been recognized in census data cleaning: deriv-
ing implicit rules from explicit ones is a routine practice of
US Census Bureau [19,47].

Blocking. To handle large relations, it is common to parti-
tion the relations into blocks based on blocking keys (discrim-
inating attributes), such that only tuples in the same block
are compared (see, e.g., [15]). This process is often repeated
multiple times to improve match quality, each using a differ-
ent blocking key. The match quality is highly dependent on

the choice of blocking keys. As shown by our experimental
results, blocking can be effectively done by grouping similar
tuples by (parts of) rcks.

Windowing. An alternative way to cope with large rela-
tions is by first sorting tuples using a key, and then compar-
ing the tuples using a sliding window of a fixed size, such
that only tuples within the same window are compared [24].
As verified by our experimental study, (parts of) rcks suffice
to serve as quality sorting keys.

We contend that the md-based techniques can be readily
incorporated into matching tools to improve their quality and
efficiency. Provided a small initial set of mds, matching tools
can employ the reasoning techniques to automatically derive
high-quality rcks, and use them as different kinds of keys
for matching, blocking and windowing.

In this work, we focus on the specification of mds and
inference of mds from an initial set of mds. As shown in
Fig. 2, the initial mds may be either manually designed
based on domain knowledge, or automatically discovered
from sample data via a combination of schema matching
techniques (e.g., the methods supported by COMA++ [6] or
Clio [23]; see [35] for a survey), expectation maximization
(em) algorithms [29,46] and methods for dependency discov-
ery (e.g., [17,26,40]). We defer the study of mds discovery
to future work.

We consider mds defined on two distinct relations. In prac-
tice one often needs to identify tuples from different data
sources, rather than in the same relation. The need for this
is evident in data cleaning, when we need to match input
data and master data, which typically have radically differ-
ent schemas (see e.g., [2,37]). As will be seen in Section 4,
there are subtle differences between the inference of mds

across different relations and its counterpart in a single rela-
tion. Nevertheless, most results of this work can be readily
extended to mds defined on the same relation.

Organization. The remainder of the paper is organized as
follows. Section 2 discusses related work. Section 3 defines
mds and rcks. Section 4 introduces reasoning mechanism
and an inference system for mds. Algorithms for deducing
mds and rcks are provided in Sects. 5 and 6, respectively.
The experimental study is presented in Section 7, followed
by topics for future work in Sect. 8.

2 Related work

This work is an extension of [18] by including a sound and
complete inference system for mds (Sect. 4.2), and details of
the algorithms and proofs in Sects. 5 and 6. The idea of this
work was also presented in an invited tutorial [16], without
revealing technical details.
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A variety of methods (e.g., [2,11,13,19–22,24,29,31,36,
42,46,47]) and tools (e.g., Febrl, TAILOR, WHIRL, BigMatch)
have been developed for record matching (see [15] for a
recent survey). There has also been a host of work on more
general data cleaning and ETL tools (see [7] for a survey). This
work is not to provide another record matching algorithm.
Instead, it complements prior matching methods by provid-
ing dependency-based reasoning techniques to help decide
keys for matching, blocking or windowing. An automated
reasoning facility will effectively reduce manual effort and
improve match quality and efficiency. While such a facility
should logically become part of the record matching process,
we are not aware of analogous functionality currently in any
systems or tools.

Rules for matching are studied in [2,4,5,12,24,31,38,39,
45]. A class of rules is introduced in [24], which can be
expressed as relative candidate keys of this paper; in particu-
lar, the key used in Example 1 is borrowed from [24]. Exten-
sions of [24] are proposed in [2,4], by supporting dimensional
hierarchies and constant transformations to identify domain-
specific abbreviations and conventions (e.g., “United States”
to “USA”). It is shown that matching rules and keys plays an
important role in industry-scale credit checking [45]. The
need for dependencies for record matching is also high-
lighted in [12,38]. A class of constant keys is studied in [31],
to match records in a single relation. Recursive algorithms
are developed in [5,39], to compute matches based on cer-
tain dependencies. The AJAX system [21] also advocates
matching transformations specified in a declarative language.
However, to the best of our knowledge, no previous work has
formalized matching rules or matching keys as dependencies
in a logic framework, or has studied automated techniques
and inference systems for reasoning about dependencies for
record matching. This work provides the first formal spec-
ifications and static analyses of matching rules, to deduce
keys for matching, blocking and windowing via automated
reasoning of dependencies.

There are other approaches [29,44,46] to deciding what
attributes to compare in object identification. A heuristic
method was proposed in [44] to identify relevant elements
in xml documents, by capturing their structural similar-
ity such as navigational paths. It differs from this work in
that it does not consider automated techniques for deduc-
ing matching rules. Probabilistic methods have also been
studied in [29,46], using an expectation maximization (em)
algorithm. In contrast, this work decides what attributes to
compare by the static analyses of mds at the schema level and
at compile time. As will be seen in Section 7, the md-based
method outperforms the em-based approach in both accuracy
and efficiency. On the other hand, the two approaches com-
plement each other: one can first discover a small set of mds

via sampling and learning, and then leverage the reasoning
techniques to deduce rcks. It should be remarked to get an

initial set of mds one can also leverage domain knowledge
analysis, along the same lines as the design of fds.

As remarked earlier, it is important to develop techniques
for discovering matching dependencies. A variety of meth-
ods have been proposed for discovering fds (e.g., [17,26])
and traditional keys (e.g., [40]), which are defined on a single
relation in terms of equality. However, to discover mds these
methods need substantial extensions, to decide what attri-
butes across different schemas correspond to each other and
what similarity operators should be used to compare them.
As suggested in Fig. 2, discovery algorithms for mds need
to leverage schema matching techniques [6,35] and expec-
tation maximization algorithms [29,46]. Discovery methods
for mds are not the focus of this work.

Dependency theory is almost as old as the study of rela-
tional databases itself. Traditional dependencies, e.g., fds,
are first-order logic sentences in which domain-specific sim-
ilarity metrics are not expressible. Furthermore, these depen-
dencies are static constraints for which updates are not a
concern and are studied for schema design on clean data
(see, e.g., [1] for a detailed discussion of relational depen-
dencies). In contrast, for matching records from unreliable
data sources, one needs similarity metrics to accommodate
errors in the data. In addition, as will be seen shortly, the
static semantics of traditional dependencies is no longer
appropriate in record matching. Indeed, the semantics of
mds and the notion of their deductions are a departure
from their traditional counterparts for dependencies and
implication.

There have been extensions of fds by supporting similar-
ity predicates [9,30]. There has also be been work on schema
design for uncertain relations by extending fds [3]. Like tra-
ditional fds, these extensions are defined on a single relation
and have a static semantics. They are quite different from
mds studied in this work, which are defined across possibly
different relations and have a dynamic semantics.

Dynamic constraints have been studied for database evo-
lution [43] and for xml updates [10]. These constraints aim
to express an invariant connection between the old value and
the new value of a data element when the data is updated.
They differ from mds in that these constraints are restric-
tions on how given updates should be carried out. In con-
trast, mds specify how data elements should be identified
for record matching. In other words, mds are to determine
what (implicit) updates are necessary for identifying records.
Furthermore, similarity predicates are not supported by the
constraints of [10,43].

3 Matching dependencies and relative candidate keys

In this section, we first define matching dependencies and
then present the notion of relative candidate keys. For the
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Table 1 Symbols and abbreviations

� A fixed set of similarity predicates, including ‘=’

≈ A similarity predicate in �

≈d A predicate in � defined in terms of edit distance

� The matching operator

md Matching dependency

rck Relative candidate key

LHS The left-hand side

RHS The right-hand side

I A relation instance

D A database instance

I � I ′ I and I ′ are two instances of the same relation

schema, and for each tuple t in I there is a tuple

t ′ in I ′ such that t and t ′ have the same tuple id

(I1, I2) � (I ′
1, I ′

2) I1 � I ′
1 and I2 � I ′

2

X, Y, Z ,U, V,W Each one denotes a list of attributes, respectively

A, B,C, E, Each one denotes a single attribute, respectively
F,G, H

ϕ, φ,ψ or γ Each one denotes a md or rck, respectively

� or � Denote a set of mds or rcks

readers’ convenience, some symbols and abbreviations to be
used are listed in Table 1.

3.1 Matching dependencies

Let R1 and R2 be two relation schemas, and YR1 and YR2 be
two lists of attributes in R1 and R2, respectively. The record
matching problem is stated as follows.

Given an instance (I1, I2) of (R1, R2), the record match-
ing problem is to identify all tuples t1 ∈ I1 and t2 ∈ I2 such
that t1[YR1 ] and t2[YR2 ] refer to the same real-world entity.

Observe the following. (a) Even when t1[YR1] and t2[YR2 ]
refer to the same entity, one may still find that t1[YR1 ] �=
t2[YR2 ] due to errors or different representations in the data.
(b) The problem aims to match t1[YR1 ] and t2[YR2 ], i.e., parts
of t1 and t2 specified by lists of attributes, not necessarily the
entire tuples t1 and t2. (c) It is to find matches across relations
of possibly different schemas.

To accommodate these in record matching, we define mds

in terms of similarity predicates, a departure from our familiar
fds. Before we define mds, we first discuss similarity predi-
cates. To simplify the discussion, we assume that R1 and R2

specify distinct data sources. Nevertheless, the results of this
paper can be readily adapted to the context where R1 and R2

denote the same relation.
Similarity predicates. Assume a fixed set � of domain-

specific similarity relations. For each ≈ in �, and values
x, y in the specific domains in which ≈ is defined, we write
x ≈ y if (x, y) is in ≈, and refer to ≈ as a similarity predi-
cate. The predicate can be defined in terms of any similarity

metric used in record matching, e.g., q-grams, Jaro distance
or edit distance (see [15] for a survey), such that x ≈ y is true
if x and y are “close” enough w.r.t. a predefined threshold.

In particular, the equality relation = is in �.
We also use a matching operator �: for any values x and

y, x � y indicates that x and y are identified via updates,
i.e., we update x and y to make them identical. The semantics
of the operator � will be elaborated shortly.

In terms of similarity predicates and the matching opera-
tor, we next define matching dependencies.

Matching dependencies. A matching dependency (md) ϕ
for (R1, R2) is syntactically defined as follows:
∧

j∈[1,k]
(R1[A j ] ≈ j R2[B j ]) →

∧

i∈[1,h]
(R1[Ei ] � R2[Fi ]),

where (1) for each j ∈ [1, k], A j and B j are attributes of R1

and R2, respectively, with the same domain; similarly for Ei

and Fi when i ∈ [1, h]; and (2) ≈ j is a similarity predicate
in � that is defined in the domain of R1[A j ] and R2[B j ].

Let Z1 be the list [E1, . . . , Eh], and Z2 = [F1, . . . , Fh].
Then intuitively, the md ϕ states that if for all j ∈
[1, k], R1[A j ] and R2[B j ] are similar w.r.t. the similarity
predicate ≈ j , then R1[Z1] and R2[Z2] refer to the same
object and should be identified (made identical). We write
ϕ as
∧

j∈[1,k]
(R1[A j ] ≈ j R2[B j ]) → R1[Z1] � R2[Z2],

We refer to
∧

j∈[1,k](R1[A j ] ≈ j R2[B j ]) and R1[Z1] �
R2[Z2] as the LHS and the RHS of ϕ, respectively.

Example 2 The semantic relations given in Example 1 can
be expressed as mds, as follows:

ϕ1 : credit[ln] = billing[ln] ∧ credit[addr] = billing[post] ∧
credit[fn] ≈d billing[fn] → credit[Yc] � billing[Yb]

ϕ2 : credit[tel] = billing[phn] → credit[addr] � billing[post]

ϕ3 : credit[email] = billing[email] →
credit[fn, ln] � billing[fn, ln]

where ϕ1 states that for any credit tuple t and billing tuple t ′,
if t and t ′ have the same last name and address, and if their
first names are similar w.r.t. ≈d (but may not necessarily be
identical), then t[Yc] and t ′[Yb] should be identified. Simi-
larly, if t and t ′ have the same phone number then we should
identify their addresses (ϕ2); and if t and t ′ have the same
email then their names should be identified (ϕ3). Note that
while name, address and phone are part of Yb and Yc, email
is not, i.e., the LHS attributes of an md is neither necessarily
contained in nor disjoint from its RHS attributes. ��
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Fig. 3 MDs expressing
matching rules

To simplify the discussion, we assume w.l.o.g. that R1[A j ]
and R2[B j ] have the same domain, which can be achieved
by data standardization (see [15] for details).

Dynamic semantics. Recall that a functional dependency
(fd) X → Y simply assures that for any tuples t1 and t2, if
t1[X ] = t2[X ] then t1[Y ] = t2[Y ]. In contrast, to accommo-
date unreliable data, the semantics of mds is more involved.
To present the semantics we need the following notations.

Extensions. To keep track of tuples during a matching pro-
cess, we assume a temporary unique tuple id for each tuple.
For instances I and I ′ of the same schema, we write I � I ′
if for each tuple t in I there is a tuple t ′ in I ′ such that t and
t ′ have the same tuple id. Here t ′ is an updated version of t ,
and t ′ and t may differ in some attribute values.

For two instances D = (I1, I2) and D′ = (I ′
1, I ′

2) of
(R1, R2), we write D � D′ if I1 � I ′

1 and I2 � I ′
2.

For tuples t1 ∈ I1 and t2 ∈ I2, we write (t1, t2) ∈ D.
LHS matching. We say that (t1, t2) ∈ D match the LHS

of md ϕ if for each j ∈ [1, k], t1[A j ] ≈ j t2[B j ]. Intuitively,
t1[A j ] and t2[B j ] pairwise satisfy the similarity predicate≈ j .

For example, t1 and t3 of Fig. 1 match the LHS of ϕ1

of Example 2: t1 and t3 have identical ln and address, and
“Mark” ≈d “Marx” when ≈d is a similarity predicate defined
in terms of the edit distance metric.

Semantics. We are now ready to give the semantics. Con-
sider a pair (D, D′) of instances of (R1, R2), where D � D′.

The pair (D, D′) of instances satisfy md ϕ, denoted by
(D, D′) |� ϕ, if for any tuples (t1, t2) ∈ D, if (t1, t2) match
the LHS of ϕ in the instance D, then in the other instance D′,
(a) t1[Z1] = t2[Z2], i.e., the RHS attributes of ϕ in t1 and t2
are identified; and (b) (t1, t2) also match the LHS of ϕ.

Intuitively, the semantics states how ϕ is enforced as a
matching rule: whenever (t1, t2) in an instance D match the
LHS of ϕ, t1[Z1] and t2[Z2] ought to be made equal. The
outcome of the enforcement is reflected in the other instance
D′. That is, some value v is to be found such that t1[Z1] = v

and t1[Z2] = v in D′, although v is not explicitly specified.

Example 3 Consider the md ϕ2 of Example 2 and the
instance Dc = (Ic, Ib) of Fig. 1, in which (t1, t4) match
the LHS of ϕ2. As depicted in Fig. 3, the enforcement of ϕ2

yields another instance D′
c = (I ′

c, I ′
b) in which t1[addr] =

t4[post], while t1[addr] and t4[post] are different in Dc.

The � operator only requires that t1[addr] and t4[post]
are identified, but does not specify how they are updated.
That is, in any D′

c that extends Dc, if (a) t1[addr] = t4[post]
and (t1, t4)match the LHS of ϕ2 in D′

c, and (b) similarly for
t1[addr] and t6[post] are identified in D′

c, then ϕ2 is consid-
ered enforced on D′

c, i.e., (Dc, D′
c) |� ϕ2. ��

It should be clarified that we use updates just to give the
semantics of mds. In the matching process instance D may
not be updated, i.e., there is no destructive impact on D.

Matching dependencies (mds) are quite different from tra-
ditional dependencies such as fds.

– mds have “dynamic” semantics to accommodate errors
and different representations in the data: if for all j ∈
[1, k], attributes t1[A j ] and t2[B j ] match in instance D,
then t1[Z1] and t2[Z2] are updated and identified. Here
t1[Z1] and t2[Z2] are equal in another instance D′ that
results from the updates to D, although they may be rad-
ically different in the original instance D. In contrast, fds

have a “static” semantics: if certain attributes are equal
in D, then some other attributes must be equal in the
same instance D.

– mds are defined with similarity predicates and the match-
ing operator �, whereas fds are defined with equality
only.

– mds are defined across possibly different relations, while
fds are defined on a single relation.

Example 4 Consider two fds defined on schema
R(A, B, E):

f1 : A → B, f2 : B → E .

Consider instances I0 and I1 of R shown in Fig. 4. Then
s1 and s2 in I0 violate f1 : s1[A] = s2[A] but s1[B] �= s2[B];
similarly, s1 and s2 in I1 violate f2.

In contrast, consider two mds defined on R:

ψ1 : R[A] = R[A] → R[B] � R[B],
ψ2 : R[B] = R[B] → R[E] � R[E],
where ψ1 states that for any (s1, s2), if s1[A] = s2[A], then
s1[B] and s2[B] should be identified; similarly for ψ2.

Let D0 =(I0, I0) and D1 =(I1, I1). Then (D0, D1) |� ψ1.
While s1[A] = s2[A] but s1[B] �= s2[B] in I0, s1 and s2 are
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Fig. 4 The dynamic semantics
of MDs

not treated a violation of ψ1. Instead, a value b is found
such that s1[B] and s2[B] are changed to b, which results in
instance I1. This is how mds accommodate errors in unreli-
able data sources. Note that (D0, D1) |� ψ2 since s1[B] �=
s2[B] in I0, i.e., (s1, s2) does not match the LHS of ψ2 in I0.

��
A pair (D, D′) of instances satisfy a set� of mds, denoted

by (D, D′) |� �, if (D, D′) |� ϕ for all ϕ ∈ �.

3.2 Relative candidate keys

To decide whether t1[YR1 ] and t2[YR2 ] refer to the same entity,
it is natural to consider a minimal number of attributes to
compare. In light of this, we identify a special case of mds.

A key γ relative to attributes (YR1 ,YR2) of (R1, R2) is an
md in which the RHS is fixed to be (YR1 ,YR2), i.e., an md
of the form

∧
j∈[1,k](R1[A j ] ≈ j R2[B j ]) → R1[YR1 ] �

R2[YR2 ]. We simply write γ as

((A1, B1,≈1), . . . , (Ak, Bk,≈k)),

when R1, R2 and (YR1 ,YR2) are clear from the context. We
refer to k as the length of γ .

Intuitively, γ assures that for any tuples (t1, t2) of
(R1, R2), to identify t1[YR1 ] and t2[YR2 ] one only needs to
check whether t1[A j ] and t2[B j ] satisfy the predicate ≈ j for
all j ∈ [1, k]. This is analogous to a relational key: to iden-
tify two tuples in a relation it suffices to inspect only their
attributes in the key. Observe that there are possibly multiple
keys for a relation, similarly for relative keys.

We now define rcks. Intuitively, γ is an rck if no other
key γ ′ relative to (YR1 ,YR2) inspects less attributes.

The key γ is a relative candidate key (rck) if there is no
other key γ ′ = ((A′

1, B ′
1,≈′

1), . . . , (A
′
l , B ′

l ,≈′
l)) relative to

(YR1 ,YR2) such that (1) the length l of γ ′ is less than the
length k of γ , and (2) for each i ∈ [1, l], (A′

i , B ′
i ,≈′

i ) is in γ ,
i.e., it is an element (A j , B j ,≈ j ) in γ for some j ∈ [1, k].

We write γ ′ � γ if conditions (1) and (2) are satisfied.
Intuitively, to identify t1[YR1 ] and t2[YR2 ], an rck speci-

fies a minimum set of attributes to inspect and tells us how to
compare these attributes via similarity predicates.

Example 5 Candidate keys relative to (Yc,Yb) include:

rck1: ((ln, ln, =), (addr,post, =), (fn, fn, ≈d ))

rck2: ((ln, ln, =), (tel,phn, =), (fn, fn, ≈d ))

rck3: ((email,email,=), (addr, post, =))

rck4: ((email,email,=), (tel, phn, =))

Here the key rck4 states that for any credit tuple t and any
billing tuple t ′, if t[email, tel] = t ′[email, phn], then t[Yc]
and t ′[Yb] match; similarly for rck1, rck2 and rck3. We also
remark that email is not part of Yb or Yc. ��

One can draw an analogy of rcks to the familiar notion of
keys for relations: both notions attempt to provide an invari-
ant connection between tuples and the real-world entities
they represent. However, there are sharp differences between
the two notions. First, rcks bring domain-specific similar-
ity predicates into the play, carrying a comparison vector.
Second, rcks are defined across different relations; in con-
trast, keys are defined on a single relation. Third, rcks have
a dynamic semantics and aim to identify unreliable data, a
departure from the classical dependency theory.

4 Reasoning about matching dependencies

Implication analysis of fds can be found in almost every data-
base textbook. Along the same lines we naturally want to
deduce mds from a set of given mds. However, as opposed to
traditional dependencies, mds are defined in terms of domain-
specific similarity predicates and matching operators, and
they have dynamic semantics. As a result, traditional impli-
cation analysis no longer works for mds.

Below we first propose a generic mechanism to deduce
mds, independent of any particular similarity predicates. We
then present a sound and complete inference system for mds,
which provides algorithmic insight into the deduction of mds.
Some logical symbols used in this section are listed in Table 2.

4.1 A generic reasoning mechanism

A new challenge encountered when reasoning about mds

involves similarity predicates in mds, which are domain-spe-
cific. In light of these, our reasoning mechanism is necessar-
ily generic.

123



Dynamic constraints for record matching 503

Table 2 Logic symbols

(D, D′) |� ϕ D = (I1, I2) � D′ = (I ′
1, I ′

2), and for any
tuples t1 ∈ I1 and t2 ∈ I2, if (t1, t2) match
the LHS of ϕ, then in the other instance D′,
(a) t1 and t2 are identified on the RHS
attributes of ϕ; and (b) (t1, t2) also match
the LHS of ϕ

(D, D′) |� � (D, D′) |� ϕ for all mds ϕ ∈ �.

� |�m ϕ For any instance D of (R1, R2), and for each
stable instance D′ for � with
(D′, D′) |� �, if (D, D′) |� �, then
(D, D′) |� ϕ.

I The inference system for reasoning mds

� I ϕ md ϕ is provable from � using inference
rules in I

(�, ϕ)+ The closure (�, ϕ)+ of a set � ∪ {ϕ} of mds

Generic axioms. We assume only generic axioms for each
similarity predicate ≈ in � as follows.

– It is reflexive, i.e., x ≈ x .
– It is symmetric, i.e., if x ≈ y then y ≈ x .
– It subsumes equality, i.e., if x = y then x ≈ y.

Nevertheless, except equality =, ≈ is not assumed tran-
sitive in general, i.e., from x ≈ y and y ≈ z it does not
necessarily follow that x ≈ z.

The equality relation = is reflexive, symmetric and transi-
tive, as usual. In addition, for any similarity predicate ≈ and
values x and y, if x ≈ y and y = z, then x ≈ z.

To simplify the discussion we also assume the follow-
ing. (1) There is a unique similarity predicate ≈A defined
on each distinct (infinite) domain dom(A). (2) The simi-
larity predicate ≈A is dense: for any number k, there exist
values v, v1, . . . , vk ∈ dom(A) such that v ≈A vi for
i ∈ [1, k], and vi �≈A v j for all i, j ∈ [1, k] and i �= j .
That is, there are unboundedly many distinct values that are
within a certain distance w.r.t. ≈A, but are not similar to each
other.

Many similarity predicates commonly found in practice
are dense, e.g., edit distance. However, the linear ordering in
a numeric domain may not be dense. As will be seen (in the
Appendix), the proofs of Section 4.2 leverage the density to
avoid subtleties introduced by similarity predicates.

The limitations of implication analysis. Another challenge
is posed by the dynamic semantics of mds. Recall the notion
of implication (see, e.g., [1]): given a set � of traditional
dependencies and another dependency φ, � implies φ if for
any database D that satisfies �, D also satisfies φ. For an
example of our familiar fds, if � consists of X → Y and
Y → Z , then it implies X → Z . However, this notion of

implication is no longer applicable to mds on unreliable data,
as illustrated below.

Example 6 Let �0 be the set {ψ1, ψ2} of mds and �0 the set
{ f1, f2} of fds given in Example 4. Consider additional md
and fd given below:

md ψ3 : R[A] = R[A] → R[E] � R[E],

fd f3 : A → E .

Then�0 implies f3, but�0 does not implyψ3. To see this,
consider I0 (D0) and I1 (D1) in Fig. 4. Observe the following.

(1) (D0, D1) |� �0 but (D0, D1) �|� ψ3. Indeed,
(D0, D1) |� ψ1 and (D0, D1) |� ψ2. However,
(D0, D1) �|� ψ3: while s1[A] = s2[A] in D0, s1[E] �=
s2[E] in D1. This tells us that �0 does not imply ψ3 if
the notion of implication is used for mds.

(2) In contrast, neither I0 nor I1 contradicts to the implica-
tion of f3 from �0. Note that I0 �|� f3 : s1[A] = s2[A]
but s1[E] �= s2[E]. That is, s1 and s2 violate f3. How-
ever, I0 does not satisfy �0 either. Indeed, I0 �|� f1 :
s1[A] = s2[A] but s1[B] �= s2[B]. Thus the conven-
tional implication of fds remains valid on I0; similarly
for I1. ��

Deduction. To capture the dynamic semantics of mds in the
deduction analysis, we need the following notion.

An instance D of (R1, R2) is said to be stable for a set �
of mds if (D, D) |� �. Intuitively, a stable instance D is an
ultimate outcome of enforcing �: each and every rule in �
is enforced until no more updates have to be conducted.

Example 7 As illustrated in Fig. 4, D2 is a stable instance
for �0 of Example 6. It is an outcome of enforcing mds in
�0 as matching rules: when ψ1 is enforced on D0, it yields
another instance in which s1[B] = s2[B], e.g., D1. When
ψ2 is further enforced on D1, s1[E] and s2[E] are identified,
yielding D2. Now (D2, D2) |� �0, i.e., no further changes
are necessary for enforcing the mds in �0. ��

We are now ready to formalize the notion of deductions.
For a set � of mds and another md ϕ on (R1, R2), ϕ is

said to be deduced from �, denoted by � |�m ϕ, if for any
instance D of (R1, R2), and for each stable instance D′ for
�, if (D, D′) |� � then (D, D′) |� ϕ.

Intuitively, stable instance D′ is a “fixpoint” reached by
enforcing � on D. There are possibly many such stable
instances, depending on how D is updated. The deduction
analysis inspects all of the stable instances for �.

The notion of deductions is generic: no matter how mds

are interpreted, if � is enforced, then so must be ϕ. In other
words, ϕ is a logical consequence of the given mds in �.
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Example 8 As will be seen in Section 4.2, for �0 and ψ3

given in Example 6,�0 |�m ψ3. In particular, for the instance
D0 and the stable instance D2 of Example 7, one can see that
(D0, D2) |� �0 and (D0, D2) |� ψ3. ��

The deduction problem for mds is to determine, given any
set � of mds defined on (R1, R2) and another md ϕ defined
on (R1, R2), whether � |�m ϕ.

Added value of deduced mds. While the dynamic seman-
tics of mds makes it difficult to reason about mds, it yields
added value of deduced mds. Indeed, while tuples in unreli-
able relations may not be matched by a given set � of mds,
they may be identified by an md ϕ deduced from �. In con-
trast, when a traditional dependency φ is implied by a set of
dependencies, any database that violates φ cannot possibly
satisfy all the given dependencies.

Example 9 Let Dc be the instance of Fig. 1, and �1 consist
of ϕ1, ϕ2, ϕ3 of Example 2. As shown in Example 1, (t1, t6)
in Dc can be matched by rck4 of Example 5, but cannot
be directly identified by �1. Indeed, one can easily find an
instance D′ such that (Dc, D′) |� �1 but t1[Yc] �= t6[Yb] in
D′. In contrast, there is no D′ such that (Dc, D′) |� rck4 but
t1[Yc] �= t6[Yb] in D′. As will be seen in Example 11, it is
from �1 that rck4 is deduced. This shows that while tuples
may not be matched by a set � of given mds, they can be
identified by mds deduced from �.

The deduced rck4 would not have had added value if the
mds were interpreted with a static semantics like fds. Indeed,
t1 and t6 have radically different names and addresses, and
would be considered as a violation of rck4 if rck4 were treated
as an “fd”. At the same time, they would violate ϕ1 in �1.
Thus with the conventional implication analysis, rck4 would
not be able to identify tuples that �1 fails to match. ��

4.2 A sound and complete inference system for MDs

Armstrong’s Axioms have proved extremely useful in the
implication analysis of fds (see, e.g., [1]). Along the same
lines one naturally wants a finite inference system that is
sound and complete for the deduction analysis of mds.

The inference of mds is, however, more involved than its
fds counterpart. (1) The matching operator � updates data
to identify data elements. It interacts with equality =: u � v

entails that u = v in the updated data. (2) Similarity predi-
cates also interact with equality =, e.g., if u = v then u ≈ v,
and if u = v and v ≈ w then u ≈ w.

Weak mds. To show an md is provable from a given set of
mds, we need to keep the intermediate results in the process.
To capture these interactions in the deduction analysis, we
introduce a weak form of mds to express intermediate results
encountered in the inference. A weak md allows similarity
predicate to appear in the RHS, in contrast to the matching

operator � as found in mds. More specifically, a weak md
over (R1, R2) has one of the following forms:

ϕ1 =
∧

j∈[1,k]
(R1[A j ] ≈ j R2[B j ]) � R1[A] ≈ R2[B],

ϕ2 =
∧

j∈[1,k]
(R1[A j ] ≈ j R2[B j ]) � Ri [A] ≈′ Ri [B],

where ≈ and ≈′ are similarity predicates in � rather than
�. While the RHS of ϕ1 refers to two relations R1 and R2,
the RHS of ϕ2 indicates the same relation Ri for i ∈ [1, 2]
(i.e., either R1 or R2). We use � instead of → to explicitly
distinguish weak mds from mds.

The semantics of weak mds is a variation of its md coun-
terpart. Let (D, D′) be a pair of instances of (R1, R2), where
D � D′. The pair (D, D′) of instances satisfy weak md ϕ1,
denoted by (D, D′) |� ϕ1, if for any tuples (t1, t2) ∈ D, if
(t1, t2)match the LHS of ϕ1 in D, then in D′, t1[A] ≈ t2[B]
and moreover, (t1, t2) also match the LHS of ϕ1.

Similarly, (D, D′) |� ϕ2 if for any tuples (t1, t2) ∈ D, if
(t1, t2) match the LHS(ϕ2) in D, then in D′, ti [A] ≈ ti [B],
where ti is either t1 or t2, and (t1, t2) also match LHS(ϕ2).

To illustrate the need for weak mds, let us consider the
following example.

Example 10 Consider a set� = {ψ1, ψ2} of mds and another
md ψ , where

ψ1 := R1[A] ≈ R2[B] → R1[CC] � R2[DE],
ψ2 := R1[A] ≈ R2[B] ∧ R1[F]

≈ R2[D] → R1[G] � R2[H ], and

ψ := R1[A] ≈ R2[B] ∧ R1[F]
≈ R2[E] → R1[G] � R2[H ].

The md ψ1 tells us that for an R1 tuple t1 and an R2 tuple
t2, if t1[A] ≈ t2[B], then t1[CC] and t2[DE] should be iden-
tified; similarly, ψ2 assures that if t1[AF] ≈ t2[B D], then
t1[G] and t2[H ] stand for the same entity. To show thatψ can
deduced from �, we need the following generic reasoning.

(a) ψ ′
1 : R1[A] ≈ R2[B] � R2[D] = R2[E], by (ψ1);

(b) ψ ′
2 := R1[A] ≈ R2[B] ∧ R1[F] ≈ R2[E]

� R1[AF] ≈ R2[B E], by (ψ ′
1);

(c) ψ ′
3 : R1[A] ≈ R2[B] ∧ R1[F] ≈ R2[E]

� R1[AF] ≈ R2[B D], by (ψ ′
1, ψ

′
2);

(d) ψ, by (ψ2, ψ
′
3).

Observe that ψ ′
1, ψ

′
2 and ψ ′

3 are weak mds. Indeed, the
RHS of each of them is defined in terms of similarity opera-
tors on attributes that are possibly in the same relation (e.g.,
ψ ′

1). Hence they are not expressible as mds of Section 3. Such
weak mds are needed in the deduction analysis. ��
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Fig. 5 Inference system I for mds

An inference system
Using mds and weak mds, we propose the inference sys-

tem I in Fig. 5. It consists of nine axioms MD1–MD9.

– MD1 reveals the “symmetricity” of mds: the order of
relations R1 and R2 in an md can be swapped.

– MD2,MD3 and MD4 extend the reflexivity, augmenta-
tion and transitivity rules of the Armstrong’s axioms for
fds, respectively

– MD5 states that a similarity predicate ≈ in the LHS
of an md can be upgraded to equality = since ≈
subsumes =.

– MD6,MD7 and MD8 characterize the interactions
between the matching operator and similarity predi-
cates, in particular equality; note that MD6 and MD7

derive weak mds, while MD8 deduces standard mds.
Observe that MD6 (MD7) and MD8 show the need for
weak mds of the forms ϕ2 and ϕ1, respectively.

– MD9 reveals the interaction between similarity predi-
cates and equality. It derives weak mds from weak mds.

Given a set � of mds and another md ϕ, we use � I ϕ
to denote that ϕ is provable from � using rules in I.

Example 11 Consider �c consisting of ϕ1, ϕ2, ϕ3 of Exam-
ple 2, and rck4 of Example 5, where

ϕ1 := credit[ln] = billing[ln] ∧ credit[addr] = billing[post] ∧
credit[fn] ≈d billing[fn] → credit[Yc] � billing[Yb],

ϕ2 : credit[tel] = billing[phn] → credit[addr] � billing[post],
ϕ3 : credit[email] = billing[email] →

credit[fn, ln] � billing[fn, ln], and

rck4 : ((email,email,=), (tel,phn,=)).

Then the process to show �c I rck4 is as follows.

(a) credit[tel] = billing[phn] ∧ credit[email] = billing[email]
→ credit[addr,email] � billing[post,email]
(ψ1, by applying MD3 toϕ2)

(b) credit[addr] = billing[post] ∧ credit[email] = billing[email]
→ credit[addr, fn, ln] � billing[post, fn, ln]
(ψ2, by applying MD3 toϕ3)

(c) credit[tel] = billing[phn] ∧ credit[email] = billing[email]
→ credit[addr, fn, ln] � billing[post, fn, ln]
(ψ3, by applying MD4 toψ1 andψ2)

(d) credit[ln] = billing[ln] ∧ credit[addr] = billing[post] ∧
credit[fn] = billing[fn] → credit[Yc] � billing[Yb]
(ψ4, by applying MD5 toϕ1)

(e) credit[tel] = billing[phn] ∧ credit[email] = billing[email]
→ credit[Yc] � billing[Yb]
(rck4, by applying MD4 toψ3 andψ4)

Similarly, rck1, rck2 and rck3 of Example 5 can be
deduced from �c as well. ��

The inference system I is sound and complete for the
deduction analysis of mds. That is, for any set � of mds and
another md ϕ,� |�m ϕ iff� I ϕ, when the generic reason-
ing mechanism defined in Section 4.1 is concerned. That is,
it only assumes the generic axioms given there for similarity
predicates and for equality, regardless of other properties of
various domain-specific similarity predicates.

Theorem 1 The inference system I is sound and complete
for the deduction analysis of mds.
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In the rest of the section, we prove Theorem 1. More spe-
cifically, we show that I is (a) sound and (b) complete for
mds in Lemmas 1 and 2, respectively.

Lemma 1 Rules MD1 – MD9 in the inference system I are
sound for the deduction analysis of mds.

Proof We show that for any set � of mds and another md
ϕ over R1 and R2, if � I ϕ, then � |�m ϕ. That is, for
any instance D = (I1, I2) of (R1, R2) and for each stable
instance D′ = (I ′

1, I ′
2) of D for �, if (D, D′) |� � then

(D, D′) |� ϕ.
It suffices to show that each rule in I is correct, which

corresponds to a single step in an inference process. For if it
holds, then an induction on the length of proofs using I can
readily verify that I is sound.

MD1: Letφ= ∧
i∈[1, k](R1[Ai ] ≈i R2[Bi ])→ R1[Z1] �

R2[Z2] andφr =
∧

i∈[1, k](R2[Bi ] ≈i R1[Ai ])→ R2[Z2] �
R1[Z1]. If (D, D′) |� φ, then obviously (D, D′) |� φr .

MD2: This rule extends the reflexivity rule of Armstrong’s
axioms, by distinguishing two cases: one for equality and the
other for non-equality similarity predicates. The correctness
follows from the definitions of mds and weak mds.

MD3: This is an extension of the augmentation rule of
Armstrong’s axioms. That is, one can augment LHS(φ)with
additional similarity test R1[A] ≈ R2[B]. In particular, if ≈
is equality =, then RHS(φ) can also be expanded accord-
ingly. In contrast to their fd counterpart, the augmentation
axioms for mds have to treat equality and the other similarity
predicates separately. The correctness of these rules again
follows from the definitions of mds and weak mds.

MD4: This is the transitivity rule for mds. To see that
it is sound, consider a pair (D, D′) of instances such that
(a) (D, D′) |� φ1, (b) for each j ∈ [1, g], (D, D′) |�
LHS(φ1) � R1[E j ] ≈ j R2[Fj ], (c) (D, D′) |� φ2, and
(d) D′ is a stable instance for the given (weak) mds.

For any two tuples (t1, t2) ∈ D, if they match LHS(φ1)

and L , then in D′, t1[W1] = t2[W2] by (a), and t1[E j ] ≈ j

t2[Fj ] by (b). In addition, (t1, t2) match LHS(φ2) in D′ by
(d). From these it follows that t1[Z1] = t2[Z2] in D′ by (c)
and (d), and hence, LHS(φ1) ∧ L → RHS(φ2).

MD5: Consider instances (D, D′) such that (D, D′) |� φ.
For any tuples (t1, t2) ∈ D, if t1[A] = t2[B], then t1[A] ≈
t2[B] in D. From this it follows that if (D, D′) |� φ, then
(D, D′) |� L

∧
(R1[A] = R2[B]) → R1[Z1] � R2[Z2].

MD6: Consider instances (D, D′) such that (D, D′) |�
φ1. For any tuples (t1, t2) ∈ D, if they match the LHS of φ1,
then t1[E1 E2] = t2[F F] in D′. Therefore, t1[E1] = t1[E2].
Hence if (D, D′) |� φ1, then (D, D′) |� LHS(φ1) �
R1[E1] = R1[E2].

Similarly, if (D, D′) |� φ2, then (D, D′) |� LHS(φ2) �
R2[F1] = R2[F2].

MD7,MD8 and MD9: The soundness of these rules can
be verified along the same lines as for MD6. ��

Lemma 2 Rules MD1–MD9 in the inference system I are
complete for the deduction analysis of mds.

Proof Sketch: We show that for a set � of mds and a single
md ϕ =

∧
i∈[1,k](R1[Ai ] ≈i R2[Bi ]) → R1[Z1] � R2[Z2],

if � |� ϕ, then � I ϕ. That is, if � |�m ϕ, then ϕ can be
derived from � by using the rules in I.

The proof consists of two parts. (1) We first develop a
chase procedure to compute the closure (�, ϕ)+ of mds.
The closure is a set of triples of the form (R1[A], R2[B],�)

(or (R[A], R′[B],≈)), where R, R′ are in {R1, R2}, such
that � |�m LHS(ϕ) → R1[A] � R2[B] (or � |�m

LHS(ϕ) � R[A] ≈ R′[B]). (2) We then show that if
(R1[E j ], R2[Fj ],�) is in (�, ϕ)+ for all j ∈ [1,m],
then � I LHS(ϕ) → R1[Z1] � R2[Z2], where Z1 =
[E1, . . . , Em] and Z2 = [F1, . . . , Fm]. From these it readily
follows that I is complete.

We encourage interested readers to check proof details in
the Appendix. ��
Remark There are subtle differences between the inference
of mds defined on different relations and its counterpart for
mds on a single relation. For instance, in a single relation,
one could write R[A] = R[A] → R[C] � R[D], which
assures that for any tuple t of R, t[C] and t[D] have to be
identical. In contrast, one cannot express this in terms of mds

across different relations.

5 An algorithm for deduction analysis

We next focus on the deduction problem for matching depen-
dencies. The main result of this section is the following:

Theorem 2 There exists an algorithm that, given as input
a set � of mds and another md ϕ over schemas (R1, R2),
determines whether or not � |�m ϕ in O(n2 + h3) time,
where n is the size of the input � and ϕ, and h is the total
number of distinct attributes appearing in � or ϕ.

The algorithm is in quadratic-time in the size of the input
when (R1, R2) are fixed. Indeed, h is no larger than the arity
of (R1, R2) (the total number of attributes in (R1, R2)) and
is often much smaller than the input size n, measured by the
total number of symbols in � ∪ {ϕ}. It should be remarked
that the deduction analysis of mds is carried out at compile
time. That is, the analysis is performed only once, no matter
how many times the record matching process is conducted.
More importantly, the analysis does not involve data rela-
tions, and the size n of � ∪ {ϕ} is much smaller than data
relations on which record matching is performed.

Compared to the O(n)-time complexity of fd implication,
Theorem 2 tells us that although the expressive power of mds

is not for free, it does not come at too big a price.
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Below we prove Theorem 2 by first developing the algo-
rithm and then verifying the correctness of the algorithm.
In the next section, we shall leverage the algorithm when
computing a set of high-quality rcks.

Overview. To simplify the discussion, we consider w.l.o.g. a
normal form of mds. We consider mds φ of the form:∧

j∈[1,k]
(R1[A j ] ≈ j R2[B j ]) → (R1[E] � R2[F]),

i.e., RHS(φ) is a single pair of attributes in (R1, R2). This
does not lose generality as an md ψ of the general form, i.e.,
when RHS(ψ) is R1[Z1] � R2[Z2] , is equivalent to a set
of mds in the normal form, one for each pair of attributes
in (Z1, Z2), by rules MD2,MD3 and MD4 in the inference
system I.

In particular, we assume that the input md ϕ is:

ϕ =
∧

i∈[1,m]
(R1[Ci ] ≈i R2[Di ]) → R1[G] � R2[H ].

The algorithm, referred to as MDClosure, takes mds �

and ϕ as input, and computes the closure of � and LHS(ϕ).
The closure is the set of all pairs (R1[G ′], R2[H ′]) such that
� |�m LHS(ϕ) → R1[G ′] � R2[H ′] (see also the proof of
Lemma 2). Thus one can conclude that � |�m ϕ if and only
if (R1[G], R2[H ]) is in the closure.

The closure of� and ϕ is stored in an h × h × p array M .
The first two dimensions are indexed by distinct attributes
appearing in � or ϕ, and the last one by distinct similar-
ity predicates in � or ϕ (including =). Note that p ≤ |�|,
where the set � of similarity predicates is fixed. In practice,
p is a constant: in any application domain only a small set
of predefined similarity predicates is used.

The algorithm computes M based on� and LHS(ϕ) such
that for relation schemas R, R′ and for similarity predicate
≈,M(R[E], R′[F],≈) = 1 iff � |�m LHS(ϕ) → R[E] ≈
R′[F]. Here we use weak mds to express intermediate results
during the computation, i.e., we allow R and R′ to be the same
relation (either R1 or R2), and ≈ to appear in the RHS of
mds. As shown by rules MD6,MD7,MD8 and MD9 in the
inference system I, this may happen due to the interaction
between the matching operator and similarity predicates.

Putting these together, algorithm MDClosure takes� and
ϕ as input, computes the closure of� and LHS(ϕ) using M ,
and concludes that � |�m ϕ iff M(R1[G], R2[H ],=) is 1.
By the inference system I, we can set M(R1[G], R2[H ],=)
= 1 iff R1[G] � R2[H ] is deduced from � and LHS(ϕ).

Algorithm. Algorithm MDClosure is given in Fig. 6. While
the algorithm is along the same lines as its counterpart for
fd implication [1], it is more involved. Indeed, md deduction
has to deal with intriguing interactions between the match-
ing operator and similarity predicates. Below we first present
procedures for handling the interactions.

Fig. 6 Algorithm MDClosure

Procedure AssignVal. As shown in Fig. 6, this procedure
takes a similar pair R[A] ≈ R′[B] as input. It checks whether
or not M(R[A], R′[B],≈) or M(R[A], R′[B],=) is already
set to 1 (line 1). If not, it sets both M(R[A], R′[B],≈) and its
symmetric entry M(R′[B], R[A],≈) to 1, and returns true
(lines 2–3). Otherwise it returns false (line 4).

Observe that if M(R[A], R′[B],=) is 1, then no change
is needed, since from R[A] = R′[B] it follows that R[A] ≈
R′[B]. Indeed, the generic axioms for similarity predicates
tell us that each similarity relation ≈ subsumes =.

Procedures Propagate and Infer. When M(R[A],
R′[B],≈) is changed to 1, the change may have to be prop-
agated to other M entries. Indeed, by the generic axioms for
similarity predicates. we have the following:

(1) for each R[E] = R[A] (resp. R′[E] = R[A]), it
follows that R[E] ≈ R′[B] (resp. R′[E] ≈ R′[B]).
Hence entries M(R[E], R′[B],≈) (resp. M(R′[E],
R′[B],≈)) should also be set to 1; similarly for R[E] =
R′[B].

(2) If ≈ is =, then for each R[E] ≈d R[A]
(resp. R′[E] ≈d R[A]), we have that R[E] ≈d

R′[B] (resp. R′[E] ≈d R′[B]); and hence,
M(R[E], R′[B],≈d) (resp. M(R′[E], R′[B],≈d))
has to be set to 1.
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Fig. 7 Procedures Propagate and Infer

In turn, these changes may trigger new changes to M , and
so on. It is to handle this that procedures Propagate and
Infer are used, which recursively propagate the changes.

These procedures are given in Fig. 7. They use a queue Q
to keep track of and process the changes: changes are pushed
into Q whenever they are encountered, and are popped off
from Q and processed one by one until Q is empty.

More specifically, procedure Propagate takes a newly
deduced similar pair R[A] ≈ R′[B] as input, and updates M
accordingly. It first pushes the pair into Q (line 1). Then for
each entry R[E] ≈ R′[E ′] in Q (line 3), three different cases
are considered, depending on whether (R, R′) are (R1, R2)

(lines 5–7), (R1, R1) (lines 8–10) or (R2, R2) (lines 11–13).
In each of these cases, procedure Infer is invoked, which
modifies M entries based on the generic axioms for similar-
ity predicates given in Section 3. The process proceeds until
Q becomes empty (line 2).

Procedure Infer takes as input the queue Q, array M , a
new similar pair R[A] ≈ R′[B], and relation R′′, where
R, R′, R′′ are either R1 or R2. It infers other similar pairs,
pushes them into Q, and invokes procedure AssignVal to
update corresponding M entries. It handles two cases, namely
the cases (1) and (2) mentioned above (lines 2–4 and 5–8,
respectively). The new pairs pushed into Q are processed by
procedure Propagate, as described above.

Algorithm MDClosure. We are now ready to illustrate
the main driver of the algorithm (Fig. 6), which works as fol-
lows. It first sets all entries of array M to 0 (line 1). Then for
each pair R1[Ci ] ≈i R2[Di ] in LHS(ϕ), it stores the simi-
lar pair in M (lines 2–4). After these initialization steps, the
algorithm inspects each md φ in � one by one (lines 6–11).
It checks whether LHS(φ) is matched (line 7), and if so, it
invokes procedures AssignVal and Propagate to update M
based on RHS(φ), and propagate the changes (line 10–11).
The inspection of LHS(φ) uses a property mentioned earlier:
if M(R1[A], R2[B],=) = 1, then R1[A] ≈d R2[B] for any
similarity predicate ≈d (line 7). Once an md is applied, it will
not be inspected again (line 9). The process proceeds until
no more changes can be made to array M (line 5). Finally,
the algorithm returns M (line 12).

Example 12 Recall�c and rck4 from Example 11. We show
how rck4 is deduced from �c by MDClosure. We use the
table below to keep track of the changes to array M after
step 4 of the algorithm, when mds in �c are applied. We use
c and b to denote relations credit and billing, respectively.

After step 4, M is initialized with c[email] =
b[email] and c[tel] = b[phn], as given by LHS(rck4).
Now both LHS(ϕ2) and LHS(ϕ3) are matched, and
thus M is updated with c[addr] � b[post] (as indi-
cated by M(c[addr], b[post], = )), c[fn] � b[fn] and
c[ln] � b[ln]. As a result of the changes, LHS(ϕ1)

is matched, and M(c[Yc], b[Yb], = ) is set to 1. After
that, no more changes can be made to array M . Since
M(c[Yc], b[Yb], = )= 1, we conclude that � |�m rck4.

Step New updates to M
step 4 M(c[email], b[email], =) = M(b[email], c[email], =) = 1

M(c[tel], b[phn], =) = M(b[phn], c[tel], =) = 1
ϕ2 M(c[addr], b[post], =) = M(b[post], c[addr], =) = 1

M(c[fn], b[fn], =) = M(b[fn], c[fn], =) = 1
ϕ3 M(c[ln], b[ln], =) = M(b[ln], c[ln], =) = 1
ϕ1 M(c[Yc], b[Yb], =) = M(b[Yb], c[Yc],=) = 1

As another example, we show how MDClosure deduces
ψ from {ψ1, ψ2, ψ3}, where ψ,ψ1, ψ2 and ψ3 are:

ψ = R2[A2] = R1[A1] → R2[E2] � R1[B1],
ψ1 = R1[A1] ≈ R2[A2] → R1[B1] � R2[B2],
ψ2 = R1[A1] ≈ R2[A2] → R1[E1] � R2[B2],
ψ3 = R1[A1] ≈ R2[A2] → R1[E1] � R2[E2].

We use the table below to show how MDClosure com-
putes array M . After step 4, M stores R1[A1] = R2[A2] to
reflect LHS(ψ). Then LHS(ψ1),LHS(ψ2) and LHS(ψ3) are
matched. Applying ψ1 first, R1[B1] � R2[B2] is added to
M . Now applyψ2, and M is updated with R1[E1] � R2[B2].
Here procedure Infer(Q,M, R2[B2], R1[E1], R1) deduces
a new pair R1[B1] � R1[E1] from R1[B1] � R2[B2]
and R1[E1] � R1[B2], and AssignVal is called to
update M accordingly. Similarly, when ψ3 is applied,
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R1[E1] � R2[E2] is added to M . When Propagate and
Infer are invoked, they further infer R2[E2] � R2[B2] and
R1[B1] � R2[E2]. Accordingly, M is updated to keep track
of these changes.

step new updates
step 4 M(R1[A1], R2[A2],=) = M(R2[A2], R1[A1],=) = 1
ψ1 M(R1[B1], R2[B2],=) = M(R2[B2], R1[B1],=) = 1

M(R1[E1], R2[B2],=) = M(R2[B2], R1[E1],=) = 1
ψ2 M(R1[E1], R1[B1],=) = M(R1[B1], R1[E1],=) = 1

M(R1[E1], R2[E2],=) = M(R2[E2], R1[E1],=) = 1
ψ3 M(R2[E2], R2[B2],=) = M(R2[B2], R2[E2],=) = 1

M(R1[B1], R2[E2],=) = M(R2[E2], R1[B1],=) = 1

After ψ3 is applied, M can no longer be changed. Hence
{ψ1, ψ2, ψ3} |�m ψ , by M(R2[E2], R1[B1],=) = 1. ��

Complexity analysis. MDClosure executes the repeat loop
at most n times, since in each iteration it calls procedure
Propagate, which applies at least one md in �. That is,
Propagate can be called at most n times in total. Each iter-
ation searches at most all mds in �. For the k-th call of
Propagate (1 ≤ k ≤ n), let Lk be the number of while-
loops it executes. For each loop, it takes at most O(h) time
since procedure Infer is in O(h) time. Hence the total cost
of updating array M is in O((L1 + · · · + Ln)h) time. Note
that (L1 + · · · + Ln) is the total number of changes made to
array M , which is bounded by O(h2). Putting these together,
algorithm MDClosure is in O(n2 + h3) time. As remarked
earlier, h is usually much smaller than n, and is a constant
when (R1, R2) are fixed. Hence, the algorithm is in O(n2)

time in practice. Furthermore, it can be improved by lever-
aging the index structures of [8,34] for fd implication.

Proof of Theorem 2 To prove Theorem 2, it suffices to show
that for any � and ϕ as described above, � |�m ϕ if and
only if Algorithm MDClosure sets M(R1[E1], R2[E2],=)
= 1. For if this holds, then by the complexity analysis given
above, Algorithm MDClosure is precisely the algorithm we
want. The detailed proof is deferred to the Appendix. ��

6 Computing relative candidate keys

As remarked in Section 1, to improve match quality, we often
need to repeat blocking, windowing and matching processes
multiple times, each using a different key [15].

This gives rise to the problem for computing rcks: given
a set � of mds, a pair of lists (YR1 ,YR2), and a natural num-
ber m, it is to compute a set � of m quality rcks relative to
(YR1 ,YR2), deduced from �.

This problem is non-trivial. One question concerns what
metrics we should use to select rcks. Another question is
how to find m quality rcks using the metric. One might be
tempted to first compute all rcks from �, sort these keys
based on the metric, and then select the top m keys. This is,

however, beyond reach in practice: it is known that for a sin-
gle relation, there are possibly exponentially many traditional
candidate keys [33]. For rcks, unfortunately, the exponen-
tial-time complexity remains intact.

In this section we first propose a model to assess the qual-
ity of rcks. Based on the model, we then develop an efficient
algorithm to infer m rcks from �. As will be verified by
our experimental study, even when� does not contain many
mds, the algorithm is still able to find a reasonable number of
rcks. In addition, in practice it is rare to find exponentially
many rcks; indeed, the algorithm often finds the set of all
quality rcks when m is not very large.

Quality model. To construct the set �, we select rcks based
on the following criteria.

– The diversity of rcks in �. We do not want those rcks

defined with pairs (R1[A], R2[B]) if the pairs appear fre-
quently in rcks that are already in �. That is, we want
� to include diverse attributes so that if errors appear in
some attributes, matches can still be found by comparing
other attributes in the rcks of �. To do this we maintain
a counter ct(R1[A], R2[B]) for each pair, and increase it
by 1 whenever an rck with the pair is added to �.

– Statistics. We consider the accuracy of each attribute pair
ac(R1[A], R2[B]), i.e., the confidence placed by the user
in the attributes, and average lengths lt(R1[A], R2[B])
of the values of each attribute pair. Intuitively, the longer
lt(R1[A], R2[B]) is, the more likely errors occur in the
attributes; and the greater ac(R1[A], R2[B]) is, the more
reliable (R1[A], R2[B]) are.

Putting these together, we define the cost of including
attributes (R1[A], R2[B]) in an rck as:

cost(R1[A], R2[B]) = w1 · ct(R1[A], R2[B])
+w2 · lt(R1[A], R2[B])
+w3/ac(R1[A], R2[B]),

where w1, w2, w3 are weights associated with these factors.
Our algorithm selects rcks with attributes of low cost or
equivalently, high quality.

Overview. Consider rcks ((A1, B1,≈1), . . . , (Ak,

Bk,≈k)) in which for each i ∈ [1, k], R1[Ai ] ≈i R2[Bi ]
appears either in some mds of �, or in the default relative
key
((

A′
1, B ′

1,=
)
, . . . ,

(
A′|YR1 |, B ′|YR1 |,=

))
,

where YR1 =
[

A′
1, . . . , A′|YR1 |

]
and YR2 =

[
B ′

1, . . . , B ′|YR1 |
]
.

The reason for focusing on such rcks is twofold. First, we
want to preserve attribute pairs specified by mds in�, which
are identified as attributes that are sensible to compare either
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by domain experts or by learning from sample data. Second,
by focusing on such rcks one does not have to worry about
weak mds in the deduction process, and hence it reduces the
computational cost. We refer to such rcks as normal rcks.

We provide an algorithm for computing rcks, referred to
as findRCKs. Given�, (YR1 ,YR2) and m as input, it returns
a set � of at most m rcks relative to (YR1 ,YR2) that are
deduced from �. The algorithm selects rcks defined with
low-cost attribute pairs. The set � contains m quality rcks if
there exist at least m rcks, and otherwise it consists of all nor-
mal rcks deduced from�. The algorithm is in O(m(l +n)3)
time, where l is the length |YR1 | (|YR2 |) of YR1 (YR2 ), and n
is the size of�. In practice, m is often a predefined constant,
and the algorithm is in cubic-time.

To determine whether � includes all normal rcks that can
be deduced from�, algorithm findRCKs leverages a notion
of completeness, first studied for traditional candidate keys
in [33]. To present this notion we need the following.

Consider an rck γ and an md φ. We define apply(γ, φ)
to be the relative key γ ′, obtained as follows:

(1) removing all (E, F,≈) from γ if (E, F,�) appears
in RHS(φ), denoted by γ \ {(E, F,≈)}; and

(2) adding all (A, B,≈) in LHS(φ) to γ , denoted by γ ∪
{(A, B,≈)}.

Example 13 Recall the rck rck1 from Example 5 and the
md ϕ2 from Example 2:

rck1 = ((ln, ln,=), (addr, post,=), (fn, fn,≈d ))

ϕ2 = credit[tel] = billing[phn] → credit[addr] � billing[post]

Then “applying” ϕ2 to rck1, we get that apply(rck1, ϕ2)

= ((ln, ln, =), (fn, fn, ≈d ), (tel,phn, =)). ��
We are now ready to define the notion of completeness.

A non-empty set � of rcks is said to be complete w.r.t. �
if for each normal rck γ in � and each md φ in �, there
exists a rck γ1 in � such that either γ1 � apply(γ, φ) or
γ1 = apply(γ, φ) (recall the notion � from Sect. 3.2).

Intuitively, that is, for all normal rcks that can be deduced
by possible applications of mds in �, they are covered by
“smaller” rcks that are already in the set �.

This notion of completeness allows us to check whether
� consists of all normal rcks deduced from �. As will
be seen shortly, our algorithm uses the following prop-
erty (see a detailed proof in the Appendix) to determine
whether or not � needs to be further expanded. To sim-
plify the discussion, we also include in � the default relative

key
((

A′
1, B ′

1,=
)
, . . . ,

(
A′|YR1 |, B ′|YR1 |,=

))
, denoted by γ0,

where YR1 =
[

A′
1, . . . , A′|YR1 |

]
and YR2 =

[
B ′

1, . . . , B ′|YR1 |
]
.

Proposition 3 When � includes γ0, � consists of all normal
rcks deduced from � if and only if � is complete w.r.t. �.

Fig. 8 Algorithm findRCKs

Algorithm findRCKs. We are now ready to present
Algorithm findRCKs, as shown in Fig. 8. Before we illustrate
its details, we first present the procedures it uses.

(a) Procedure minimize takes as input � and a relative
key γ such that � |�m γ , where γ is not necessarily
an rck; it returns an rck by minimizing γ . It first sorts
(R1[A], R2[B],≈) in γ based on cost(R1[A], R2[B])
(line 1). It then processes each (R1[A], R2[B],≈) in
the descending order, starting from the most costly
one (line 2). More specifically, it removes V =
(R1[A], R2[B],≈) from γ , as long as � |�m γ \ V
(lines 3-4). Thus when the process terminates, it pro-
duces γ ′, an rck such that� |�m γ

′. The deduction is
checked by invoking algorithm MDClosure (Sect. 5).

(b) Procedure incrementCt (not shown) takes as
input a set S of attribute pairs and an rck γ . For
each pair (R1[A], R2[B]) in S and γ , it increases
ct(R1[A], R2[B]) by 1.

(c) Procedure sortMD (not shown) sorts mds in � based
on the sum of the costs of their LHS attributes. The
sorted mds are stored in a list L� , in ascending
order.

We now present the main driver of Algorithm findRCKs.
The algorithm uses a counter c to keep track of the number
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of rcks in �, initially set to 0 (line 1). It first collects in S
all pairs (R1[A], R2[B]) that are either in (YR1 ,YR2 ) or in
some md of � (referred to as pairing(�,YR1 ,YR2 ), line 1).
The counters of these pairs are set to 0 (line 2). It then adds
the default relative key γ0 = (YR1 ,YR2 ,C) to � and �′ (lines
3-4), where �′ keeps the subset of rcks in � that have not
been processed.

After these initialization steps, findRCKs repeatedly
checks whether � is complete w.r.t. �. If not, it expands �
(lines 5-16). More specifically, for each unprocessed γ ∈ �′
and φ ∈ �, it inspects the condition for the completeness
(lines 6-11). If � is not complete, an rck γ ′ is added to
both � and �′, where γ ′ is obtained by first applying φ to
γ and then invoking minimize. The algorithm increases the
counter c by 1, and re-sorts mds in � based on the updated
costs (lines 13-15).

The process proceeds until either � contains m rcks

(line 16; excluding the default key γ0, which may not be
a rck), or it cannot be further expanded, i.e., �′ is empty
(line 5). In the latter case, � already includes all the normal
rcks that can be deduced from � (line 17), as verified by
Proposition 3.

The algorithm deduces rcks defined with attributes of
low costs. Indeed, it sorts mds in � based on their costs, and
applies low-cost mds first (lines 7-8). Moreover, it dynami-
cally adjusts the costs after each rck γ ′ is added, by increas-
ing ct(R1[A], R2[B]) of each (R1[A], R2[B]) in γ ′ (lines 2,
15). Further, Procedure minimize retains attributes pairs with
low costs in rcks and removes those of high costs.

Example 14 Consider mds�c described in Example 11, and
attribute lists (Yc,Yb) of Example 1. We illustrate how algo-
rithm findRCKs computes a set of rcks relative to (Yc,Yb)

from �c. We fix m = 6, weights w1 = 1 and w2 = w3 = 0.
The table below shows how the following values

are changed: (1) cost(R1[A], R2[B]) for each pair
(R1[A], R2[B]) appearing in �c and (Yc,Yb), (2) the cost
of each md in �c, and (3) the set � of rcks deduced. When
counter c = 0, the table only shows these values after step 4
of the algorithm. For c ≥ 1, the values after step 15 are given.

Attribute pairs/mds Counter c
0 1 2 3 4

cost(ln, ln) 0 1 2 2 2
cost(fn, fn) 0 1 2 2 2
cost(addr,post) 0 1 1 2 2
cost(tel,phn) 0 0 1 1 2
cost(email,email) 0 0 0 1 2
cost(Yc, Yb) 1 1 1 1 1
cost(LHS(ϕ1)) 0 3 5 6 6
cost(LHS(ϕ2)) 0 0 1 1 2
cost(LHS(ϕ3)) 0 0 0 1 2

c New rcks added to set �
0 rck0: ((fn, fn, =), (ln, ln, =), (addr, post, =),

(tel, phn, =), (gender, gender, =))
1 rck1: ((ln, ln, =), (addr, post, =), (fn, fn, ≈d ))
2 rck2: ((ln, ln, =), (tel, phn, =), (fn, fn, ≈d ))
3 rck3: ((email, email, =), (addr, post, =))
4 rck4: ((email, email, =), (tel, phn, =))

The algorithm deduces rcks as follows. (a) When c = 0,
it applies md ϕ1 to rck0 and gets rck1. (b) When c = 1,
rck2 is deduced by applying ϕ2 to rck1. (c) When c = 2,
rck3 is deduced from ϕ3 and rck1. (d) When c = 3, rck4 is
found by applying ϕ2 to rck3. (e) When c ≥ 4, nothing is
changed since no new rcks can be found. In fact the process
terminates when c = 4 since no more rcks are added to �,
and all mds in � have been checked against rcks in �. The
final set � is {rck1, rck2, rck3, rck4}. Note that rck0 is not
returned, since it is not an rck. In the process the md with
the lowest cost is always chosen first. ��
Complexity analysis. Let l be the length of (YR1 ,YR2) and
n be the size of�. Observe the following: (a) The outer loop
(line 5) of findRCKs executes at most m iterations. (b) In
each iteration, sortMD(�) (line 6) takes O(n log n) time.
(c) The innermost loop (lines 10–11) takes O(n|�|) time in
total. (d) Procedure minimize is invoked at most m times in
total, which in turns calls MDClosure at most O(|γ |) times
(line 13), where |γ | ≤ l + n. Thus the total cost of running
MDClosure is in O(m(n + l)3) time (by Theorem 2, for
fixed schemas). (e) |�| ≤ m(l + n). Putting these together,
algorithm findRCKs is in O(m(l + n)3) time.

We remark that the algorithm is efficient in practice
because it is run at compile time, m is often a small con-
stant, and n and l are much smaller than data relations.

7 Experimental evaluation

In this section, we present an experimental study of our tech-
niques. We conducted four sets of experiments. The focus
of the first set of experiments is on the scalability of algo-
rithms findRCKs and MDClosure. Using data taken from
the Web, we then evaluate the utility of rcks in record match-
ing. More specifically, in experiments 2 and 3 we evaluate the
impacts of rcks on the performance and accuracy of statisti-
cal and rule-based matching methods, respectively. Finally,
the fourth set of experiments demonstrates the effectiveness
of rcks in blocking and windowing.

We have implemented findRCKs, MDClosure, and
two matching methods: sorted neighborhood [24] and
Fellegi-Sunter model [20,29] with expectation maximiza-
tion (em) algorithm for assessing parameters, in Java. The
experiments were run on a machine with a Quad Core Xeon
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Table 3 Measures and methods

Precision The ratio of true duplicates correctly found by
a matching algorithm to all the duplicates
found

Recall The ratio of true duplicates correctly found to
all the duplicates in a dataset

sM The number of matched pairs with blocking
(windowing)

sU The number of non-matched pairs with
blocking (windowing)

nM The number of matched pairs without
blocking (windowing)

nU The number of non-matched pairs without
blocking (windowing)

PC The completeness ratio sM/nM

RR The reduction ratio 1 − (sM + sU )/(nM + nU )

FS The Fellegi-Sunter method without using
rcks

FSrck The Fellegi-Sunter method using rcks

SN The Sorted Neighborhood method without
using rcks

SNrck The Sorted Neighborhood method using rcks

(2.8ghz) cpu and 8GB of memory. Each experiment was
repeated over 5 times and the average is reported.

Some measures and methods used in the experiments are
summarized in Table 3.

7.1 The scalability of findRCKs and MDClosure

The first set of experiments evaluates the efficiency of algo-
rithms findRCKs and MDClosure. Since the former makes
use of the latter, we just report the results for findRCKs.

Given a set � of mds, a number m, and lists (YR1 ,YR2)

over schemas (R1, R2), algorithm findRCKs finds a set of
m candidate keys relative to (YR1 ,YR2) if there exist m rcks.
We investigated the impact of the cardinality card(�) of �,
the number m of rcks, and the length |YR1 | (equivalently
|YR2 |) of YR1 on the performance of findRCKs.

The mds used in these experiments were produced by
a generator. Given schemas (R1, R2) and a number l, the
generator randomly produces a set � of l mds over the
schemas.

Fixing m = 20, we varied card(�) from 200 to 2,000 in
200 increments, and studied its impact on findRCKs. The
result is reported in Fig. 9(a), for |YR1 | ranging over 6, 8,
10 and 12. We then fixed card(�) = 2, 000 and varied the
number m of rcks from 5 to 50 in 5 increments. We report
in Fig. 9(b) the performance of findRCKs for various m and
|YR1 |. Figures 9(a) and 9(b) tell us that findRCKs scales well
with the number of mds, the number of rcks and the length
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Fig. 9 Scalability of Algorithm findRCKs. a Scalability w.r.t. the
number of mds; b Scalability w.r.t. the number of rcks; c The total
number of rcks

|YR1 |. These results also show that the larger |YR1 | is, the
longer it takes, as expected.

We have also inspected the quality of rcks found by
findRCKs. We find that these rcks are reasonably diverse
when the weights w1, w2, w3 used in our quality model
(Section 6) are 1, and ac(R1[A], R2[B]) = 1 for all attri-

123



Dynamic constraints for record matching 513

bute pairs. We also used these cost parameters in the other
experiments.

Figure 9(c) reports the total number of rcks derived from
small sets �. It shows that when there are not many mds

available, we can still find a reasonable number of rcks that,
as will be seen below, suffice to direct quality matching.

7.2 Improvement on the quality and efficiency

The next three sets of experiments focus on the effectiveness
of rcks in record matching, blocking and windowing.

Experimental setting. We used an extension of the credit
and billing schemas (Section 1), also referred to as credit
and billing, which have 13 and 21 attributes, respectively.
We picked a pair (YR1 ,YR2) of lists over (credit, billing)
for identifying card holders. Each of the lists consists of 11
attributes for name, phone, street, city, county, zip, etc. The
experiments used 7 simple mds over credit and billing, which
specify matching rules for card holders.

We populated instances of these schemas using real-life
data, and introduced duplicates and noises to the instances.
We evaluated the ability of our md-based techniques to iden-
tify the duplicates. More specifically, we scraped addresses
in the us from the Web, and sale items (books, dvds) from
online stores. Using the data, we generated datasets con-
trolled by the number K of credit and billing tuples, ranging
from 10k to 80k. We then added 80% of duplicates, by copy-
ing existing tuples and changing some of their attributes that
are not in YR1 or YR2 . Then more errors were introduced to
each attribute in the duplicates, including those in YR1 and
YR2 , with probability 80%, ranging from small typographical
changes to complete change of the attribute.

We used the dl metric (Damerau-Levenshtein) [21] for
similarity test, defined as the minimum number of single-
character insertions, deletions and substitutions required to
transform a value v to another value v′. We used the imple-
mentation �θ of the dl-metric provided by SimMetrics
(http://www.dcs.shef.ac.uk/~sam/simmetrics.html). For any
values v and v′, v �θ v

′ if the dl distance between v and
v′ is no more than (1 − θ)% of max(|v|, |v′|). In all the
experiments, we fixed θ = 0.8.

To measure the quality of matches, we used (a) precision,
the ratio of true matches (true positive) correctly found by a
matching algorithm to all the duplicates found, and (b) recall,
the ratio of true matches correctly found to all the duplicates
in the dataset.

To measure the benefits of blocking (windowing), we use
sM and sU to denote the number of matched and non-matched
pairs with blocking (windowing), and similarly, nM and nU

for matched and non-matched pairs without blocking (win-
dowing). We then define the pairs completeness ratio PC
and the reduction ratio RR as follows:

PC = sM/nM , RR = 1 − (sM + sU )/(nM + nU ).

Intuitively, the larger PC is, the more effective the block-
ing (windowing) strategy is. In addition, RR indicates the
saving in comparison space.

As the noises and duplicates in the datasets were intro-
duced by the generator, precision, recall, PC and RR can be
accurately computed from the results of matching, blocking
and windowing by checking the truth held by the generator.

Experiments 2 and 3 employed windowing to improve
efficiency, with a fixed window size of 10 (i.e., the sliding
window contained no more than 10 tuples). The same set of
windowing keys was used in all these experiments to assure
that the evaluation was fair.

Exp-2: Fellegi-Sunter method (FS) [20]. This statistical
method is widely used to process, e.g., census data. This set
of experiments used FS to find matches, based on two com-
parison vectors: (a) one was the union of top five rcks derived
by our algorithms and (b) the other was picked by an expec-
tation maximization algorithm on a sample of at most 30k
tuples. The em algorithm is a powerful tool to automatically
estimate parameters such as weights and threshold [29]. We
evaluated the performance of FS using these vectors, denoted
by FS and FSrck, respectively.

Accuracy. Figures 10(a) and (b) report the accuracy of FS
and FSrck, when the number K of tuples ranged from 10k to
80k. The results tell us that FSrck performs better than FS
in precision, by 20% when K = 80k. Furthermore, FSrck is
less sensitive to the size of the data: while the precision of
FS decreases when K gets larger, FSrck does not. Observe
that FSrck and FS have almost the same recalls. This shows
that rcks effectively improve the precision (increasing the
number of true positive matches) without lowering the recall
(without increasing the number of false positive matches).

In these experiments, we also found that a single rck
tended to yield a lower recall, because any noise in the rck
attributes might lead to a miss-match. This is mediated by
using the union of several rcks, such that miss-matches by
some rcks could be rectified by the others. We found that
FSrck became far less sensitive to noises when the union of
rcks was used.

To further evaluate the accuracy of FSrck and FS, we have
conducted another experiment on a simple real-life dataset to
which duplications and noises are not manually introduced.
The dataset consists of 864 restaurant records with 5 attri-
butes (name, addr, city, phone and type) taken from the
Fodor’s and Zagat’s restaurant guides [28]. It has been known
that this dataset contains 112 duplicates. When we applied
the FS algorithm to the restaurant records, we used all the
5 attributes as the input and let the algorithm decide how
important each attribute was when matching those records.
In contrast, when we employed FSrck, we let FSrck com-
pute an rck first and then used the rck as the input. In this
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Fig. 10 Fellegi-Sunter method; a precision; b recall; c run time

Table 4 Fellegi-Sunter method
on restaurant data Method Precision (%) Recall (%) True positive False positive True negative False negative

FS 13.0 100 112 752 14341/371952 0
FSrck 54.6 100 112 93 15000/372611 0
Phone 61.6 97.3 109 68 15025/372636 3

experiment, the rck computed in FSrck is ((name, name,
≈d ), (phone, phone, ≈d )). As shown in Table 4, FSrck out-
performs FS by 41.6% in precision. Indeed, both of them
found all the 112 true matches (true positives). However, FS
reported 752 false matches (false positives) while FSrck had
93 false matches. Here each number pair in the “true nega-
tive” column shows the number of non-match record pairs
correctly decided by an algorithm (FSrck or FS) including or
excluding the ones declared in the windowing step. Observe
that using name and phone alone leads to better accuracy
than using all the attributes. This is consistent with the dataset
owner’s suggestion that phone attribute makes the matching
much easier. One may think of only using phone only for
matching. However, as revealed by Table 4, it results in miss-
ing matches (see the third row). These experimental results
further verify the effectiveness of using rcks in improving
the accuracy of FS.

Efficiency. As shown in Fig. 10(c), FSrck and FS have
comparable performance when the number K of tuples gets
large (no less than 60k). That is, rcks do not incur extra cost
while they may substantially improve the accuracy.

Exp-3: Sorted Neighborhood method (SN) [24]. This is
a popular rule-based method, which uses (a) rules of equa-
tional theory to guide how records should be compared, and
(b) a sliding window to improve the efficiency. However, the
quality of rule-based methods highly depends on the skills
of domain experts to get a good set of rules. We run SN on
the same dataset as the one used in Fig. 10 of Exp-2, based
on two sets of rules: (a) the 25 rules used in [24], denoted by
SN; (b) the union of top five rcks derived by our algorithms,
denoted by SNrck.

Accuracy. The results on match quality are reported in
Figs. 11(a) and 11(b), which show that SNrck consistently

outperforms SN in both precision and recall, by around 20%.
Observe that the precision of SN slightly decreases when K
increases. In contrast, SNrck is less sensitive to the size of
the data when precision and recall are concerned.

Efficiency. As shown in Fig. 11(c), SNrck consistently per-
forms better than SN. This shows that rcks effectively reduce
comparisons (the number of attributes compared, and the
number of rules applied), without decreasing the accuracy.
Furthermore, the results tell us that both SNrck and SN scale
well with the size of dataset.

The main reason that SNrck outperforms SN is as fol-
lows. Matching rules found by domain experts are often
either too restrictive (with excessive attributes or unneces-
sary comparisons) or too relaxed (with insufficiently many
attributes). Many rules of [24] have the form “if conditions A
and B hold then LIKELY-MATCH; if LIKELY-MATCH and
condition C holds then MATCH”. Experts sometimes either
overlook interrelated conditions or add unnecessary condi-
tions. In contrast, the deduction of rcks is able to guarantee
that all the attributes in rcks are both sufficient and neces-
sary. An example of the rules deduced by our algorithm is
((SSN,SSN, =),(STATE,STATE,=)), which says that if
two people are in the same STATE and have identical SSN,
then they are the same person. In the rule set of [24], the
one closest to this is: if two people have similar SSNs and
if their streets, cities and states are all pairwise similar, then
the two can be identified. The rule of [24] is more restrictive
than the one deduced by our algorithm, and hence, it often
misses true matches.

Exp-4: Blocking and windowing. To evaluate the effective-
ness of rcks in blocking, we conducted experiments using
the same dataset as before, and based on two blocking keys.
One key consists of three attributes in top two rcks derived by

123



Dynamic constraints for record matching 515

 70

 75

 80

 85

 90

 95

 100

80k70k60k50k40k30k20k10k

Pr
ec

is
io

n 
(%

)

Num of records

SN with RCKs
SN without RCKs

 60

 65

 70

 75

 80

 85

 90

 95

 100

80k70k60k50k40k30k20k10k

R
ec

al
l (

%
)

Num of records

SN with RCKs
SN without RCKs

 0

 10

 20

 30

 40

 50

 60

80k70k60k50k40k30k20k10k

T
im

e 
(s

)

Num of records

SN with RCKs
SN without RCKs

(a) (b) (c)

Fig. 11 Sorted Neighborhood method; a precision; b recall; c run time

our algorithms. The other contains three attributes manually
chosen. In both cases, one of the attributes is name, encoded
by Soundex [41] before blocking. Blocking keys and win-
dowing keys (which will be discussed soon) are along the
same lines as sorting keys in [25], which consist of attributes
or substrings within the attributes.

The results for pairs completeness PC and reduction ratios
RR are shown in Fig. 12(a) and Fig. 12(b), respectively
(recall that the PC and RR can be computed by referencing
the truth held by the data generator, without relying on any
particular matching method). The results tell us that blocking
keys based on partially encoded attributes in rcks often yield
comparable reduction ratios; at the same time, they lead to
substantially better pairs completeness. Indeed, the improve-
ment is consistently above 10%.

We also conducted experiments to evaluate the effective-
ness of rcks in windowing, and found results comparable to
those reported in Fig. 12(a) and Fig. 12(b).
Summary. From the experimental results, we find the follow-
ing: (a) Algorithms findRCKs and MDClosure scale well
and are efficient. It takes no more than 50 seconds to deduce
50 quality rcks from a set of 2000 mds. (b) rcks improve
both the precision and recall of the matches found by FS and
SN, and in most cases, improve the efficiency as well. For
instance, it outperforms SN by around 20% in both precision
and recall, and up to 30% in performance. Furthermore, using
rcks as comparison vectors, FS and SN become less sensi-
tive to noises. (c) Using partially encoded rck attributes as
blocking or windowing keys consistently improves the accu-
racy of matches found.

8 Conclusion

We have introduced a class of matching dependencies (mds)
and a notion of rcks for record matching. As opposed to tradi-
tional dependencies, mds and rcks have a dynamic semantics
and are defined in terms of similarity predicates, to accom-
modate errors and different representations in unreliable data
sources. To reason about mds, we have proposed a deduction
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Fig. 12 Blocking; a Fellegi-Sunter method; b sorted neighborhood
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mechanism to capture their dynamic semantics, a departure
from the traditional notion of implication. We have also pro-
vided a sound and complete inference system and efficient
algorithms for deducing mds and quality rcks, for matching,
blocking and windowing. Our conclusion is that the tech-
niques are a promising tool for improving match quality and
efficiency, as verified by our experimental study.
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Several extensions are targeted for future work. First, an
extension of mds is to support “negation”, to specify when
records cannot be matched. Second, one can augment sim-
ilarity relations with constants, to capture domain-specific
synonym rules along the same lines as [2,4]. Third, we
have so far focused on 1-1 correspondences between attri-
butes, as commonly assumed for record matching after data
standardization [15]. As observed in [14], complex matches
may involve correspondences between multiple attributes of
one schema and one or more attributes of another. We are
extending mds to deal with such structural heterogeneity.
Fourth, we are investigating, experimentally and analytically,
the impact of different similarity metrics on match quality,
and the impact of various quality models on deducing rcks.
Finally, an important and practical topic is to develop algo-
rithms for discovering mds from sample data, along the same
lines as discovery of fds. As remarked earlier, probabilistic
methods such as em algorithms [29,46] suggests an effective
approach to discovering mds.
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Appendix: Proofs

Proof of Lemma 2

We show that for a set � of mds and a single md ϕ =∧
i∈[1,k](R1[Ai ] ≈i R2[Bi ]) → R1[Z1] � R2[Z2], if

� |� ϕ, then � I ϕ. That is, if � |�m ϕ, then ϕ can
be derived from � by using the rules in I.

The proof consists of two parts. (1) We first develop a
chase procedure to compute the closure (�, ϕ)+ of mds.
The closure is a set of triples of the form (R1[A], R2[B],�)

(or (R[A], R′[B],≈)), where R, R′ are in {R1, R2}, such
that � |�m LHS(ϕ) → R1[A] � R2[B] (or � |�m

LHS(ϕ) � R[A] ≈ R′[B]). (2) We then show that if
(R1[G j ], R2[Hj ],�) is in (�, ϕ)+ for all j ∈ [1,m],
then � I LHS(ϕ) → R1[Z1] � R2[Z2] where Z1 =
[G1, . . . ,Gm] and Z2 = [H1, . . . , Hm]. From these it read-
ily follows that I is complete.

(1) Chase. In the first part of the proof, we start with the
chase process for mds, by extending its counterpart for
traditional dependencies (see, e.g., [1]). We then show
that the chase process captures md deduction.
To simplify the exposition we use the notations below:

– We use (�, ϕ)+ |�m (R[A], R′[B],op) to denote
that (R[A], R′[B],op) is in (�, ϕ)+, where op is
either the matching operator � or a similarity pred-
icate in �;

– Given md φ =
∧

j∈[1,m](R1[C j ] ≈ j R2[D j ]) →
R1[V1] � R2[V2], we say (�, ϕ)+ |�m LHS(φ) if
and only if for each j ∈ [1,m],
1. (�, ϕ)+ |�m (R1[C j ], R2[D j ],�) if ≈ j is =,

and
2. (�, ϕ)+ |�m (R1[C j ], R2[D j ],≈ j ) other-

wise.

The chase process consists of seven steps as follows.

Step 1. Arrange the relations R1 and R2 in the mds of �
such that they are in the same order as in the md ϕ.
Step 2. Initialize (�, ϕ)+ with an empty set. For each pair
(R1[Ai ], R2[Bi ]) (i ∈ [1, k]) in the LHS of ϕ, let

– (�, ϕ)+ = (�, ϕ)+ ∪ {(R1[Ai ], R2[Bi ],�)} if ≈i is
=; and

– (�, ϕ)+ = (�, ϕ)+ ∪ {(R1[Ai ], R2[Bi ],≈i )} other-
wise.

Step 3. For each mdφ =
∧

j∈[1,m](R1[C j ] ≈ j R2[D j ]) →
R1[V1] � R2[V2] in �, if (�, ϕ)+ |�m LHS(φ), then
let (�, ϕ)+ = (�, ϕ)+ ∪ {(R1[V1[ j]], R2[V2[ j]],�)} for
each j ∈ [1, |V1|].
Step 4. (a) If (�, ϕ)+ |�m (R1[E1], R2[F],op) and
(�, ϕ)+ |�m (R1[E2], R2[F],�), then let

– (�, ϕ)+ = (�, ϕ)+ ∪ {(R1[E1], R1[E2],=)}, if op is
�; and

– (�, ϕ)+ = (�, ϕ)+ ∪ {(R1[E1], R1[E2],op)} other-
wise.

(b) similarly, if (�, ϕ)+ |�m (R1[C], R2[F1],op) and
(�, ϕ)+ |�m (R1[C], R2[F2],�), then let

– (�, ϕ)+ = (�, ϕ)+ ∪{(R2[F1], R2[F2],=)} if op is
�; and

– (�, ϕ)+ = (�, ϕ)+ ∪{(R2[F1], R2[F2],op)} other-
wise.

Step 5. (a) If (�, ϕ)+ |�m (R1[E1], R2[F1],�) and
(�, ϕ)+ |�m (R1[E1], R1[E2],≈), then let

– (�, ϕ)+ = (�, ϕ)+ ∪{(R1[E2], R2[F1],�)} if ≈ is
=; and

– (�, ϕ)+ = (�, ϕ)+ ∪{(R1[E2], R2[F1],≈)} other-
wise.

(b) If (�, ϕ)+ |�m (R1[E1], R2[F1],�) and (�, ϕ)+ |�m

(R2[F1], R2[F2],≈), then let

– (�, ϕ)+ = (�, ϕ)+ ∪{(R1[E1], R2[F2],�)} if ≈ is
=; and

– (�, ϕ)+ = (�, ϕ)+ ∪{(R1[E1], R2[F2],≈)} other-
wise.
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Step 6. (a) If (�, ϕ)+ |�m (R1[E1], R2[F1],≈) such that
≈ is not = and (�, ϕ)+ |�m (R1[E1], R1[E2],=), then
let (�, ϕ)+ = (�, ϕ)+ ∪{(R1[E2], R2[F1],≈)}.
(b) If (�, ϕ)+ |�m (R1[E1], R2[F1],≈) such that ≈ is not
= and (�, ϕ)+ |�m (R2[F1], R2[F2],=), then let (�, ϕ)+
= (�, ϕ)+ ∪{(R1[E1], R2[F2],op)}.
Step 7. Repeat steps 3, 4, 5 and 6 until no further changes
can be made to the closure (�, ϕ)+.

Termination. Given a set�∪{ϕ} of mds, the chase process
given above always terminates. Indeed, it stops after making
at most (|�|+1)∗h2 changes to (�, ϕ)+ because of the fol-
lowing. First, the number h of attributes appearing in�∪{ϕ}
is bounded by the total number of attributes in relations R1

and R2. Thus there are in total h2 attribute pairs. Second, there
are at most |�| + 1 operators. Third, the number of elements
in the closure (�, ϕ)+ is bounded by (|�| + 1) ∗ h2.

Chase Property. We now show that if � |�m ϕ, then
for each j ∈ [1,m], (�, ϕ)+ |�m (R1[G j ], R2[Hj ],�),
denoted by (�, ϕ)+ |�m R1[Z1] � R2[Z2] where Z1 =
[G1, . . . ,Gm] and Z2 = [H1, . . . , Hm].

We prove this by contradictions. Assume that � |�m ϕ,
but (�, ϕ)+ �|�m R1[Z1] � R2[Z2]. That is, there exists
j ∈ [1,m] such that (�, ϕ)+ �|�m R1[G j ] � R2[Hj ].
Let G j be G and Hj be H . We construct a pair (D, D′) of
instances based on (�, ϕ)+ such that D′ is a stable instance
for �, (D, D′) |� � but (D, D′) �|� ϕ. This contradicts the
assumption that � |�m ϕ.

We construct such (D, D′) based on a small model prop-
erty of mds. That is, if� �|�m ϕ, then there exists a two-tuple
instance D = (I1, I2) of (R1, R2), where I1 (resp. I2) consists
of a single tuple t1 (resp. t2), such that there exists a stable
instance D′, (D, D′) |� �, but (D, D′) �|� ϕ. This property
is easy to verify. In light of this, we shall construct D and D′
consisting of two tuples only.

We now give the construction of (D, D′). We first group
attributes and assign a unique constant to each group of attri-
butes. We then build (D, D′) from these attribute groups.

(1) Grouping attributes. We group the attributes by defin-
ing an equivalence relation. Let attr(R) denote the set
of attributes in a relation schema R. For any attributes
A, B in attr(R1) ∪ attr(R2), we say that A and B are
equivalent if either (A, B,=) or (A, B,�) is in the
closure (�, ϕ)+.

We compute the equivalence classes as follows.

– For each attribute A in attr(R1) ∪ attr(R2), create an
equivalent class consisting of itself only, where attr(R)
denotes the set of all the attributes in R. We use EQ to

represent all those equivalent classes, and eqA to repre-
sent the equivalent class that attribute A belongs to.

– For any attributes A and B in attr(R1)∪attr(R2), do the
following.

– If (A, B,=) or (A, B,�) is in the closure (�, ϕ)+,
then merge eqA and eqB . That is, we let EQ = (EQ\
{eqA, eqB}) ∪ {eqAB}, where eqAB = eqA ∪ eqB .

– If (A, B,≈) is in the closure (�, ϕ)+, where ≈ is
not equality, then mark eqA ≈ eqB .

For each equivalent class eq ∈ EQ, we assign a constant
c, denoted by eq.c, such that for two distinct equivalent clas-
ses eq1 and eq2 in EQ, (a) eq1.c �= eq2.c, (b) eq1.c ≈ eq2.c
if eq1 ≈ eq2, and (c) eq1.c �≈ eq2.c if eq1 �≈ eq2. It is possi-
ble to find such constants since we consider dense similarity
predicates (see Sect. 4.1).

(2) Instance construction. Based on the equivalence clas-
ses, we construct the pair (D, D′) of instances as
follows.

– Let t1 be a tuple of relation R1 such that t1[A] =
eqA.c for each attribute A ∈ attr(R1).

– Let t2 be a tuple of relation R2 such that t2[B] =
eqB .c for each attribute B ∈ attr(R2).

– Let I1 (resp. I2) be an instance of relation R1 (resp.
R2) consisting of the tuple t1 (resp. t2) only.

– Finally, let D = (I1, I2), and D′ = D.

(3) Verification. We show that (D, D) constructed above
are indeed a counter example. That is, if � |�m ϕ but
(�, ϕ)+ �|�m R1[A] � R2[B], then (D, D) |� �, but
(D, D) �|� ϕ. Observe that by (D, D) |� �, D is a
stable instance for �.

We first show that (D, D) �|� LHS(ϕ) → R1[G] �
R2[H ], where LHS(ϕ) is

∧
i∈[1,k](R1[Ai ] ≈i R2[Bi ]).

Indeed, t1[G] �= t2[H ] since eqG and eqH are distinct equiv-
alence classes, by (�, ϕ)+ �|�m R1[G] � R2[H ]. Further-
more, for each i ∈ [1, k], eqAi ≈i eqBi and hence, t1[Ai ] ≈i

t2[B j ] by the construction of D. As a result, (D, D) �|�
LHS(ϕ) → R1[G] � R2[H ]. Hence (D, D) �|� ϕ.

We then show that (D, D) |� �. Assume by contra-
diction that there exists φ in � such that (D, D) �|� φ,
where φ is

∧
i∈[1,m](R1[Ei ] ≈i R2[Fi ]) → R1[W1] �

R2[W2]. That is, (t1, t2)match LHS(φ) but t1[W1] �= t2[W2].
By the construction of D, if (t1, t2) match LHS(φ), then
for each i ∈ [1,m], (�, ϕ)+ |�m R1[Ei ] � R2[Fi ].
Then by the chase process given above, for each j ∈
[1, |W1|], (W1[ j],W2[ j],�) would have been included in
(�, ϕ)+, or in other words, (�, ϕ)+ |�m R1[W1] � R2[W2].
Again by the construction of D, we would have had that
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t1[W1] = t2[W2], which contradicts the assumption. Hence
(D, D) |� �.

Therefore, if � |�m ϕ then (�, ϕ)+ |�m RHS(ϕ).

(2) Simulation of the chase process. We next give the
second part of the proof, by showing the following.
(a) If (�, ϕ)+ |�m (R1[A], R2[B],�), then � I
LHS(ϕ) → R1[A] � R2[B]. (b) If (�, ϕ)+ |�m

(R[A], R′[B],≈), then � I LHS(ϕ) � R[A] ≈
R′[B] where R, R′ are relations in {R1, R2} and ≈ is
not = when R �= R′. If this holds, then we can conclude
that if (�, ϕ)+ |�m R1[Z1] � R2[Z2], then � I ϕ.

It suffices to show that each step of the chase process is
an application of certain inference rules in I. For if it holds,
then the computation of (�, ϕ)+ corresponds to a proof using
rules in I. In other words, the chase process to compute
(�, ϕ)+ |�m R1[Z1] � R2[Z2] yields a proof of � I ϕ.

Step 1. This corresponds to an application of MD1.
Step 2. It is justified by an application of MD2.
Step 3. This corresponds to applications of MD4 and MD5.
More specifically, since (�, ϕ)+ |�m LHS(φ), for each
j ∈ [1,m] we can derive the following: (a) � I φ1 if
≈ j is =, where φ1 is LHS(φ) → R1[C j ] � R2[D j ]; and
(b) � I φ2 otherwise, where φ2 is either LHS(φ) →
R1[C j ] � R2[D j ] or LHS(φ) � R1[C j ] ≈ j R2[D j ].
Hence by applying MD4 to φ1 and φ2, we have that
� I LHS(ϕ) → RHS(φ). Note that when ≈ j is not =
and when only (R1[C j ], R2[D j ],�) is in (�, ϕ)+, MD5

needs to be applied to φ first in order to replace ≈ j with =.
Step 4. This is justified by applications of
MD2,MD3,MD4,MD6 and MD7. We verify this for
case (a) as follows; the proof for case (b) is similar. For
case (a) we further distinguish two cases, depending on
whether op is � or not.

(1) When op is �. Since (�, ϕ)+ |�m

(R1[E1], R2[F],�) and (�, ϕ)+ |�m

(R1[E2], R2[F],�), we have that � I φ1

and � I φ2, where φ1 = LHS(ϕ) → R1[E1] �
R2[F] andφ2 = LHS(ϕ) → R1[E2] � R2[F]. We
conduct deduction analysis based on I as follows.
– By applying rule MD3 to φ1, we deduce

that φ3 = LHS(ϕ) ∧ (R1[E1] = R2[F]) →
R1[E1 E2] � R2[F F].

– By applying rules MD2 and MD4 to φ1 and φ3,
we have that φ4 = LHS(ϕ) → R1[E1 E2] �
R2[F F].

– Finally, by applying MD6 to φ4, we can deduce
that � I LHS(ϕ) � R1[E1] = R1[E2].

(2) When op is a non-equality similarity predicate
in �. We can derive that � I LHS(ϕ) �

R1[E1] op R1[E2] by using a similar argument,
except that we use MD7 here instead of MD6.

Step 5. This is justified by an application of MD8. We prove
case (a) of the step below; the proof for case (b) is similar.

Since (�, ϕ)+ |�m (R1[E1], R2[F1],�) and (�, ϕ)+
|�m (R1[E1], R1[E2],≈), we have that � I φ1 and
� I φ2, where φ1 = LHS(ϕ) → R1[E1] � R2[F1]
and φ2 = LHS(ϕ) � R1[E1] ≈ R1[E2]. By applying MD8

to φ1 and φ2, we can deduce φ3 = LHS(ϕ) → (R1[E2] �
R2[F1]) if ≈ is =, and φ4 = LHS(ϕ) � (R1[E2] ≈ R2[F1])
otherwise.

Step 6. This step is justified by an application of MD9.
Again we only prove case (a) of the step; the proof for
case (b) is similar.

From (�, ϕ)+ |�m (R1[E1], R2[F1],≈) and (�, ϕ)+ |�m

(R1[E1], R1[E2],=), it follows that � I φ1 and � I
φ2, where φ1 = LHS(ϕ) → R1[E1] ≈ R2[F1] and φ2 =
LHS(ϕ) � R1[E1] = R1[E2]. By applying MD9 to φ1 and
φ2, we can deduce thatφ3 = LHS(ϕ) → (R1[E2] ≈ R2[F1]).

Putting the two parts of proofs together, we have shown
the following: (a) if � |�m ϕ, then (�, ϕ)+ |�m R1[Z1] �
R2[Z2], and (b) if (�, ϕ)+ |�m R1[Z1] � R2[Z2], then
� I ϕ. Hence we can conclude that if � |�m ϕ, then
� I ϕ, i.e., rules MD1–MD9 are complete for md deduc-
tion. ��

Proof of Theorem 2

We prove this by showing that Algorithm MDClosure
is precisely the algorithm we want. Recall that Algo-
rithm MDClosure is in O(n2 + h3) time, as shown in Sec-
tion 5. It suffices to show that for any � and ϕ as described
above, � |�m ϕ if and only if Algorithm MDClosure sets
M(R1[E1], R2[E2],=) = 1.

Recall the notion of (�, ϕ)+ |�m (R1[E1], R2[E2],�)

from the proof of Lemma 2. It is already shown there that
� |�m ϕ if and only if (�, ϕ)+ |�m (R1[E1], R2[E2],�).
Thus to verify the correctness of Algorithm MDClosure, it
suffices to show that (�, ϕ)+ |�m (R1[E1], R2[E2],�) if
and only if MDClosure sets M(R1[E1], R2[E2],=) = 1.

First assume that (�, ϕ)+ |�m (R1[E1], R2[E2],�).
Then one can verify that MDClosure sets
M(R1[E1], R2[E2],=) to 1 by an induction on the steps
when (R1[E1], R2[E2],�) is included in (�, ϕ)+. Indeed,
there is a straightforward correspondence between the steps
of chase process given in the proof of Lemma 2 and the steps
of MDClosure. Based on the correspondence the induction
can be readily conducted.
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Conversely, assume that M(R1[E1], R2[E2],=) is set to
1 by MDClosure. One can show that (R1[E1], R2[E2],�)

is included in (�, ϕ)+ by induction on the steps when
MDClosure sets M(R1[E1], R2[E2],=) to 1. The induc-
tion is again based on the correspondence between the steps
of MDClosure and the steps of the chase process. ��

Proof of Proposition 3

First assume that � consists of all normal rcks that can be
deduced from �. Then for any normal rck γ in � and each
md φ in�, γ1 = apply(γ, φ) is a normal relative key. Since
� consists of all normal rcks, for each rck γ2 � γ1, γ2 is in
�. Hence � is complete w.r.t. �.

Conversely, assume that � is complete w.r.t. �. We show
that for any normal rck γ such that � |�m γ, γ can be
deduced by repeated uses of the apply operator on normal
rcks in � and mds in�. This suffices. For if it holds, then γ
must be in � since � is complete.

Since � |�m γ, γ must be in the closure (�, γ0)
+ (recall

the notion of closures from the proof of Lemma 2). Since γ
is normal, the deduction of γ uses only rules MD1–MD4 in
the inference system I. Since these rules correspond to the
apply operation, γ can be deduced from normal rcks in �
and mds in � by the apply operations. This can be verified
by induction on the steps when γ is included in (�, γ0)

+ by
the chase process given in the proof of Lemma 2. ��
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