-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Data Quality: Theory and Practice

Citation for published version:

Fan, W 2012, Data Quality: Theory and Practice. in Web-Age Information Management: 13th International
Conference, WAIM 2012, Harbin, China, August 18-20, 2012. Proceedings. vol. 7418, Springer Berlin
Heidelberg, pp. 1-16. DOI: 10.1007/978-3-642-32281-5 1

Digital Object Identifier (DOI):
10.1007/978-3-642-32281-5_1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version: _
Early version, also known as pre-print

Published In:
Web-Age Information Management

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019

https://core.ac.uk/display/28979144?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-32281-5_1
https://www.research.ed.ac.uk/portal/en/publications/data-quality-theory-and-practice(837bea0f-4e77-40c5-a853-5c2eb7a5bb9d).html

Data Quality: Theory and Practice

Wenfei Fan*

University of Edinburgh and Harbin Institute of Technology

Abstract. Real-life data are often dirty: inconsistent, inaccurate, in-
complete, stale and duplicated. Dirty data have been a longstanding
issue, and the prevalent use of Internet has been increasing the risks, in
an unprecedented scale, of creating and propagating dirty data. Dirty
data are reported to cost US industry billions of dollars each year. There
is no reason to believe that the scale of the problem is any different in any
other society that depends on information technology. With these comes
the need for improving data quality, a topic as important as traditional
data management tasks for coping with the quantity of the data.

We aim to provide an overview of recent advances in the area of data
quality, from theory to practical techniques. We promote a conditional
dependency theory for capturing data inconsistencies, a new form of dy-
namic constraints for data deduplication, a theory of relative information
completeness for characterizing incomplete data, and a data currency
model for answering queries with current values from possibly stale data
in the absence of reliable timestamps. We also discuss techniques for
automatically discovering data quality rules, detecting errors in real-life
data, and for correcting errors with performance guarantees.

1 Data Quality: An Overview

Traditional database systems typically focus on the quantity of data, to support
the creation, maintenance and use of large volumes of data. But such a database
system may not find correct answers to our queries if the data in the database
are “dirty”, i.e., when the data do not properly represent the real world entities
to which they refer.

To illustrate this, let us consider an employee relation residing in a database
of a company, specified by the following schema:

employee (FN, LN, CC, AC, phn, street, city, zip, salary, status)

Here each tuple specifies an employee’s name (first name FN and last name LN),
office phone (country code CC, area code AC, phone phn), office address (street,
city, zip code), salary and marital status. An instance Dy of the employee schema
is shown in Figure [l

* Fan is supported in part by EPSRC EP/J015377/1, the RSE-NSFC Joint Project
Scheme, the 973 Program 2012CB316200 and NSFC 61133002 of China.

O

2 W. Fan

FN LN CC AC phn street city zip salary status
ti: Mike Clark 44 131 null Mayfield NYC EH4 8LE 60k single
ta: Rick Stark 44 131 3456789 Crichton NYC EH4 S8LE 96k married
ts3: Joe Brady 01 908 7966899 Mtn Ave NYC NJ 07974 90k married
tq: Mary Smith 01 908 7966899 Mtn Ave MH NJ 07974 50k single
ts: Mary Luth 01 908 7966899 Mtn Ave MH NJ 07974 50k married
te: Mary Luth 44 131 3456789 Mayfield EDI EH4 8LE 80k married

Fig. 1. An employee instance

Consider the following queries posted on relation Dy.

(1) Query @7 is to find the number of employees working in the NYC office
(New York City). The answer to () in Dy is 3, by counting tuples t1,¢2 and
t3. However, the answer may not be correct, for the following reasons. First, the
data in Dy are inconsistent. Indeed, the CC and AC values of ¢1,t; and t3 have
conflicts with their corresponding city attributes: when CC = 44 and AC = 131,
the city should be Edinburgh (EDI) in the UK, rather than NYC; and similarly,
when CC = 01 and AC = 908, city should be Murray Hill (MH) in the US. It
is thus likely that NYC is not the true city value of ¢1,¢5 and 3. Second, the
data in Dy may be incomplete for employees working in NYC. That is, some
tuples representing employees working in NYC may be missing from Dy. Hence
we cannot trust 3 to be the answer to Q1.

(2) Query Q2 is to find the number of distinct employees with FN = Mary. In
Dy the answer to Q)2 is 3, by enumerating tuples 4, t5 and tg. Nevertheless, the
chances are that t4,t5 and tg actually refer to the same person: all these tuples
were once the true values of Mary, but some have become obsolete. Hence the
correct answer to Q2 may be 1 instead of 3.

(3) Query @3 is to find Mary’s current salary and current last name, provided
that we know that t4,t5 and tg refer to the same person. Simply evaluating Q3
on Dy will get us that salary is either 50k or 80k, and that LN is either Smith
or Luth. However, it does not tell us whether Mary’s current salary is 50k, and
whether her current last name is Smith. Indeed, reliable timestamps for t4,t5
and tg may not be available, as commonly found in practice, and hence, we can-
not tell which of 50k or 80k is more current; similarly for LN.

This example tells us that when the data are dirty, we cannot expect a database
system to answer our queries correctly, no matter what capacity it provides to
accommodate large data and how efficient it processes our queries.

Unfortunately, real-life data are often dirty: inconsistent, duplicated, inaccu-
rate, incomplete and/or out of date. Indeed, enterprises typically find data error
rates of approximately 1%-5%, and for some companies it is above 30% [41].
In most data warehouse projects, data cleaning accounts for 30%-80% of the
development time and budget [43], for improving the quality of the data rather
than developing the systems. When it comes to incomplete information, it is

Data Quality: Theory and Practice 3

estimated that “pieces of information perceived as being needed for clinical de-
cisions were missing from 13.6% to 81% of the time” [38]. When data currency
is concerned, it is known that “2% of records in a customer file become obsolete
in one month” [I4]. That is, in a database of 500000 customer records, 10000
records may go stale per month, 120000 records per year, and within two years
about 50% of all the records may be obsolete.

Why do we care about dirty data? Data quality has become one of the most
pressing challenges to data management. It is reported that dirty data cost US
businesses 600 billion dollars annually [14], and that erroneously priced data
in retail databases alone cost US consumers $2.5 billion each year [16]. While
these indicate the daunting cost of dirty data in the US, there is no reason to
believe that the scale of the problem is any different in any other society that is
dependent on information technology. Dirty data have been a longstanding issue
for decades, and the prevalent use of Internet has been increasing the risks, in
an unprecedented scale, of creating and propagating dirty data.

These highlight the need for data quality management, to improve the quality
of the data in our databases such that the data consistently, accurately, com-
pletely and uniquely represent the real-world entities to which they refer.

Data quality management is at least as important as traditional data man-
agement tasks for coping with the quantity of data. There has been increasing
demand in industries for developing data-quality management systems, aiming
to effectively detect and correct errors in the data, and thus to add accuracy and
value to business processes. Indeed, the market for data-quality tools is growing
at 16% annually, way above the 7% average forecast for other IT segments [34].
As an example, data quality tools deliver “an overall business value of more
than 600 million GBP” each year at BT [40]. Data quality management is also
a critical part of big data management, master data management (MDM) [37],
customer relationship management (CRM), enterprise resource planning (ERP)
and supply chain management (SCM), among other things.

This paper aims to highlight several central technical issues in connection
with data quality, and to provide an overview of recent advances in data quality
management. We present five important issues of data quality (Section [2]), and
outline a rule-based approach to cleaning dirty data (Section []). Finally, we
identify some open research problems associated with data quality (Section HI).

The presentation is informal, to incite curiosity in the study of data quality.
We opt for breadth rather than depth in the presentation: important results
and techniques are briefly mentioned, but the details are omitted. A survey of
detailed data quality management techniques is beyond the scope of this paper,
and a number of related papers are not referenced due to space constraints.
We refer the interested reader to papers in which the results were presented
for more detailed presentation of the results and techniques. In particular, we
encourage the reader to consult [BIAOIT7I21] for recent surveys on data quality
management. In fact a large part of this paper is taken from [21].

4 W. Fan

2 Central Issues of Data Quality

We highlight five central issues in connection with data quality: data consistency,
data deduplication, data accuracy, information completeness and data currency.

2.1 Data Consistency

Data consistency refers to the validity and integrity of data representing real-
world entities. It aims to detect inconsistencies or conflicts in the data. In a
relational database, inconsistencies may exist within a single tuple, between dif-
ferent tuples in the same table, and between tuples across different relations.
As an example, consider tuples t1,ts and t3 in Figure[Il There are conflicts
within each of these tuples, as well as inconsistencies between different tuples.

(1) It is known that in the UK (when CC = 44), if the area code is 131, then the
city should be Edinburgh (EDI). In tuple ¢;, however, CC = 44 and AC = 131,
but city # EDI. That is, there exist inconsistencies between the values of the CC,
AC and city attributes of t;; similarly for tuple t2. These tell us that tuples ¢;
and ty are erroneous.

(2) Similarly, in the US (CC = 01), if the area code is 908, the city should be
Murray Hill (MH). Nevertheless, CC = 01 and AC = 908 in tuple t3, whereas its
city is not MH. This indicates that tuple t3 is not quite correct.

(3) It is also known that in the UK, zip code uniquely determines street. That is,
for any two tuples that refer to employees in the UK, if they share the same zip
code, then they should have the same value in their street attributes. However,
while ¢;[CC] = t2[CC] = 44 and t1[zip] = to[zip], t1[street] # to[street]. Hence
there are conflicts between t; and t».

Inconsistencies in the data are typically identified as violations of data dependen-
cies (a.k.a. integrity constraints [I]). Errors in a single relation can be detected
by intrarelation constraints, while errors across different relations can be identi-
fied by interrelation constraints.

Unfortunately, traditional dependencies such as functional dependencies (FDs)
and inclusion dependencies (INDs) fall short of catching inconsistencies com-
monly found in real-life data, such as the errors in tuples ¢1,ts and t3 above.
This is not surprising: the traditional dependencies were developed for schema
design, rather than for improving data quality.

To remedy the limitations of traditional dependencies in data quality manage-
ment, conditional functional dependencies (CFDs [23]) and conditional inclusion
dependencies (CINDs [7]) have recently been proposed, which extend FDs and
INDs, respectively, by specifying patterns of semantically related data values.
It has been shown that conditional dependencies are capable of capturing com-
mon data inconsistencies that FDs and INDs fail to detect. For example, the
inconsistencies in t1—t3 given above can be detected by CFDs.

Data Quality: Theory and Practice 5

A theory of conditional dependencies is already in place, as an extension of
classical dependency theory. More specifically, the satisfiability problem, impli-
cation problem, finite axiomatizability and dependency propagation have been
studied for conditional dependencies, from the complexity to inference systems
to algorithms. We refer the interested reader to [7J6l2331] for details.

2.2 Data Deduplication

Data deduplication aims to identify tuples in one or more relations that refer
to the same real-world entity. It is also known as entity resolution, duplicate
detection, record matching, record linkage, merge-purge, database hardening,
and object identification (for data with complex structures).

For example, consider tuples t4,t5 and tg in Figure [l To answer query Qs
given earlier, we want to know whether these tuples refer to the same employee.
The answer is affirmative if, for instance, there exists another relation which
indicates that Mary Smith and Mary Luth have the same email account.

The need for studying data deduplication is evident: for data cleaning it is
needed to eliminate duplicate records; for data integration it is to collate and
fuse information about the same entity from multiple data sources; and for mas-
ter data management it helps us identify links between input tuples and master
data. The need is also highlighted by payment card fraud, which cost $4.84 billion
worldwide in 2006 [42]. In fraud detection it is a routine process to cross-check
whether a credit card user is the legitimate card holder. As another example,
there was a recent effort to match records on licensed airplane pilots with records
on individuals receiving disability benefits from the US Social Security Admin-
istration. The finding was quite surprising: there were forty pilots whose records
turned up in both databases (cf. [36]).

No matter how important it is, data deduplication is nontrivial. Indeed, tuples
pertaining to the same object may have different representations in various data
sources with different schemas. Moreover, the data sources may contain errors.
These make it hard, if not impossible, to match a pair of tuples by simply
checking whether their attributes pairwise equal. Worse still, it is often too costly
to compare and examine every pair of tuples from large data sources.

Data deduplication is perhaps the most extensively studied data quality prob-
lem. A variety of approaches have been proposed: probabilistic, learning-based,
distance-based, and rule-based (see [I536/39] for recent surveys).

We promote a dependency-based approach for detecting duplicates, which al-
lows us to capture the interaction between data deduplication and other aspects
of data quality in a uniform logical framework. To this end a new form of de-
pendencies, referred to as matching dependencies, has been proposed for data
deduplication [I§]. These dependencies help us decide what attributes to com-
pare and how to compare these attributes when matching tuples. They allow us
to deduce alternative attributes to inspect such that when matching cannot be
done by comparing attributes that contain errors, we may still find matches by
using other, more reliable attributes.

6 W. Fan

In contrast to traditional dependencies that we are familiar with such as
FDs and INDs, matching dependencies are dynamic constraints: they tell us
what data have to be updated as a consequence of record matching. A dynamic
constraint theory has been developed for matching dependencies, from deduction
analysis to finite axiomatizability to inference algorithms (see [I8] for details).

2.3 Data Accuracy

Data accuracy refers to the closeness of values in a database to the true values
of the entities that the data in the database represent. Consider, for example, a
person schema:

person (FN, LN, age, height, status)

where each tuple specifies the name (FN, LN), age, height and marital status of
a person. An instance of person is shown below, in which sy presents the “true”
information for Mike.

FN LN age height status
so: Mike Clark 14 1.70 single
s1: M. Clark 14 1.69 married
s2: Mike Clark 45 1.60 single

Given these, we can conclude that the values of s1[age, height] are more ac-
curate than sz[age, height], as they are closer to the true values for Mike, while
s2[FN, status] are more accurate than s;[FN, status]. It is more challenging, how-
ever, to determine the relative accuracy of s; and so when the reference sq is
unknown, as commonly found in practice. In this setting, it is still possible to
find that for certain attributes, the values in one tuple are more accurate than
another by an analysis of the semantics of the data, as follows.

(1) Suppose that we know that Mike is still going to middle school. From this,
we can conclude that si[age] is more accurate than ss[age]. That is, si[age] is
closer to Mike’s true age value than sz[age], although Mike’s true age may not
be known. Indeed, it is unlikely that students in a middle school are 45 years
old. Moreover, from the age value (s1[age]), we may deduce that ss[status] may
be more accurate than s;[status].

(2) If we know that si[height] and sa[height] were once correct, then we may
conclude that si[height] is more accurate than ss[height], since the height of a
person is typically monotonically increasing, at least when the person is young.

2.4 Information Completeness

Information completeness concerns whether our database has complete infor-
mation to answer our queries. Given a database D and a query (), we want to
know whether) can be completely answered by using only the data in D. If
the information in D is incomplete, one can hardly expect its answer to @) to be
accurate or even correct.

Data Quality: Theory and Practice 7

In practice our databases often do not have sufficient information for our
tasks at hand. For instance, the value of ¢1[phn] in relation Dy of Figure [is
missing, as indicated by null. Worse still, tuples representing employees may
also be missing from Dy. As we have seen earlier, for query Q1 given above, if
some tuples representing employees in the NYC office are missing from Dy, then
the answer to @1 in Dy may not be correct. Incomplete information introduces
serious problems to enterprises: it routinely leads to misleading analytical results
and biased decisions, and accounts for loss of revenues, credibility and customers.

How should we cope with incomplete information? Traditional work on infor-
mation completeness adopts either the Closed World Assumption (CWA) or the
Open World Assumption (OWA), stated as follows (see, e.g., [1]).

— The CWA assumes that a database has collected all the tuples representing
real-world entities, but some attribute values of the tuples may be missing.

— The OWA assumes that in addition to missing values, some tuples represent-
ing real-world entities may also be missing. That is, our database may only
be a proper subset of the set of tuples that represent real-world entities.

Database textbooks typically tell us that the world is closed: all the real-world
entities of our interest are assumed already represented by tuples residing in
our database. After all, database theory is typically developed under the CWA,
which is the basis of negation in our queries: a fact is viewed as false unless it
can be proved from explicitly stated facts in our database.

Unfortunately, in practice one often finds that not only attribute values but
also tuples are missing from our database. That is, the CWA is often too strong
to hold in the real world. On the other hand, the OWA is too weak: under the
OWA, we can expect few sensible queries to find complete answers.

The situation is not as bad as it seems. In the real world, neither the CWA nor
the OWA is quite appropriate in emerging applications such as master data man-
agement. In other words, real-life databases are neither entirely closed-world nor
entirely open-world. Indeed, an enterprise nowadays typically maintains master
data (a.k.a. reference data), a single repository of high-quality data that provides
various applications with a synchronized, consistent view of the core business en-
tities of the enterprise (see, e.g., [37], for master data management). The master
data contain complete information about the enterprise in certain categories,
e.g., employees, departments, projects, and equipment. Master data can be re-
garded as a closed-world database for the core business entities of the enterprise.
Meanwhile a number of other databases may be in use in the enterprise for,
e.g., sales, project control and customer support. On one hand, the information
in these databases may not be complete, e.g., some sale transaction records may
be missing. On the other hand, certain parts of the databases are constrained by
the master data, e.g., employees and projects. In other words, these databases
are partially closed. The good news is that we often find that partially closed
databases have complete information to answer our queries at hand.

To rectify the limitations of the CWA and the OWA, a theory of relative
information completeness has been proposed [20/19], to specify partially closed

8 W. Fan

databases w.r.t. available master data. In addition, several fundamental prob-
lems in connection with relative completeness have been studied, to determine
whether our database has complete information to answer our query, and when
the database is incomplete for our tasks at hand, to decide what additional data
should be included in our database to meet our requests. The complexity bounds
of these problems have been established for various query languages.

2.5 Data Currency

Data currency is also known as timeliness. It aims to identify the current values
of entities represented by tuples in a database that may contain stale data, and
to answer queries with the current values.

The question of data currency would be trivial if all data values carried valid
timestamps. In practice, however, one often finds that timestamps are unavail-
able or imprecise [46]. Add to this the complication that data values are often
copied or imported from other sources [12/13], which may not support a uniform
scheme of timestamps. These make it challenging to identify the “latest” values
of entities from the data in our database.

For example, recall query Q3 and the employee relation Dg of Figure [1l given
earlier. Assume that tuples t4,t5 and tg are found pertaining to the same em-
ployee Mary by data deduplication. As remarked earlier, in the absence of reli-
able timestamps, the answer to (03 in Dy does not tell us whether Mary’s current
salary is 50k or 80k, and whether her current last name is Smith or Luth.

Not all is lost. In practice it is often possible to deduce currency orders from
the semantics of the data, as illustrated below.

(1) While we do not have timestamps associated with Mary’s salary, we know
that the salary of each employee in the company does not decrease, as commonly
found in the real world. This tells us that ¢¢[salary] is more current than t4[salary]
and ts[salary]. Hence we may conclude that Mary’s current salary is 80k.

(2) We know that the marital status can only change from single to married and
from married to divorced; but not from married to single. In addition, employee
tuples with the most current marital status also contain the most current last
name. Therefore, t5[LN] = ¢5[LN] is more current than ¢4[LN]. From these we can
infer that Mary’s current last name is Luth.

A data currency model has recently been proposed in [26], which allows us
to specify and deduce data currency when temporal information is only partly
known or not available at all. Moreover, a notion of certain current query answers
is introduced there, to answer queries with current values of entities derived from
a possibly stale database. In this model the complexity bounds of fundamental
problems associated with data currency have been established, for identifying the
current value of an entity in a database in the absence of reliable timestamps,
answering queries with current values, and for deciding what data should be
imported from other sources in order to answer query with current values. We
encourage the interested reader to consult [26] for more detailed presentation.

Data Quality: Theory and Practice 9

2.6 Interactions between Data Quality Issues

To improve data quality we often need to deal with each and every of the five
central issues given above. Moreover, there issues interact with each other, as
illustrated below.

As we have seen earlier, tuples t1, > and t3 in the relation Dgy of Figure[Il are
inconsistent. We show how data deduplication may help us resolve the incon-
sistencies. Suppose that the company maintains a master relation for its offices,
consisting of consistent, complete and current information about the address and
phone number of each office. The master relation is specified by schema:

office (CC, AC, phn, street, city, zip),
and is denoted by D,,, given as follows:

CC AC phn street city zip
tm1: 44 131 3456789 Mayfield EDI EH4 8LE
tm2: 01 908 7966899 Mtn Ave MH NJ 07974

Then we may “clean” t1,ts and t3 by leveraging the interaction between data
deduplication and data repairing processes (for data consistency) as follows.

(1) If the values of the CC, AC attributes of these tuples are confirmed accurate,
we can safely update their city attributes by letting ¢;[city] = ¢2[city] := EDI,
and tg[city] := MH, for reasons remarked earlier. This yields ¢}, t5 and 5, which
differ from ¢1,t> and t3, respectively, only in their city attribute values.

(2) We know that if an employee tuple ¢t € Dy and an office tuple ¢,,, € D,, agree
on their address (street, city, zip), then the two tuples “match”, i.e., they refer
to the same address. Hence, we can update ¢[CC, AC, phn] by taking the corre-
sponding master values from ¢,,. This allows us to change t}[street] to ¢,,1[street].
That is, we repair t5[street] by matching t5 and t,,1. This leads to tuple 3, which
differs from ¢t only in the street attribute.

(3) We also know that for employee tuples t; and to, if they have the same ad-
dress, then they should have the same phn value. In light of this, we can augment
t} [phn] by letting ¢} [phn] := tJ[phn], and obtain a new tuple ¢/.

One can readily verify that ¢{,¢} and t} are consistent. In the process above,
we “interleave” operations for resolving conflicts (steps 1 and 3) and operations
for detecting duplicates (step 2). On one hand, conflict resolution helps dedu-
plication: step 2 can be conducted only after ¢s[city] is corrected. On the other
hand, deduplication also helps us resolve conflicts: ¢} [phn] is enriched only after
th[street] is fixed via matching.

There are various interactions between data quality issues, including but not
limited to the following.

— Data currency can be improved if more temporal information can be obtained
in the process for improving information completeness.

10 W. Fan

— To determine the current values of an entity, we need to identify tuples
pertaining to the same entity, via data deduplication. For instance, to find
Mary’s LN in relation Dy of Figure [I, we have to ask whether tuples t4, ts
and tg refer to the same person.

— To resolve conflicts in tuples representing an entity, we have to determine
whether the information about the entity is complete, and only if so, we can
find the true value of the entity from the data available in our database.

These suggest that a practical data quality management system should provide
functionality to deal with each and every of five central issues given above, and
moreover, leverage the interactions between these issues to improve data quality.
There has been preliminary work on the interaction between data deduplication
and data repairing [27], as illustrated by the example above.

3 Improving Data Quality

Real-life data are often dirty, and dirty data are costly. In light of these, effective
techniques have to be in place to improve the quality of our data. But how?

Errors in Real-Life Data. To answer this question, we first classify errors
typically found in the real world. There are two types of errors, namely, syntactic
errors and semantic errors, as illustrated below.

(1) Syntactic errors: violations of domain constraints by the values in our database.
For example, name = 1.23 is a syntactic error if the domain of attribute name
is string, whereas the value is numeric. Another example is age = 250 when the
range of attribute age is [0, 120].

(2) Semantic errors: discrepancies between the values in our database and the
true values of the entities that our data intend to represent. All the examples
we have seen in the previous sections are semantic errors, related to data con-
sistency, deduplication, accuracy, currency and information completeness.

While syntactic errors are relatively easy to catch, it is far more challenging to
detect and correct semantic errors. Below we focus on semantic errors.

Dependencies as Data Quality Rules. A central question concerns how we
can tell whether our data have semantic errors, i.e., whether the data are dirty
or clean? To this end, we need data quality rules to detect semantic errors in
our data and fix those errors. But what data quality rules should we adopt?

A natural idea is to use data dependencies (a.k.a. integrity constraints).
Dependency theory is almost as old as relational databases themselves. Since
Codd [I0] introduced functional dependencies, a variety of dependency lan-
guages, defined as various classes of first-order (FO) logic sentences, have been
developed. There are good reasons to believe that dependencies should play an
important role in data quality management systems. Indeed, dependencies spec-
ify a fundamental part of the semantics of data, in a declarative way, such that
errors emerge as violations of the dependencies. Furthermore, inference systems,

Data Quality: Theory and Practice 11

implication analysis and profiling methods for dependencies have shown promise
as a systematic method for reasoning about the semantics of the data. These help
us deduce and discover rules for improving data quality, among other things. In
addition, all the five central aspects of data quality — data consistency, dedupli-
cation, accuracy, currency and information completeness — can be specified in
terms of data dependencies. This allows us to treat various data quality issues
in a uniform logical framework, in which we can study their interactions.

Nevertheless, to make practical use of dependencies in data quality manage-
ment, classical dependency theory has to be extended. Traditional dependencies
were developed to improve the quality of schema via normalization, and to opti-
mize queries and prevent invalid updates (see, e.g., [1]). To improve the quality of
the data, we need new forms of dependencies, such as conditional dependencies
by specifying patterns of semantically related data values to capture data in-
consistencies [23|[7], matching dependencies by supporting similarity predicates
to accommodate data errors in record matching [I8], containment constraints
by enforcing containment of certain information about core business entities
in master data to reason about information completeness [20/19], and currency
constraints by incorporating temporal orders to determine data currency [26].

Care must be taken when designing dependency languages for improving data
quality. Among other things, we need to balance the tradeoff between expressive
power and complexity, and revisit classical problems for dependencies such as
the satisfiability, implication and finite axiomatizability analyses.

Improve Data Quality with Rules. After we come up with the “right” de-
pendency languages for specifying data quality rules, the next question is how
to effectively use these rules to improve data quality? In a nutshell, a rule-based
data quality management system should provide the following functionality.

Discovering Data Quality Rules. To use dependencies as data quality rules, it is
necessary to have efficient techniques in place that can automatically discover
dependencies from data. Indeed, it is unrealistic to rely solely on human experts
to design data quality rules via an expensive and long manual process, or count
on business rules that have been accumulated. This suggests that we learn infor-
mative and interesting data quality rules from (possibly dirty) data, and prune
away trivial and insignificant rules based on a threshold specified by users.

More specifically, given a database instance D, the profiling problem is to find
a minimal cover of all dependencies (e.g., CFDs, CINDs, matching dependen-
cies) that hold on D, i.e., a non-redundant set of dependencies that is logically
equivalent to the set of all dependencies that hold on D.

To find data quality rules, several algorithms have been developed for discov-
ering CFDs [824)35] and matching dependencies [44].

Validating Data Quality Rules. A given set X' of dependencies, either automat-
ically discovered or manually designed by domain experts, may be dirty itself.
In light of this we have to identify “consistent” dependencies from X, i.e., those
rules that make sense, to be used as data quality rules. Moreover, we need to

12 W. Fan

deduce new rules and to remove redundancies from Y| via the implication or
deduction analysis of those dependencies in X.

This problem is, however, nontrivial. It is already NP-complete to decide
whether a given set of CFDs is satisfiable [23], and it becomes undecidable for
CFDs and CINDs taken together [7]. Nevertheless, there has been an approxima-
tion algorithm for extracting a set S’ of consistent rules from a set S of possibly
inconsistent CFDs, while guaranteeing that S’ is within a constant bound of the
maximum consistent subset of S (see [23] for details).

Detecting Errors. After a validated set of data quality rules is identified, the next
question concerns how to effectively catch errors in a database by using these
rules. Given a set X' of data quality rules and a database D, we want to detect
inconsistencies in D, i.e., to find all tuples in D that violate some rule in X.
When it comes to relative information completeness, we want to decide whether
D has complete information to answer an input query), among other things.

We have shown that for a centralized database D, given a set X of CFDs
and CINDs, a fixed number of SQL queries can be automatically generated such
that, when being evaluated against D, the queries return all and only those
tuples in D that violate X' [23]. That is, we can effectively detect inconsistencies
by leveraging existing facility of commercial relational database systems.

In practice a database is often fragmented, vertically or horizontally, and is
distributed across different sites. In this setting, inconsistency detection becomes
nontrivial: it necessarily requires certain data to be shipped from one site to an-
other. In this setting, error detection with minimum data shipment or minimum
response time becomes NP-complete [25], and the SQL-based techniques for de-
tecting violations of conditional dependencies no longer work. Nevertheless, effec-
tive batch algorithms [25] and incremental algorithms [29] have been developed
for detecting errors in distributed data, with certain performance guarantees.

Data Imputation. After the errors are detected, we want to automatically localize
the errors, fix the errors and make the data consistent. We also need to identify
tuples that refer to the same entity, and for each entity, determine its latest and
most accurate values from the data in our database. When some data are missing,
we need to decide what data we should import and where to import from, so
that we will have sufficient information for tasks at hand. As remarked earlier,
these should be carried out by capitalizing on the interactions between processes
for improving various aspects of data quality, as illustrated in Section

As another example, let us consider data repairing for improving data consis-
tency. Given a set X of dependencies and an instance D of a database schema
R, it is to find a candidate repair of D, i.e., an instance D’ of R such that D’
satisfies X' and D" minimally differs from the original database D [2]. This is the
method that US national statistical agencies, among others, have been practicing
for decades for cleaning census data [33/36]. The data repairing problem is, nev-
ertheless, highly nontrivial: it is NP-complete even when a fixed set of FDs or a
fixed set of INDs is used as data quality rules [5], even for centralized databases.
In light of these, several heuristic algorithms have been developed, to effectively
repair data by employing FDs and INDs [5], CFDs [IT45], CFDs and matching

Data Quality: Theory and Practice 13

dependencies [27] as data quality rules. A functional prototype system [22] has
also shown promises as an effective tool for repairing data in industry.

The data repairing methods mentioned above are essentially heuristic: while
they improve the consistency of the data, they do not guarantee to find correct
fixes for each error detected, i.e., they do not warrant a precision and recall of
100%. Worse still, they may introduce new errors when trying to repair the data.
In light of these, they are not accurate enough to repair critical data such as
medical data, in which a minor error may have disastrous consequences. This
highlights the quest for effective methods to find certain fizes that are guaranteed
correct. Such a method has recently be proposed in [28]. While it may not be
able to fix all the errors in our database, it guarantees that whenever it updates
a data item, it correctly fixes an error without introducing any new error.

4 Conclusion

Data quality is widely perceived as one of the most important issues for informa-
tion systems. In particular, the need for studying data quality is evident in big
data management, for which two central issues of equivalent importance concern
how to cope with the quantity of the data and the quality of the data.

The study of data quality management has raised as many questions as it has
answered. It is a rich source of questions and vitality for database researchers.
However, data quality research lags behind the demands in industry. A number
of open questions need to be settled. Below we address some of the open issues.

Data Accuracy. Previous work on data quality has mostly focused on data
consistency and data deduplication. In contrast, the study of data accuracy is
still in its infancy. One of the most pressing issues concerns how to determine
whether one value is more accurate than another in the absence of reference
data. This calls for the development of models, quantitative metrics, and effective
methods for determining the relative accuracy of data.

Information Completeness. Our understanding of this issue is still rudimen-
tary. While the theory of relative information completeness [20/19] circumvents
the limitations of the CWA and the OWA and allows us to determine whether
a database has complete information to answer our query, effective metrics and
algorithms are not yet in place for us to conduct the evaluation in practice.

Data Currency. The study of data currency has not yet reached the matu-
rity. The results in this area are mostly theoretical: a model for specifying data
currency, and complexity bounds for reasoning about the currency of data [26].
Among other things, effective methods for evaluating the currency of data in our
databases and for deriving current values from stale data are yet to be developed.

Interaction between Various Issues of Data Quality. As remarked ear-
lier, there is an intimate connection between data repairing and data dedupli-
cation [27]. Similarly, various interactions naturally arise when we attempt to

14 W. Fan

improve the five central aspects of data quality: information completeness is
intimately related to data currency and consistency, and so is data currency to
data consistency and accuracy. These interactions require a full treatment.

Repairing Distributed Data. Already hard to repair data in a centralized
database, it is far more challenging to efficiently fix errors in distributed data.
This is, however, a topic of great interest to the study of big data, which are
typically partitioned and distributed. As remarked earlier, data quality is a cen-
tral aspect of big data management, and hence, effective and scalable repairing
methods for distributed data have to be studied.

The Quality of Complex Data. Data quality issues are on an even larger
scale for data on the Web, e.g., XML data and social graphs. Already hard for
relational data, error detection and repairing are far more challenging for data
with complex structures. In the context of XML, for example, the constraints
involved and their interaction with XML Schema are far more intriguing than
their relational counterparts, even for static analysis [B0J32], let alone for data
repairing. In this setting data quality remains by and large unexplored. Another
issue concerns object identification, i.e., to identify complex objects that refer
to the same real-world entity, when the objects do not have a regular structure.
This is critical not only to data quality, but also to Web page clustering, schema
matching, pattern recognition, and spam detection, among other things.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Arenas, M., Bertossi, L.E., Chomicki, J.: Consistent query answers in inconsistent
databases. In: PODS (1999)

3. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Tech-
niques. Springer (2006)

4. Bertossi, L.: Database Repairing and Consistent Query Answering. Morgan & Clay-
pool Publishers (2011)

5. Bohannon, P., Fan, W., Flaster, M., Rastogi, R.: A cost-based model and effective
heuristic for repairing constraints by value modification. In: SIGMOD (2005)

6. Bravo, L., Fan, W., Geerts, F., Ma, S.: Increasing the expressivity of conditional
functional dependencies without extra complexity. In: ICDE (2008)

7. Bravo, L., Fan, W., Ma, S.: Extending dependencies with conditions. In: VLDB
(2007)

8. Chiang, F., Miller, R.: Discovering data quality rules. In: VLDB (2008)

9. Chomicki, J.: Consistent Query Answering: Five Easy Pieces. In: Schwentick, T,
Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1-17. Springer, Heidelberg (2006)

10. Codd, E.F.: Relational completeness of data base sublanguages. In: Data Base
Systems: Courant Computer Science Symposia Series 6. Prentice-Hall (1972)

11. Cong, G., Fan, W., Geerts, F., Jia, X., Ma, S.: Improving data quality: Consistency
and accuracy. In: VLDB (2007)

12. Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating conflicting data: The role
of source dependence. In: VLDB (2009)

13.

14.

15.

16.

17.
18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.
38.

39.

Data Quality: Theory and Practice 15

Dong, X.L., Berti-Equille, L., Srivastava, D.: Truth discovery and copying detection
in a dynamic world. In: VLDB (2009)

Eckerson, W.W.: Data quality and the bottom line: Achieving business success
through a commitment to high quality data. The Data Warehousing Institute
(2002)

Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate record detection: A
survey. TKDE 19(1) (2007)

English, L.: Plain English on data quality: Information quality management: The
next frontier. DM Review Magazine (April 2000)

Fan, W.: Dependencies revisited for improving data quality. In: PODS (2008)
Fan, W., Gao, H., Jia, X., Li, J., Ma, S.: Dynamic constraints for record matching.
VLDB J. 20(4), 495-520 (2011)

Fan, W., Geerts, F.: Capturing missing tuples and missing values. In: PODS, pp.
169-178 (2010)

Fan, W., Geerts, F.: Relative information completeness. TODS 35(4) (2010)

Fan, W., Geerts, F.: Foundations of Data Quality Management. Morgan & Clay-
pool Publishers (2012)

Fan, W., Geerts, F., Jia, X.: Semandaq: A data quality system based on conditional
functional dependencies. In: VLDB, demo (2008)

Fan, W., Geerts, F., Jia, X., Kementsietsidis, A.: Conditional functional depen-
dencies for capturing data inconsistencies. TODS 33(1) (2008)

Fan, W., Geerts, F., Li, J., Xiong, M.: Discovering conditional functional depen-
dencies. TKDE 23(5), 683-698 (2011)

Fan, W., Geerts, F., Ma, S., Miiller, H.: Detecting inconsistencies in distributed
data. In: ICDE, pp. 64-75 (2010)

Fan, W., Geerts, F., Wijsen, J.: Determining the currency of data. TODS (to
appear)

Fan, W., Li, J., Ma, S., Tang, N.,; Yu, W.: Interaction between record matching
and data repairing. In: SIGMOD (2011)

Fan, W., Li, J., Ma, S., Tang, N., Yu, W.: Towards certain fixes with editing rules
and master data. VLDB J. 21(2), 213-238 (2012)

Fan, W., Li, J., Tang, N., Yu, W.: Incremental detection of inconsistencies in
distributed data. In: ICDE (2012)

Fan, W., Libkin, L.: On XML integrity constraints in the presence of DTDs.
J. ACM 49(3), 368-406 (2002)

Fan, W., Ma, S., Hu, Y., Liu, J., Wu, Y.: Propagating functional dependencies
with conditions. In: VLDB, pp. 391-407 (2008)

Fan, W., Siméon, J.: Integrity constraints for XML. JCSS 66(1), 256-293 (2003)
Fellegi, 1., Holt, D.: A systematic approach to automatic edit and imputation.
J. American Statistical Association 71(353), 17-35 (1976)

Gartner. Forecast: Enterprise software markets, worldwide, 2008-2015, 2011 up-
date. Technical report, Gartner (2011)

Golab, L., Karloff, H., Korn, F., Srivastava, D., Yu, B.: On generating near-optimal
tableaux for conditional functional dependencies. In: VLDB (2008)

Herzog, T.N., Scheuren, F.J., Winkler, W.E.: Data Quality and Record Linkage
Techniques. Springer (2009)

Loshin, D.: Master Data Management. Knowledge Integrity, Inc. (2009)

Miller, D.W., et al.: Missing prenatal records at a birth center: A communication
problem quantified. In: AMIA Annu. Symp. Proc. (2005)

Naumann, F., Herschel, M.: An Introduction to Duplicate Detection. Morgan &
Claypool Publishers (2010)

16

40.

41.

42.
43.

44.
45.

46.

W. Fan

Otto, B., Weber, K.: From health checks to the seven sisters: The data quality
journey at BT (September 2009), BT TR-BE HSG/CC CDQ/8

Redman, T.: The impact of poor data quality on the typical enterprise. Commun.
ACM 2, 79-82 (1998)

SAS (2006), http://www.sas.com/industry/fsi/fraud/

Shilakes, C.C., Tylman, J.: Enterprise information portals. Technical report. Mer-
rill Lynch, Inc., New York (November 1998)

Song, S., Chen, L.: Discovering matching dependencies. In: CIKM (2009)

Yakout, M., Elmagarmid, A.K., Neville, J., Ouzzani, M.: GDR: a system for guided
data repair. In: SIGMOD (2010)

Zhang, H., Diao, Y., Immerman, N.: Recognizing patterns in streams with impre-
cise timestamps. In: VLDB (2010)

http://www.sas.com/industry/fsi/fraud/

	Data Quality: Theory and Practice
	Data Quality: An Overview
	Central Issues of Data Quality
	Data Consistency
	Data Deduplication
	Data Accuracy
	Information Completeness
	Data Currency
	Interactions between Data Quality Issues

	Improving Data Quality
	Conclusion
	References

