
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Matching typed and untyped realizability

Citation for published version:
Longley, J 1999, 'Matching typed and untyped realizability' Electronic Notes in Theoretical Computer
Science, vol. 23, no. 1, pp. 74-100. DOI: 10.1016/S1571-0661(04)00105-7

Digital Object Identifier (DOI):
10.1016/S1571-0661(04)00105-7

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Electronic Notes in Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/S1571-0661(04)00105-7
https://www.research.ed.ac.uk/portal/en/publications/matching-typed-and-untyped-realizability(fc35f3e8-7c99-4991-9c36-c84925e1b027).html


Electronic Notes in Theoretical Computer Science �� No� � ������
URL� http���www�elsevier�nl�locate�entcs�volume���html �� pages

Matching typed and untyped realizability
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Abstract

Realizability interpretations of logics are given by saying what it means for compu�

tational objects of some kind to realize logical formulae� The computational objects

in question might be drawn from an untyped universe of computation� such as a

partial combinatory algebra� or they might be typed objects such as terms of a

PCF�style programming language� In some instances� one can show that a particu�

lar untyped realizability interpretation matches a particular typed one� in the sense

that they give the same set of realizable formulae� In this case� we have a very good

�t indeed between the typed language and the untyped realizability model�we refer

to this condition as �constructive� logical full abstraction�

We give some examples of this situation for a variety of extensions of PCF� Of par�

ticular interest are some models that are logically fully abstract for typed languages

including non�functional features� Our results establish connections between what

is computable in various programming languages and what is true inside various

realizability toposes� We consider some examples of logical formulae to illustrate

these ideas� in particular their application to exact real�number computability�

� Introduction

It is well�known that realizabilitymodels provide a good supply of denotational

models for a range of functional programming languages� In the most familiar

situation� one starts with a partial combinatory algebra A� and constructs

the category Mod�A� of modest sets over A �or equivalently the category

PER�A� of partial equivalence relations on A�� Since many familiar PCAs

consist of e�ective objects of some kind �e�g� K�� P�re� K�re� or �
��T for any

��theory T �� the corresponding categories have a notion of computability built

into them� all the morphisms are computable in some sense�

Interestingly� di�erent PCAs embody di�erent notions of computability�

For example� we can often pick out an object of Mod�A� playing the role

of N�� and then consider the �nite types in Mod�A� generated from N� by

exponentiation� Taking global elements of these objects �i�e� applying the

functor Hom�	����� we obtain a �nite type structure� which we can think of
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as the class of 
computable� �nite�type partial functionals relative to A� An

interesting question is which PCAs give rise to which �nite type structures�

At present� it seems that there are essentially three di�erent �nite type

structures that occur widely in nature� each of which comes in both a 
full

continuous� and an 
e�ective� �avour� All six of these type structures have

a number of di�erent characterizations� and all have some claim to being

mathematically natural objects of study� The three full type structures are�

� The partial continuous functionals� that is� the �nite type structure arising

from the familiar Scott domain model �	��

� The hereditarily sequential functionals of Nickau ���� this coincides with

the �nite type structure arising from the fully abstract game models for

PCF due to Abramsky� Hyland et al 	����

� The strongly stable functionals of Bucciarelli and Ehrhard ��� these coincide

with the sequentially realizable functionals of Longley 	���

Intuitively� the type structure of hereditarily sequential functionals is smaller

than the other two �more precisely� it is a subquotient of each of the others��

partial continuous sequentially realizable

hereditarily sequential
�
�
�

�
�
��

�
�
�
�
�
��

Each of these type structures has a natural e�ective analogue� Rather re�

markably� in each case one can �nd a programming language �with a decidable

set of terms and an e�ective operational semantics� which de�nes precisely the

functionals in the e�ective type structure�

PCF
��

PCF�H

PCF

�
�
�

�
�
�

�
�
�
�
�
�

Here PCF
��

is the extension of PCF with parallel�or and exists operators

as studied in ���� For the functional H� see 	��� One can characterize the

e�ective type structures as the closed term models for these programming

languages�

For each of these six type structures there are known examples of PCAs

giving rise to it�

�
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� The partial continuous functionals arise frommany 
continuous PCAs� such

as the Scott graph model P� ���� the D� models ���� Plotkin�s universal

domain T � ���� and Kleene�s second model K� 	���

� The e�ective partial continuous functionals �corresponding to PCF��� arise

from the e�ective analogues of each of the above PCAs� as well as from

Kleene�s �rst model K� ���

� The hereditarily sequential functionals arise from various PCAs recently

constructed by Abramsky �see 	���� They also from PCAs obtained by

solving various recursive domain equations in known fully abstract models

of PCF� such as categories of games or sequential domains �see 	����

� The e�ective hereditarily sequential functionals �i�e� the PCF�de�nable func�

tionals� arise from the e�ective analogues of any of these� and from the term

models of certain impure ��calculi �see 	���� Moreover� the Longley�Phoa

Conjecture asserts that this type structure also arises from the pure term

model ��
�T for any semi�sensible ��theory T �see e�g� 	����

� The sequentially realizable �SR� functionals arise from van Oosten�s com�

binatory algebra B ���� and from the combinatory algebra A constructed

by Abramsky �see 	���� They also arise from the combinatory algebra B�
described in 	���

� The e�ective SR functionals arise from the e�ective analogues of these�

All these PCAs yield realizability models that are fully abstract for the

appropriate functional programming languages� and moreover� the e�ective

ones even yield models that are universal �that is� every element of the model

of appropriate type is denotable by a term of the language�� Universality is

already a strong criterion for goodness of �t between a language and a model�

But since we have a choice of universal models for each of our three languages�

it is natural to ask how they di�er one from another� and in particular whether

some are 
better� than others in some sense� That is� can we �nd a stronger


goodness of �t� criterion than universality�

The purpose of the present paper is to introduce and study one such crite�

rion� namely �constructive� logical full abstraction� This criterion asserts that

the logic of realizability embodied by the PCA agrees with a notion of real�

izability derived from the programming language itself� We will see that this

criterion does indeed introduce useful distinctions between PCAs that real�

ize the same type structure� and will give examples of logically fully abstract

models for each of our languages� Moreover� we will show that some of the

above PCAs actually provide models that are logically fully abstract for non�

functional extensions of PCF �in a sense we shall de�ne�� Finally� we will look

at some examples of logical formulae that show up the di�erences between the

various realizability interpretations� to illustrate how logical formulae can be

used to express information about what is and is not computable in various

kinds of programming language�

�
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The notion of logical full abstraction �LFA� was �rst sketched in Chap�

ter � of the author�s Ph�D� thesis 	��� in both a classical and a �stronger�

constructive version� The classical notion of LFA was further studied in 	���

the purpose of the present paper is to study the constructive notion in more

detail�

� Preliminary de�nitions

��� Realizability models

We �rst summarize some de�nitions concerning realizability models and �x

some notation� The reader may consult 	�� for more details and further

background information� Note� however� that some of the de�nitions below

are slightly re�ned versions of the ones given in 	���

De�nition ��� �PCA� A partial combinatory algebra �PCA� consists of a

set A together with a partial binary operation � � A�A� A �called application�

and treated as left�associative� such that there exist elements k� s � A satisfying

k � x � y � x� s � x � y �� s � x � y � z � x � z � �y � z�

for all x� y� z � A�

Here the symbol � means 
is de�ned�� and � means 
if the RHS is de�ned�

so is the LHS and they are equal�� The above de�nition is thus slightly

more general than the more usual de�nition of PCA in which we require �

in place of �� but all the relevant theory works as usual� Moreover� the new

de�nition seems to us to accord better with the spirit of the subject� we

never care if a realizer for something does more than it is meant to� �To

see that the new de�nition really is more general� consider the set of solvable

��terms modulo ��equality� with the partial application operation introduced

by ordinary application� However� we will not exploit this extra generality in

this paper��

We often abbreviate a � b by ab� and write i for skk �note that ix � x

for all x � A�� In any PCA� one can de�ne a pairing operation by hx� yi �

s�si�kx���ky�� The corresponding projections are de�ned by fst � k and

snd � ki� note that fsthx� yi � x and sndhx� yi � y�

De�nition ��� �Modest sets� Let A be a PCA�

�i� A modest set X over A consists of an underlying set jXj� and for each

x � jXj an inhabited set kxk � A of realizers for x� such that if a � kxk and

a � kx�
k then x � x�

� We sometimes write x � X in place of x � jXj�

�ii� A morphism f � X � Y between modest sets is a function f � jXj �

jY j for which there exists r � A such that for all x � jXj and a � kxk we have

r � a � kf�x�k� In this situation we say that r tracks f � We write Mod�A�

for the category of modest sets over A�

The category Mod�A� is cartesian�closed� Given modest sets X�Y � the

exponential Y X is constructed as follows� jY X j is the set of morphisms f �

�
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X � Y � and kfk is the set of elements r � A that track f �

Mod�A� also has a natural number object N � For any non�trivial PCA A�

this may be constructed as follows� let jN j be the set N of natural numbers�

and let knk be the singleton set fng� where n is the Curry numeral for n�

� � hki� ii� n� 	 � hk� ni

It is easy to see that Mod�A� is equivalent to the well�known category

PER�A� of partial equivalence relations on A� In fact� Mod�A� embeds as a

full sub�CCC in the �standard� realizability topos RT�A�� though the latter is

more complicated to construct and we shall not need it here�

In order to interpret languages such as PCF in Mod�A�� we want an

object to play the role of N�� We can obtain such an object if we have some

extra structure on our PCA to capture the idea of non�termination� In 	��	��

this extra structure took the form of a divergence� here we propose a slightly

di�erent notion�

De�nition ��� Let A be a PCA� A non�termination set in A is a non�empty

set E � A such that� for all a� b � A� if a � E then sab � E� Any non�

termination set E gives rise to a lift operation �� on objects of Mod�A� as

follows	 let jX�j � jXj t f	g
 and take

kxkX� � fha� bi j ai � i� bi � kxkXg �x � jXj��

k	kX� � fha� bi j a � E� b � Ag�

The lift operation �� in fact extends to a monad onMod�A�� but here all

we will need is the object N�� For PCAs in which we have sxyz � �xz��yz��

the notion of non�termination set is related to that of divergence as follows�

� if E is a non�termination set� then fai j a � E� ai �g is a divergence giving

rise to the same lift operation�

� if D is a divergence� then fa j ai �
 ai � Dg is a non�termination set

giving the same lift operation�

However� the de�nition of non�termination set is somewhat cleaner �if less

intuitive�� than that of divergence� Moreover� non�termination sets work

better with our more general de�nition of PCA� since for the lift functor arising

from a divergence� the monad multiplication map may fail to be realizable�

For the purposes of this paper� though� it does not matter much whether we

work with non�terminating sets or divergences�

Let us say that a choice of natural number domain �or choice of N�� in

a cartesian�closed category C is simply an object N� of C with a canonical

identi�cation jN�j
�� N t f	g� The natural number object in Mod�A� to�

gether with a non�termination set gives rise to a choice of natural number

domain� though we may on occasion be interested in choices of N� not of this

form� Technically� the choice of natural number domain is part of the data

for a realizability model� however� in many cases of interest there is only one

natural candidate for N� that stands out� and so we shall not always bother

�
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to mention it explicitly�

We can now interpret the �nite types in any realizability model� The

�nite types are freely constructed from a single ground type � via the �right�

associative� binary type constructors � and ��

De�nition ��� �Finite type structure� An �extensional� �nite type struc�

ture �FTS� T consists of a set T � for each �nite type � such that T � � Ntf	g

and T
��� � T

��T
� � together with �application� functions ��� � T

��� �T
� �

T
� such that� for any f� g � T

��� � if f � x � g � x for all x � T
� then f � g�

In any cartesian�closed category C equipped with a choice of N�� we have

an interpretation � �� of the �nite types de�ned by

 � �� � N�� �� 	 �� � � ���  	 ��� �� 	 �� �  	 ����� ��
�

We hence obtain a �nite type structure T �C� N��� where T �C�
� � j� ��j� and

the application operations are given by the evaluation morphisms in C� In the

case C � Mod�A�� we write this simply as T �A�N��� or T �A�E� if the choice

of N� arises from the non�termination set E� More loosely� we may write it

as T �A� and refer to it as the FTS over A�

��� Typed programming languages

Next we introduce some general notions concerning typed programming lan�

guages� By a language L let us mean a family of sets L
�
of terms of type ��

with the following closure properties�

� if M � L��� then fst��M � L� and snd��M � L� �

� if M � L��� and N � L� then MN � L� �

We suppose that each term M has a set of free variables FV�M�� such that

FV�fst��M� � FV�snd��M� � FV�M��

FV�MN� � FV�M� � FV�N��

We write L�
�
for the set fM � L� j FV�M� � g of closed terms of type ��

If � is a �nite non�repetitive list of variables in which all the free variables

of M appear� we may say M is a term in context �� We also assume we

have a notion of substitution for terms of L� interacting with free variables

in the expected way� Finally we suppose we are given an evaluation function

EvalL � L�
�
� N��

A translation 
 from L to L� consists of a family of functions 
� � L� � L
�

�

that preserve projections� application� and free variables� and such that for

M � L�
�
we have EvalL��
�M� � EvalL�M�� If such a translation exists� we

may think of L as a sublanguage of L��

For any language L� we can obtain a partial equivalence relation �
�
on

each L�
�
as follows�

� M �
�
N i� EvalL�M� � EvalL�N��

� M �
���

N i� fst
��
M �

�
fst

��
N and snd

��
M �

�
snd

��
N �

�
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� M ���� N i� MP �� NQ whenever P �� Q�

We may extend �� to open terms as follows� if M�N are terms in context

x��

�
� � � � � x�r

r
� then M �� N i� for all closed terms P�� � � � � Pr� Q�� � � � � Qr such

that P
i
�

�i
Q

i
for each i� we have M �P��x� �

�
N �Q��x�� We say a term M � �

is functional if M �� M � we say a language is functional if all its terms are

functional� For any language L� the sublanguage consisting of functional terms

is a functional language� which we may call the functional core �or Gandy hull�

of L�

Given a functional language L and a cartesian�closed category C with

choice of N�� an interpretation of L in �C� N�� assigns to every term M � L�

in every context � � x��

�
� � � � � x�r

r
a morphism M ��� � �� ��� �r �� �  	 ��

in such a way that composition re�ects substitution� Such an interpretation

is adequate if for all M � L
�

�
we have M �� � Eval�M�� it is universal if for

any morphism f � �� �� � �r �� �  	 �� there is a term M � L� in context

� � x��

�
� � � � � x�r

r
such that M ��� � f � If there is an adequate interpretation

of L in �C� N�� we say that �C� N�� is a model of L�

In the case of a realizabilitymodelMod�A�� we will without comment iden�

tify morphisms 	 � � �� with elements of � ��� Furthermore� if � is a valuation

assigning to each variable x�i

i
� � an element ��xi� � �i ��� and M � � is a

term in context �� we will write M ��� for the element M ������x��� � � � � ��xr��

of � ���

� Untyped and typed realizability

Let L be any functional language such that �� 	 � L�

�
� We will consider the

class J�L� of logical formulae given by the following grammar�

 ��� M �� N j P � j � � � j � 
 � j �x
��� j �x

���

where M�N � � and P � � range over terms of L� and x� ranges over variables

of L� Intuitively we have an equality predicate at each type �� and a termina�

tion predicate at ground type� we will usually omit the subscript in equality

formulae� We will write true� false for the formulae � � �� � � 	 respectively�

and � as sugar for  
 false� Note that we have omitted disjunction from

the logic �see below�� however� we may express disjunctions by translating

� � � to

�n�� n � � �n � �
 �� � ���n � ��
 ���

�� Untyped realizability

We recall the standard notion of untyped realizability for formulae of J�L��

Suppose A is a PCA and E a non�termination set such that L has an adequate

interpretation � �� in Mod�A� as above� Then we may de�ne a relation

a r�  �read 
a realizes  under ��� between elements a � A� valuations � and

�
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formulae  � J�L� whose free variables are in � as follows�

� If M ��� � N ���� then a r� M � N for any a � A�

� If P ��� � N� then a r� P � for any a � A�

� If fst a r�  and snd a r� �� then a r�  � ��

� If ab r� � whenever b r� �� then a r� 
 ��

� If� for some e � � ��� fst a � kek and snd a r��x
�
��e� � then a r� �x���

� If� for all e � � ��� we have ab r��x
�
��e�  whenever b � kek� then a r� �x���

� That�s all�

We write just a r  if a realizes  under the empty valuation� If there exists
a � A such that a r � we write �A�E� j�  �or just A j� �� and say that  is

realizable in A� This notion of realizability is exactly the one arising from the
internal logic of Mod�A� �or of RT�A��� indeed� one can give an equivalent
de�nition of the relation j� by exploiting the categorical structure ofMod�A�

�see 	�� page ������ However� the concrete de�nition in terms of realizers is

perhaps easier to grasp� and is better suited to our present purposes�

It is interesting to note that� for the double�negation fragment of J�L�

�i�e� the image of the G�odel double�negation translation  �� ��� the above
interpretation agrees with a simple classical interpretation of logic in the �nite

type structure T �A�� That is� we haveA j� � i� T �A� j�  �see 	�� Chapter ��

for the easy de�nition of satisfaction in T �A��� Semantically� this corresponds
to the fact that passing from Mod�A� or RT�A� to the FTS corresponds to
taking global elements� and the global elements functor Hom�	��� � RT�A��

Set is exactly the re�ection fromRT�A� to its double�negation sheaf subtopos�

What this means is that if two realizability models yield the same FTS� then
the corresponding relations j� agree on the double�negation fragment of J�L��

�In fact the converse also holds in the cases of interest� see 	���� However�
they may well disagree on the rest of J�L�� for example� the PCAs K� and
P�re give the same FTS but yield quite di�erent realizability interpretations

�see below�� To summarize� the FTS only embodies information about the

double�negation fragment of the internal logic�

It may be argued that this classical fragment of the logic is enough for
many practical purposes �see for example 	�� Chapter ���� However� it is still

natural to ask whether we can �nd a use for the �ner distinctions between

models given by their internal logic� This is the subject of the present paper�

Several variants of the above de�nitions are possible� In particular� one
can de�ne the Kreisel�style modi�ed realizability relation amr � giving rise
to the satisfaction relation A j�m � though we will not give details here �see

e�g� �����

�
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�� Typed realizability

The above gives an interpretation for formulae of J�L� relative to a particular

model Mod�A�� which we think of as a 
semantic� model for L� We now

present an alternative� more 
syntactic� notion of realizability� de�ned purely

in terms of the typed programming language and without reference to any

particular model� Our hope is that such an interpretation could be grasped

relatively easily by a programmer without a background in denotational se�

mantics�

The new de�nition of realizability is closely parallel to the one above� ex�

cept that realizers are now terms of the typed programming language itself

rather than elements of an untyped structure� Let L be any language� and L�

its functional core� In order to obtain a pleasant logic in which the extension�

ality rule holds� terms will be drawn only from L�� and variables are thought

of as ranging only over L��terms� However� realizers for formulae are drawn

from the whole of L and may be non�functional programs�

Formally� we de�ne a relation M R  between closed terms M of L and

closed formulae  of J�L�� inductively as follows�

� If N �� N
�� then M R �N �� N

�� for any M � L�

�
�

� If P � � terminates� then M R �P �� for any M � L�

�
�

� If fst
��
M R  and snd

��
M R �� then M R  � ��

� If MN R � whenever N R � then M R 
 ��

� If fst��M � � and snd��M R M�x��� then M R �x���

� If MN R N�x�� whenever N � �� then M R �x���

� That�s all�

If there exists M such that M R � we write L j�  and say that  is

realizable in L� Note that any realizers for  must be of a type 	 �� that can

easily be read o� from the structure of � we may think of 	 �� as the type

of 
potential realizers� for � �We can now see di culty with disjunction� we

would like the type of realizers for  � � to be a disjoint sum type� but such

types are not honest computational datatypes since e�g� they do not have a

bottom element� There may be a way round this� but we prefer to leave out

disjunction altogether��

It is easy to see that for the double�negation fragment of J�L�� the typed re�

alizability interpretation agrees with the operational truth interpretation j�op

de�ned in 	�� Chapter ��� That is� we have L j� � i� j�op �

Note that if L is itself functional� then L� � L and the relations�� coincide

with observational equivalence� the de�nition of typed realizability thus admits

a slightly simpler reading in this case� Examples of this special case will be

considered in Section �� other examples involving non�functional languages

will be considered in Section ��

Having given untyped and typed realizability interpretations for J�L�� it

�
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is natural to ask when they agree�

De�nition ��� Let L be a language with functional core L� and A be a PCA

such that Mod�A� �with some choice of N�� is a model for L�� We say this

model is �constructively� logically fully abstract �LFA� for L if� for all closed

 � J�L��� we have A j�  i� L j� �

� LFA models for functional languages

We now give some examples of LFA models for purely functional languages�

The following easy result �partly folklore� describes a commonly occurring

situation in which logical full abstraction holds�

Proposition ��� Suppose C is a CCC giving a universal model for L �for

some choice of object N� � C�� and suppose U is a universal object of C� Let

A be the combinatory algebra with underlying set Hom�	� U� obtained from

some choice of retraction UU
� U �

�i� If C is well�pointed� then there is a full cartesian�closed embedding I �

C �Mod�A� into the projective objects of Mod�A��

�ii� More generally� if C has a well�pointed cartesian�closed quotient C���

then there is a full cartesian�closed embedding I � C�� �Mod�A��

In either case� the induced interpretation of L in Mod�A� �with natural

number domain I�N��� is constructively LFA�

In fact� in the above situation� the modi�ed realizability interpretation of

J�L� over A is also LFA� In addition� it seems likely that a large supply of

LFA models can be obtained using the notion of extensional realizability �see

����� though we have not yet explored this in detail�

The above proposition represents a very pleasant situation and provides a

cheap source of examples of LFA models� we will use it below to obtain LFA

models of each of the three functional languages mentioned in the Introduc�

tion� It seems that there are other LFA models not of this form� but for these

one has to work harder to prove logical full abstraction� �Of course� this might

mean that the results obtained are more interesting��

��� PCF and its extensions

First we recall the de�nition of call�by�name PCF� We include this here mainly

to provide a basis for some of the less familiar extensions to PCF that we will

de�ne in the next section�

The types of PCF are the �nite types de�ned above� For each type � we

have an in�nite supply of variables of type �� ranged over by x�� y�� z�� We
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also have the following collection of constants�

�� 	� �� � � � � �� if � �� �� �� ��

succ� pred � �� �� Y� � �� � ��� ��

fst�� � �� � 	 �� �� snd�� � �� � 	 �� 	�

The terms of PCF are built up from variables and constants as usual in the

simply�typed ��calculus�

� if M � 	 � then ��x
�

�M� � � � 	 �

� if M � � and N � 	 � then hM�Ni � � � 	 �

� if M � � � 	 and N � �� then �MN� � 	 �

The evaluation contexts E�� of PCF are de�ned inductively as follows� the

identity context � is an evaluation context� and if E�� is an evaluation

context then so are succE��� predE��� ifE��� fst��E��� snd��E�� and

E��N whenever these are well�typed� One then de�nes a one�step reduction

relation � on closed terms of the same type inductively as follows �here n

ranges over the numerals �� 	� �� � � ���

� ��x
�

�M�N �M N�x
�

��

� succn� �n� 	�� pred �n� 	�� n� pred� � �� if � � ��xy�x��

if �n� 	�� ��xy�y�� Y�M �M�Y�M�� fst�� hM�Ni �M �

snd�� hM�Ni � N �

� if M �M
�

and E�� is an evaluation context such that EM � is well�typed�

then EM �� EM
�

��

We write ��

for the re�exive�transitive closure of �� We say that a closed

term M � � terminates if M ��

n for some �necessarily unique� numeral n� in

this case� we set Eval�M� � n� If M does not terminate� then by convention

we take Eval�M� � 	�

The language PCF
��

is de�ned in the same way as PCF except that we

include two additional constants

parallel�or � �� �� �� exists � ��� ��� ��

We will also consider the extension of PCF with a single constant

H � ���� ��� �� � ���� ��� �� � ��

The above function Eval can be extended to yield an operationally de�ned

evaluation relation for PCF
��

���� or for PCF�H 	��� though we will not

give the details here�

It is shown in 	�� that any realizabilitymodel is a model of PCF provided it

satis�es a completeness axiom� which holds in most of the naturally occurring

examples� Some natural realizability models are also models of PCF
��

or

PCF�H�
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��� Examples of LFA models

We now give some examples of LFA models for each of our three languages�

� For PCF��� Recall from 	�� that the PCA K� �equipped with the non�

termination set fn j n � � �g� gives rise to a universal model of PCF��� Let

C be the full subcategory ofMod�K�� consisting of the retracts of the �nite

types� Then U � �N
�
is a universal object in C �by the 
e�ective universality�

of T �!see ����� and the corresponding combinatory algebra A is exactly

T �

re� Since we are in the situation of Proposition ��	�i�� the modelMod�T �

re�

is LFA for PCF�� �as is the corresponding modi�ed realizability model��

The PCA T �

re is closely related to the Scott graph model P�re� Interest�

ingly� the standard realizability model on P�re is not quite LFA for PCF���

a counterexample �discussed in 	�� page ����� is the formula

�x���y�� ��x � � y �� 
 �n���x �
 n � �� � �y �
 n � 	��

which is realizable in P�re but not in PCF��� However� it appears that

the modi�ed realizability model over P�re is LFA� although this is not an

instance of Proposition ��	�

Note in passing that Mod�K��� although a universal model of PCF���

comes nowhere near being LFA for PCF��� For instance� Church�s thesis

is realizable in K� but not in PCF���

�f �����e���n�� 
f�n� � e � n��

� For PCF�H� By analogy with the above� recall from 	�� that the e�ective

van Oosten algebra Bre gives rise to a universal model for PCF�H� Let C
be the full subcategory of Mod�Bre� consisting of retracts of �nite types�

It is shown in 	�� that the object

U � N
�NN
�
�

�

is universal in C� and it gives rise to the combinatory algebra B�re� Again we

are in the situation of Proposition ��	�i�� and so the standard and modi�ed

realizability models over B�re are both LFA for PCF�H�

However� neither the standard nor the modi�ed realizability model over

Bre is LFA for PCF�H�

� For PCF� The following construction is given by Marz� Rohr and Streicher

in 	��� Let U be the canonical solution to some domain equation such as

U �� "� �U�� U��

in a category S of sequential domains �a fully abstract model of PCF�� It can

be shown that all the PCF types� and also UU � are syntactically de�nable

retracts of U in the untyped ��calculus L corresponding to the above domain

equation� Let LU be the PCA of de�nable elements of U �this is a term

model for L�� By taking C to be the category of de�nable retracts of U and

de�nable morphisms between them� we see by Proposition ��	�i� that the

realizability model over LU is LFA for PCF� �In particular it is universal!

this establishes a variant of the Longley�Phoa conjecture��
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Similar results can be obtained by starting from a suitable intensional cat�
egory G of games and innocent strategies� However� unlike S� the category

G is not well�pointed� so we are in the situation of Proposition ��	�ii�� The

combinatory algebras thus obtained from S and G are very closely related�
it seems likely that the former is a quotient of the latter�
It also seems plausible that the ��term model ���T for any semi�sensible

theory T yields an LFA model of PCF �this is a stronger claim than the
Longley�Phoa conjecture�� We have not yet considered whether Abramsky�s

recent constructions of combinatory algebras give LFA models for PCF�

�� A characterization of LFA models

In 	��	�� a notion of classical logical full abstraction was introduced� the
modelMod�A� is classically LFA if for all �closed� formulae  we have

T �A� j�  i� j�op �

By our earlier remarks on double�negation formulae� this says precisely that
for all closed formulae  we have

A j� � i� L j� ��

Hence constructive logical full abstraction implies classical logical full abstrac�
tion� We also know that classical logical full abstraction is equivalent to uni�

versality for models Mod�A�� �This was proved in 	�� for the languages
PCF and PCF��� and with a trivial modi�cation the same proof works for
PCF�H��

Since all three of our languages L are functional� it is easy to see that
all closed instances of the following schemata �the axiom of choice and the
independence of premiss principle� are typed�realizable in each of them �for

any �nite types �� 	 ��

AC� ��x���y� �x� y�� 
 ��f��� ��x��x� fx��

IP� �x�� ���x��
 �y� ��x� y�� 
 �y� ����x��
 �x� y��

So in any PCA A which yields an LFA model of L� these principles must

be realizable� In fact� the above conditions together su ce for logical full
abstraction�

Theorem ��� Let L be one of our three purely functional languages� A real�

izability model �Mod�A�� N�� is constructively LFA for L i� it is a universal

model for L and all closed instances of AC and IP are realizable in A�

Proof� The left�to�right implication is already clear from the above remarks�
So suppose Mod�A� is universal for L and AC and IP are realizable in A�

Call two formulae � � equivalent if the universal closure of  � � is true

under both the typed and untyped realizability interpretations� Any atomic
formula � is equivalent to ���� hence if  is ��free then  is equivalent to ��
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Starting with any closed formula � we may transform it into an equivalent
formula of the form ��x�� where � is ��free� This may be done by rewriting

certain subformulae as follows�

�x���y���x� y�� �f��� ��x���x� fx�

��x���
 
 � �x���
 
� �x �� FV�
��

� 
 ��x�
�� �x���
 
� �� ��free� x �� FV����

��x���� 
 � �x���
 
� �x �� FV�
��

� � ��x�
�� �x��� � 
� �x �� FV����

It is easy to see that by repeatedly performing these rewrites in any order

�doing ��conversions where necessary�� we will eventually obtain a formula
��x�� where � is ��free� But both realizability relations are trivial for �� and
so by universality it is clear that A j� ��x�� i� L j� ��x��� Since  is equivalent

to ��x��� we have A j�  i� L j� � �

The above theorem and its proof are strongly reminiscent of the charac�
terization of �provable� modi�ed realizability given in ��� Theorem �������

Indeed� the same argument can be used to show that any universal modi�ed

realizability model for a functional language is logically fully abstract�

� LFA models for non�functional languages

We now show how the notions of typed realizability and logical full abstraction
can be extended to certain 
impure� �i�e� non�functional� extensions of PCF�
In doing so� we shall �nd a new use for some of the PCAs discarded above�

��� Conditions for logical full abstraction

We �rst give some general conditions which su ce for logical full abstraction�

Intuitively� a model �Mod�A�� N�� is LFA for a language L if the typed lan�
guage L and the untyped structure A can be 
simulated� su ciently well in

each other� The conditions we will give look rather cumbersome� but they are

very useful for establishing particular instances of logical full abstraction� �

Firstly� de�ne a compilation of L to A �w�r�t� N�� to consist of

� a total relation � from closed terms of L to elements of A�

� an element apply � A such that

��M�a� � ��N� b� �
 ��MN� apply � a � b��

� an element num � A such that

M � L�

�
� ��M�a� �
 num � a � kEval�M�k

N�
�

� We now know how to formulate these conditions much more cleanly in terms of a certain

��category in which both A and L live� see Section � below and �����
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Secondly� de�ne a simulation of A in L to consist of

� a type ��

� a total relation � from A to L�

�
�

� a term apply � �� �� � of L such that

��a�M� � ��b�N� � ab � �
 ��ab� applyM N��

� a term num � �� � such that for all x � N��

a � kxk � ��a�M� �
 Eval�numM� � x�

The following theorem now gives some su cient conditions for logical full
abstraction� It can be viewed as a generalization of Proposition ��	�

Theorem ��� Suppose L is a language� �Mod�A�� N�� a realizability model�

and the following conditions are satis�ed	

�i� There is a compilation ��� apply�num� of L to A w�r�t� N��

�ii� There is a simulation ��� �� apply� num� of A in L�

�iii� There is an element Code � A such that for any a � A there is some

M � L�

�
such that ��a�M� and ��M�Code � a��

�iv� For each type � there is a term realizer� � � � � of L such that for any

M � L�

�
there is some a � A such that ��M�a� and ��a� realizer�M��

Then �Mod�A�� N�� is logically fully abstract for L�

Proof �Sketch�� For each type �� let �� be the PER on A corresponding

to the modest set � ��� and let �� be the PER on L
�

�
de�ned in Section ����

Write ��

�
for the image of �� under �� de�ned by M ��

�
N i� there exist

a �� b such that ��a�M� and ��b�N�� similarly write ��

�
for the image of ��

under �� One �rst veri�es the following by simultaneous induction on ��

� The relations �� and �
�

�
are isomorphic PERs �that is� they correspond to

isomorphic modest sets��

� The relations �� and �
�

�
are isomorphic PERs in an analogous 
typed�

sense�

For any closed formula � let us write a R�  if there exists M R  such

that ��M�a�� Likewise� we writeM r�  if there exists a r  such that ��a�M��
One now proves the following for all formulae  by simultaneous induction on

the structure of �

� There are p� q � A such that for all closed instances � of  and all a� b � A�

a r � �
 pa R� �� b R� � �
 qb r ��

� There are P�Q � L� such that for all closed instances � of  and all

M�N � L��

M R � �
 PM r� �� N r� � �
 QN R ��

In the case of closed formulae � it follows that A j�  i� L j� � �
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This proof also shows that� in the above situation� the functional core L�

of L has a universal interpretation in Mod�A�� A fuller version of the above

proof �in a cleaner setting� will appear in a future version of 	���

We now present three examples of non�functional languages and corre�

sponding LFA models for them�

��� PCF�quote

Firstly� we extend PCF with a Lisp�style quote operator� We de�ne the lan�

guage PCF�quote in the same way as PCF except that we include a family

of constants quote
�
� � � �� Evaluation contexts for PCF�quote are de�ned

exactly as for PCF� We then take d�e to be some e�ective G�odel�numbering

of terms of PCF�quote� and include in the de�nition of one�step reduction all

well�typed instances of

quote
�
M � dMe�

One might also consider adding Lisp�style eval operators with the property

that eval�dMe � M � but in fact there is no need� such operators can be

de�ned in PCF�quote� �The construction is not trivial� but it is a simple

adaptation of the construction of the PCF enumerators E� in 	����

The language PCF�quote is closely related to the model �Mod�K��� N��

�with N� given as usual by the non�termination set fn j n � � �g�� Indeed� the
four conditions of Theorem ��	 are easily veri�ed� the G�odel�numbering yields

a compilation �� and the operations quote
�
give rise almost immediately to

suitable terms realizer�� Hence�

Theorem ��� The model �Mod�K��� N�� is LFA for PCF�quote�

Thus� realizability over PCF�quote yields exactly the logic of �nite types

over N� in Hyland�s e�ective topos ��� Note that the functional core of

PCF�quote gives rise to the same type structure as PCF�� �this follows from

the universality of Mod�K�� for PCF
��!see 	�� Section ������

�� PCF�catch

Secondly� we consider a family of sequential programming languages which�

in some sense� all embody the same computational power� PCF�catch ���

PCF�call�cc� �PCF �	�� and a certain fragment of Standard ML admitting

local uses of exceptions and references� It seems that these languages all admit

good translations into each other� though we will not make this precise here

�see 		� for a good indication of the state�of�the�art�� For simplicity� we will

choose the language PCF�catch �essentially the language SPCF of �� without

errors� as representative of this family of languages� but we believe that the

result below would apply equally well to any of them�
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The syntax of PCF�catch is de�ned as for PCF but with extra constants

catchk � �

k
z �� �

�� � � � � �� �� � �

for k � �� The evaluation contexts of PCF�catch are de�ned as for PCF with

the following additional clause� if E�� is an evaluation context then so is

catchk��x� � � � xm	��E���

whenever � � m � k� The one�step reduction relation is de�ned as for PCF

with the following additional clauses�

� catchk��x� � � � xm	��Exi��� i whenever E�� is an evaluation context and

xi is free in Exi��

� catchk��x� � � � xm	��n�� m� n�

� catch��succ�� �� catch��pred�� �� catch	�if�� ��

It follows from the universality of PCF�catch for e�ective sequential al�

gorithms �see ��� that the functional H is de�nable in PCF�catch �see 	����

Thus we have a translation of PCF�H into PCF�catch� �Indeed� the func�

tional core of PCF�catch is equivalent to PCF�H�� It is also easy to see that

PCF�catch can be translated into PCF�quote�

A corresponding model is given by van Oosten�s Bre� with the evident

choice of N
�
arising from the non�termination set f�n�	g�

Theorem ��� The model �Mod�Bre�� N�
� is LFA for PCF�catch�

Once again� the proof uses Theorem ��	� For condition �i�� the necessary

compilation is given essentially by the interpretation of PCF�catch in e�ective

sequential algorithms �embedded in Bre as retracts�� Conditions �ii� and �iii�

are easy� using the type � � � � �� Condition �iv� involves some cunning

programming with catch� the key lemma is the following�

Lemma ��� There is a closed term R � �� � �� � � in PCF�catch such

that� for any functional closed term M � �� � of PCF�catch� RM represents

some realizer f for M �� �in the sense that ��f�RM���

��� PCF�timeout

Finally� we brie�y consider PCF�like languages extended with a 
timeout�

feature �essentially equivalent to the operator T introduced by Escard#o in ����

The idea is to add an operator timeout which will try to evaluate an expression

of ground type for a prescribed length of 
time�� For simplicity� we de�ne the

time taken to evaluate P � � to be the number of recursion unfoldings �i�e� the

number of reduction steps Y�M � M�Y�M�� involved in the reduction of P

�this will be �nite i� P terminates�� The operator timeout � � � � � � will
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then have the property that

timeoutP k �
� � if P does not terminate within time k�

timeoutP k �
�
n� 	 if P evaluates to n within time k�

Recursion unfoldings give a reasonable way to measure time� because the

fragment of PCF without Y is normalizing� and so any in�nite computation

must contain in�nitely many recursion unfoldings� This particular choice of

how to measure time also �ts well with the metric space interpretation of PCF

discussed in ��� However� we believe that for our purposes the precise way in

which time is measured should not matter too much�

In an earlier version of this paper� we gave a formal de�nition of the lan�

guage PCF�timeout� and claimed that it has an LFA model given by Kleene�s

second model K�re� Here we withdraw this claim with apologies� whilst it is

possible to compile PCF�timeout to K�re� the latter is powerful enough to

simulate catch while the former is not�

We are now fairly con�dent� however� that the catch operator is all that

is needed to repair our original proof� We hope that a proof of the following

will appear elsewhere�

Claim ��� The model Mod�K�re�� with a suitable choice of N�� is LFA for

the language PCF�catch�timeout �suitably de�ned��

It remains an open question whether there exists a PCA giving rise to an

LFA model for PCF�timeout�

��� Summary

The situation we have described so far is summarized by Figure 	� which

shows the languages we have considered and the PCAs that give LFA mod�

els for them� The arrows here represent translations between the program�

ming languages� it seems that no other translations are possible beyond those

indicated� Note that not all these translations respect the functional core�

e�g� the functional core of PCF�catch corresponds to PCF�H while that

of PCF�catch�timeout corresponds to PCF��� This illustrates the non�

functorial nature of the 
extensional collapse� construction�

Although here we have concentrated on the connections between partic�

ular languages and particular PCAs� we believe the translations are also of

interest� We view the above picture as representing various interesting notions

of computability� ordered according to their computational strength in some

sense� It is no accident that for each of the above translations there is a corre�

sponding applicative morphism between the respective PCAs �see Section ���

We hope to study these translations more fully in a later paper�
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Fig� �� Typed languages and their associated PCAs

� Some logical examples

We have shown how both typed and untyped models of computation corre�

spond to logical theories� These theories in some way capture the amount of

computational power embodied by the models of computation� We now illus�

trate this with some particular examples of logical formulae� both to highlight

the similarities and di�erences between our various notions of computability�

and to demonstrate how logical formulae give a convenient way to summarize

information about what is or is not computable in a certain setting� The two

aspects of computability that seem to show up best are issues of extensionality

�the di�erence between �x��y and �f��x� and of constructivity �the di�erence

between ���x and �x��

We begin with an assortment of simple examples� and then give some

examples relating to exact real�number computability� We outline how� using

our results� one can forge a link between real�number computability in various

programming languages and real analysis inside various realizability toposes�
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��� Simple examples

We have already mentioned a few examples of logical formulae� for instance�

�certain instances of� the axiom of choice are realizable in all the purely func�

tional languages but in none of the non�functional ones� and Church�s thesis

is realizable in K� �hence in PCF�quote� but in none of the other settings�

We now mention some further examples�

����� Local moduli of continuity

Let us write approx for the PCF term

�g�����n����m�� g�if �m � n�m$�

where � is implemented as expected and $ is some diverging term� Since all

computable type � functions are continuous� it is realizable in all our settings

that

j� �F ���g�����n�� F �approx g n� � Fg

�where � stands for the type �� and i � 	 stands for i � ��� Moreover� in

PCF�H and all the languages above it in Figure 	� one can actually compute

a suitable modulus of continuity n from F and g� so in these settings the

formula

j� �F ���g���n�� F �approx g n� � Fg

is realizable� However� it is easy to see by monotonicity that this latter formula

is not realizable in PCF or PCF��� Thus� this formula is internally true in all

but two of the corresponding realizability toposes�

In PCF�H and PCF�catch� we even have that

j� �%�������F ���g�� F �approx g �%Fg�� � Fg�

However� this is not realizable in PCF�timeout or above� since in these lan�

guages there is no extensional way to compute a modulus of continuity� �This

is related to the fact that the interpretation of type � in these languages in�

cludes parallel functions��

����� Uniform moduli of continuity

Classically� every continuous function from Cantor space �N to N is uniformly

continuous� this is essentially K�onig�s Lemma� The corresponding result fails

in all our e�ective settings� because the notorious Kleene tree yields func�

tions that are continuous on the e�ective analogue of Cantor space but not

uniformly continuous there �see e�g� ���� However� given a function which

classically is uniformly continuous� we can e�ectively obtain a modulus of

uniform continuity� That is� if we write UnifMod �F �� n�� for the formula

�g�h����m��m � n
 gm � hm � 	�
 �Fg � �Fg � Fh�

then in all of our settings we have

j� �F �� ����n��UnifMod�F� n��
 �n��UnifMod�F� n��
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In PCF�quote �and for that matter in PCF�� or PCF�timeout�� a realizer

can be easily constructed by means of a parallel search� In all our languages

except PCF�quote� a realizer can be given using the remarkable Berger�Gandy

de�nition of the fan functional in PCF �described e�g� in ����� and so in fact

we have the stronger formula�

j� �%	
��F �

� ����n��UnifMod�F� n��
 UnifMod�F�%F ��

However� this stronger version is not realizable in PCF�quote �at least with

the above de�nition of UnifMod�� Essentially this is because although we can

obtain a uniform modulus of continuity by a parallel search� we can never be

sure that we have found the smallest possible modulus�

���� Sequentiality indices

In the languages PCF� PCF�H and PCF�catch �but none of the others��

every non�constant type � function has a sequentiality index� and so we have

j� �F �
� ��F ��n��$� ��
 ���n���g�� �Fg ��
 �gn ���

Moreover� in PCF�catch �only�� we can e�ectively compute a sequentiality

index�

j� �F �
� ��F ��n��$� ��
 �n���g�� �Fg ��
 �gn ���

�Note that if F is everywhere unde�ned we might have n � 	�� However�

even in PCF�catch� there is no way to compute the sequentiality index ex�

tensionally in F � so the corresponding formula �%	
��F �

� � � � fails�

��� Real�number computability

Exact real�number computation provides an attractive application area for

computation at higher types� so it is not surprising that the real numbers

show up interesting di�erences between our various computational settings�

This is an area of current joint research with Mart#&n Escard#o� we give here an

informal sketch of some of our preliminary results�

Any standard realizability topos contains a real number object R �fortu�

nately in such toposes the Cauchy and Dedekind reals always coincide�� This

means we can interpret formulae of real analysis �say in a language R involv�

ing the types R and R�R� in the internal logic of any realizability topos�

In general� di�erent toposes will give rise to di�erent �avours of real analysis�

according to what formulae are true in them�

We can also represent real numbers using the �nite types we have con�

sidered in this paper� The recursive reals �say in the interval �	� 	�� can be

represented exactly by recursive in�nite sequences of extended binary digits

�	� �� 	� thus� arbitrary recursive reals can be represented e�g� by functions

f of type 	 satisfying �n��fn � � �in any of our languages L�� Computable

functions on these reals can then be represented by functions of type 	 � 	

that behave extensionally on representations of reals�

�	
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It is easy to de�ne predicates Real�x��� RealEq�x�� y��� RealFun�f����

and RealFunEq�f���
� g

����� meaning �respectively� that x represents a real

number� that x� y represent the same real number� that f represents an �exten�

sional� total function on the recursive reals� and that f� g represent the same

real function� Using these predicates� it is easy to see how one can de�ne a

translation from the logic R of the real number object to the logic J �which

we may take to be J�PCF�� in such a way that� in any of our models� a closed

formula  of R is true i� its translation ' is� By logical full abstraction� it

follows that  holds internally in one of our toposes i� ' is realizable in the

corresponding typed programming language�

A simple example is given by the formula of R asserting that all functions

on the reals are continuous� This beautiful result holds in many constructive

settings� and is sometimes known as the Kreisel�Lacombe�Shoen�eld �KLS�

theorem �see e�g� ����

j� �f � R�R��x � R��� � ���� � ���y� jy� xj � � 
 jfy � fxj � ��

�We will feel free to sugar the syntax of R as long as the meaning is evident��

The constructive force of this is that given f� x and � we can actually compute

a � which works� Not surprisingly in view of the above results on local moduli

of continuity� the translation of the this formula is realizable in PCF�H and

above� but not in PCF or PCF��� This corresponds to the fact that the KLS

theorem holds in the realizability toposes over K��K�re�Bre and B�re� but not

those over T �

re or LU �

A more shocking example is the following formula� which asserts that there

is a semi�decidable subset of the reals that is not open in the usual topology�

j� �f � R�"��x � R� fx � � � �� � ���y� jy� xj � � � fy � 	�

It can be shown that this is realizable in PCF�quote �i�e� in K��� by a simple

adaptation of the proof of Friedberg�s theorem �see e�g� ��� Section 	������

Mercifully� it is not realizable in any of the other settings�

Unfortunately� many of the formulae of J that express interesting facts

about real�number computability are not in the image of the translation from

R!that is� the language R seems to be not as expressive as we would like�

In particular� in J we have the following useful formula UnifCts�f����� saying

that a function f �representing� say� a function on I � �� 	�� is 
uniformly

continuous� in a sense analogous to that de�ned in Section ��	���

�p���n���x�y�� ��m�
�m � n
 xm � ym � �� 
 fx�p� � fy�p�

�writing M � N for M � N �M ��� This condition is stronger than the usual

�� de�nition of uniform continuity in real analysis� and is useful for excluding

pathological functions with Kleene�tree�like behaviour� �Roughly speaking�

it says that f would be total on the classical reals if we could apply it to

them�� However� it seems that this property cannot be expressed in R� since

it is essentially a property of a representation f
��� of a real function rather

than the real function itself� It would be pleasing if the above condition could

be replaced by some reasonably clean mathematical condition involving the

��
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object R� but at present we do not know whether this is possible�

Meanwhile� let us add the predicate UnifCts�f���
� to our language� �From

now on� we will use a hybrid of R and J for our syntax� but o cially we

have in mind a corresponding formula of J�� By analogy with the results of

Section ��	��� the following formula holds in all of our settings�

j� �f � I�R� ���UnifCts�f��
 UnifCts�f�

There is an interesting class of formulae expressing the idea that �under

various conditions� we can locate a zero of a function� One of the simplest

examples is the following� which again holds in all our settings�

j� �f � I�R� UnifCts�f�
 �����x � I�fx � ��
 ���x � I�fx � ���

The hypothesis that the zero is unique is essential here� However� one can

also consider similar formulae with other hypotheses� and here it seems that

interesting distinctions emerge between the di�erent notions of computability�

Finally� we mention some formulae expressing the idea that we can compute

�Riemann� integrals for some class of functions� Again� the simplest such

formula holds in all our settings�

j� �f � I�R� UnifCts�f�
 Integrable�f�

However� di�erences emerge when we try to integrate �partial� functions with

discontinuities� For instance� let us write OneHole�f���
� for the following

formula saying that f represents a partial function I � R which is unde�ned

on at most one point x � ��� 	�

�x � ��� 	���y � I��RealEq�x� y�
 Real�fy��

Now consider the following formula� which asserts in e�ect that there is a

uniform algorithm for integrating all such functions�

j� �f� ���OneHole�f��
 Integrable�f��

This formula is not realizable in PCF� but it is realizable in PCF�H� �The al�

gorithm required is a simple adaptation of the integration algorithm described

in 	���� In fact� for any k there is a formula asserting that all functions which

are unde�ned on at most k points are integrable� and this is realizable in

PCF�H� In PCF�catch one can do even better� we can integrate all func�

tions that are unde�ned on only �nitely many points without knowing a bound

k in advance�

It would be interesting to undertake a more systematic investigation of

these di�erent �avours of real analysis� and perhaps for complex and functional

analysis� It seems that there is a potentially large research �eld here waiting

to be explored�

� Further developments

Shortly after writing the original version of this paper� we discovered some

de�nitions that allow us to clarify much of the above material considerably�

��
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In essence� rather than considering our typed and untyped structures as living

in two separate worlds� we are now able to subsume both these worlds in a

single common setting� A preliminary account of these new ideas may be

found in 	��� below we give only a very brief outline� More details will appear

elsewhere�

The key observation is that the construction of realizability categories over

PCAs can be generalized to a much wider class of structures� known as partial

combinatory type structures �PCTSs�� which allow our realizers to have types�

Indeed� for any PCTS A� we have a categoryMod�A� which is locally cartesian

closed and regular� We may recover PCAs exactly as the PCTSs for which

there is only one type� We also obtain PCTSs from the term models for each of

the typed languages considered in this paper� Seen in this light� the untyped

and typed realizability relations de�ned in Section � are both instances of the

same de�nition�

There is a natural ��category PCTS consisting of PCTSs� applicative mor�

phisms and applicative transformations� This expands the ��category of PCAs

considered in 	��� Note that translations between typed languages �as in Sec�

tion ���� also provide examples of applicative morphisms� As in the case of

PCAs� applicative morphisms between PCTSs correspond precisely to certain

exact functors between the realizability categories�

In particular� two PCTSs A� B are equivalent in PCTS i� the realizability

categories on A�B are equivalent� in this situation we may say that A�B are

realizably equivalent� Interestingly� one frequently �nds that the term model

for a certain typed language is realizably equivalent to a certain PCA� for

example� the term model for PCF�catch is realizably equivalent to Bre� Real�

izable equivalences of this kind certainly imply logical full abstraction� indeed�

one can perhaps see realizable equivalence as a kind of ultimate 
goodness of

�t� criterion between a language and a model�

We also have instances of logical full abstraction that do not arise from

realizable equivalences� Indeed� our Theorem ��	 may now be seen much more

simply as a special case of the following�

Theorem 	�� Suppose A�B are PCTSs� and � � A � B� � � B � A are

applicative morphisms �preserving N�� such that we have applicative trans�

formations idA 
 �� and idB 
 ��� Then Mod�A�� Mod�B� induce the

same logical theory�

For example� the PCA K� and the language PCF�quote provide exam�

ples of PCTSs that satisfy these conditions but are not realizably equivalent�

However� these PCTSs are certainly very close� in that there is an applicative

inclusion fromK� to PCF�quote� this justi�es the intuition that they embody

more or less the same notion of computability�

All of the correspondences between languages and models shown in Fig�

ure 	 are at least examples of the above theorem� except that we need to

replace pure PCF by FPC� This explains why our translations between lan�

��
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guages all give rise to applicative morphisms between PCAs�

Finally� we wish to mention a beautiful theorem discovered recently by

Lietz and Streicher� For any PCTS A� in addition to the category Mod�A�

one may construct the larger categories Ass�A� and RC�A�� the latter being
the standard realizability topos in the case of a PCA� We then have�

Theorem 	�� For a PCTS A� the following are equivalent�

�i� A is equivalent �in PCTS� to a PCA�

�ii� Ass�A� contains a generic mono�

�iii� RC�A� is a topos�
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