-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Edinburgh Research Explorer

Edinburgh Research Explorer

Matching typed and untyped readability (Extended abstract)

Citation for published version:
Longley, J 2000, ‘Matching typed and untyped readability (Extended abstract)' Electronic Notes in
Theoretical Computer Science, vol. 35, pp. 109-132. DOI: 10.1016/S1571-0661(05)80734-0

Digital Object Identifier (DOI):
10.1016/S1571-0661(05)80734-0

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Electronic Notes in Theoretical Computer Science

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

OPEN ACCESS

Download date: 05. Apr. 2019


https://core.ac.uk/display/28979139?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/S1571-0661(05)80734-0
https://www.research.ed.ac.uk/portal/en/publications/matching-typed-and-untyped-readability-extended-abstract(0ed6fb58-4dd9-4480-9e36-632975664c18).html

Electronic Notes in Theoretical Computer Science 35 (2000)
URL: http://www.elsevier.nl/locate/entcs/volume35.html 24 pages

Matching typed and untyped realizability
(Extended abstract)

John Longley

Laboratory for the Foundations of Computer Science, JCMB
The King’s Buildings, Mayfield Road
Edinburgh EH9 3J7Z, U.K.
e-mail: jrl@dcs.ed.ac.uk

Abstract

Realizability interpretations of logics are given by saying what it means for compu-
tational objects of some kind to realize logical formulae. The computational objects
in question might be drawn from an untyped universe of computation, such as a
partial combinatory algebra, or they might be typed objects such as terms of a
PCF-style programming language. In some instances, one can show that a particu-
lar untyped realizability interpretation matches a particular typed one, in the sense
that they give the same set of realizable formulae. In this case, we have a very good
fit indeed between the typed language and the untyped realizability model—we refer
to this condition as (constructive) logical full abstraction.

We give some examples of this situation for a variety of extensions of PCF. Of par-
ticular interest are some models that are logically fully abstract for typed languages
including non-functional features. Our results establish connections between what
is computable in various programming languages, and what is true inside various
realizability toposes. We consider some examples of logical formulae to illustrate
these ideas, in particular their application to exact real-number computability.

The present article summarizes the material I presented at the Domains IV work-
shop, plus a few subsequent developments; it is really an extended abstract for a
projected journal paper. No proofs are included in the present version.

0 Introduction

It is well-known that realizability models provide a good supply of denotational
models for a range of functional programming languages. In the most familiar
situation, one starts with a partial combinatory algebra A, and constructs
the category Mod(A) of modest sets over A (or equivalently the category
PER(A) of partial equivalence relations on A). Since many familiar PCAs
(e.g. K1, Pwre, Kope, A°/T for any A-theory T') consist of effective objects of

@2000 Published by Elsevier Science B. V. Open access under CC BY-NC-ND license.


http://creativecommons.org/licenses/by-nc-nd/3.0/

LONGLEY

some kind, the corresponding categories have a notion of computability built
into them: all the morphisms are computable in some sense.

Interestingly, different PCAs embody different notions of computability.
For example, we can often pick out an object of Mod(A) playing the role
of N (usually this is obvious), and then consider the finite types in Mod(A)
generated from N, by exponentiation. Taking global elements of these objects
(i.e. applying the functor Hom(1, —)), we obtain a finite type structure, which
we can think of as the class of “computable” finite-type partial functionals
relative to A. An interesting question is which PCAs give rise to which finite
type structures.

At present, it seems that there are essentially three different finite type
structures that occur widely in nature, each existing in a “full continuous”
and an “effective” flavour. All six of these type structures have a number
of different characterizations, and have some claim to being mathematically
natural objects of study. The three full type structures are:

* The partial continuous functionals: that is, the finite type structure arising
from the familiar Scott domain model [30].

» The hereditarily sequential functionals of Nickau [20]: this coincides with

the finite type structure arising from the fully abstract game models for
PCF due to Abramsky, Hyland et al [1,8].

 The strongly stable functionals of Bucciarelli and Ehrhard [3]: these coincide
with the sequentially realizable functionals of Longley [15].

Intuitively, the type structure of hereditarily sequential functionals is smaller
than the other two (more precisely, it is a subquotient of either of the others):

partial continuous sequentially realizable

hereditarily sequential

Each of these type structures has a natural effective analogue. Rather re-
markably, in each case one can find a programming language (with a decidable
set of terms and an effective operational semantics) which defines precisely the
functionals in the effective type structure:

PCF** PCF+H

PCF



LONGLEY

One can therefore characterize these effective type structures as the closed
term models for the respective programming languages. Here PCF*™ is the
extension of PCF with parallel-or and exists operators as studied in [25]. For
the functional H, see [15].

There are known examples of PCAs giving rise to each of these six type
structures:

* The partial continuous functionals arise from many “continuous PCAs” such
as the Scott graph model Pw [29], the D, models (in complete lattices or
CPOs) [28], Plotkin’s universal domain 7% [26], and Kleene’s second model
K, [11].

* The effective partial continuous functionals (corresponding to PCF*") arise
from the effective analogues of each of the above PCAs, as well as from
Kleene’s first model K; [10] (the best-known example).

* The hereditarily sequential functionals arise from some PCAs recently con-
structed by Abramsky (see [14]), as well as from PCAs obtained by solving
various recursive domain equations in known fully abstract models of PCF,
such as categories of games or sequential domains (see [19]).

¢ The effective hereditarily sequential functionals (i.e. the PCF-definable func-
tionals) arise from the effective analogues of any of these. Moreover, the
Longley-Phoa Conjecture asserts that this type structure also arises from
the term model A°/T for any semi-sensible A-theory T' (see e.g. [13]).

* The sequentially realizable (SR) functionals arise from van Oosten’s com-
binatory algebra B [23], and from the equivalent combinatory algebra A
constructed by Abramsky (see [14]). They also arise from the combinatory
algebra B, described in [15].

* The effective SR functionals arise from the effective analogues of any of
these.

All these PCAs yield realizability models that are fully abstract for the ap-
propriate programming languages, and moreover, the effective ones even yield
models that are universal (that is, every element of the model of appropriate
type is denotable by a term of the language). Universality is already a strong
criterion for goodness of fit between a language and a model; but since we
have a choice of universal models for each of our three languages, it is natural
to ask how they differ one from another, and whether some are “better” than
others in some sense. That is, can we find a stronger “goodness of fit” criterion
than universality?

The purpose of the present paper is to introduce and study one such crite-
rion, namely (constructive) logical full abstraction. This criterion asserts that
the logic of realizability embodied by the PCA agrees with a notion of real-
izability derived from the programming language itself. We will see that this
criterion does indeed introduce useful distinctions between PCAs that real-
ize the same type structure, and will give examples of logically fully abstract

3



LONGLEY

models for each of our languages. Moreover, we will show that some of the
above PCAs actually provide models that are logically fully abstract for non-
functional extensions of PCF (in a sense we shall define). Finally, we will look
at some examples of logical formulae that show up the differences between the
various realizability interpretations, to illustrate how logical formulae can be
used to express information about what is and is not computable in various
kinds of programming language.

The notion of logical full abstraction (LFA) was first sketched in Chap-
ter 8 of the author’s Ph.D. thesis [13], in both a classical and a (stronger)
constructive version. The classical notion of LFA was further studied in [17];
the purpose of the present paper is to study the constructive notion in more
detail.

1 Preliminary definitions

1.1 Realizability models

We first summarize some definitions concerning realizability models and fix
some notation. The reader may consult [13] for more details and further
background information.

Definition 1.1 [PCA] A partial combinatory algebra (PCA) consists of a set
A together with a partial binary operation - : A x A — A (called applica-
tion, and treated as left-associative) such that there exist elements k,s € A
satisfying

k-x-y = x, s~x-y-z = xv-z2-(y-2)
for all z,y, z € A.

Here the symbol > means “if the RHS is defined, so is the LHS and they
are equal”. The above definition is thus slightly more liberal than the more
usual definition of PCA, but all the relevant theory goes through unaffected.
We often abbreviate a - b by ab, and write i for skk (note that iz = x for all
r e A).

In any PCA, one can define a pairing operation (—, —), e.g. by (z,y) =
s(si(kx))(ky). The corresponding projections are defined by fst = k and
snd = ki; note that fst(x,y) = x and snd(z,y) = y.

Definition 1.2 [Modest sets] Let A be a PCA.

(i) A modest set X over A consists of an underlying set |X|, and for each
z € |X| a non-empty set ||z|| C A of realizers for x, such that if a € ||z| and
a € ||2'|| then x = 2’. We sometimes write z € X in place of = € | X].

(ii) A morphism f : X — Y between modest sets is a function f : |X| —
|Y'| for which there exists r € A such that for all x € | X| and a € ||z|| we have
r-a € ||f(z)]]. In this situation we say that r tracks f. We write Mod(A) for
the category of modest sets over A.



LONGLEY

The category Mod(A) is cartesian-closed. Given modest sets X,Y", the
exponential Y is constructed as follows: |Y*| is the set of morphisms f :
X — Y; and ||f]] is the set of elements r € A that track f.

Mod(A) also has a natural number object N. For any non-trivial PCA A,
this may be constructed as follows: let |N| be the set N of natural numbers,
and let ||n|| be the singleton set {m}, where @ is the Curry numeral for n:

0 = (ki,i), n+tl = (k)

It is easy to see that Mod(A) is equivalent to the well-known category
PER(A) of partial equivalence relations on A. In fact, Mod(A) embeds as a
full sub-CCC in the (standard) realizability topos RT(A), though the latter is
more complicated to construct and we shall not need it here.

In order to interpret languages such as PCF in Mod(A), we want an object
to play the role of N;. We can obtain such an object if we have the following
piece of extra structure on our PCA:

Definition 1.3 Let A be a PCA. A non-termination set in A is a non-empty
set £ C A such that, for all a,b € A, if a € FE then sab € E. Any non-
termination set F gives rise to a lift operation —; on objects of Mod(A) as
follows: let | X | = |X|U{L}; for x € |X]|, let ||z||x, = {(a,b) | ai =i,bi €
|z]|x}; and let || L||x, = {(a,b) | a € E, b€ A}.

The lift operation — in fact extends to a monad on Mod(A), but here
all we really need is the object N,. The notion of non-termination set here
replaces the notion of divergence from [13,18]; indeed, in the familiar cases,
every divergence gives rise to a non-termination set and vice versa. However,
the definition of non-termination set is both cleaner and slightly more robust
(but less intuitive!).

Let us say that a choice of natural number domain (or choice of N, )
in a cartesian-closed category C is simply an object N, of C with a canonical
identification | N | 2 NU{_L}. The natural number object in Mod(A) together
with a non-termination set gives rise to a choice of natural number domain,
though we may on occasion be interested in choices of N, not of this form.
Technically, the choice of natural number domain is part of the data for a
realizability model; however, in many cases of interest there is only one natural
candidate for NV, that stands out, and so we shall not always bother to mention
it explicitly.

We can now interpret the finite types in any realizability model. The finite
types are built up from a single ground type ¢ via the (right-associative) binary
type constructors x and —.

Definition 1.4 [Finite type structure] An (extensional, partial) finite type
structure (FTS) T consists of a set T for each finite type o such that 7" =
NU{L} and T7*" = T7 x T7, together with “application” functions -,, :
T°7" xT? — T7 such that, forany f,g € T, if f-x =¢g-x forallz € T?
then f =g.



LONGLEY

In any cartesian-closed category C equipped with a choice of N, we have
an interpretation [ — || of the finite types defined by

[c.] = Ny, [oxt] = [o] x[7], [c—7] = [r]i°].
We hence obtain a finite type structure 7'(C, N ), where T'(C)? = |[ o], and
the application operations are given by the evaluation morphisms in C. In the
case C = Mod(A), we write this simply as T'(A4, N ), or T(A, E) if the choice
of N, arises from the non-termination set £. More loosely, we may write it
as T(A) and refer to it as the FT'S over A.

1.2 Typed programming languages

Next we introduce some general notions concerning typed programming lan-
guages. By a language L let us mean a family of sets L, of terms of type o,
with the following closure properties:

e if M € L,y then fst,, M € L, and snd,, M € L.,
e if M e L,,, and N € L, then MN € L,.

We suppose that each term M has a set of free variables FV(M), such that
FV(fst,, M) = FV(snd,, M) = FV(M) and FV(MN) = FV(M) UFV(N);
we write £0 for the set {M € L, | FV(M) = 0} of closed terms of type o.
If T is a finite non-repetitive list of variables in which all the free variables
of M appear, we may say M is a term in context I'. We also assume we
have a notion of substitution for terms of L, interacting with free variables
in the expected way. Finally we suppose we are given an evaluation function
Eval£ : ﬁ? — NJ_.

A translation 0 from L to L' consists of a family of functions 0, : £, — L
that preserve projections, application, and free variables, and such that for
M € L we have Evalg (0,M) = Evalg(M). If such a translation exists, we
may think of £ as a sublanguage of £’.

For any language £, we can obtain a partial equivalence relation =, on
each L2 as follows:

M =, N iff Eval;(M) = Evalz(N),
* M =~,,; N iff fst,, M =, fst,, N and snd,, M =, snd,, N,
* M ~,_,, Niff MP ~, N(@) whenever P =, Q.

We may extend =, to open terms as follows: if M, N are terms in context
]t ..., xl", then M =, N iff for all closed terms Py, ..., P, Q4,...,Q, such
that P; /%, @Q; for each i, we have M[P/#] ~, N[Q/Z).

We say a term M : o is functional if M =~, M; we say a language is
functional if all its terms are functional. For any language £, the sublanguage
consisting of functional terms is a functional language, which we may call the
functional core (or Gandy hull) of L.

Given a functional language £ and a cartesian-closed category C with

choice of N, an interpretation of £ in (C, N, ) assigns to every term M € L,

6



LONGLEY

in every context I' = «7',..., 27" a morphism [M ] : [or] X [o,] = [7]
in such a way that composition reflects substitution. Such an interpretation
is adequate if for all M € L? we have [ M || = Eval(M); it is universal if for
any morphism f : [o1] x [o,] — [7] there is a term M € L, in context
['=a7', ..., 2% such that [ M [y = f. If there is an adequate interpretation
of £Lin (C,N,) we say that (C, N.) is a model of L.

In the case of a realizability model Mod(A), we will without comment iden-
tify morphisms 1 — [ o | with elements of [ o ]. Furthermore, if v is a valuation
assigning to the variables 7" € I' an element v(z) € [o; ], and M : 0 is a term

in context I', we will write [ M [ for the element [ M [ (v(z1),...,v(z,)) of

[o].

2 Untyped and typed realizability

Let £ be any functional language such that 0,1 € £°. We will consider the
class J(L) of logical formulae given by the following grammar:
¢ = M=, N | P\L| ¢1A¢2 | q51 :>¢2 | 3$U.¢1 |\V/.’L‘U.¢1

where M, N : o0 and P : range over terms of £, and x? ranges over variables
of L. Intuitively we have an equality predicate at each type o, and a termina-
tion predicate at ground type; we will usually omit the subscript in equality
formulae. We will write true, false for the formulae 0 = 0,0 = 1 respectively,
and —¢ as sugar for ¢ = false. Note that we have omitted disjunction from
the logic (see below); however, we may express disjunctions by translating

$1V ¢ to
In'.nl Aln=0=¢1) A ((-n=0) = ¢9).

2.1 Untyped realizability

We recall the standard notion of untyped realizability for formulae of J(L).
Suppose A is a PCA and E a non-termination set such that £ has an adequate
interpretation [ — ] in Mod(A) as above. Then we may define a relation a r” ¢
(read “a realizes ¢ under v”) between elements a € A, valuations v and
formulae ¢ € J(L£) whose free variables are in v as follows:

s H[M]"=[N]¥, then ar” M = N for any a € A.

« If [P]” € N, then ar” P | for any a € A.

o If fstar” ¢ and snda r” v, then a r” ¢ A 1.

o If ab r” ¢ whenever br” ¢, then a r” ¢ = .

« If, for some e € [0 ], fsta € ||e]| and snda r*®"7¢) ¢, then a r” I2°.¢.

o If, for all e € [0 ], we have ab r"(®"¢) ¢ whenever b € ||e||, then a r¥ V27 .¢.

e That’s all.

We write just a r ¢ if a realizes ¢ under the empty valuation. If there exists
a € A such that a r ¢, we write (A, E) = ¢ (or just A = ¢), and say that ¢ is

7



LONGLEY

realizable in A. This notion of realizability is exactly the one arising from the
internal logic of Mod(A) (or of RT(A)); indeed, one can give an equivalent
definition of the relation = by exploiting the categorical structure of Mod(A)
(see [13, page 262]). However, the concrete definition in terms of realizers is
perhaps easier to grasp, and is better suited to our present purposes.

It is interesting to note that, for the double-negation fragment of J(£)
(i.e. the image of the Gddel double-negation translation ¢ — ¢°), the above
interpretation agrees with a simple classical interpretation of logic in the finite
type structure 7'(A). That is, we have A = ¢° iff T(A) |= ¢ (see [13, Chapter §|
for the easy definition of satisfaction in 7'(A)). Semantically, this corresponds
to the fact that passing from Mod(A) (or RT(A)) to the FTS corresponds to
taking global elements; and the global elements functor Hom(1, —) : RT'(A) —
Set is exactly the reflection from RT(A) to its double-negation sheaf subtopos.
What this means is that if two realizability models yield the same F'TS, then
the corresponding relations |= agree on the double-negation fragment of J(L).
(In fact, the converse also holds in the cases of interest: see [17].) However,
they may well disagree on the rest of J(£): for example, the PCAs K; and
Puw,. give the same FTS but yield quite different realizability interpretations
(see below). To summarize, the FTS only embodies information about the
double-negation fragment of the internal logic.

It may be argued that this classical fragment of the logic is enough for many
practical purposes, e.g. for reasoning about programs (see [13, Chapter 9]).
However, it is still natural to ask whether we can find a use for the finer
distinctions between models given by their internal logic. This is the purpose
of the present paper.

Several variants of the above definitions are possible. In particular, one
can define the Kreisel-style modified realizability relation a mr ¢, giving rise
to the satisfaction relation A |=,, ¢, though we will not give the details here.
(For background on modified realizability see [24]).

2.2 Typed realizability

The above gives an interpretation for formulae of J(£) relative to a particular
model Mod(A), which we think of as a “semantic” model for £. We now
present an alternative, more “syntactic” notion of realizability, defined purely
in terms of the typed programming language and without reference to any
particular model. (Our hope is that such an interpretation could be grasped
relatively easily by a programmer without any background in denotational
semantics.)

The new definition of realizability is closely parallel to the one above,
except that realizers are now terms of the typed programming language itself
rather than elements of an untyped structure. Let £ be any language, and
L' its functional core. In order to obtain a pleasant logic, terms will be
drawn only from £’ so that e.g. the extensionality rule holds. (This will

8



LONGLEY

ensure that our logic agrees with the usual internal logic of finite types in
certain toposes.) However, realizers for formulae are allowed to be possibly
non-functional programs, drawn from the whole of L.

Formally, we define a relation M R ¢ between closed terms M of £ and
closed formulae ¢ of J(L') inductively as follows:

o If N ~, N', then M R (N =, N') for any M € L0.

o If P : . terminates, then M R (P |) for any M € L0.

o If fst,, M R ¢ and snd,, M R 1), then M R ¢ A 9.

o If MN R ) whenever N R ¢, then M R ¢ = .

o If fst,, M : 0 and snd,, M R ¢[M/x?], then M R Jz7.¢.
o If MN R ¢[N/x?] whenever N : o, then M R Vz7.¢.

* That’s all.

If there exists M such that M R ¢, we write £ |= ¢ and say that ¢ is
realizable in L. Note that any realizers for ¢ must be of a type 7(¢) that can
easily be read off from the structure of ¢; we may think of 7(¢) as the type
of “potential realizers” for ¢. (We can now see difficulty with disjunction: we
would like the type of realizers for ¢ V ¢ to be a disjoint sum type, but such
types are not honest computational datatypes since e.g. they do not have a
bottom element. There may be a way round this, but for now it seems simplest
to leave out disjunction altogether.)

Note that if £ is itself functional, then £’ = £ and the relations ~, coincide
with observational equivalence; the definition of typed realizability thus admits
a slightly simpler reading in this case. Examples of this special case will be
considered in Section 3; other examples involving non-functional languages
will be considered in Section 4.

Having given untyped and typed realizability interpretations for J(L£), it
is natural to ask when they agree:

Definition 2.1 Let £ be a language with functional core £ and A be a PCA
such that Mod(A) (with some choice of N|) is a model for £'. We say this
model is (constructively) logically fully abstract (LFA) for L if, for all closed
¢ € J(L'), we have A = ¢ iff L = ¢.

3 LFA models for functional languages

We now give some examples of LFA models for purely functional languages.
The following result (partly folklore) describes a commonly occurring situation
in which logical full abstraction holds.

Proposition 3.1 Suppose C is a CCC giving a universal model for L (for
some choice of object N, € C), and suppose U is a universal object of C. Let
A be the combinatory algebra with underlying set Hom(1,U) obtained from
some choice of retraction UV < U.



LONGLEY

(1) If C is well-pointed, then there is a full cartesian-closed embedding I :
C — Mod(A) into the projective objects of Mod(A).

(1) More generally, if C has a well-pointed cartesian-closed quotient C/ ==,
then there is a full cartesian-closed embedding I : C/ ~ — Mod(A).

In either case, the induced interpretation of L in Mod(A) (with natural
number domain I[(N)) is constructively LFA.

In fact, in the above situation, the modified realizability interpretation of
J(L) over A is also LFA. In addition, it seems likely that a large supply of
LFA models can be obtained using the notion of extensional realizability (see
[22]), though we have not yet explored this.

The above proposition represents a very pleasant situation and provides a
cheap source of examples of LFA models; we will use it below to obtain LFA
models of each of the three functional languages mentioned in the Introduc-
tion. There are also other LFA models not of this form, but one has to work
harder to prove logical full abstraction. (Of course, this might suggest that
the results thus obtained are correspondingly more interesting!)

3.1 PCF and its extensions

First we recall the definition of call-by-name PCF. We do this not because
there is any shortage of definitions of PCF in the literature, but to provide a
basis for some of the less familiar extensions to PCF that we shall define in
the next section.

The types of PCF are the finite types defined above. For each type o we
have an infinite supply of variables of type o, ranged over by z7, 4%, 27. We
also have the following collection of constants:

0,1,2,...: 4, if: 1t —=>1—=01—1,
succ, pred : © —> ¢, Yo: (0 —0)— o0,
fstor : (0 X 7) =0, sndyr : (0 XT) = T.

The terms of PCF are built up from variables and constants as usual in the
simply-typed A-calculus:
o if M : 7, then (\a”.M) : 0 — T;
e if M:0and N : 7, then (M,N):0 x T;
*if M:0— 7and N : 0, then (MN) : 7.
The evaluation contexts E|—] of PCF are defined inductively as follows: the
identity context — is an evaluation context; and if F[—] is an evaluation
context then so are succ F[—|, pred E|—|, if E[—], fst,,E[—]|, snd,,F[—] and
E[—]N whenever these are well-typed. One then defines a one-step reduction

relation — on closed terms of the same type inductively as follows (here n
ranges over the numerals 0,1,2,...):

* (Az?.M)N — M[N/x°];
10



LONGLEY

e succn — (n+1), pred(n+1) = n, pred0 — 0, if0 — (Azy.x),
if(n+1) = (Azy.y), YoM — M(Y,M), fsty(M,N)— M,
snd,, (M, N) — N;

e if M — M’ and E[—] is an evaluation context such that E[M] is well-typed,
then E[M] — E[M'].

We write —* for the reflexive-transitive closure of —. We say that a closed
term M : ¢ terminates if M —* n for some (necessarily unique) numeral n; in
this case, we set Eval(M) = n. If M does not terminate, then by convention
we take Eval(M) = L.

The language PCF*" is defined in the same way as PCF except that we
include two additional constants

parallel-or : t— 1 — 1, exists : (L — 1) — 0.
We will also consider the extension of PCF with a single constant
H: (t—=0)—1) = (t—=0) =) = @

The above function Eval can be extended to yield an operationally defined
evaluation relation for PCF** [25], or for PCF+H [15], though we will not
give the details here.

It is shown in [18] that any realizability model is a model of PCF provided
it satisfies a completeness axiom, which appears to hold in most of the nat-
urally occurring examples. Moreover, some natural realizability models are
also models of PCF*™" or of PCF+H (see below).

3.2 Examples of LFA models

We now give some examples of LFA models for each of our three languages.

» For PCF™*: Recall from [13] that the PCA K, (equipped with the non-
termination set {n | n-0 1}) gives rise to a universal model of PCF**. Let
C be the full subcategory of Mod(K) consisting of the retracts of the finite
types. Then U = 2 is a universal object in C (by the “effective universality”
of T¥—see [26]), and the corresponding combinatory algebra A is exactly
T . Since we are in the situation of Proposition 3.1(i), the model Mod(7})
is LFA for PCF™" (as is the corresponding modified realizability model).

The PCA T} is closely related to the Scott graph model Pw,.. Interest-
ingly, the standard realizability model on Pw,. is not quite LFA for PCF*:
a counterexample (discussed in [13, page 263]) is the formula

Vo' Vy'. =m(x L Ay d) = Int(zl=n=0A(yl=>n=1),

which is realizable in Pw,. but not in PCF™*. However, it appears that
the modified realizability model over Pw,. is LFA, although it is not an
instance of Proposition 3.1.

Note in passing that Mod(K}), although a universal model of PCF**,
comes nowhere near being LFA for PCF™*. For instance, Church’s thesis

11



LONGLEY

is realizable in K, but not in PCF*™:
Vit 3et nt. “f(n) =e-n”.

For PCF+H: By analogy with the above, recall from [15] that the effective
van Qosten algebra B,. gives rise to a universal model for PCF+H. Let C
be the full subcategory of Mod(B,.) consisting of retracts of finite types.

It is shown in [15] that the object U = NiNiV) is universal in C, and it
gives rise to the combinatory algebra Bs... Again we are in the situation
of Proposition 3.1(i), and so the standard and modified realizability models
over By, are both LFA for PCF+H.

However, neither the standard nor the modified realizability model over
B,. is LFA for PCF+H.

For PCF': The following construction has recently been given by Marz, Rohr
and Streicher [19]. Let U be the canonical solution to the domain equation

U2UsUd(URU)® (Uo—U),

in a category S of sequential domains (a fully abstract model of PCF). Then
all the PCF types (and also UY), are syntactically definable retracts of U
in the untyped A-calculus £ corresponding to the above domain equation.
Let Ly be the PCA of definable elements of U (this is a term model for
L). By taking C to be the category of definable retracts of U and definable
morphisms between them, we see by Proposition 3.1(i) that the realizability
model over Ly is LFA for PCF. (In particular it is universal—this establishes
a variant of the Longley-Phoa conjecture.)

Similar results can be obtained by starting from a suitable intensional cat-
egory G of games and innocent strategies. However, unlike S, the category
G is not well-pointed, so we are in the situation of Proposition 3.1(ii). The
combinatory algebras thus obtained from & and G are very closely related:
it seems likely that the former is a quotient of the latter.

It is also plausible that the A-term model A°/T for any semi-sensible the-
ory T yields an LFA model of PCF (this is a stronger claim than the Longley-
Phoa conjecture). We have not yet considered whether any of Abramsky’s
recent constructions of combinatory algebras give LFA models for PCF.

3.3 A characterization of LFA models

In [17] a characterization of classically LFA realizability models was given: a
realizability model Mod(A) is LFA for £ iff it is universal for £. (This was
proved in [17] for the languages PCF and PCF*", but the same proof can
be adapted to work for PCF+H.) We now give a simple characterization of

constructively LFA models for these languages in a similar spirit.

Since all three of our languages £ are functional, it is easy to see that
all closed instances of the following schemata (the aziom of choice and the
independence of premiss principle) are typed-realizable in each of them (for

12



LONGLEY

any finite types o, 7):
AC: (V2. 3y . @[z, y]) = (3f777 V2. @[z, fz])

IP: Voo ((=¢lz]) = Fy"dlz,y]) = Ty ((=¢lz]) = ¢lz, y])

So in any PCA A which yields an LFA model of £, these principles must be
realizable. In addition, we have already seen that any LFA model must be
classically LFA and hence universal. In fact, these conditions together suffice
for logical full abstraction:

Theorem 3.2 Let L be one of our three purely functional languages. A real-
izability model (Mod(A), N ) is constructively LFA for L iff it is a universal
model for L and all closed instances of AC and IP are realizable in A.

4 LFA models for non-functional languages

We now show how the notions of typed realizability and logical full abstraction
can be extended to certain “impure” (i.e. non-functional) extensions of PCF.
In doing so, we shall find a new use for some of the PCAs discarded above.

4.1 Conditions for logical full abstraction

We first give some general conditions which suffice for logical full abstraction.
Intuitively, a model (Mod(A), N ) is LFA for a language L if the typed lan-
guage £ and the untyped structure A can be “simulated” sufficiently well in
each other.

Firstly, define a compilation of £ to A (w.r.t. N, ) to be a mapping v from
closed terms of L to elements of A such that
* YMN) =~(M)-~(N);
o if M € £ then v(M) is a realizer for Eval(M) in N.
Secondly, if (Mod(A), N, ) is a model of a functional language L', define a
simulation of A in L' to consist of a type «, a mapping £ : A — [, and a
term apply : @ X o = « of L' such that
* £(a-b) =[apply](&(a), (b)) whenever a - b is defined;
¢ there exist u,v € A such that for all a € A, u-a € ||{(a)|| and if b € [|£(a)]|

then v - b = a.

The following theorem now gives some sufficient conditions for logical full
abstraction. It can be viewed as a generalization of Proposition 3.1.
Theorem 4.1 Suppose L is a language with functional core L', (Mod(A), N, )
is a realizability model for L', and moreover

(i) There is a compilation v of L to A w.r.t. N, .
(ii) There is a simulation (o, &, apply) of A in L'.
13



LONGLEY

(iii) For each type o there is a term realizer, : 0 — « of L such that for any
M € L we have realizer, M € L' and [realizer, M | = £(v(M)).

Then (Mod(A), Ny) is logically fully abstract for L.

These conditions appear rather cumbersome, but they are very useful for
establishing particular instances of logical full abstraction. We now present
three examples of non-functional languages and corresponding LFA models
for them.

4.2 PCF+quote

Firstly, we extend PCF with a Lisp-style quote operator. We define the lan-
guage PCF+quote in the same way as PCF except that we include a family
of constants quote, : ¢ — «. Evaluation contexts for PCF+quote are defined
exactly as for PCF. We then take [—] to be some effective Godel-numbering
of terms of PCF+quote, and include in the definition of one-step reduction all
well-typed instances of

quote, M — [M].

One might also consider adding Lisp-style eval operators with the property
that eval, [ M| ~ M, but in fact there is no need: such operators can be defined
in PCF+quote. (The construction is not trivial, but it is a simple adaptation
of the construction of the PCF enumerators E in [17].)

It is easy to see that the operators parallel-or and exists can be imple-
mented in PCF+quote. More formally, there exist closed terms

parallel-or : 1t — 1 —, exists : (L — 1) >

of PCF+quote inducing a translation of PCF** into PCF+quote. commutes
with evaluation for closed terms of ground type.

The functional core of PCF4-quote is extensionally equivalent to PCF*™,
which has an interpretation in Mod(K;) (with N, given as usual by the non-
termination set {n | n-0 1}). Moreover, the three conditions of Theorem 4.1
are easily verified (note that the operations quote,, give rise almost immediately
to suitable terms realizer,). Hence:

Theorem 4.2 The model (Mod(K,),N,) is LFA for PCF+quote.

Thus, realizability over PCF+-quote yields exactly the logic of finite types
over N, in Hyland’s effective topos [7].

4.8 PCF+timeout

Secondly, we consider (essentially) the language PCF+T recently introduced
by Escard6 in [6]. Our presentation of this language will be superficially
different from that in [6], but it is easy to show that the two presentations are
equivalent.

14



LONGLEY

The idea is to add an operator timeout which will try to evaluate an ex-
pression of ground type for a prescribed length of “time”. For simplicity, we
will define the time taken to evaluate P : ¢ to be the number of recursion
unfoldings (i.e. the number of reduction steps Y,M — M(Y,M)) involved in
the reduction of P (this will be finite if P terminates, and infinite otherwise).
This appears to be a reasonable way to measure time, because the fragment of
PCF without Y is normalizing, and so Y is in some sense the only thing that
introduces the possibility of computations of arbitrary length. The operator
timeout : © — ¢ — ¢ will then have the property that

timeout Pk —* 0 if P does not terminate within time £;

timeout Pk —* n + 1 if P evaluates to n within time k.

Formally, the syntax of PCF+timeout is defined as for PCF but with
the additional constant timeout : © — ¢ — ¢. The evaluation contexts of
PCF+timeout are defined as for PCF with the additional clause: if E[—] : ¢ is
an evaluation context then so are timeout P E[—| and timeout E[—]k (where
k is a numeral). We now define a family of reduction relations M —* M’
with the intuitive meaning that “M reduces to M’ in (exactly) time k”. The
relations —* are defined simultaneously by induction as follows:

o (M\x?.M)N —° M[N/z°];

e succn =% (n+1), pred(n+1) =% n, pred0 =°0, ifONP —° N,
if (n + 1)NP =0 P, fst,, (M, N) = M, snd,, (M, N) —° N;

o« Y, M —' M(Y,M);

e if M —* n and k <[, then timeout M [ —* n + 1;

o if M =% E[Y,M'] then timeout M k —* 0;

o if M —* M’ and E[—]is an evaluation context such that E[M] is well-typed,
then E[M] —* E[M'];

o if M —% M'" and M' —! M", then M —*+t M".

We now define —* to be the reflexive closure of the union of the relations
—*: the notion of termination and evaluation operation for PCF+-timeout are
then defined as usual. It is easy to see how a suitable operator timeout can
be defined in PCF+quote, and so we have a translation from PCF+timeout to
PCF+quote. Likewise, it is easy to see how we can use timeout to interleave
computations and thus define parallel-or and exists operations, so we have a
translation of PCF*" into PCF+timeout. (Much less obviously, there is also
a translation of PCF+H into PCF+timeout!)

It turns out that PCF+timeout has an LFA model given by Kleene’s second
model Ky... (The idea that this should be the case arose in a discussion with
Martin Escardé.) Recall that this PCA has as its underlying set the set of
total recursive functions N — N, and application is defined as follows. Let
(—,—) and [...] be effective codings for pairs and finite sequences of natural
numbers respectively. Given f, g € Ky and n € N, let j(f, g,n) be the unique

15



LONGLEY

number j, if one exists, such that f(n,[g(0),...,g(: —1)]) = 0 for all i < j
but f(n,[g(0),...,9(j —1)]) > 0. (We think of 0 here as a request for more
information about ¢, and any other number m + 1 as signalling the result
m. This is similar to the intuition behind the specification of the timeout
operation.) We now define f - g to be the function An. f(j(f,g,n)) — 1 if
this is total, and undefined otherwise. We also have an associated operation
|: Kope X Kope — Ny given by f | g = f(j(f,9,0)) — 1 (taking this to be L if
j(f,9,0) is undefined).

Some care is needed over the choice of N in Mod(Ks,.): the obvious choice
arising from non-termination in the PCA is the wrong one, since termination
in Ky, is not a X;-predicate! The right choice of N, is defined by

[m|l = {f | f10=m}, L =A{f 1 rlo=1}
where 0 = An.0. If f | 0 = m, we may think of j(f,0,0) as a measure of the
time taken for the computation of f to occur.
The functional core of PCF+timeout is again equivalent to PCF™, which
has an interpretation in Mod(Kye, N1). (Proofs of these claims will appear
in the full version of this paper.) Moreover:

Theorem 4.3 The model (Mod(Ks,.), N, ) is LFA for PCF+timeout.

Again this is proved by verifying the three conditions of Theorem 4.1.
For condition 1, some care is needed to find a compilation which exactly
preserves the “time” taken to evaluate ground type terms. Condition 2 is
straightforward, using the type o = ¢ — «. Condition 3 requires some crafty
programming using timeout; the key lemma is the following special case:

Lemma 4.4 There is a closed term || : ||(cc — t) = a in PCF+timeout such
that, for any closed term M : o — ¢ in the functional core of PCF+timeout,
[IIM]|] corresponds to an element f € Ky, such that [M ] = Ag.f | g.

4.4 PCF+catch

Finally, we consider a family of sequential programming languages which, in
some sense, all embody the same computational power: PCF+-catch [5,4],
PCF+-call/cc, puPCF [21], and a certain fragment of Standard ML admitting
local uses of exceptions and references. It seems that these languages all
admit good translations into each other, though we will not make this precise
here (see [12] for an indication of the state-of-the-art). For simplicity, we will
choose the language PCF-+catch (essentially the language SPCF of [4] without
errors) as representative of this family of languages, but we believe that the
result below would apply equally well to any of them.

The syntax of PCF+-catch is defined as for PCF but with additional con-

stants
k

catchy : (1= - =1T—1) >
16



LONGLEY

for £ > 0. The evaluation contexts of PCF+catch are defined as for PCF
with the following additional clause: if E[—] is an evaluation context then so
is catchy(Azg ...z, 1.F[—]) whenever 0 < m < k. The one-step reduction
relation is defined as for PCF with the following additional clauses:

e catchi(Azg ...z, 1.Flz;]) — @ whenever E[—] is an evaluation context and
x; is free in Elx;];

e catchi(Azg...xp 1.0n) = m+n;

e catch;(succ) — 0, catch; (pred) — 0, catchs(if) — 0.

It follows from the universality of PCF+catch for effective sequential al-
gorithms (see [9]) that the functional H is definable in PCF+catch (see [15]).
Thus we have a translation of PCF+H into PCF+catch. (Indeed, the func-
tional core of PCF+catch is equivalent to PCF+H.) It is also easy to see that
PCF+catch can be translated into PCF+quote.

A corresponding model is given by van Oosten’s B,., with the evident
choice of N, arising from the non-termination set {An.L}:

Theorem 4.5 The model (Mod(B,.), N1) is LFA for PCF+-catch.

Once again, the proof uses Theorem 4.1. For condition 1, the necessary
compilation is given essentially by the interpretation of PCF+catch in sequen-
tial algorithms; condition 2 is easy; and condition 3 involves some cunning
programming with catch. (The key lemma is analogous to Lemma 4.4 above.)

4.5  Summary

The situation we have described so far is summarized by Figure 1, which shows
the six languages we have considered and the PCAs that give LFA models for
them. The arrows here represent translations between the programming lan-
guages; it seems that no other translations are possible beyond those indicated.
Note that not all these translations respect the functional core: e.g. the func-
tional core of PCF+catch corresponds to PCF+H while that of PCF-+quote
corresponds to PCF**. (This illustrates the non-functorial nature of the “ex-
tensional collapse” construction.)

Although here we have concentrated on the connections between partic-
ular languages and particular PCAs, we believe the translations are also of
interest. We view the above picture as representing various notions of com-
putability, ordered according to their computational power, or (if one prefers)
their degree of intensionality. Indeed, it is no accident that for each of the
above translations there is a corresponding applicative morphism between the
respective PCAs (cf. [13]). We hope to study these translations more fully in
a later paper.

17



LONGLEY

PCF+quote (K)

N

PCF+timeout (Ko) PCF+-catch (B,.)

PCF* (T%) PCF+H (Bae)

Nt

Fig. 1. Typed languages and their associated PCAs

5 Some logical examples

We have shown how both typed and untyped models of computation corre-
spond to logical theories. These theories in some way capture the amount of
computational power embodied by the models of computation. We now illus-
trate this with some particular examples of logical formulae, both to highlight
the similarities and differences between our various notions of computability,
and to demonstrate how logical formulae give a convenient way to summarize
information about what is or is not computable in a certain setting. The two
aspects of computability that seem to show up best are issues of extensionality
(the difference between Vz.3y and 3f.Vx) and of constructivity (the difference
between ——3x and Jz).

We begin with an assortment of simple examples, and then give some
examples relating to exact real-number computability. We outline how, using
our results, one can forge a link between real-number computability in various
programming languages and real analysis inside various realizability toposes.

5.1 Simple examples

We have already mentioned a few examples of logical formulae: for instance,
(certain instances of) the aziom of choice are realizable in all the purely func-
tional languages but in none of the non-functional ones; and Church’s thesis
is realizable in K, (hence in PCF+quote) but in none of the other settings.
We now mention some further examples:

18



LONGLEY

5.1.1  Local moduli of continuity
Let us write approx for the PCF term

Ag AR (Amt. g(if (m < n) m Q)
where < is implemented as expected and (2 is some diverging term. Since all

computable type 2 functions are continuous, it is realizable in all our settings
that

= VF2.Yg'.—=3n". F(approxgn) = Fg

(where 0 stands for the type ¢, and 7 + 1 stands for ¢ — ¢). Moreover, in
PCF+H and all the languages above it in Figure 1, one can actually compute
a suitable modulus of continuity n from F' and g, so in these settings the
formula
= VF?Yg".3n’. F(approxgn) = Fg
is realizable. However, it is easy to see by monotonicity that this latter formula
is not realizable in PCF or PCF™*. Thus, this formula is internally true in
four out of six of the corresponding realizability toposes.
In PCF+H and PCF+catch, we even have that

= 30*7 1 0.VEF Yy F(approx g (Fg)) = Fg.

However, this is not realizable in PCF+quote or PCF+timeout, since in these
languages there is no extensional way to compute a modulus of continuity.
(This is related to the fact that the interpretation of type 2 in these languages
includes parallel functions.)

5.1.2  Uniform moduli of continuity

Classically, every continuous function from Cantor space 2~ to N is uniformly
continuous: this is essentially Konig’s Lemma. The corresponding result fails
in all our effective settings, because the notorious Kleene tree yields func-
tions that are continuous on the effective analogue of Cantor space but not
uniformly continuous there (see e.g. [2]). However, given a function which
classically is uniformly continuous, we can effectively obtain a modulus of
uniform continuity. That is, if we write UnifMod (F2,n°) for the formula

Vgrht.(Vm®. (m < n) = (gm < 2A gm = hm)) = (Fg | AFg = Fh)
then in all six of our settings we have
= VEF?. (==3n".UnifMod(F, n)) = In’.UnifMod(F, n).
In PCF+quote (and for that matter in PCF™* or PCF+timeout), a realizer
can be easily constructed by means of a parallel search. In all our languages
except PCF+quote, a realizer can be given using the remarkable Berger-Gandy

definition of the fan functional in PCF (described e.g. in [27]), and so in fact
we have the stronger formula:

= 30 VF2 (==3n°.UnifMod(F, n)) = UnifMod(F, ®F).

However, this stronger version is not realizable in PCF+quote (at least with
the above definition of UnifMod). Essentially this is because although we can

19



LONGLEY

obtain a uniform modulus of continuity by a parallel search, we can never be
sure that we have found the smallest possible modulus.

5.1.3  Sequentiality indices
In the languages PCF, PCF+H and PCF+catch, (but none of the others),
every non-constant type 2 function has a sequentiality index, and so we have

EVF2 (=F(AM'.Q) ) = ~—3n’Vg'. (Fg ) = (gn {).

Moreover, in PCF+-catch (only), we can effectively compute a sequentiality
index:

=VF2 (=F(An’.Q) |) = In"Vg¢'. (Fg l) = (gn ).

However, even in PCF+catch, there is no way to compute the sequentiality
index extensionally in F, so the corresponding formula 3®3.VF?2. ... fails.

5.2 Real-number computability

Exact real-number computation provides an attractive application area for
computation at higher types, so it is not surprising that the real numbers
show up interesting differences between our various computational settings.
This is an area of current joint research with Martin Escardd; we give here an
informal sketch of some of our preliminary results.

Any standard realizability topos contains a real number object R (fortu-
nately in such toposes the Cauchy and Dedekind reals always coincide). This
means we can interpret formulae of real analysis (say in a language R involv-
ing the types R and R — R) in the internal logic of any realizability topos.
In general, different toposes will give rise to different flavours of real analysis,
according to what formulae are true in them.

We can also represent real numbers using the finite types we have con-
sidered in this paper. The recursive reals (say in the interval [—1,1]) can be
represented exactly by recursive infinite sequences of extended binary digits
—1,0, 1; thus, arbitrary recursive reals can be represented by certain functions
of type 1 (in any of our six languages £). Computable functions on these reals
can then be represented by functions of type 1 — 1 that behave extensionally
on representations of reals.

It is easy to define predicates Real(z'), RealEq(z!,y'), RealFun(f'™1)
and RealFunEq(f'™!, ¢'7!), meaning (respectively) that x represents a real
number, that z, y represent the same real number, that f represents an (exten-
sional) total function on the recursive reals, and that f, g represent the same
real function. Using these predicates, it is easy to see how one can define a
translation from the logic R of the real number object to the logic J (which
we may take to be J(PCF)) in such a way that, in any of our models, a closed
formula ¢ of R is true iff its translation ngS is. By logical full abstraction, it
follows that ¢ holds internally in one of our toposes iff ¢ is realizable in the
corresponding typed programming language.

20



LONGLEY

A simple example is given by the formula of R asserting that all functions
on the reals are continuous. This beautiful result holds in many constructive
settings, and is sometimes known as the Kreisel-Lacombe-Shoenfield (KLS)
theorem (see e.g. [2]):

EVf:R— RVr:RVYe>0.30>0.Vy e R. l[y—z| <d=|fy— fz]| <e.

(We will feel free to sugar the syntax of R as long as the meaning is evident.)
The constructive force of this is that given f,x and € we can actually compute
a 6 which works. Not surprisingly in view of the above results on local moduli
of continuity, the translation of the this formula is realizable in PCF+H and
above, but not in PCF or PCF*". This corresponds to the fact that the KLS
theorem holds in the realizability toposes over K, Ks,., B,. and Bs,., but not
those over T or Ly .

Unfortunately, many of the formulae of J that express interesting facts
about real-number computability are not in the image of the translation from
R—that is, the language R seems to be not as expressive as we would like.
In particular, in J we have the following useful formula UnifCts(f!™!), saying
that a function f (representing, say, a function on I = [0,1]) is “uniformly
continuous” in a sense analogous to that defined in Section 5.1.2:

vp. 3t Valy'. (Vvm®. (m < n) = (zm < 3 A zm = ym)) =

(fx)p 4 A(fx)p = (fy)p)

This condition is stronger than the usual €d definition of uniform continuity
in real analysis, and is useful for excluding pathological functions with Kleene-
tree-like behaviour. (Roughly speaking, it says that f would be total on the
classical reals if we could apply it to them.) However, it seems that this
property cannot be expressed in R, since it is essentially a property of a
representation f'7! of a real function rather than the real function itself. It
would be pleasing if the above condition could be replaced by some reasonably
clean mathematical condition involving the object R, but at present we do not
know whether this is possible.

Meanwhile, let us add the predicate UnifCts(f!~!) to our language. (From
now on, we will use a hybrid of R and J for our syntax, but officially we
have in mind a corresponding formula of J). By analogy with the results of
Section 5.1.2, the following formula holds in all six of our settings:

EVf:I— R. (——UnifCts(f)) = UnifCts(f)

There is an interesting class of formulae expressing the idea that (under
various conditions) we can locate a zero of a function. One of the simplest
examples is the following, which again holds in all our settings:

EVf:I— R UnifCts(f) = (-—3z: I.fr =0) = (Fz: [.fxr = 0).
The hypothesis that the zero is unique is essential here. However, one can

also consider similar formulae with other hypotheses, and here it seems that
interesting distinctions emerge between the different notions of computability.

21



LONGLEY

Finally, we mention some formulae expressing the idea that we can compute
(Riemann) integrals for some class of functions. Again, the simplest such
formula holds in all our settings:

EVf:I— R.UnifCts(f) = Integrable(f)

However, differences emerge when we try to integrate (partial) functions with
discontinuities. For instance, the following formula says that we can integrate
all functions that are undefined on at most one point, strictly between 0 and
1:

EVf:I—R. (—-—=3z € (0,1).Vy € I.y—x => Real(fz)) = Integrable(f).

This formula is not realizable in PCF, but it is realizable in PCF+H. (The al-
gorithm required is a simple adaptation of the integration algorithm described
in [16].) In fact, for any k there is a formula asserting that all functions which
are undefined on at most k points are integrable, and this is realizable in
PCF+H. In PCF+catch one can do even better: we can integrate all func-
tions that are undefined on only finitely many points without knowing a bound
k in advance.

It would be interesting to undertake a more systematic investigation of
these different flavours of real analysis, and perhaps for complex and functional
analysis. It seems that there is a potentially very large research field here
waiting to be explored!

Acknowledgement

I am grateful to Martin Escardé for many stimulating discussions, and espe-
cially for his input to the material in Sections 4.3 and 5.2. I also thank all
the participants in the Domains IV workshop for their interest and encour-
agement. Andrej Bauer drew my attention to some over-enthusiastic claims
involving uniform continuity on my Last Slide. The motivating philosophy
behind this work owes much to the influence of Martin Hyland, and to my
collaboration with Alex Simpson. This research was funded by the EPSRC
Research Grant GR/L89532 “Notions of computability for general datatypes”.

References

[1] Abramsky, S., R. Jagadeesan and P. Malacaria. Full abstraction for PCF.
Accepted for publication, 1996.

[2] Beeson, M., “Foundations of Constructive Mathematics,” Springer, 1985.

[3] Bucciarelli, A. and T. Ehrhard. Sequentiality and strong stability, in:
Proceedings 6th Annual Symposium on Logic in Computer Science, IEEE, 1991,
pages 138-145.

22



LONGLEY

[4] Cartwright, R., P.-L. Curien and M. Felleisen, Fully abstract semantics for
observably sequential languages, Information and Computation 111 (1994),
pp- 297-401.

[6] Cartwright, R. and M. Felleisen, Observable sequentiality and full abstraction,
In Proc. 19th POPL, ACM Press, 1992, pp. 328-342.

[6] Escardé, M. H., A metric model of PCF, Draft paper, March, 1999.

[7] Hyland, J. M. E., The effective topos, In The L.E.J. Brouwer Centenary
Symposium, North-Holland, 1982.

[8] Hyland, J. M. E. and C.-H. L. Ong, On full abstraction for PCF: I, II and III,
Accepted for publication, 1996.

[9] Kanneganti, R., R. Cartwright and M. Felleisen, SPCF: its model, calculus,
and computational power, In Proceedings REX Workshop on Semantics and
Concurrency, Lecture Notes in Computer Science 666 (1993), pp. 318-347.

[10] Kleene, S. C., On the interpretation of intuitionistic number theory, Journal of
Symbolic Logic 10 (1945).

[11] Kleene, S. C. and R. E. Vesley, “The Foundations of Intuitionistic
Mathematics,” North-Holland, 1965.

[12] Laird, J., “A Semantic Analysis of Control,” PhD thesis, University of
Edinburgh, 1998, Examined March, 1999.

[13] Longley, J. R., “Realizability Toposes and Language Semantics,” PhD thesis,
University of Edinburgh, 1995, Available as ECS-LFCS-95-332.

[14] Longley, J. R., Realizability models for sequential computation, In preparation;
an incomplete draft is available from the author’s home page, 1998.

[15] Longley, J. R., The sequentially realizable functionals, Technical Report ECS-
LFCS-98-402, Department of Computer Science, University of Edinburgh, 1998,
submitted to Annals of Pure and Applied Logic.

[16] Longley, J. R., When is a functional program not a functional program?,
Submitted to ICFP’99; available from the author’s home page, 1999.

[17] Longley, J. R. and G. D. Plotkin, Logical full abstraction and PCF, In:
J. Ginzburg et al., editors, Thilisi Symposium on Language, Logic and
Computation (1997), SiLLI/CSLI, pp. 333-352.

[18] Longley, J. R. and A. K. Simpson, A uniform approach to domain theory in
realizability models, Mathematical Structures in Computer Science 7 (1997),
pp. 469-505.

[19] Marz, M., A. Rohr and T. Streicher, Full abstraction via realisability, Accepted
for LICS’99, 1999.

23



LONGLEY

[20] Nickau, H., Hereditarily sequential functionals, in: Proceedings 3rd Symposium
on Logical Foundations of Computer Science, Lecture Notes in Computer
Science 813 (1994), pp. 253-264.

[21] Ong, C.-H. L. and C. A. Stewart, A Curry-Howard foundation for functional
computation with control,  in: Proceedings Symposium on Principles of
Programming Languages, (1997), ACM Press, pp. 215-227.

[22] van Oosten, J.,  Extensional realizability, — Technical Report MIL-93-18,
University of Amsterdam, ILLC, 1993.

[23] van Oosten, J., A combinatory algebra for sequential functionals of finite type,
Technical Report 996, University of Utrecht, 1997. To appear in Proc. Logic
Colloquium, Leeds.

[24] van Oosten, J., The modified realizability topos, Journal of Pure and Applied
Algebra 116 (1997), pp. 273-289.

[25] Plotkin, G. D., LCF considered as a programming language, Theoretical
Computer Science 5 (1977), pp. 223-255.

[26] Plotkin, G. D., T% as a universal domain, Journal of Computer and System
Sciences 17 (1978), pp. 209-236.

[27] Plotkin, G. D., Full abstraction, totality and PCF, Accepted for publication,
1997.

[28] Scott, D. S., Continuous lattices, n: F.W. Lawvere, editor, Toposes, Algebraic
Geometry and Logic. Lecture Notes in Mathematics 92 (1972).

[29] Scott, D. S., Data types as lattices, SIAM Journal of Computing 5 (1976),
pp- 522-587.

[30] Scott, D. S., A type-theoretical alternative to ISWIM, CUCH, OWHY,
Theoretical Computer Science 121 (1993), pp. 411-440. First written in 1969
and widely circulated in unpublished form since then.

24



