

Edinburgh Research Explorer

Polymorphic queries for P2P systems

Citation for published version:
Liu, J & Fan, W 2011, 'Polymorphic queries for P2P systems' Information Systems, vol. 36, no. 5, pp. 825-
842. DOI: 10.1016/j.is.2011.01.001

Digital Object Identifier (DOI):
10.1016/j.is.2011.01.001

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Information Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979132?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.is.2011.01.001
https://www.research.ed.ac.uk/portal/en/publications/polymorphic-queries-for-p2p-systems(03267a9d-c5ec-410b-ab65-dfa6e5e061ec).html

Contents lists available at ScienceDirect
Information Systems

Information Systems 36 (2011) 825–842
0306-43

doi:10.1

� Cor

E-m

wenfei@
journal homepage: www.elsevier.com/locate/infosys
Polymorphic queries for P2P systems
Jie Liu a,�, Wenfei Fan b

a Department of Computer Science, Ocean University of China, China
b School of Informatics, University of Edinburgh, United Kingdom
a r t i c l e i n f o

Article history:

Received 7 August 2010

Received in revised form

3 January 2011

Accepted 11 January 2011
Recommended by: J. Van den Bussche
information is available at other peers. This paper proposes a query model for unstructured
Available online 18 January 2011

Keywords:

Polymorphic query

Dependencies Schema mapping

Object identification
79/$ - see front matter & 2011 Elsevier B.V. A

016/j.is.2011.01.001

responding author.

ail addresses: liujie@ouc.edu.cn (J. Liu),

inf.ed.ac.uk (W. Fan).
a b s t r a c t

When a query is posed on a centralized database, if it refers to attributes that are not

defined in the database, the user is warranted to get either an error or an empty set. In

contrast, when a query is posed on a peer in a P2P system and refers to attributes not

found in the local database, the query should not be simply rejected if the relevant

P2P systems to answer such queries. (a) We introduce a class of polymorphic queries, a

revision of conjunctive queries by incorporating type variables to accommodate attributes

not defined in the local database. (b) We define the semantics of polymorphic queries in

terms of horizontal and vertical object expansions, to find attributes and tuples, respectively,

missing from the local database. We show that both expansions can be conducted in a

uniform framework. (c) We develop a top-K algorithm to approximately answer poly-

morphic queries. (d) We also provide a method to merge tuples collected from various

peers, based on matching keys specified in polymorphic queries. Our experimental study

verifies that polymorphic queries are able to find more sensible information than traditional

queries supported by P2P systems, and that these queries can be evaluated efficiently.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Consider a centralized database D specified by schema
S. When D is a centralized database and a query Q is posed
on D, if Q refers to attributes not found in S, then the user
is warranted to get either an error or an empty set. This is
also the semantics adopted by current query models for
P2P systems [1–10]: when Q is posed on D residing at a
peer P, Q is not allowed to refer to any attributes that are
not defined in S.

However, while the information about an attribute
cannot be found in D, it may be available at other peers
in the P2P system. One would expect that P2P systems could
do better than centralized database systems. Indeed, as
illustrated below, P2P systems may be able to find missing
attributes at other peers, and hence, should not simply reject
ll rights reserved.
Q. After all it is to share data that P2P systems are developed
in the first place.

Example 1.1. Alice is interested in John Denver’s albums
that received a good rating. She wants to query a P2P
system and find information about the price, label and
release of those albums. She has only access to peer P0.
The database at P0 is specified by schema

reviewðalbum,artist,ratingÞ:

As shown in Fig. 1(a), a review relation collects albums by
various artists, and with each album it associates an
average rating in the scale [0, 4]. To this end Alice poses
an SQL query Q0 on the database residing at P0:
select a
lbum, price, label, release
from re
view
where a
rtist = ‘‘Denver, J’’ and rating = ‘‘4’’
Observe that Q0 refers to attributes price, label and

release, which are not defined in the local schema review.

www.elsevier.com/locate/infosys
dx.doi.org/10.1016/j.is.2011.01.001
mailto:liujie@ouc.edu.cn
mailto:wenfei@inf.ed.ac.uk
dx.doi.org/10.1016/j.is.2011.01.001

album artist rating
t1 : Almost Heaven Denver,J 3
t2 : Greatest Hits Denver,J 4

An instance of review at peer P0

Peer P0 and its neighboring peers

album artist price label rating
t3 : Almost Heaven Denver, J 7.99 Dancing Bull good
t4 : Take Me Home Denver, J 5.97 Windstar high
t5 : Greatest Hits Denver, J 8.36 BMG high
t6 : Diana Anka, P 5.98 Magic fair

An instance of sale at P2

title artist label release rank
t7: Almost Heaven Denver, J Dancing Bull 12/05/2005 2,175
t8: Take Me Home Denver, J Windstar 03/07/2006 1,654

An instance of CD at P3

album price label release
s1 : Greatest Hits 8.36 BMG null
s2 : Take Me Home 5.97 Windstar 03/07/2006

Answer to query Q0 posed on peer P0

Fig. 1. Example data and answer to query Q0.

J. Liu, W. Fan / Information Systems 36 (2011) 825–842826
If Q0 were posed on a centralized database system, Alice

would get either an error or an empty set.

However, while price, label and release are not provided

by peer P0, they may be available at other peers in the P2P

system. As depicted in Fig. 1(b), P0 has a neighboring peer P2

with a database of schema sale(album, artist, price, label,

rating), which in turn has a neighbor P3 with a database of

schema CD(title, artist, label, release, rank). Instances of sale

and CD are shown in Figs. 1(c) and (d), respectively.

Provided these, the system has got enough information to

answer Q0. (1) For the album ‘‘Greatest Hits’’ found at P0, we

can find its price and label from P2. That is, we can

‘‘horizontally’’ expand the object by including missing

attributes found at other peers. In addition, (2) from P2 an

album ‘‘Take Me Home’’ is found (when ‘high’ indicates a

good rating), which is missing from P0. The answer to Q0 can

be ‘‘vertically’’ expanded by including the album, which is

further expanded at P3 by adding release. Taken together,

the answer to Q0 contains tuples shown in Fig. 1(e). &

Several query models have been put forward for unstruc-
tured P2P systems, based on, e.g., schema mapping and
certain query answering [1–3], information retrieval [4],
mapping (concordance) tables [5], approximate query pro-
cessing [7,8], dynamic construction of group schemas [9,10],
and query expansion via synonym rules [11] (see [12] for a
recent survey). However, we are not aware of any P2P query
models that allow queries to explicitly retrieve attributes
not defined in a local schema, such as the query Q0 given
above. This highlights the need for a new P2P query model
to support such queries.

Contributions. To explore the data sharing nature of P2P
systems, we propose a query model for unstructured,
schema-heterogeneous P2P systems. The model consists
of (1) a revision of conjunctive (SPC) queries that may refer
to attributes not defined in the local schema, (2) the
semantics of the queries in terms of object expansions, (3)
an efficient top-K algorithm for approximately answering
the queries, and (4) a method for merging tuples from
various peers that represent the same real-world object.

(1) We introduce a class of queries for P2P systems,
referred to as polymorphic queries. Polymorphic queries
extend SPC queries by supporting: (a) type variables to specify,
explicitly or implicitly, attributes that are not defined in a
local schema, and (b) matching keys to guide how tuples
retrieved from various peers are merged. For example, query
Q0 can be expressed as a polymorphic query.

Polymorphic queries are based on the notion of exten-
sible records, which have proved extremely useful in
functional programming (see, e.g., [13]). An extensible

J. Liu, W. Fan / Information Systems 36 (2011) 825–842 827
record carries unknown fields with type variables, in addi-
tion to a set of known fields with fixed types. It allows one
to build an object incrementally by adding a finite number
of fields and instantiating their type variables accordingly.
Along the same lines, we use type variables to cope with
attributes found at other peers that are ‘‘unknown’’ to the
local peer.

(2) We define the semantics of polymorphic queries in
terms of two forms of expansions: (a) horizontal expan-

sion, to augment an object by incorporating additional
attributes of the object found at various peers in the P2P
system, and (b) vertical expansion, to enrich query answer
by including tuples missing from the local peer but found
at other peers in the system.

Referring to query Q0, horizontal and vertical expan-
sions yield tuples s1 and s2 of Fig. 1(e) in the answer to Q0,
respectively. Most P2P query models typically support
vertical expansion only.

We provide a conceptual evaluation strategy for poly-
morphic queries, conducting horizontal and vertical
expansions in a uniform framework based on a notion of
contextual foreign keys (CFKs). CFKs extend foreign keys
that reference primary keys, by incorporating patterns of
semantically related data values. They specify correspon-
dences between attributes and between values across
different peers. They can express lexical semantic rela-
tions as found in, e.g., WordNet (see http://en.wikipedia.
org/wiki/WordNet). Instead of assuming the existence of
schema mapping [2,3] or mapping tables [5], we show
that CFKs between neighboring peers suffice to rewrite
queries for vertical expansion and to collate tuples for
horizontal expansion.

(3) To reduce the communication cost of the concep-
tual evaluation strategy, we develop a top-K algorithm
to approximately answer polymorphic queries. The algo-
rithm decides whether a query and relevant objects
should be forwarded from one peer to another, based on
a quality model. The model takes into account of the local
data at the peer and the statistics of the data at its neigh-
boring peers. Given a query Q and predefined numbers K

and m, the algorithm returns K top tuples in the answer to
Q, with a performance guarantee: at each peer it forwards
at most K tuples to at most m neighbors. In addition, we
present optimization methods to further reduce network
traffic.

(4) Tuples collected from various peers may represent
the same real-world object. We provide a method to
merge such tuples, an issue that has not been well
explored for P2P systems [14]. We approach this based
on a notion of matching keys, which may be optionally
specified in a polymorphic query. To identify tuples from
different sources, a matching key specifies what attributes
to compare and how to compare them, in terms of
equality or similarity operators.

(5) We experimentally verify that polymorphic queries
and their evaluation techniques are capable of finding far
more relevant information than the traditional approach
based on schema mapping (e.g., [2]), without substantial
degradation in performance. Indeed, the conceptual eva-
luation strategy constantly retrieves 5 times more results
than the mapping-based approach, and the top-K
algorithm finds 1.42 times more than the traditional
approach (when KZ40 and m¼ 3). When top K tuples
are concerned, the top-K algorithm finds up to 84.78% of
the results of the conceptual strategy, and 253% more
than that of the mapping approach, with significantly less
network traffic. Moreover, both the conceptual strategy
and the top-K algorithm scale well with the number of
peers and the size of data. We also find that our tuple
merging method is effective: it constantly identifies over
19% of tuples returned by the traditional approach that
refer to the same object.

Organization. We discuss related work in Section 2. Poly-
morphic queries are introduced in Section 3, followed by
CFKs in Section 4. The semantics of polymorphic queries is
defined in Section 5 by giving the conceptual evaluation
strategy based on object expansions. The top-K algorithm
is developed in Section 6, followed by a method for tuple
merging in Section 7. The experimental study is presented
in Section 8, followed by conclusions in Section 9.

2. Related work

Several query models have been studied for unstruc-
tured P2P systems (e.g., [1–5,9–11]). Piazza [2] interprets
P2P queries based on schema mappings (query rewriting)
and certain query answering. A variation was proposed
in [3] in terms of epistemic FO (First-Order logic). This
approach is effective when neighboring peers do not have
radically different schemas. However, successive rewrit-
ings often reduce information that a query is to retrieve,
when e.g., attributes at one peer do not find a match at its
neighbors. To tackle this problem, automated construc-
tion of group schemas was studied in [9,10]. PeerDB [4] is
based on information retrieval techniques. Heptox [1]
uses rules to translate queries. These models support
vertical expansion, but not horizontal expansion. They
do not expand objects by adding relevant attributes

retrieved from other peers.
Closer to this work is Hyperion, based on mapping

tables [5]. A mapping table maintains value and name
correspondences between data in neighboring peers,
which is similar to CFKs. Hyperion evaluates a query Q

by traversing peers, translating Q to a set of queries based
on mapping tables, and collecting relevant objects found
by those translated queries. It simply puts these objects
together via outer union, but considers neither extending
existing objects with additional attributes nor conflict
resolution.

A notion of query expansion has been explored for
P2P queries [6]. It is to enhance queries with vague or
surrounding concepts of pre-defined keywords, when
users are unable to identify precise keywords. This is
quite different from object expansion: query expansion
aims to find more relevant results of fixed keywords,
and is developed mostly for keyword queries [15,16]; in
contrast, object expansion is to enrich objects with new
relevant attributes, for SPC queries.

To the best of our knowledge, no previous P2P models
allow queries to explicitly refer to attributes that are not
defined at the local peer, such as Q0 of Example 1.1.

http://en.wikipedia.org/wiki/WordNet
http://en.wikipedia.org/wiki/WordNet

J. Liu, W. Fan / Information Systems 36 (2011) 825–842828
Quality models have been proposed in, e.g., [7,8] to
select peers, based on certain metrics of information
completeness. Top-K algorithms have also been studied
for various applications (see [17] for a survey). The quality
model proposed in this work differs from prior models in
that it takes into account not only new information
retrieved via vertical expansion, but also the amount of
new information associated with attributes added via
horizontal expansion.

Conflict resolution has been studied for data integra-
tion (e.g., [18–20]) and uncertain data (e.g., [21,22]). There
has also been a host of work on record matching (see [23]
for a survey). As observed in [14], however, few P2P query
models deal with conflicts. This work is among the first
efforts to explore these issues for P2P queries.

There has also been work on polymorphic type infer-
ence for relational algebra [24]. The focus is to determine
on what schema a query Q is well defined, and to infer the
‘‘principle’’ (most generic) type for Q. This is studied for
centralized systems. In contrast, given a query Q that is
not well defined at the local peer in the standard seman-
tics, this work studies how to evaluate the query based on
object expansion. This also involves object merge and
conflict handling, which are not encountered in poly-
morphic type inference.

3. Polymorphic queries

We next present the syntax of polymorphic queries. To
simplify the discussion we define polymorphic queries as
an extension of SPC queries, and defer the study of more
general polymorphic queries to future work.

SPC queries. An SPC query [25] is defined on a relational
schema R in terms of the selection (s), projection (p) and
Cartesian product (�) operators. It is of the form:

pLðsF ðEcÞÞ where Ec ¼ R1 � � � � � Rn:

Here (a) for each j 2 ½1,n�, we assume w.l.o.g. that Rj is a
relation atom in R such that the attributes in Rj and Rl are
disjoint if jal; (b) F is a predicate built from equality
atoms such as A¼ B and A¼ ‘a’ for a constant a in the
domain of A, by closing under conjunction (and) and
disjunction (or); and (c) let Qc denote sF ðEcÞ, then in the
projection pLðQcÞ, L is a list of attributes appearing in Qc.

Note that we allow disjunction in F and hence, support
certain SPCU queries defined with union.

Polymorphic queries. We define an extension of SPC, ref-
erred to as polymorphic queries and denoted by SPC

n, by sup-
porting (1) a polymorphic projection operator P with type
variables, and (2) an optional list MK of matching keys:

PLðQcÞ group by MK where L¼ ðL1; L2;aÞ:

Here (a) Qc ¼ sF ðEcÞ is the same as above, (b) L1 is a list of
attributes appearing in Qc, but in contrast, (c) L2 is a list of
attributes not appearing in Qc, and (d) a is an optional
variable, which, if present, is to be instantiated with a list
of attributes appearing in neither L1 nor L2. Intuitively,
�
 L2 denotes attributes that the user explicitly wants to
find from a P2P system, although they are not defined
in the local schema; while the labels of these attributes
are known, their types are unknown and are repre-
sented by type variables; and

�
 a indicates that other relevant attributes are also

demanded, if any. The user needs to know neither
the labels nor the types of these attributes.

We refer to L1 attributes as local attributes, and L2 as
explicit attributes. We refer to attributes that instantiate a
as implicit attributes. Note that both L2 and a carry type
variables, along the same lines as extensible records [13].

We denote by schðQ Þ the output schema of an SPC
n

query Q, i.e., the schema of the answer to Q in a P2P
system. Here schðQ Þ consists of local, explicit and implicit
attributes.

Example 3.1. The query Q0 described in Example 1.1 can
be expressed as an SPC

n query Q ¼PðL1 ;L2ÞðsF ðEcÞÞ, where (a)
F is a conjunction of equality atoms artist = ‘‘Denver, J’’
and rating = ‘‘4’’; (b) Ec is the review relation schema at
the local peer P0; (c) L1 = [album] and L2 = [price , label,

release], which are the attributes appearing in schðQ0Þ.

As another example, Alice may want to retrieve other

relevant attributes, although she does not know the labels

of those attributes. To this end she may write query Q1 by

adding a to Q0: PðL1 ;L2 ;aÞðsF ðEcÞÞ. When Q1 is evaluated in

the P2P system described in Example 1.1, a will be

instantiated with attributes found in the system, includ-

ing but not limited to rank from P3. The output schema

schðQ1Þ consists of all these attributes and those in L1 and

L2, with type variables instantiated with the correspond-

ing domains.

Extending the SQL syntax, Q1 can be written as:
select* a
lbum; price, label, release; X
from re
view
where a
rtist = ‘‘Denver, J’’ and rating = ‘‘4’’
Here X indicates the variable a in the SPC
n query. &

Remark. (1) Just like SPC queries, when writing an SPC
n

query, a user does not need to know anything beyond the
local schema. She may declaratively request other attri-
butes of interest, no matter whether she knows their
labels or not, as if they were defined in the local schema.
As will be seen shortly, it is the polymorphic query model
that automatically retrieves those ‘‘external’’ attributes
across the entire system. This provides the user with the
flexibility and expressive power to share data in the P2P
system.

(2) When an SPC query Q u is posed on a centralized
database D, the output schema of Q u is uniquely deter-
mined by Q u and the schema of D. In contrast, we cannot
statically determine schðQ Þ of an SPC

n query Q in a P2P
system based on Q and the local schema alone. Referring
to Example 1.1, for instance, one cannot determine the
types of price, label, and release based on Q0 and the
schema review at compile time. The output schema is
‘‘open-ended’’ and is incrementally completed when the
query is evaluated by traversing the linked peers, along
the same lines as extensible records.

J. Liu, W. Fan / Information Systems 36 (2011) 825–842 829
(3) SPC queries are a special case of SPC
n queries: when

L2 is empty, and when a and MK are absent.
(4) To simplify the discussion we have assumed that

distinct type variables for attributes in L2 are automati-
cally generated. Following extensible records of functional
programming [13], this model can be extended by allow-
ing multiple attributes to share the same type variable.
For instance, if firstname and lastname are attributes in L2,
we may require firstname and lastname to carry the same
type variable t, i.e., the two attributes will bear the same
type no matter how t is instantiated. As will be seen
in Section 7, such typing constraints can be enforced in
the tuple merging phase, which resolves typing conflicts
for tuples collected from different peers.

Matching keys. In an SPC
n query Q, if MK is specified, it is

of the form f1, . . . ,fm. Each fj ðj 2 ½1,m�Þ is a matching key

specified by a set of attribute-operator pairs: ððA1,op1Þ,
. . . ,ðAl,oplÞÞ. Here for each i 2 ½1,l�, Ai is an attribute in L1 or
L2, and opi is either a similarity operator ‘ � ’ or an
equality ‘=’.

A matching key expresses a matching rule of [26]. We
assume a set Y of similarity metrics such as q-grams, Jaro
distance or edit distance [23]. For each � in Y and for
values x and y, x� y yields true iff x and y are ‘‘close’’
enough in the similarity metric � w.r.t. a predefined
threshold.

Tuples s1 and s2 satisfy fj if s1½Ai� opi s2½Ai� for all
i 2 ½1,l�, i.e., the attributes of fj in s1 and s2 pairwise
‘‘match’’ w.r.t. the corresponding similarity operators.
Intuitively, if s1 and s2 satisfy fj then they represent the
same object.

Example 3.2. Consider a tuple s3: (album = ‘‘The Greatest
Hits’’, price = 9.99, label = ‘‘BMG’’, release = 01/07/2002),
found at, e.g., P4 (Fig. 1(b)). Then s3 and s1 of Fig. 1(e)
represent the same album. However, s1as3 if one
attempts to compare them pairwise w.r.t. all attributes
in schðQ0Þ.

Suppose that a matching key f for query Q0 is specified:

((album, �), (label, ¼)), where � is a similarity metric

such that ‘‘The Greatest Hits’’ � ‘‘Greatest Hits’’. Then s1

and s3 satisfy f and can be identified, although some of

their attributes, e.g., price, are radically different. &

Intuitively, matching keys are an extension of tradi-
tional relational keys by incorporating similarity opera-
tors to accommodate errors or different representations in
tuple matching. They allow us to group (cluster) tuples in
the answer to Q by attributes in the keys, such that tuples
in the same group are identified to represent the same
real-world object.
4. Contextual foreign keys

To give the semantics of SPC
n queries, we first define

contextual foreign keys, an extension of foreign keys.

Foreign keys (FKs). Recall [25] that a foreign key fk from
relation R1 to R2 is of the form R1½X�DR2½Y�, where X,Y are
attribute lists in R1, R2, respectively, and Y is a key of R2.
Note that fk specifies a pair of constraints: (a) a key Y for
R2, and (b) an inclusion dependency from R1 to R2.

Given instances (D1, D2) of (R1, R2), fk asserts that Y is a
key of D2 and furthermore, for any tuple t1 of D1, there is a
tuple t2 of D2 such that t1½X� ¼ t2½Y �, i.e., t1[X] references
the tuple t2 identified by t2[Y].

One may want to use FKs to specify schema matching
and data concordance across peers. However, FKs (even
inclusion dependencies) are not powerful enough, as
illustrated below.

Example 4.1. Recall relations review, sale and CD

from Example 1.1. Suppose that (album, artist) is the
primary key of review and sale, and (title, artist) is the
primary key of CD. One might want to specify FKs from
review to sale, and from sale to CD as follows:
review(album, artist) D
 sale(album, artist)
sale(album, artist) D
 CD(title, artist)
These FKs do not make sense if (a) the review relation

contains information about all albums while sale contains

only albums that received a rating above ‘‘poor’’; and (b)

the CD relation contains only albums from either Wind-

star or DancingBull. In light of this, the correspondences

from review to sale and from sale to CD cannot be expre-

ssed as traditional FKs or even as more general inclusion

dependencies. &

Contextual foreign key (CFKs). The limitations of tradi-
tional FKs motivate us to propose CFKs.

A CFK j from relation R1 to R2 is of the form

ðR1½X�DR2½Y �, tp½Xp,Yp�Þ,

where (a) X, Xp (resp. Y, Yp) are two disjoint lists of
attributes in R1 (resp. R2); (b) R1½X�DR2½Y� is an FK, where
X (resp. Y) is a primary key of R1 (resp. R2); (c) tp is the
pattern tuple of j with attributes in Xp and Yp, such that
for each attribute B in Xp (or Yp), tp[B] is a constant in B’s
domain. We refer to tp[Xp] (resp. tp[Yp]) as the Xp (resp. Yp)
pattern of j.

Instances (D1, D2) of (R1, R2) satisfy j if X (resp. Y) is the
primary key of D1 (resp. D2) and moreover, for each tuple
t1 in D1, if t1½Xp� ¼ tp½Xp�, then there exists a tuple t2 in D2

such that t1½X� ¼ t2½Y � and t2½Yp� ¼ tp½Yp�.
Intuitively, the Xp pattern of j identifies a subset of D1

that matches tp[Xp], and the traditional FK R1½X�DR2½Y � is
enforced on this subset rather than on the entire D1.
Further, for each tuple t2 in D2 that is referenced by t2[Y]
(i.e., t1[X]), the Yp pattern is enforced, i.e., t2½Yp� ¼ tp½Yp�.

Example 4.2. The constraints described in Example 4.1
can be expressed as CFKs as follows:
j1:
 (review(album, artist) D sale(album, artist),
(review(rating) = ‘‘4’’, sale(rating) = ‘‘high’’))
j2:
 (review(album, artist) D sale(album, artist),
(review(rating) = ‘‘3’’, sale(rating) = ‘‘good’’))
j3:
 (sale(album, artist) D CD(title, artist), (sale(label) = ‘‘Windstar’’))
j4:
 (sale(album, artist) D CD(title, artist), (sale(label) =

‘‘DancingBull’’))
Here CFK j1 asserts that for each tuple ti (i 2 ½1,2�) in

the review relation, if ti½rating� ¼ ‘‘ 4’’ , then there must be

Table 1
A summary of notations.

Notation Name Definition

SPC
n Polymorphic queries PLðQcÞ group_by MK

Local attributes L1; explicit and implicit attributes L2 and a
with type variables

MK Matching keys ððA1 , � 1Þ, . . . ,ðAl , � lÞÞ

Rules for identifying tuples by comparing attributes Ai via

similarity operators � i

CFK Contextual foreign keys ðR1½X�DR2½Y�, tp½Xp ,Yp�Þ

Foreign keys with patterns tp[Xp, Yp], for horizontal and

vertical expansions

J. Liu, W. Fan / Information Systems 36 (2011) 825–842830
a tuple tj in the sale relation such that ti and tj agree on their

(album, artist) attributes and moreover, tj½rating� ¼ ‘‘ high’’ ;

similarly for j2. These two CFKs ensure that review tuples

can be mapped to sale tuples if and only if their ratings are

above 2, and moreover, that a rating of ‘‘4’’ (resp. ‘‘3’’) in

review corresponds to ‘‘high’’ (resp. ‘‘good’’) in sale.

The CFKs j3 and j4 assure that sale tuples can find a

match in the CD relation only for those albums from

either Windstar or DancingBull. Note that no Yp patterns

are specified for CD in j3 and j4. &

Remark. Observe the following. (1) Traditional FKs are
a special case of CFKs with empty Xp and Yp, when X

(resp. Y) is the primary key of R1 (resp. R2). (2) CFKs are a
variation of conditional inclusion dependencies (CINDs)
studied in [27]. A CFK specifies three constraints: (a) X is
the primary key of R1, (b) Y is the primary key of R2, and
(c) an inclusion dependency from R1 to R2 with a pattern.
In contrast, CINDs specify (c) alone without requiring (a)
or (b). (3) CFKs can express lexical semantic relations
(e.g., WordNet).

We shall give the semantics of polymorphic queries in
terms of CFKs in the next section. More specifically, we
use CFKs to collate information about the same object for
horizontal expansion, and to rewrite queries for vertical
expansion. This is a departure from previous P2P models
based on schema mapping [3,2,8], as illustrated by the
example below.

Example 4.3. Consider schemas review and sale given
in Example 1.1, for databases at peers P0 and P2, respec-
tively. Suppose that one wants to specify ‘‘peer map-
ping’’ [2] from P0 to P2 as schema mapping Q(0,2), i.e., Q(0,2)

is a query from instances of review to instances of sale. By
treating review as a ‘‘mediated schema’’ and sale as a ‘‘data
source’’, Q(0,2) is a local-as-view (LAV) mapping [2,28]. One
can see the following. (1) The instance D2 of sale at peer P2

cannot be an exact view [28] of the instance D0 of review at
peer P0, no matter what query Q(0,2) is considered. Indeed, as
we can see from Figs. 1(a) and (c), tuples t4 and t6 of D2

cannot find a match in D0, and moreover, although t3 and t5

of D2 have a match in D0, their price and label attributes are
not mapped from tuples in D0. (2) One might want to
consider a combination of global-as-view (GAV) and LAV as
suggested in [2], i.e., a pair Q(0,2) and Q(2,0) of queries such
that Qð0,2ÞðD0Þ = Qð2,0ÞðD2Þ. However, it is nontrivial to find
such mappings. Indeed, schema mapping is often derived
from schema matching, which is in turn computed from
inclusion dependencies across peers [29]. Deriving schema
mapping from dependencies is itself a computationally
intractable problem [30]. (3) Even when schema mappings
from review to sale are in place, they do not tell us how to
answer query Q0 posed on peer P0. Indeed, the mappings do
not specify how tuple t2 of D0 is related to tuples of D2, such
that t2 can be horizontally expanded by including attributes
price and label. Neither query rewriting nor query unfolding
helps here.

There has also been recent work on data exchange, a.k.a.

schema mapping (see [31] for a recent survey). Data

exchange is often specified in terms of constraints, such
as tuple generating dependencies (TGDs). However, data

exchange aims to materialize a target instance using data

from a data source, e.g., to generate a sale instance from

the instance D0 of review. It is not for answering queries

posed on D0 with data in D2. Furthermore, while TGDs are

more expressive than CFKs, they do not tell us whether a

tuple in D0 and another in D2 refer to the same entity,

as opposed to CFKs. That is, the increased expressive

power of TGDs does not help when it comes to horizontal

expansion, not to mention the extra complexity when

reasoning about TGDs. &

For the ease of reference we summarize various nota-
tions in Table 1.

5. The semantics of SPCn queries

We now present the semantics of polymorphic queries
in a P2P system based on CFKs. To focus on the main idea
of horizontal and vertical expansions, we first give a con-
ceptual evaluation strategy that may not be efficient,
and defer the presentation of optimization techniques
to Section 5.5.

5.1. A conceptual query evaluation strategy

Consider an unstructured P2P system P ¼ ðP0, . . . ,PnÞ,
where Pj is a peer. For each j 2 ½0,n�, the peer Pj is speci-
fied by:
�
 the relational schema Sj of its local database Dj, such
that on each relation R in Sj, a primary key is
defined; and

�
 for those i 2 ½0,n� such that Pi is a neighboring peer of

Pj, a set Sðj,iÞ of CFKs from relations of Sj to relations of
Si, stored at peer Pi.

Remark. We do not require that (Dj, Di) satisfy Sðj,iÞ.
Indeed, we simply use the CFKs to specify how attributes

and data values across different peers are mapped to each
other, at the schema level. These CFKs can be either
explicitly specified or automatically discovered when a
new peer joins the system. The maintenance cost for the
CFKs is no larger than its counterparts for schema

J. Liu, W. Fan / Information Systems 36 (2011) 825–842 831
mapping or mapping tables. As shown in Example 4.3, it is
less demanding to assume CFKs Sðj,iÞ rather than schema
mapping.

To simplify the exposition, we assume that all CFKs
defined on a relation R of Sj in Sðj,iÞ reference a unique Ru in
Si, i.e., each R is mapped to at most one relation in Si via
CFKs, as often assumed in schema mapping. Note that
there may exist multiple CFKs from R to Ru in Sðj,iÞ, and
there may be CFKs from R to distinct Ru’s in Sðj,lÞ for lai.

Evaluation. Consider an SPC
n query Q ¼PLðQcÞ group_by

MK, where L¼ ðL1; L2;aÞ. Suppose that Q is posed on peer
P0, referred to as the local peer. Then as depicted in Fig. 2,
Q is evaluated in the P2P system P as follows.
Initial answer. Upon receiving Q, local peer P0 generates a set
ans0 of objects as follows. (a) It first rewrites Q into a normal
SPC query Q u on its local database D0. (b) It then extracts a set
ans0 ¼ Q uðD0Þ of tuples. (c) Finally, it forwards Q and ans0 to
all of its neighboring peers for expansion.
Expand and forward. When peer Pi receives query Qj and a
set ansj of tuples from peer Pj, where Qj is a rewriting of Q

and is defined on the database Dj, Pi expands ansj horizon-
tally and vertically as follows:
�
 horizontal: leveraging CFKs in Sðj,iÞ, Pi extends tuples in
ansj by adding relevant attributes available at Pi;

�
 vertical: it extracts new tuples from its database Di.

More specifically, using Sðj,iÞ, it first rewrites Qj into
query Qi that is defined on Di. It then executes Qi on Di,
and expands ansj with new tuples in Qi(Di).
As shown in Fig. 2, Pi generates two sets of tuples: (a)
newi consisting of tuples not in ansj that are added by
vertical expansion, and those tuples in ansj extended with
new attributes by horizontal expansion; and (b) ansi ¼

newi [ansj.
Peer Pi sends newi back to the local peer P0 as part of

the answer to Q in the P2P system. Meanwhile it forwards
Qi and ansi to its neighboring peers for further expansions,
which forms ‘‘forward and expand’’ paths.

As will be seen in Section 5.5, both newi and ansi can be
significantly reduced based on our optimization techni-
ques. That is, the ‘‘expand and forward’’ step does not
necessarily incur heavy network traffic.
Fig. 2. Polymorphic query evaluation.
Tuple merging. The expansion process proceeds until no
more attributes or tuples are sent to P0. Then the local
peer P0 identifies and merges tuples representing the
same real-world object, and handles conflicts based on
matching keys. At this stage it instantiates the type
variables of L2 attributes as well as implicit attributes
(if a is specified). Here L2 attributes may be null, and a
may be instantiated to an empty list, as shown in Fig. 1(e).
The result is returned as the answer to query Q.

Remark. The complete answer to Q in the P2P system is
the inflational fixpoint of its expansions, which is guar-
anteed to be reached when the system is relatively
‘‘static’’ (see e.g., [25] for discussions of fixpoint).

Like all other P2P query models in use, one may adopt
‘‘time to live (TTL)’’ (e.g., [32]): the merging step starts
when TTL expires. That is, we can use TTL to compute
approximate query answers and strike a balance between
the complete answer set and the overhead.

Example 5.1. Recall SPC
n query Q0 given in Example 1.1,

the P2P system shown in Fig. 1, the CFKs of Example 4.2,
and the matching keys of Example 3.2. To give an over-
view of the evaluation strategy, we show how the
answers to Q0 in the system are generated in various
stages. We shall present detailed algorithms and exam-
ples in the rest of the section.

When Q0 is posed on the local peer P0, the initial answer

consists of s0, which is extracted from t2 of relation

review:
album
 artist
 rating
s0:
 Greatest Hits
 Denver, J
 4
The initial answer is forwarded to peer P2 and expanded

there:
album
 artist
 price
 label
 rating
s1:
 Greatest Hits
 Denver, J
 8.36
 BMG
 high
s2:
 Take Me Home
 Denver, J
 5.97
 Windstar
 high
Here s1 is horizontally expanded by including attributes
price and label extracted from t5 of relation sale, and s2 is
added by vertical expansion with tuple t4 of sale. The
answer set is then forwarded to peer P3 and expanded
there as follows:
album
 artist
 price
 label
 rating
 release
s1:
 Greatest Hits
 Denver, J
 8.36
 BMG
 high
 null
s2:
 Take Me Home
 Denver, J
 5.97
 Windstar
 high
 03/07/2006
Here s2 is horizontally expanded by adding attribute

release of t8. Observe that s1 is not expanded at P3 since

it does not find a matching tuple in relation CD.

Suppose that peer P4 has a tuple s3 = (album = ‘‘The

Greatest Hits’’, price = 9.99, label = ‘‘BMG’’, release = 01/

07/2002) (see Example 3.2). Then s3 is added to the

answer set via vertical expansion at P4.

J. Liu, W. Fan / Information Systems 36 (2011) 825–842832
Taken together, the answer set to Q0 becomes
Fig. 3. Alg
orithm
 Normalize.
album a
rtist
 price l
abel
 rating r
elease
s1:
 Greatest Hits D
enver, J
 8.36 B
MG
 high n
ull
s2:
 Take Me Home D
enver, J
 5.97 W
indstar
 high 0
3/07/2006
s3:
 The Greatest

Hits

D
enver, J
 9.99 B
MG
 null 0
1/07/2002
Finally, the tuples are merged by using matching keys at
the local peer:
album
 price
 label
 release
s1:
 {Greatest Hits, The

Greatest Hits}
{8.36, 9.99}
 BMG
 01/07/2002
s2:
 Take Me Home
 5.97
 Windstar
 03/07/2006
This is final answer set to Q0 in the P2P system. &

In the rest of the section we provide the details of
initial answer generation, horizontal and vertical expan-
sions, as well as optimization techniques for reducing
communication cost. We defer the discussion of tuple
merging to Section 7.
5.2. Generating initial answer

The local peer P0 generates an initial answer ans0 to
query Q by extracting data from its local database D0. As
shown in Fig. 2, the set ans0 of tuples is forwarded to and
expanded at other peers in the P2P system.
Fig. 4. Algorithm
The SPC
n query Q may be defined with attributes not in

D0, and thus cannot be directly executed against D0. Hence
we rewrite Q to a normal SPC query Q u defined on D0, and let
ans0 ¼Q uðD0Þ. Query Q u returns tuples with local attributes
L1 and moreover, the set attrðRÞ of all attributes in each
relation R that appear in Q. As will be seen shortly, we need
the additional attributes to decide whether a tuple matches
Xp patterns of CFKs, for horizontal expansion.

The set ans0 is generated by Algorithm Normalize, shown
in Fig. 3. In addition to ans0, Normalize also creates an initial
renaming table M0. We generate a renaming table Mi at each
peer Pi visited, which keeps track of the keys of relations at
the local peer. As will be seen in Section 7, the keys help us
merge tuples. Table Mi consists of entries of the form
ðR1ðXÞ/RðZÞÞ, where Z is the primary key of a relation R

at the local peer P0, and X is the primary key of R1 at Pi.
Normalize produces the initial table M0, which maps the
primary key Z of each relation R to itself.

After ans0 and M0 are generated, P0 forwards them to
its neighboring peers, along with the SPC

n query Q.
5.3. Horizontal expansion

Using CFKs Sðj,iÞ from Pj to Pi, one can extend tuples in
ansj by including relevant attributes found at Pi. Indeed, if
a tuple t at Pj identifies a tuple tu at Pi via a CFK in Sðj,iÞ,
then the attributes of tu are also properties of t. Hence we
can extend t by adding those attributes of tu not found in t.

Example 5.2. Consider tuple t2 of Fig. 1(a) at peer P0 and
CFK j1 of Example 4.2 from P0 to P2. Note that t2 matches
the Xp pattern of j1, i.e., t2½reviewðratingÞ� ¼ 4, That is, t2

references a sale tuple at P2. Indeed, t5 of Fig. 1(c) is the
tuple: t2½reviewðalbum,artistÞ� ¼ t5½saleðalbum,artistÞ�. Thus
we can expand t2 by adding sale attributes price, label

and rating, carrying the corresponding values of t5. &

This motivates us to develop an algorithm for hor-
izontal expansion, referred to as HExpansion and shown
in Fig. 4. The algorithm takes as input ansj, Sðj,iÞ and a
renaming table Mj forwarded from Pj. It returns as output
a set Qði,hÞ of queries for computing ansi, and a revised
renaming table Mi at Pi.
HExpansion.

J. Liu, W. Fan / Information Systems 36 (2011) 825–842 833
Queries. For each j¼ ðR1½X�DR2½Y �, tp½Xp,Yp�Þ in Sðj,iÞ, a
query Qj is generated (line 4 of Fig. 4):

Qj ¼ ðsXp ¼ tp ½Xp �ansjÞt
l
R1 ½X� ¼ R2 ½Y �

R2,

where tl
C denotes left outer join with condition C.

Query Qj first selects those tuples t in ansj such that
t½Xp� ¼ tp½Xp�, and then identifies R2 tuple tu in Di such that
t½X� ¼ tu½Y �. It expands t by adding t½B� ¼ tu½B� for all attri-
butes B that are not yet in t. Observe that such tu is unique

if it exists, since Y is the primary key of R2. As mentioned
earlier, t carries additional attributes found at peer Pj in
order to determine whether it matches the Xp pattern of j.

Example 5.3. For the CFK j1 given in Example 4.2,
Algorithm HExpansion generates query Qj1

as follows:
select a
lbum, artist, price, label, rating
from a
ns0 t LEFT OUTER JOIN sale s on
t½
rating� ¼ 4 and t.album=s.album and t.artist=s.artist
Similarly for j2 of Example 4.2, Qj2
is generated. &

Answer sets. Define Q(i, h) to be the outer union of all the
queries in Qði,hÞ, i.e., Qði,hÞ ¼]j2Sðj,iÞQj. When executed on
database Di at Pi, Q(i, h) produces a set Q(i, h)(Di). Using table
Mj, we rename attributes of the tuples in Q(i, h)(Di) to
generate two sets of tuples: newi to be sent back to the
local peer P0, and ansi to be forwarded to Pi’s neighbors.

The set newi includes those tuples in Q(i, h)(Di) with
newly added non-null attributes. Further, we restore the
names of the local attributes in L1 by applying Mi to newi,
in order to facilitate tuple merging.

To generate ansi, we need to rename the attributes of
the tuples in Q(i, h)(Di). For each tuple t in Q(i, h)(Di), we
rename its attributes by substituting R2[Y] for R1[X] if t

is generated by QjðDiÞ, with the CFK j¼ ðR1½X�DR2½Y �,
tp½Xp,Yp�Þ. The set ansi includes the renamed tuples. We
also create renaming table Mi at peer Pi (line 6 of Fig. 4).
5.4. Vertical expansion

Suppose that Qj is a rewriting of Q on Dj. Based on Sðj,iÞ,
we can further rewrite Qj into an SPC

n query Qi that can be
normalized as an SPC query defined on the database Di at
Fig. 5. Algorithm
peer Pi. When the SPC query is evaluated on Di, it may find
new tuples missing from the local peer P0.

Example 5.4. Recall query Q0 of Example 1.1, posed on
peer P0 of Fig. 1(b). Using CFKs j1 and j2 of Example 4.2
from P0 to P2, one can rewrite Q0 into SPC

n query Q2:
VExpansion.
select a
lbum; price, label; release
from sa
le
where a
rtist=‘‘Denver, J’’ and rating=‘‘high’’
Query Q2 can be rewritten into SPC query Q2u that is

defined on the sale relation, using a variation of Algorithm

Normalize of Fig. 3. When Q2u is evaluated on the sale data

of Fig. 1(c) at P2, it returns t4, a tuple not found by Q0

at P0. &

Indeed, CFKs specify contextual schema matching
of [30], which is an extension of conventional schema
matching. Below we outline an algorithm for query
rewriting based on CFKs, extending the method of [30].

The algorithm, denoted as VExpansion, is given
in Fig. 5. Suppose that Qj ¼PLðQcÞ, where Qc ¼ sF ðEcÞ and
Ec ¼ R1 � � � � � Rl. We ignore MK here since the matching
keys are only needed for tuple merging, the final step to
be done at the local peer. The rewriting consists of
two steps.

(1) Relation atoms. For each relation atom R in Ec and
each CFK f¼ ðR½X�DRu½Y�, tp½Xp,Yp�Þ from R to Ru in Sðj,iÞ,
we generate a query qf ¼ sFfRu, where Ff involves only
equality atoms defined in terms of attributes in R,
replaced with their counterparts in Ru (line 3 of Fig. 5).

More specifically, for each A¼ ‘a’ in F such that A is an
attribute of R, if A 2 X and A corresponds to B 2 Y via f,
then we substitute B for A. If A=2X but tp½Xp� entails A¼ ‘a’,
then we replace A¼ ‘a’ with Yp ¼ tp½Yp�. Query qf is well
defined if sFf does not contain any attributes of R after the
substitutions. Similarly A¼ B is rewritten if both A and B

are R attributes.

Example 5.5. Query Q2 of Example 5.4 is qj1
. In particu-

lar, rating=‘‘4’’ is replaced with rating=‘‘high’’ since the Xp

pattern of j1 entails rating=‘‘4’’, and its Yp pattern is
rating=‘‘high’’. In contrast, qj2

is not well defined, since
the Xp pattern of j2 does not entail rating=‘‘4’’ and the
review attribute rating cannot be removed from Qj2

. &

J. Liu, W. Fan / Information Systems 36 (2011) 825–842834
Recall that for each relation R in Sj, there exists at most
one relation Ru in Si such that Sðj,iÞ contains CFKs from R

to Ru. Let SR denote the set of CFKs from R to Ru in Sðj,iÞ.
Define query QR ¼ sFR

Ru, where FR ¼3f2SR
Ff (line 5

of Fig. 5) which is equivalent to the union of well-defined
qj’s.

(2) Query Qi. We write Qi as PLðrðsFi
ðQR1
� � � � � QRl

ÞÞÞ,
where Fi consists of equality of the form R:A¼ Ru:B for
distinct R and Ru, renamed with attributes in Di. Attributes
corresponding to the primary keys of the local peer are
renamed by r (derived from renaming table Mi), along the
same lines as described above. Query Qi is well defined if
so is every QRs

, and if Fi does not contain attributes in Dj.

Example 5.6. Given Q0 and j1,j2 described in Example
5.4, Algorithm VExpansion returns the query Q2 given
in Example 5.4.

In contrast, given Q2 and CFKs j3,j4 of Example 4.2 from

P2 to P3, VExpansion does not return any well-defined query.

Indeed, Q2 cannot be rewritten to a query that is defined on

the CD database at peer P3, since the attribute rating does not

find a counterpart in CD, and hence, equality atom rating=‘‘4’’

in the where clause of Q2 cannot be translated. &

Observe the following. (a) There is a simple procedure
to check whether Qi is well defined, in quadratic time in
the sizes of the query Qi and the schema Si (details
omitted). (b) Query Qi can be readily converted to an SPC

n

query of the form given in Section 3, in linear-time in the
size of Qi. Indeed, for each i 2 ½1,l�, suppose that Ri in Sj is
mapped to Riu in Si via the CFKs. Then Qi can be rewritten
as PLðrðsFi u

ðR1u� � � � � RluÞÞÞ, where Fiu is the conjunction
of Fi and FRi

for all i 2 ½1,l�. We refer to this SPC
n query

also as Qi.

Answer sets. When Qi is well-defined, it can be rewritten
to an SPC query Qiu defined on Di, along the same lines as
Algorithm Normalize. The tuples returned by QiuðDiÞ are
added to ansi and newi. As shown in Fig. 2, peer Pi sends
newi back to the local peer P0; it forwards the SPC

n query
Qi, table Mi and the answer set ansi to its neighbors.

5.5. Optimization

To simplify the discussion we have so far included entire
tuples in ansi and newi. This is often unnecessary. Below we
present optimization methods to reduce the communication
cost by removing redundancies from newi and ansi.

(1) Reducing newi. Whenever a new tuple t is found at
Pi, we generate a unique idðtÞ (by associating the id of Pi

with it), which is sent to the local peer P0 and neighbors of
Pi. When new attributes are found for t later at some peer
Pr, we do not include the entire tuple in newi; instead, it
suffices to send only idðtÞ and the new attributes to P0.

(2) Reducing ansi. This set is needed for horizontal
expansion at neighboring peers Pr, via queries Qði,rÞ. As
will be seen shortly, Qði,rÞ can be generated at peer Pi.
Recall from Fig. 4 that each query in Qði,rÞ is of the form
ðsXp ¼ tp ½Xp �ansiÞtl

R1 ½X� ¼ R2 ½Y �
R2. The condition Xp ¼ tp½Xp� can

be checked earlier at Pi. Hence, we only need to send to Pr

a subset Tf of ansi, consisting of those tuples of ansi that
satisfy this condition, i.e., those tuples of ansi that can be
possibly expanded at Pr instead of ansi. Better still, for
each t of these tuples, we only send idðtÞ and attributes
t½X�, rather than the entire tuple. Accordingly the query
above can be simplified to Tftl

R1 ½X� ¼ R2 ½Y �
R2.

6. A top-K algorithm for evaluating polymorphic queries

The conceptual evaluation strategy given in Section 5
is based on search by flooding: each peer Pi forwards
its answer set ansi to all of its neighboring peers. When
ansi is large, it may incur high communication cost. In
practice, however, one often wants only top K tuples in
the answer [17].

In light of these, we next develop a top-K algorithm for
evaluating polymorphic queries. For predefined numbers
K and m, and given an SPC

n query Q, the algorithm
evaluates Q in a P2P system P and returns K high-quality
tuples as the answer to Q. Instead of search by flooding,
each peer Pi sends at most K tuples to at most m neigh-
boring peers, selected based on a quality model. As will
be verified by our experimental results, this algorithm
significantly reduces the communication cost and is still
able to find quality answers.

Below we present the quality model, the strategy for
selecting peers and tuples, and the top-K algorithm.

6.1. A quality model for search

Consider a peer Pi at which a set ansi is already
computed. Let Pi denote the set of neighboring peers of
Pi. We want to (a) select a set Ps

i of at most m peers from
Pi, and (b) for each peer Pr 2 Ps

i , choose a set ansði,rÞ of at
most K tuples from ansi to forward to Pr, such that these
peers maximally expand the chosen tuples horizontally
and vertically.

To determine Ps
i and ans(i, r), we introduce a quality

model, based on certain statistics of neighboring peers.

Statistics. Consider the P2P system P described in Section
5. For each neighbor Pr of Pi, we assume that the following
information about Pr is stored at Pi: (a) the schema Sr of the
database Dr at Pr, (b) the set Sði,rÞ of CFKs from Pi to Pr, and
(c) statistics about Dr: for each attribute B, the cardinality
jadomðBÞj of its active domain in relation RB where B

appears, and the cardinality jRBj of RB; we estimate the
selectivity B% of B by jadomðBÞj=jRBj.

Given these, at peer Pi we derive query Qr for vertical
expansions at peer Pr, by algorithm VExpansion of Fig. 5.
Let the SPC

n query Qi be PLðQcÞ, where L¼ ðL1; L2;aÞ.

Quality model. We denote by scoreðrÞ the amount of
new information (attributes and tuples) that Pr may add
to ansi:

scoreðrÞ ¼ scoreðr,hÞþscoreðr,vÞ,

where (a) scoreðr,hÞ assesses explicit attributes in L2 and
implicit attributes for a (if specified) added by horizontal
expansion queries Qðr,hÞ, associated with weights we and
wa, respectively; and (b) scoreðr,vÞ estimates new tuples
found by vertical expansion query Qr, with weight wv.

J. Liu, W. Fan / Information Systems 36 (2011) 825–842 835
(a) We calculate scoreðr,hÞ using ansi and Sði,rÞ. For each
tuple t 2 ansi and each CFK j¼ ðR1½X�DR2½Y �, tp½Xp,Yp�Þ in
Sði,rÞ, we define scoreðt,jÞ ¼we�neþ wa�na if t½Xp� ¼ tp½Xp�,
and let scoreðt,jÞ be 0 otherwise. Here ne is the number of
R2 attributes in L2 of Qi, and na is the number of R2

attributes in neither L1 nor L2. Since Y is a key of R2, if
t½Xp� ¼ tp½Xp�, there exists at most one R2 tuple tu refer-
enced by t.

We define scoreðtÞ ¼ Sumj2Sði,rÞscoreðt,jÞ, the sum of
scoreðt,jÞ when j ranges over all CFKs in Sði,rÞ.

We pick K tuples t from ansi with the highest nonzero
scoreðtÞ, and let ansði,rÞ be the set of these tuples. We
define

scoreðr,hÞ ¼Sumt2ansði,rÞscoreðtÞ:

(b) We compute scoreðr,vÞ based on vertical expansion
query Qr and the statistics about Dr. Recall from Fig. 5 that
Qr ¼PLðrðsFr

ðQR1
� � � � � QRl

ÞÞÞ, where each QRs
is an SPC

query sFR
ðRsuÞ, derived from CFKs in Sði,rÞ.

We define scoreðQRS
Þ and scoreðr,vÞ as follows:

scoreðQRs
Þ ¼ ðwe�neþ wa�naÞ�jRsuj�ProductB2FRS

B%,

scoreðr,vÞ ¼wv�ProductC2Fr
C%�Products2½1,l�scoreðQRs

Þ:

Here ne and na are the numbers of new attributes in
Rsu as described above, B ranges over attributes in condi-
tion FRS

, and ProductB2FRS
B% estimates the probability that

FRS
is satisfied by the multiplication of the selectivity of

the attributes in FRS
. Intuitively, scoreðr,vÞ estimates the

number of tuples returned by Qr, assessed by attri-
butes added.

The larger scoreðrÞ is, the more new information Pr

may contribute and thus the higher its ranking is.
Fig. 6. Algorithm
Example 6.1. Referring to Fig. 1(b), let us consider peer
selection at P2. As shown in Examples 5.2 and 5.4, the answer
set at P2 consists of s1 (a combination of t2 and t5) and s2 (i.e.,
t4). Assume that P3 and P7 allow horizontal expansion only,
vertical only at P5, and horizontal and vertical expansions at
P4. Let we ¼ 0:7, wa ¼ 0:2. and wv ¼ 0:1.

By checking the CFKs, we get (s2, 1, 1, P3), indicating that P3

can expand s2 with ne=1 (attribute release) and na ¼ 1ðrankÞ.

Similarly for (s1, 1, 0, P4), (s1, 1, 0, P7), (s1, 0, 0, P3), (s2, 0, 0, P4),

and (s2, 0, 0, P7). Then at P3, scoreðs2Þ ¼ ð0:7�1þ0:2�1Þ ¼ 0:9

and scoreðs1Þ ¼ 0. Similarly we get scores for s1 and s2 at

P4 and P7. Then for horizontal expansion, scoreðP3,hÞ ¼

0:9, scoreðP4,hÞ ¼ 0:7, and scoreðP7,hÞ ¼ 0:7. Peer P2 next

calculates the scores for vertical expansion. By checking

the statistics of the data at its neighbors, P2 gets (P4, 100, 1, 1,

0.01, 0.2), indicating that P4 has a relation of 100 tuples with

ne=1, na ¼ 1, 1% of the tuples satisfying artist=‘‘Denver, J’’,

and 20% with a rate of ‘‘high’’. Similarly we get (P5, 200, 0, 2,

0.02, 0.3). The scores are scoreðP3,vÞ ¼ 0, scoreðP4,vÞ ¼ 0:1�

100�ð0:7�1þ0:2�1Þ�1%�20%¼ 0:018, scoreðP5,vÞ ¼ 0:048,

and scoreðP7,vÞ ¼ 0.

Taking these together, we have that scoreðP3Þ ¼ score

ðP3,hÞþscoreðP3,vÞ ¼ 0:9, scoreðP4Þ ¼ 0:718, scoreðP5Þ ¼

0:048 and scoreðP7Þ ¼ 0:7. &

To simplify the discussion we assume minimal statistics
about neighboring peers. The quality model and algorithms
can be readily improved if Pi collects statistics about peers
that can be reached within h hops, for a constant h41.

Peer and tuple selection. Based on the quality model, we
develop an algorithm for selecting a set Ps

i of m peers and
for each Pr 2 Ps

i , a set ansði,rÞ of K tuples. The algorithm,
denoted by SelectPeers, is shown in Fig. 6. For each
SelectPeers.

J. Liu, W. Fan / Information Systems 36 (2011) 825–842836
neighbor Pr of Pi, it computes ansði,rÞ,scoreðr,hÞ (lines 2–7),
scoreðr,vÞ (lines 8–10) and scoreðrÞ (line 11) as described
above. It then selects m peers with the highest nonzero
scores, and builds the set Ps

i with these peers (line 12). It
returns Ps

i and a set ansði,rÞ for each Pr in Ps
i (line 13).

Example 6.2. When m¼ 2 and K ¼ 2, SelectPeers selects
P3 and P4 at peer P2 based on the scores computed
in Example 6.1. The sets of tuples to be sent to its
neighbors P3 and P4 are fs2g and fs1g, respectively. &

6.2. A top-K algorithm

We next present the top-K algorithm, which revises
the conceptual evaluation strategy by leveraging the
quality model and Procedure SelectPeers.

Initial answer. Upon receiving Q and a predefined TTL,
the local peer P0 does the following. (1) It generates ans0

by using Algorithm Normalize of Fig. 3. (2) For each
neighbor Pr, it generates queries Qðr,hÞ and Qr for hori-
zontal and vertical expansions, by HExpansion and VEx-

pansion of Figs. 4 and 5, respectively. (3) By Algorithm
SelectPeers, it selects at most m neighbors and forwards
at most K tuples to each of these peers. Also forwarded
are queries Qðr,hÞ and Qr, and renaming table M0. It also
decreases TTL by 1 and forwards it to the selected
neighbors.

In contrast to the conceptual strategy, the queries for
expansions at the neighbors of P0 are generated at P0.
Further, at most K tuples are forwarded to at most m

selected peers, instead of search by flooding.

Expand and forward. When peer Pi receives tuples ansj

and queries Qði,hÞ and Qi from Pj, it does the following.
1.
 It executes Qði,hÞ and Qi against its local database Di, to
expand ansj horizontally and vertically, as described in
its counterpart of the conceptual strategy.
2.
 It generates sets newi and ansi of tuples, and sends newi

back to the local peer P0.

3.
 If TTL=0, no more expansion is conducted. Otherwise it

produces expansion queries for its neighbors, selects
at most m peers, forwards the queries and at most K

tuples to these neighbors along with renaming table
Mi, as described in steps (2) and (3) of the initial
answer stage. TTL is decreased by 1 and is also
forwarded to its selected neighbors.

As described in Section 5.5, only necessary parts of newi

and ansi are sent to P0 and selected neighbors,
respectively.

Tuple merging. When TTL expires or when the local peer
P0 receives no more new tuples or attributes for a certain
period of time, P0 merges tuples and handles conflicts as
will be described in Section 7. It then selects K tuples as
follows. (1) For each tuple t collected by P0, define

rankingðtÞ ¼we�neþwa�na,

where ne and na are the numbers of its explicit (L2)
attributes and implicit (a) attributes with non-null values
in the input query Q, respectively, and we and wa are
weights described in Section 6.1. (2) Peer P0 selects K

tuples with the highest ranking scores (or all the tuples if
there exist less than K tuples), and returns them as the
answer to query Q.
Example 6.3. We show how Algorithm TopKPoly evalu-
ates the SPC

n query Q0 of Example 1.1 in the P2P system
of Fig. 1(b). Let K=2, m=2 and TTL=2. Upon receiving Q0,
the local peer P0 finds ans0={t2} by Normalize. It then
generates queries for horizontal and vertical expansions
at its neighbors P2,P5 and P1, including Qj1

(Example 5.3)
and Q2 (Example 5.4) for expansions at P2. Assume that P2

is the only peer selected by SelectPeers. Then P0 decreases
TTL by 1 and sends (Qj1

, Q2, M0, ans0, TTL=1) to P2.

When P2 receives the request from P0, it evaluates Qj1

and Q2 against its local database sale, and gets the

set ans2:
album
 artist
 price
 label
 rating
s1:
 Greatest Hits
 Denver, J
 8.36
 BMG
 high
s2:
 Take Me Home
 Denver, J
 5.97
 Windstar
 high
where s1 is found by horizontally expanding t2 with
attributes in t5 via Qj1

, and s2 by vertical expansion via
Q2. The newly added tuples and attributes are sent back to
P0 as new2.

Peer P2 then produces expansion queries for P3, P4, P5,

P7. For example, horizontal expansion query Qj3
at P3 is
select
 title, artist, label, release
from
 ans2 t LEFT OUTER JOIN CD s on
t½label�= Windstar and t. album=s.title and t. artist=s.artist
As shown in Example 6.2, Algorithm SelectPeers selects

P3 and P4 as the top 2 peers. Then P2 sends the corr-

esponding expansion queries to P3 and P4, along with

the renaming table M2. Here M2={saleðalbumÞ/review

ðalbumÞ, saleðartistÞ/reviewðartistÞ}. It sends tuple s2 to

P3 and s1 to P4 for expansions. It also decreases TTL by 1

and sends TTL=0 to P3 and P4.

Given Qj3
and ans2, peer P3 evaluates Qj3

against its CD

relation, and extends tuple s2 in ans2 by adding a release

attribute taken from t8 (Fig. 1(d)). It sends the newly

added attribute back to P0 as new3. Similarly, expansion

queries are evaluated at P4. Note that at P3 and P4, TTL=0

and thus no further expansion is needed.

The answer set at P0 consists of
album
 artist
 price
 label
 release
s1:
 Greatest Hits
 Denver, J
 8.36
 BMG
 null
s2:
 Take Me Home
 Denver, J
 5.97
 Windstar
 03/07/2006
s3:
 The Greatest Hits
 Denver, J
 9.99
 BMG
 01/07/2002
where s3 is found at P4, by vertical expansion (the rating

attribute is omitted). As will be seen in Section 7, the
tuples are merged to produce the final answer to Q0 in the
P2P system. &

Remark. The choice of TTL, K and m values are application
dependent, adapted to strike a balance between the

J. Liu, W. Fan / Information Systems 36 (2011) 825–842 837
completeness of query answer and the cost for computing
the answer. The study of TTL in traditional P2P models is also
applicable to polymorphic query processing (see, e.g., [32]).
For an unstructured P2P network of size n, where each peer
has at most p neighbors, TTL is usually the minimal integer t

satisfying that 1þpþp2þ � � � þpt
Zn. In this way, each peer

has a chance to be visited before TTL expires. Accordingly, m

is an integer between 1 and p, and the value is decided based
on individual application domains.

7. Merging tuples and resolving conflicts

A polymorphic query may have attributes specified
with type variables, namely, explicit (L2) attributes and
implicit (a) attributes. Moreover, attributes or tuples coll-
ected from different peers may refer to the same real-
world object but may have typing conflicts and data

conflicts. We now present methods for instantiating type
variables, merging tuples representing the same object,
and for handling conflicts.

An example. We illustrate our methods using a query

Q0u¼PðL1 ;L2ÞðsF ðEcÞÞ group by f,

where PðL1 ;L2ÞðsF ðEcÞÞ is query Q0 given in Example 3.1,
which is to find the album (L1), and price, label, release (L2)
of John Denver’s albums that received a good rating. Here
f is the matching key ((album, �), (label,=)) given
in Example 3.2.

Query Q0u is posed on peer P0 of the P2P system depicted
in Fig. 1(b). As shown in Example 6.3, a set of tuples is found
and returned to P0, denoted by ans, including:
album
 artist
 price
 label
 release
s1:
 Greatest Hits
 Denver, J
 8.36
 BMG
 null
s3:
 The Greatest Hits
 Denver, J
 9.99
 BMG
 01/07/2002
These tuples represent the same real-world object.

Method. Our tuple merging method consists of two steps:
�
 partition ans into groups, such that tuples in the same
group represent the same real-world object; and

�
 develop a single succinct representation for each group,

and instantiate type variables and null attributes.

We next present the details of these steps.

Grouping tuples. We partition ans such that each tuple s

in ans is in a group, denoted by eqðsÞ. When two tuples s

and su are identified to represent the same object, we
merge eqðsÞ and eqðsuÞ into the same group. We identify
tuples based on primary keys and matching keys, as
follows.

(1) Recall from Figs. 3 and 4 that we keep track of the
primary key of each relation at the local peer through-
out the horizontal expansion process, by propagating
renaming tables. These keys are also carried by each tuple
in ans, e.g., s1 and s3 above retain the key (album, artist) of
relation review at P0. The keys allow us to identify tuples
that are horizontal expansions of the same tuple. Indeed,
when two tuples s and su in ans have the same primary
key for each of the base relations, we can merge eqðsÞ

and eqðsuÞ.
(2) Primary keys, however, typically do not help when

matching tuples resulted from vertical expansion. For
example, s1 and s3 cannot be identified by primary key
since s1½album�as3½album�. In contrast, we can identify s1

and s3 by using matching key f as shown in Example 3.2,
and merge eqðs1Þ and eqðs3Þ. Now s1 and s3 are in the same
group eqðs1Þ. Putting these together, we use matching
keys to identify tuples found by vertical expansion, and
primary keys to match tuples resulted from horizontal
expansion.

Tuples s and su in the same group can be merged if for
each attribute A, either s½A� ¼ su½A� or one of them is null.
In the latter case s[A] takes the non-null value.

If after the merging process, each group has a single
tuple, then there is no data conflict. However, conflicts are
commonly found in practice. For instance, after the merg-
ing process, eqðs1Þ remains fs1,s3g and cannot be further
reduced: s1 and s3 differ in their album and price attributes.

Representing groups. Several methods have been studied
to resolve data conflicts in data integration. A naive
method is to set conflicting attributes to null. A better
way is to use resolution functions such as ANY, FIRST,
LAST, MIN, MAX, AVG, DISCARD (e.g., [18,33,19]). Given a
list Val of values with the same data type, ANY draws a
random value from Val , FIRST returns the first one, LAST
returns the last one; MIN, MAX and AVG return the
minimum, maximum and average values, respectively,
when Val consists of numerical values; DISCARD returns
null if Val contains more than one value, and it returns the
only value in Val otherwise. The user may choose one of
these functions.

We adopt another approach, based on OR-sets pro-
posed in [21,22] for managing incomplete information.
An OR-set is a disjunction of a set of data values. For
instance, eqðs1Þ is represented as OR-set:
album a
rtist p
rice
 label
 release
{Greatest Hits,

The Greatest Hits}

D
enver, J {
8.36, 9.99}
 BMG
 01/07/2002
indicating an album of J. Denver known as either ‘‘Great-
est Hits’’ or ‘‘The Greatest Hits’’, released on 01/07/2002
by BMG, with a price of 8.36 or 9.99.

More specifically, we cope with data conflicts by repre-
senting each group as a single OR-set. Compared to other
resolution methods, OR-sets provide a succinct represen-
tation for all the relevant data, without loss of information.

To resolve typing conflicts, for each attribute A in L2

(or a), we cast the types of the values of the A column of
ans into a uniform type tA by leveraging an automatic type
casting mechanism, such that the type variable for A is
instantiated with tA. When multiple attributes are expli-
citly required to share the same type variable (see Section
3), such typing constraints are enforced at this stage so that
these attributes have the same type. Techniques for type
inference in functional programming [13] and relational
queries [24] can also be incorporated when resolving
typing conflicts.

J. Liu, W. Fan / Information Systems 36 (2011) 825–842838
Preparing final answer. If a is not specified in the query,
we need to remove redundant attributes from the groups.
For instance, for query Q0u, we remove artist from eqðs1Þ:
album
 price
 label
 release
{Greatest Hits, The Greatest Hits}
 {8.36, 9.99}
 BMG
 01/07/2002
We sort the groups based on the number of non-null
attributes in L2 (and a if it is specified), as described
in Section 6.2. In an OR-set, an attribute is non-null if its
value contains a value that is not null. The groups with
the highest ranking scores are returned as the answer to
the query.

8. Experimental study

In this section we present an experimental study of the
following three approaches to evaluating queries in P2P
systems: (a) flooding, the conceptual evaluation strategy
for SPC

n queries presented in Section 5, (b) TopK, the top-K
algorithm developed in Section 6, and (c) mapping, the
approach based on schema mapping. We focus on the
impact of the size of P2P system (the number of peers)
and the sizes of databases on the quality of query answers
and the communication cost of these approaches. Further-
more, we evaluate the effectiveness of the tuple merging
method developed in Section 7.

8.1. Experimental setting

We performed the experiments on a cluster of 32
Linux machines, each with a 2.00 GHz Intel(R) Xeon(R)
Dual-Core processor and 8 GB of memory. A commercial
DBMS was installed on each of these machines. These
machines were connected with a local area network. We
implemented all the algorithms (flooding, TopK, mapping)
in Java. For each of flooding and TopK, we implemented
two versions: one with the optimization described
in Section 5.5 by shipping partial answers to neighboring
peers, and the other without.

Data and CFKs. We implemented a data generator to
produce (logical) peers, schemas, data and CFKs. The input
of the generator consists of the following: (a) #peer, the
number of peers, (b) #neighbor, the average number of
neighbors for each peer, (c) #col, the average arity (number
of attributes) of a schema, (d) #size, the average number
of tuples in an instance of the schema, and (e) #CFK, the
average number of CFKs in Sðj,iÞ between neighboring peers
Pj and Pi.

For each i 2 [1, #peer], a relation schema Ri was
generated at peer Pi, with #col attributes in average. For
each pair of neighboring peers Pj and Pi, a set Sðj,iÞ of CFKs
was produced, with jSðj,iÞjr #CFK. Each CFK is of the form

ðRjðkeyjÞDRiðkeyiÞ,tp½A,B�Þ

where tp½A� ¼ Rj½A� ¼ r , tp½B� ¼ Ri½B� ¼ s:

Here keyj (resp. keyi) is the primary key of Rj (resp. Ri), A

(resp. B) denotes randomly selected attributes from Rj

(resp. Ri), and r and s are randomly generated constants.
Queries. We generated a number of SPC
n queries of the

form PðL1 ;L2 ;aÞðsF ðR0ÞÞ for testing, where (a) L1 consists of
local attributes of R0, (b) L2 is a set of explicit attributes
not in R0, randomly selected from the schemas at other
peers, (c) a is to be instantiated with a list of attributes
appearing in neither L1 or L2, and (d) F consists of equality
atoms defined with the attributes in L1 and constants in
their corresponding domains. These queries were con-
verted to normal SPC queries by dropping the L2 attributes
when being evaluated by mapping.

Evaluation. We conducted four sets of experiments. The
first three sets evaluated the impact of the following
factors on the performance of the three algorithms: #peer
ranging from 10 to 100, #size from 5k to 50k tuples, and K

from 10 to 100 for TopK. As observed in [12], efficient
query processing in ‘‘PDMS with tens of peers tends to be
intractable’’. In light of this, we opt to evaluate the
performance of SPC

n queries (rather than keyword search)
on unstructured P2P networks with up to 100 nodes, and
defer the experimental study on larger P2P systems to
future work.

In each of these experiments, we evaluated the quality
of query results and the communication cost of each of
the three algorithms, measured by the following: (a)
#attr, the number of relevant non-null attributes in final
answer sets and in top K tuples, merged by matching
keys, and (b) #bytes, the number of bytes that were
transferred to answer a query.

The last set of experiments evaluated the effectiveness of
our tuple merging techniques on identifying tuples in the
query answers returned by flooding, TopK and mapping.

When not stated otherwise, we used #peer=30,
#neighbor=4, TTL=4, #size=20k, #CFK=10, #col=10,
K ¼ 20, and m¼ 3 in our experiments, where m is the
number of selected neighbors in TopK. The weights for
horizontal expansion and vertical expansion were set as
we ¼ 0:7, wa ¼ 0:2, and wv ¼ 0:1 (see Section 6). Each set of
experiments was run 5 times and the average is
reported here.
8.2. Experimental results

Below we report our findings from the experiments.

Varying P2P network size. To evaluate the scalability and
the quality of query answers of the algorithms, we varied
#peer from 10 to 100. We report the number of relevant
non-null attributes (#attr) in Figs. 7(a) and (b). As shown
in Fig. 7(a), flooding found about 5.51 times more relevant
attributes than mapping. We also compared the results of
TopK with the top K tuples that ranked the highest in the
results of flooding and mapping. In this setting, Fig. 7(b)
shows that TopK found over 59.47% of the information
returned by flooding and 216% more than that of mapping.

We report the communication cost (#bytes) in
Fig. 7(c), which shows that TopK had almost constant
communication cost, far smaller than those of flooding and
mapping. This is because TopK trades the size of answer
for efficiency. The results also tell us that both TopK and
flooding scale well with #peer. Moreover, our optimization

J. Liu, W. Fan / Information Systems 36 (2011) 825–842 839
methods (Section 5.5) substantially reduces network
traffic (by 92.87% for flooding and 78.71% for TopK),
without hampering the quality of query answers. Among
other things, with optimization the network traffic of
flooding is comparable to that of mapping.

Varying the data size. To evaluate the impact of data size
on the performance of the algorithms, we varied jDBj from
5k to 50k at each peer. The results on #attr are shown
in Figs. 7(d) and (e), and on #bytes in Fig. 7(f). The results
are consistent with those reported above: in average,
flooding found 5.13 times more relevant non-null attributes
than mapping (Fig. 7(d)); and when top K tuples are con-
cerned, TopK found up to 84.78% of the result of flooding,
and outperformed mapping by 2.53 times (Fig. 7(e)).

As shown in Fig. 7(f), the communication cost of TopK
was much smaller than those of flooding and mapping, and
was far less sensitive to the data size. Moreover, flooding
with optimization does not incur substantial overhead
Fig. 7. Experimental results on the quality of query answers and the commun

#bytes shipped vs. #peer; (d) #attr retrieved vs. jDBj; (e) #attr (top K) vs. jDBj;

vs. K.
compared to mapping; this again verifies the effectiveness
of the optimization techniques proposed in Section 5.5.
The results also show that flooding and TopK scale well
with jDBj.

Varying K. To evaluate the impact of K and m on the top-K
algorithm, we varied K from 10 to 100, while m was set to 2
or 3. The results of TopK were compared with all the non-

null attributes found by flooding and mapping, respectively,
rather than the top K tuples. As depicted in Fig. 7(g), the
larger K and m were, the more relevant attributes were
found by TopK, as expected. Better still, TopK outperformed
mapping when K was sufficiently large, e.g., when KZ40
and m¼ 3 (resp. KZ60 and m¼ 2). On average, the
relevant non-null attributes found by TopK were 12.94% of
that of flooding, and were 1.42 times more than that of
mapping. As shown in Fig. 7(h), TopK constantly incurred far
less network traffic than flooding and mapping, and it scaled
well with K.
ication cost. (a) #attr retrieved vs. #peer; (b) #attr (top K) vs. #peer; (c)

(f) #bytes shipped vs. jDBj; (g) #attr retrieved vs. K; (h) #bytes shipped

Fig. 7. (Continued)

J. Liu, W. Fan / Information Systems 36 (2011) 825–842840
Tuple merging. We also evaluated the effectiveness and
scalability of our tuple merging method, varying the
number of peers from 10 to 100. Fig. 8 compared the
following for flooding, mapping, and TopK, respectively: (a)
the number of relevant non-null attributes (#attr) in the
answer sets before merging, and (b) the number of
relevant non-null attributes in the sets after merging by
traditional keys and by matching keys. We can see that
the more peers in the network, the more #attr were
merged. Fig. 8(a) shows that 71.01% of #attr in flooding

were merged by traditional keys. In addition, 17.43% of
these attributes were merged by matching keys (totally
83.39% of the initial answers). Fig. 8(b) tells us that on
average, 17.55% of #attr in mapping were merged by
traditional keys, and further, 13.19% by matching keys
(i.e., 19.86% of the initial answers). Fig. 8(c) shows that
#attr merged from the results of TopK was the minimum
of the three, which was only 0.18% of that of flooding

(resp. 6.39% against that of mapping). This is because that
TopK took care to remove redundant tuples when proces-
sing the data, and thus incurred far less redundancies
than its flooding and mapping counterparts.
Summary. From the experimental results we find the
following. (a) flooding constantly outperforms the tradi-
tional mapping approach in the quality of query answers
by over 5 times. In addition, when K and m are reasonably
large (e.g., K=40 and m=3), the result quality of TopK is
also better than that of mapping: it finds 142% more
relevant non-null attributes. These verify that poly-
morphic queries and their evaluation techniques are able
to find more relevant information than the traditional
approach. (b) Both flooding and TopK scale well with the
size of P2P network and data size. In addition, TopK scales
well with K. (c) TopK substantially reduces the commu-
nication cost, while it is still able to find about 84.78%
of the results of flooding, and 253% more than that of map-

ping in average, when top K tuples that ranked the highest
are concerned. (d) The optimization methods effectively
reduce the communication cost, constantly by 92.87%
for flooding and 78.71% for TopK. With optimization the
communication cost of flooding is comparable to that of
mapping. (e) The tuple merging strategy substantially
improves the quality of query results, up to 83.39% for
flooding and 19.86% for mapping.

flooding mapping

TopK

Fig. 8. The effectiveness of merging.

J. Liu, W. Fan / Information Systems 36 (2011) 825–842 841
9. Conclusion

We have proposed a query model for P2P systems. Its
novelty consists in the following: (a) polymorphic queries
(SPC

n) to explicitly retrieve attributes even when they are
not defined at the local peer; (b) horizontal and vertical
expansions, to find not only tuples but also attributes
missing from the local peer; (c) CFKs to support horizontal
and vertical expansions in a uniform framework; (d) a
top-K algorithm for SPC

n, based on a quality model for peer
and tuple selections; and (e) matching keys for identifying
tuples and handling conflicts. As verified by our experi-
mental study, SPC

n queries are able to find more relevant
information than traditional SPC queries in P2P systems,
without incurring high communication cost.

Several issues need further investigation. First, we are
currently experimenting with larger datasets and more
peer nodes. Second, we aim to extend SPC

n to polymorphic
relational algebra. Third, we are exploring optimization
techniques for polymorphic queries, with performance
guarantees on both the efficiency and the quality of query
answers. In particular, we plan to leverage semantics indices
(e.g., [34]) in order to efficiently locate peers of interest.
Acknowledgments

This work is supported in part by the National Natural
Science Foundation of China (No. 60773057, 60503047).

Fan is supported in part by the RSE-NSFC Joint Project
Scheme and an IBM scalable data analytics for a smarter
planet innovation award.

References

[1] A. Bonifati, E. Chang, T. Ho, L.V. Lakshmanan, R. Pottinger, Y. Chung,
Schema mapping and query translation in heterogeneous P2P XML
databases, The VLDB Journal 19 (2) (2010) 231–256.

[2] A.Y. Halevy, Z.G. Ives, J. Madhavan, P. Mork, D. Suciu, I. Tatarinov,
The Piazza peer data management system, TKDE 16 (7) (2004)
787–798.

[3] D. Calvanese, G.D. Giacomo, M. Lenzerini, R. Rosati, Logical founda-
tions of peer-to-peer data integration, in: Proceedings of PODS,
ACM, New York, USA, Paris, France2004, pp. 241–251.

J. Liu, W. Fan / Information Systems 36 (2011) 825–842842
[4] W.S. Ng, B.C. Ooi, K.-L. Tan, A. Zhou, PeerDB: a P2P-based system for
distributed data sharing, in: Proceedings of ICDE, IEEE Computer
Society, USA, Bangalore, India2003, pp. 633–644.

[5] A. Kementsietsidis, M. Arenas, Data sharing through query transla-
tion in autonomous sources, in: Proceedings of VLDB, Morgan
Kaufmann, San Fransisco, USA, Toronto, Canada2004, pp. 468–479.

[6] H.F. Witschel, T. Bohme, Evaluating profiling and query expansion
methods for P2P information retrieval, in: Proceeding of P2PIR,
ACM, New York, USA, Bremen, Germany2005, pp. 1–8.

[7] A. Roth, F. Naumann, Benefit and cost of query answering in PDMS,
in: Proceedings of DBISP2P, Springer, Berlin, Trondheim, Norway2005,
pp. 50–61.

[8] F.B. Kashani, C. Shahabi, Partial read from peer-to-peer databases,
Computer Communications 31 (2) (2008) 332–345.

[9] V. Kantere, D. Tsoumakos, T.K. Sellis, N. Roussopoulos, Groupeer:
dynamic clustering of P2P databases, Information Systems 34 (1)
(2009) 62–86.

[10] V. Kantere, D. Tsoumakos, T.K. Sellis, A framework for semantic group-
ing in P2P databases, Information Systems 33 (7–8) (2008) 611–636.

[11] K. Nakauchi, Y. Ishikawa, H. Morikawa, T. Aoyama, Peer-to-peer
keyword search using keyword relationship, in: Proceedings of
CCGRID03, IEEE Computer Society, USA, Tokyo, Japan2003, pp.
359–366.

[12] K. Hose, A. Roth, A. Zeitz, K.-U. Sattler, F. Naumann, A research
agenda for query processing in large-scale peer data management
systems, Information Systems 33 (7–8) (2008) 597–610.

[13] J. Garrigue, D. Rémy, Extending ML with semi-explicit higher-order
polymorphism, in: Proceedings of TACS, Springer, Berlin, Sendai,
Japan1997, pp. 20–46.

[14] J. Bleiholder, F. Naumann, Data fusion, ACM Computing Surveys 41
(1) (2008) (article No. 1).

[15] E.M. Voorhees, Query expansion using lexical-semantic relations,
in: Proceedings of SIGIR, ACM/Springer, New York, USA, Dublin,
Ireland1994, pp. 61–69.

[16] M. Mitra, A. Singhal, C. Buckley, Improving automatic query expan-
sion, in: Proceedings of SIGIR, ACM, New York, USA, Melbourne,
Australia1998, pp. 206–214.

[17] I.F. Ilyas, G. Beskales, M.A. Soliman, A survey of top-k query
processing techniques in relational database systems, ACM
Computing Surveys 40 (4) (2008) (article No. 11).

[18] L.-L. Yan, M.T. Özsu, Conflict tolerant queries in aurora, in: Proceed-
ings of CoopIS, IEEE Computer Society, USA, Edinburgh, Scotland1999,
pp. 279–290.
[19] F. Naumann, A. Bilke, J. Bleiholder, M. Weis, Data fusion in three
steps: resolving schema, tuple, and value inconsistencies, IEEE Data
Engineering Bulletin 29 (2) (2006) 21–31.

[20] K.-U. Sattler, S. Conrad, G. Saake, Interactive example-driven
integration and reconciliation for accessing database federations,
Information Systems 28 (5) (2003) 393–414.

[21] T. Imielinski, S.A. Naqvi, K.V. Vadaparty, Incomplete objects—a data
model for design and planning applications, in: Proceedings of
SIGMOD, ACM, New York, USA, Denver, Colorado1991, pp. 288–297.

[22] T. Imielinski, S.A. Naqvi, K.V. Vadaparty, Querying design and
planning databases, in: Proceedings of DOOD, Springer, Berlin,
Munich, Germany1991, pp. 524–545.

[23] A.K. Elmagarmid, P.G. Ipeirotis, V.S. Verykios, Duplicate record
detection: a survey, TKDE 19 (1) (2007) 1–16.

[24] J.V.D. Bussche, D.V. Gucht, S. Vansummeren, A crash course on
database queries, in: Proceedings of PODS, ACM, New York, USA,
Beijing, China2007, pp. 143–154.

[25] S. Abiteboul, R. Hull, V. Vianu, Foundations of Databases, Addison-
Wesley, USA, 1995.

[26] W. Fan, X. Jia, J. Li, S. Ma, Reasoning about record matching rules,
in: PVLDB, vol. 2, no. 1, 2009, pp. 407–418.

[27] L. Bravo, W. Fan, S. Ma, Extending dependencies with conditions,
in: Proceedings of VLDB, ACM, New York, USA, Vienna, Austria2007,
pp. 243–254.

[28] M. Lenzerini, Data integration: a theoretical perspective, in: PODS,
2002, pp. 61–75.

[29] E. Rahm, P.A. Bernstein, A survey of approaches to automatic
schema matching, The VLDB Journal 10 (2001) 334–350.

[30] P. Bohannon, E. Elnahrawy, W. Fan, M. Flaster, Putting context into
schema matching, in: Proceedings of VLDB, ACM, New York, USA,
Seoul, Korea2006, pp. 307–318.

[31] P.G. Kolaitis, Schema mappings, data exchange, and metadata
management, in: PODS, 2005, pp. 233–246.

[32] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, Search and replication in
unstructured peer-to-peer networks, in: Proceedings of ICS, ACM,
New York, USA, New York City, US2002, pp. 84–95.

[33] Y. Papakonstantinou, S. Abiteboul, H. Garcia-Molina, Object fusion
in mediator systems, in: Proceedings of VLDB, Morgan Kaufmann,
San Fransisco, USA, India1996, pp. 413–424.

[34] L. Galanis, Y. Wang, S.R. Jeffery, D.J. DeWitt, Locating data sour-
ces in large distributed systems, in: Proceedings of VLDB,
Morgan Kaufmann, San Fransisco, USA, Berlin, Germany2003, pp.
874–885.

	Polymorphic queries for P2P systems
	Introduction
	Related work
	Polymorphic queries
	Contextual foreign keys
	The semantics of SPCmidast queries
	A conceptual query evaluation strategy
	Generating initial answer
	Horizontal expansion
	Vertical expansion
	Optimization

	A top-K algorithm for evaluating polymorphic queries
	A quality model for search
	A top-K algorithm

	Merging tuples and resolving conflicts
	Experimental study
	Experimental setting
	Experimental results

	Conclusion
	Acknowledgments
	References

