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Abstract
Graph pattern matching is fundamental to social network
analysis. Traditional techniques are subgraph isomorphism
and graph simulation. However, these notions often impose
too strong a topological constraint on graphs to find mean-
ingful matches. Worse still, graphs in the real world are
typically large, with millions of nodes and billions of edges.
It is often prohibitively expensive to compute matches
in such graphs. With these comes the need for revising
the notions of graph pattern matching and for developing
techniques of querying large graphs, to effectively and
efficiently identify social communities or groups.

This paper aims to provide an overview of recent advances
in the study of graph pattern matching in social networks.
(1) We present several revisions of the traditional notions
of graph pattern matching to find sensible matches in so-
cial networks. (2) We provide boundedness analyses of in-
cremental graph pattern matching, in response to frequent
updates to social networks. (3) To cope with large real-life
graphs, we propose a framework of query preserving graph
compression, which retains only information necessary for
answering a certain class of queries of users’ choice. (4) We
also address pattern matching in distributed graphs, and in
particular, advocate the use of partial evaluation techniques.
Finally, we identify directions for future research.

Categories and Subject Descriptors: H.2.3 [Informa-
tion Systems]: Database Management – Query languages;
G.2.2 [Discrete mathematics]: Graph Theory – Graph
algorithms

General Terms: Languages, Algorithms, Design.

1. Introduction
Graph pattern matching has been a longstanding issue for

more than 30 years. Given a pattern graph Q and a data
graph G, it is to find all matches in G for Q, denoted by
M(Q,G). Here matching is typically defined in terms of

• subgraph isomorphism [60]: M(Q,G) consists of all
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subgraphs G′ of G to which Q is isomorphic, i.e., there
exists a bijective function h from the nodes of Q to the
nodes of G′ such that (u, u′) is an edge in Q if and
only if (h(u), h(u′)) is an edge in G′; or

• graph simulation [42]: M(Q,G) is a binary relation
S ⊆ VQ × V , where VQ and V are the set of nodes in
Q and G, respectively, such that

– for each node u in VQ, there exists a node v in V
such that (u, v) ∈ S, and

– for each (u, v) ∈ S and each edge (u, u′) in Q,
there is an edge (v, v′) in G such that (u′, v′) ∈ S.

Graph pattern matching has been extensively studied for
pattern recognition, knowledge discovery, biology, chemin-
formatics, dynamic network traffic and intelligence analysis,
based on subgraph isomorphism (see [2, 16, 28, 57] for sur-
veys). Graph pattern matching with graph simulation has
been widely used in process calculus, Web site classification
and social position detection (e.g., [6, 13, 45, 64]).

Recently there has been renewed interest in graph pattern
matching for social network analysis. Social networks are
often modeled as graphs in which a node denotes a person,
and an edge indicates some relationship, e.g., in Facebook,
Twitter and LinkedIn. To identify social communities and
social positions, graph pattern matching is a routine process.

However, social networks introduce new challenges to
graph pattern matching, from its definition to processing
methods. (1) Real-life social graphs are typically large. For
instance, Facebook has more than 500 million users (nodes)
with 65 billion links (edges) [1]. It is often prohibitively ex-
pensive to query such large graphs. In particular, subgraph
isomorphism is a NP-complete problem (cf. [29]), and worse
still, there are possibly exponentially many subgraphs in
G that match Q. These hinder its applicability in social
networks. (2) While graph simulation can be computed in
quadratic time, this notion and subgraph isomorphism are
often too restrictive to match patterns in social data, as
illustrated by the following real-life example taken from [46].

Example 1: Consider the structure of a drug trafficking
organization [46], depicted as a pattern graph Q0 in Fig. 1.
In such an organization, a “boss” (B) oversees the operations
through a group of assistant managers (AM). An AM super-
vises a hierarchy of low-level field workers (FW), up to 3 levels
as indicated by the edge label 3. The FWs deliver drugs, col-
lect cash and run other errands. They report to AMs directly
or indirectly, while the AMs report directly to the boss. The
boss may also convey messages through a secretary (S) to
the top-level FWs as denoted by the edge label 1.
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Figure 1: Drug trafficking: Pattern and data graphs

A drug ring G0 is shown in Fig. 1 in which A1, . . . , Am
are AMs, while Am is both an AM and the secretary (S).

One wants to identify all suspects involved in the drug
ring [46], by finding matches of Q0 in G0. However, graph
pattern matching via subgraph isomorphism would not be
able to find these. Indeed, observe the following.

(1) Nodes AM and S in Q0 should be mapped to the same
node Am in G0, which is not allowed by a bijection.

(2) The node AM in Q0 corresponds to multiple nodes
A1, . . . , Am in G0. This relationship cannot be captured
by a function from the nodes of Q0 to the nodes of G0. This
suggests that we should use relations instead of functions.

(3) The edge from AM to FW in Q0 indicates that an AM su-
pervises FWs within 3 hops. It should be mapped to a path
of a bounded length in G0 rather than to an edge.

For the same reason as (3) above, graph pattern matching
with graph simulation is not capable of identifying the drug
ring G0 as a match of Q0. In a variety of applications one
wants to inspect the connectivity of a pair of nodes via a
path of an arbitrary length [14, 33, 62] or with a bound on
the number of hops (e.g., 3, 1 in Q0) [11, 14, 64]. Edge-to-
edge mapping of subgraph isomorphism and graph simula-
tion is too strict to specify such connectivity. �

These call for revisions of the notion of graph pattern
matching and its computation methods, to accurately and
efficiently identify sensible matches in real-life social graphs.
This paper presents an overview of recent results in revising
graph pattern matching for social network analysis.

Revising graph pattern matching. The purpose of the
revisions is twofold: to catch sensible matches in social net-
works that traditional notions of graph pattern matching fail
to identify, and to cope with the sheer size of social graphs.

Bounded simulation. One may define graph pattern match-
ing in terms of a notion of bounded simulation [20] rather
than subgraph isomorphism or graph simulation. Bounded
simulation imposes a weaker topological constraint: (1) it
maps edges in a pattern Q to paths of various bounds in a
data graph G, as opposed to edge-to-edge mapping in sub-
graph isomorphism and simulation, and (2) it finds a binary
relation M(Q,G) defined on the nodes of Q and the nodes
of G, as in graph simulation but in contrast to bijective
functions in subgraph isomorphism.

It has been shown that graph pattern matching with
bounded simulation is able to find more meaningful matches
than the traditional notions [20], such as the drug ring shown
in Fig. 1. In addition, it takes cubic time to compute a

bounded simulation relation that represents exact matches
in G for Q. Contrast this with graph pattern matching via
subgraph isomorphism, which is intractable to determine.

Edge relationships. Edges in a social graph are typically
“typed”, denoting various relationships such as friendship,
work, advice, support, exchange, co-membership [40]. In
practice one often wants to find graph patterns composed of
edges of certain types. Such edge relationships can be read-
ily incorporated into graph pattern matching, by extending
bounded simulation with a restricted form of regular expres-
sions [19]. Better still, the increased expressive power does
not incur extra complexity when computing matches.

Strong simulation. There is a trade-off between the low com-
plexity of bounded simulation and its ability to preserve the
topology of data graphs in its match relation. As a con-
sequence, a graph G may turn out to match a pattern Q

that has a structure quite different from G. To circumvent
this limitation, one may adopt the notion of strong simula-
tion [38], which extends simulation by imposing two condi-
tions: (a) the “duality” to preserve upward mappings, and
(b) the locality to eliminate excessive matches.

Strong simulation captures the topology of patterns in its
matches, such as “parents”, connectivity and cycles, while it
takes cubic time to compute, as bounded simulation. More-
over, it excludes excessive matches and improves the quality
of matches found. In addition, slight extensions to the no-
tion make graph pattern matching intractable.

Coping with large social graphs. The cubic-time com-
plexity of bounded (strong) simulation still makes graph pat-
tern matching infeasible when conducted on social graphs
with millions of nodes and billions of edges. This highlights
the quest for effective techniques to query large graphs.
One way around this is to develop inexact or approximate
matching algorithms, a topic that has been well studied (see,
e.g., [16, 28] for surveys). Alternatively, we advocate three
approaches to computing exact matches, without compro-
mising the accuracy of matches, outlined as follows.

Incremental graph pattern matching. Social networks are
frequently updated. It is too costly to recompute all matches
in M(Q,G ⊕ ΔG) starting from scratch when changes ΔG
are inflicted on G. This motivates us to adopt incremental
algorithms for graph pattern matching. That is, we compute
matches M(Q,G) once on the entire graph via a batch algo-
rithm, and then incrementally identify the changes ΔM to
M(Q,G) in response to ΔG, by making maximal use of pre-
vious computation M(Q,G), without paying the price of the
high complexity of the batch algorithms. It is known that
while real-life graphs are constantly updated, the changes
are typically small [47]. When ΔG is small, ΔM is often
small as well, and is much less costly to find than to re-
compute the entire M(Q,G⊕ ΔG). Hence the incremental
approach is often more efficient than its batch counterpart.

As argued in [53], incremental algorithms should be ana-
lyzed in terms of |CHANGED|, the size of the changes in the
input and output, which represents the updating costs that
are inherent to the incremental matching problem itself. An
incremental algorithm is said to be bounded if its cost can be
expressed as a function of |CHANGED|, i.e., it depends only
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on |CHANGED|, rather than on the size of the entire input
(data graph G and pattern Q). An incremental matching
problem is said to be bounded if there exists a bounded in-
cremental algorithm for it, and is unbounded otherwise.

We present an account of results on the boundedness anal-
ysis of incremental matching defined in terms of graph sim-
ulation, bounded simulation or subgraph isomorphism. The
main result is negative: the problem is unbounded even for
patterns of a restrictive form and updates consisting of a
single edge insertion or deletion. Nonetheless, there exists
an incremental algorithm for matching via bounded simula-
tion such that its cost is a PTIME function of |CHANGED|
and the size of pattern Q; i.e., although it is unbounded, it
is independent of the size of graph G. This often suffices
since in practice, Q is typically much smaller than G.

Query preserving graph compression. It is unlikely that we
can lower the complexity of computing the set M(Q,G) of
matches. Moreover, incremental pattern matching does not
help us improve batch computation. To this end one may
consider query preserving graph compression: for a class Q
of queries, we find a smaller graph Gc for a given graph G via
an efficient compression function, such that for all queries
Q ∈ Q, Q(G) can be found by computing Q(Gc), the answer
to Q in the smaller Gc [24]. In other words, while we may
not change the complexity functions of graph queries, we
reduce the size of their parameters, i.e., the data graphs.

This approach has been verified effective for graph pattern
matching in a variety of real-life social graphs, reducing the
graphs by 57% in average [24]. In contrast to lossless com-
pression schemes (e.g., [5, 12, 25]), query preserving com-
pression is relative to a class Q of queries of users’ choice,
i.e., it generates small Gc that preserves the information
only relevant to queries in Q rather than for the entire orig-
inal graph G. Hence, it achieves a better compression ratio.
Moreover, any algorithm available for evaluating Q can be
directly used to query Gc as is, without decompressing Gc.

Distributed graph pattern matching. Another approach for
speeding up graph pattern matching in large social graphs
is to employ distributed algorithms. One may partition a
large graph G into fragments and distribute the fragments
across different sites. Given a pattern graph Q, we partially
evaluate Q over these fragments in parallel, and assemble
the partial results to get the set M(Q,G) of matches for Q
in the entire graph G. That is, we divide a large compu-
tational task into smaller ones of manageable sizes, and ex-
plore parallelism to conduct the computation. In fact many
large real-life graphs are already fragmented and stored dis-
tributively in different sites, e.g., social networks [55], Web
services networks [43] and RDF graphs [50].

It is natural to conduct distributed graph pattern match-
ing by using partial evaluation (see [34] for a survey). Pre-
liminary results [9, 15, 23] show that partial evaluation tech-
niques yield distributed query evaluation algorithms with
several performance guarantees: (a) each site is visited a
fixed number of times, (b) the communication cost (network
traffic) is determined by the fragmentation of G and the
size of Q, independent of the size of G, and (c) the com-
putational cost (response time) is determined by Q and the
largest fragment of G in the partition, again independent of
the size of G, by capitalizing on parallel computation.

Organization. This paper aims to provide an informal
overview of important issues in the area, to incite interest.
A survey of graph pattern matching algorithms is beyond
the scope of this paper. In the rest of the paper, Section 2
reviews the traditional notions of graph pattern matching,
and Section 3 introduces their revisions. Section 4 presents
techniques for querying large social graphs, including in-
cremental graph pattern matching, query preserving graph
compression and distributed graph pattern matching. Fi-
nally, Section 5 identifies open research issues.

2. Traditional Graph Pattern Matching

We begin with basic notations of data graphs and pattern
graphs. We then review traditional graph pattern matching.

Data graphs. A data graph is a directed graph G =
(V,E, fA), where

• V is a finite set of nodes;

• E ⊆ V ×V , in which (v, v′) denotes an edge from node
v to v′; and

• fA(·) is a function that associates each node v in V

with a tuple fA(v) = (A1 = a1, . . . , An = an), where
ai is a constant, and Ai is referred to as an attribute of
v, written as v.Ai, carrying the contents of the node,
e.g., label, keywords, blogs, rating.

Pattern graphs. A pattern graph is defined as Q =
(VQ, EQ, fv, fe), where

• VQ is a finite set of nodes and EQ is a set of directed
edges, as defined for data graphs;

• fv(·) is a function defined on VQ such that for each
node u, fv(u) is the predicate of u, defined as a con-
junction of atomic formulas of the form A op a; here
A denotes an attribute, a is a constant, and op is one
of the comparison operators <,≤,=, �=, >,≥; and

• fe(·) is a function defined on EQ such that for each
edge (u, u′) in EQ, fe(u, u

′) is either a positive integer
k or a symbol ∗.

Intuitively, the predicate fv(u) of a node u specifies a
search condition. We say that a node v in a data graph G

satisfies the search condition of a pattern node u in Q, de-
noted as v ∼ u, if for each atomic formula ‘A op a’ in fv(u),
there exists an attribute A in fA(v) such that v.A op a.

As will be seen in Section 3, an edge (u, u′) in Q may be
mapped to a path ρ in a data graph G, and fe(u, u

′) imposes
a bound on the length of ρ.

We refer to Q as a simple pattern if (a) for each node
u in VQ, fv(u) is a predicate ‘A = a’ defined on a unique
attribute, referred to as the label of u; and (b) for each edge
(u, u′) in EQ, fe(u, u

′) = 1. Intuitively, a simple pattern
inspects label equality and enforces edge to edge mappings,
as in subgraph isomorphism and graph simulation.

Graph pattern matching. Consider a data graph G =
(V,E, fA) and a simple pattern Q = (VQ, EQ, fv, fe).

Subgraph isomorphism. A subgraph G′ = (V ′, E′, f ′
A) of G

matches Q, denoted as Q�isoG
′, if there exists a bijective

function h(·) : VQ → V ′ such that
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Figure 2: Example data graphs and pattern graphs

• u ∼ h(u) for each node u ∈ VQ, and

• for each pair (u, u′) of nodes in VQ, (u, u′) ∈ EQ iff
(h(u), h(u′)) ∈ E′.

We use Miso(Q,G) to denote the set of all subgraphs of G
that are isomorphic to Q.

Graph simulation. Graph G matches the pattern Q via sim-
ulation, denoted by Q�simG, if there exists a binary relation
S ⊆ VQ × V such that

• for each node u ∈ VQ, there exists a node v ∈ V such
that (u, v) ∈ S; and

• for each pair (u, v) ∈ S,

– u ∼ v, and

– for each edge (u, u′) in EQ, there exists an edge
(v, v′) in E such that (u′, v′) ∈ S.

We refer to S as a match in G for Q.

It is known that if Q�simG, then there exists a unique
maximum match So [32], i.e., for any match S in G for
Q, S ⊆ So. We define Msim(Q,G) = So if Q�simG, and
Msim(Q,G) = ∅ otherwise.

Example 2: Consider the simple pattern Q1 and data
graphs G1, G2 and G3 shown in Fig. 2, where a node from
a data graph satisfies the search condition of a pattern node
if they have the same label. Observe the following.

(1) Q1�isoG1. In contrast, no subgraph of G2 or G3 is iso-
morphic to Q1, i.e., Miso(Q1, Gi) is empty for i ∈ [2, 3].

(2) Q1�simG1 and Q1�simG2. A simulation match is a rela-
tion that maps a pattern node to multiple nodes in a graph,
as opposed to functions in subgraph isomorphism. For ex-
ample, node C in Q1 is mapped to two C nodes in G2.

(3) In contrast, Q1 �sim G3, i.e.,Msim(Q1, G3) is empty since
the node A is not adjacent to C in G3. �

The graph pattern matching problem. Given a simple pat-
tern Q and a data graph Q, the graph pattern matching
problem via subgraph isomorphism (resp. graph simulation)
is to compute Miso(Q,G) (resp. Msim(Q,G)), i.e., it is to find
all the subgraphs of G that are isomorphic to Q (resp. the
unique maximum match in G for Q).

3. Graph Pattern Matching Revised

As remarked earlier, to effectively and efficiently identify
matches in emerging applications such as social networks,

we have to revise the traditional notions of graph pattern
matching. In this section we present several such revisions.

3.1 Matching with Bounded Simulation

The first revision is based on a notion of bounded simu-
lation, which revises graph simulation by allowing edge-to-
path mappings rather than edge-to-edge mappings, and by
supporting search conditions beyond label equality.

Recall data graphs and pattern graphs defined in Sec-
tion 2. Bounded simulation is defined for pattern graphs
Q = (VQ, EQ, fv, fe) in which the search condition fv(u)
for each node u ∈ VQ is a conjunction of atomic formu-
las, and the edge label fe(u, u

′) for each (u, u′) ∈ EQ is
either a positive integer k or a symbol ∗. In a data graph
G = (V,E, fA), a path ρ from node v to v′ is a sequence
(v = v0, v1, · · · , vn = v′) such that (vi−1, vi) ∈ E for all
i ∈ [1, n]. The length of ρ, denoted by len(ρ), is the number
of edges on ρ. A path ρ is said to be nonempty if len(ρ) ≥ 1.

Bounded simulation [20]. A data graph G matches a
pattern Q via bounded simulation, denoted by Q�B

simG, if
there exists a binary relation S ⊆ VQ × V such that

• for all u ∈ VQ, there exists v ∈ V such that (u, v) ∈ S;

• for each pair (u, v) ∈ S,

– u ∼ v, and

– for each edge (u, u′) in EQ, there exists a
nonempty path ρ from v to v′ in G such that
(u′, v′) ∈ S, and len(ρ) ≤ k if fe(u, u

′) = k.

We refer to S as a match in G for Q.

Intuitively, (u, v) ∈ S if (1) the data node v in G satisfies
the search condition specified by fv(u) in Q; and (2) each
edge (u, u′) in Q is mapped to a nonempty path ρ from v

to v′ in G, such that v, v′ match u, u′, respectively; and
moreover, when fe(u, u

′) is k, it indicates a bound on the
length of ρ, i.e., v is connected to v′ within k hops. When
it is ∗, ρ can be a nonempty path of an arbitrary length.

Example 3: For the pattern graph Q0 and data graph G0

given in Fig. 1, Q0�
B

simG0: a match S0 in G0 for G0 maps B
to B, AM to A1, . . . , Am, S to Am, and FW to all the W nodes.

Now consider the patterns Q1, Q2 and data graphs G1,
G2 and G3 shown in Fig. 2. Then Q2�

B

simGi for i ∈ [1, 3].
In particular, both C nodes in G3 are valid matches of the
node C in Q2. In contrast, Q1 �sim G3, and no subgraph of
G2 or G3 is isomorphic to Q1, as shown in Example 2. �

The graph pattern matching problem revised. It has
been shown [20] that there exists a unique maximum match
SM with bounded simulation such that for any match S in
G for Q, S ⊆ SM (when Q �B

sim G, SM = ∅). We refer to
the maximum match as the match in G for Q, denoted as
MB

sim(Q,G). Intuitively, MB
sim(Q,G) captures all nodes of a

community that match the pattern Q in a network G. The
match MB

sim(Q,G) can be computed in cubic time.

Theorem 1 [20]: For any data graph G = (V,E, fA) and
pattern graph Q = (VQ, EQ, fv, fe),

• there exists a unique maximum match MB
sim(Q,G) in

G for Q, and
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• the relation MB
sim(Q,G) can be computed in O(|V ||E|+

|EQ||V |2 + |VQ||V |) time.
�

Observe that |MB
sim(Q,G) | ≤ |V ||VQ|, in contrast to

possibly exponentially large Miso(Q,G).

Given a pattern graph Q and a data graph Q, the graph
pattern matching problem via bounded simulation is to com-
pute the maximum match MB

sim(Q,G).

Remarks. To see the differences between various graph
pattern matching metrics, observe the following.

(1) As opposed to subgraph isomorphism, bounded simula-
tion supports (a) simulation relations rather than bijective
functions, (b) predicates specifying search conditions based
on the contents of nodes, and (c) edges to be mapped to
(bounded) paths instead of edge-to-edge mappings.

(2) Graph simulation is a special case of bounded simulation,
by only allowing simple patterns in which (a) all the nodes
carry their labels as the only attributes, and (b) all the edges
are labeled with 1, i.e., edge-to-edge mappings only.

(3) In contrast to the NP-hardness of subgraph isomorphism,
graph pattern matching based on bounded simulation is in
cubic-time. Compared to graph simulation, bounded simu-
lation does not make our lives much harder. Indeed, it takes
O((|V |+ |VQ|)(|E|+ |EQ|)) time to decide graph simulation
from Q to G [32]. In practice, Q is typically small.

(4) The notion of homeomorphism also allows edge-to-path
mappings [27]. A graph H = (VH , EH) is homeomorphic
to a graph G = (V,E) if there exists an injective function
h : VH → V such that h maps edges in EH to pairwise node-
disjoint simple paths of G. Bounded simulation differs from
homeomorphism in that it is defined in terms of a relation
rather than an injective function, and moreover, it does not
require edges to be mapped to node-disjoint simple paths.

(5) Recall the notion of graph monomorphism: a graph Q =
(VQ, EQ) is monomorphic to a graph G = (V,E) if there
exists an injective function h : VQ → V such that for each
edge (u, u′) ∈ EQ, (h(u), h(u′)) is also an edge in E (cf. [16]).
One might be tempted to extend graph monomorphism by
allowing edge-to-path mappings, and define graph pattern
matching based on this revised notion. Unfortunately, this
revision makes graph pattern matching intractable [21].

Theorem 2 [21]: It is NP-complete to decide whether
there exists a subgraph of a graph G that matches a pattern
graph Q via the revised monomorphim. It remains NP-hard
even when Q is a tree and G is an acyclic directed graph
(DAG). �

(6) A notion of weak simulation was proposed in [45], which
extends graph simulation by mapping an edge to an un-
bounded path, denoted by �Wsim. It is a special case of
bounded simulation, when all the edges in a pattern graph
are labeled with ∗. A graph H is said to be weakly similar to
another graph G if H�WsimG and G�WsimH . It is shown [45]
that the following problem is NP-complete: given two graphs
G and H , it is to decide whether there exists a subgraph of
G that is weakly similar to H .

(7) A revision of subgraph isomorphism was studied in [64],
which allows edges in a pattern to be mapped to paths in a
data graph with the same bound. Graph pattern matching
defined in terms of this notion remains NP-complete.

(8) It is shown in [19, 20] experimentally that graph pattern
matching based on bounded simulation is able to accurately
identify a number of communities in real-life social networks
that its traditional counterparts fail to find.

3.2 Incorporating Edge Relationships

Bounded simulation can be readily extended to incorpo-
rate edge relationships. To do this we first revise the speci-
fications of data graphs and pattern graphs as follows. Let
Σ be a finite alphabet of colors denoting edge relationships,
e.g., marriage, friendship, work, advice, support [40].

Data graphs and pattern graphs. A data graph is a
directed graph G = (V,E, fA, fC), where V, E, fA(·) are as
defined earlier in Section 2, and fC(·) is a function defined
on E such that for each edge e in E, fC(e) is a color in Σ.

To define pattern graphs, a fragment of regular expres-
sions of the following form was adopted in [19]:

F ::= c | c≤k | c+ | FF.

Here (1) c is either a color in Σ, or a wildcard that matches
any color in Σ (expressed as a regular expression c1∪. . .∪cm,
when Σ = {ci | i ∈ [1, m]}); (2) k is a positive integer, and
c≤k denotes the regular expression c1 ∪ c2 ∪ . . . ∪ ck, where
cj (j ∈ [1, k]) denotes j occurrences of c; and (3) c+ denotes
one or more occurrences of c.

As argued in [19], these regular expressions suffice to ex-
press edge relationships commonly found in practice. More-
over, their containment and equivalence problems can be
decided in linear-time as opposed to PSPACE-completeness
for general regular expressions. This allows us to develop
effective optimization strategies for such pattern queries.

A regular pattern is defined as Q = (VQ, EQ, fv , fe), where
VQ, EQ and fv(·) are as defined in Section 2, and for each
edge (u, u′) in EQ, fe(u, u

′) is a regular expression in F .
The edge (u, u′) is to be mapped to a path of an unbounded
length if fe(u, u

′) contains c+ for some color c, and it is
bounded otherwise (e.g., when fe(u, u

′) is c≤k).

Regular pattern matching [19]. A data graph G matches
a regular pattern Q, denoted by Q�

R

simG, if there exists a
binary relation S ⊆ VQ × V such that

• for each node u ∈ VQ, there exists a node v ∈ V such
that (u, v) ∈ S;

• for each pair (u, v) ∈ S,

– u ∼ v, and

– for each edge (u, u′) in EQ, there exists a path
ρ = (v = v0, v1, . . . , vn = v′) in G such that the
sequence fC(v0, v1) . . . fC(vn−1, vn) of edge labels
is a string in the language L(fe(u, u

′)) of the reg-
ular expression fe(u, u

′).

Intuitively, a pattern edge (u, u′) must be mapped to a
path in the data graph G such that the edge colors on the
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Figure 3: Querying Essembly network

path match the pattern specified by the regular expression
fe(u, u

′). Note that bounded simulation is a special case of
regular pattern matching, when Σ consists of a single color.

Example 4: Consider an Essembly network service [7],
where users post and vote on controversial issues and top-
ics. Each person has attributes such as userid, job, as well
as a list of issues they support or disapprove, denoted by
“sp” and “dsp”, respectively. There are four types of rela-
tionships between a pair of persons: (1) friends-allies (fa),
connecting one user to a friend, if she shares the same views
on most (more than half) topics that her friend votes for;
(2) friends-nemeses (fn), from one user to a friend if she
disagrees with her friend on most topics; and (3-4) similarly
strangers-allies (sa) and strangers-nemeses (sn) are defined,
relating a user to a stranger. Figure 3 depicts a part of the
network as a data graph G4 that involves a debate on cloning
research. In G4, each edge has a type in {fa, fn, sa, sn}.

Consider a regular pattern Q3 posed on G4, which is also
shown in Fig. 3. It is issued by a person D identified by
id “Alice001” who supports “cloning”. The person would
like to find all her friends-nemeses (via fn) who are doctors,
and are against “cloning” (node B). She also wants to know
if there are people such that (a) they are biologists (nodes
C), support “cloning research”, and are connected within 2
hops to someone via fa relationships, who is in turn within 2
hops to person D via sa (edge (C,D)); (b) they are in a sci-
entist group with friends all sharing the same view towards
cloning (edge (C,C)); and moreover, (c) these biologists are
against those doctor friends of her, and vice versa, via paths
of certain patterns (edges (C,B) and (B,C)).

One can verify that Q3�
R

simG4. Indeed, Bi ∼ B (i ∈ [1, 2]),
Cj ∼ C (j ∈ [1, 3]) and D1 ∼ D. In addition, the edge from
C to D (labeled with fa≤2sa≤2) in Q3 is mapped to a path

C3

fa
−→ C1

sa
−→ D1 in G; similarly for other edges in Q3. �

Complexity. One can define the maximum match in a data
graph G for a regular pattern Q, denoted by MR

sim(Q,G),
along the same lines as its counterpart for bounded simula-
tion. The result below tells us that adding edge relationships
does not incur extra complexity to graph pattern matching.
Note that the complexity might be higher if general regular
expressions were adopted in pattern graphs.

Theorem 3 [19]: For any data graph G = (V,E, fA, fC)
and regular pattern Q = (VQ, EQ, fv , fe),

Figure 4: Social matching: pattern and data graphs

• there exists a unique maximum match relation
MR

sim(Q,G), and

• MR
sim(Q,G) is computable in O(|V ||E| +m|EQ||V |2 +

|VQ||V |2) time, where m is the number of distinct edge
colors in pattern Q. �

3.3 Capturing Graph Topology

The low complexity of graph pattern matching based on
(bounded) simulation comes at a price: (bounded) simula-
tion may match a graph G and a pattern Q with radically
different structures, as illustrated by the following example.

Example 5: Consider a real-life example taken from [59].
A headhunter wants to find a biologist (Bio) to help a group
of software engineers (SE’s) analyze genetic data. To do
this, she uses an expertise recommendation network G5, as
depicted in Fig. 4. In G5, a node denotes a person labeled
with expertise, and an edge indicates recommendation, e.g.,
HR1 recommends Bio1. In the figure there is an edge from
each DMi (data mining specialist) to Bio3, for i ∈ [1, k].

The biologist Bio needed is specified with a pattern graph
Q4, also shown in Fig. 4. Intuitively, the Bio has to be
recommended by: (a) an HR person; (b) an SE, i.e., the Bio

has experience working with SE’s; and (c) a DM, as data
mining techniques are needed for the job. Moreover, (d)
the SE is recommended by the same HR who recommends
the Bio, and (e) there is an artificial intelligence expert (AI)
who recommends the DM and is recommended by a DM.
The edges in Q4 are labeled 1 (omitted).

When subgraph isomorphism is used, no match can be
found, i.e., no subgraph of G5 is isomorphic to Q4.

When (bounded) graph simulation is adopted, all four bi-
ologists in G5 are matches of Bio in Q4. However, Bio1 and
Bio2 are recommended by either HR only or by SE only in
G5, and Bio3 by neither an HR nor an SE. Hence they are
not the ones that the headhunter really wants. Only Bio4

satisfies all these conditions and makes a good candidate.

This tells us that (bounded) simulation does not preserve
the topology well, and may return excessive “matches” that
one does not want. Indeed, observe the following. (a) While
Q4 is a connected graph (via undirected paths), G5 is dis-
connected, but G5 matches Q4 via simulation. (b) Node Bio

in Q4 has three “parents”, but it matches nodes Bio1 and
Bio2 in G5 that have a single “parent” each. Here abusing
notations of trees, for a pair u, u′ of nodes, we refer to u′ as
a child of u (or u as a parent of u′) if there exists an edge
(u, u′). (c) The directed cycle with two nodes AI and DM in
Q4 matches the long cycle consisting of AI1,DM1, . . ., AIk,
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DMk, AI1 in G5, and the undirected cycle with nodes HR,
SE and Bio in Q4 matches the tree rooted at HR1 in G5. �

Strong simulation [38]. To circumvent the limitations of
(bounded) simulation, one can use a notion of strong simula-
tion by imposing two conditions on simulation [42]: duality
and locality. These conditions aim to capture the topology
of graphs and eliminate excessive matches, while retaining a
low PTIME computational complexity. To simplify the dis-
cussion we define strong simulation as a revision of graph
simulation. Nevertheless, this notion can be readily defined
for bounded simulation with regular graph patterns.

Dual simulation. A data graph G matches a simple pattern
Q based on dual simulation, denoted by Q �D G, if

• Q�simG with a binary match relation S ⊆ VQ×V , and

• for each pair (u, v) ∈ S and each edge (u2, u) in Eq,
there exists an edge (v2, v) in E such that (u2, v2) ∈ S.

Intuitively, dual simulation enhances graph simulation by
preserving both the child and parent relationships.

One can verify that for any simple pattern Q and data
graph G, there is a unique maximum match relation based
on dual simulation, along the same lines as Theorem 1.

Locality. We enforce the locality by requiring matches to
be contained in a subgraph of a certain radius. Indeed, as
observed in [8], when social distance increases, the closeness
of relationships decreases and the relationships may become
irrelevant. Therefore, it often suffices in practice to consider
only those matches of a pattern that fall in a small subgraph.
To specify the locality, we need the following notions.

(1) A graph (Vs, Es, fs) is a subgraph of data graph G =
(V,E, fA), denoted as G[Vs, Es], if (a) for each v ∈ Vs, v ∈ V

and fs(v) = fA(v), and (b) for each edge e ∈ Es, e ∈ E.

(2) An undirected path ρ in a data graph G is a sequence of
nodes (v1, . . . , vn) such that either (vi, vi+1) or (vi+1, vi) is
an edge in G for all i ∈ [1, n− 1].

(3) Given two nodes v, v′ in a graph G, the distance between
v and v′, denoted by dist(v, v′), is the length of the shortest
undirected path between v and v′ in G.

The diameter of a graph G, denoted by dG, is the longest
shortest distance between all pairs of nodes in G, i.e., dG =
max(dis(v, v′)) for all nodes v, v′ in G.

(4) For a node v in a graph G and a non-negative integer
r, the r-radius subgraph centered at v is a subgraph of G,
denoted by Ĝ[v, r], such that (1) it contains all and only
those nodes v′ in G with dist(v, v′) ≤ r, and (2) it has exactly
the edges that appear in G over the same node set.

We will enforce the locality by using the following notion.
Consider a subgraph Ĝ[v, r] such that Q �D Ĝ[v, r] with the
maximum match relation S. The match graph w.r.t. S is a
graph Gs = (Vs, Es) in which (1) a node v ∈ Vs iff it is in S,
and (2) an edge (v, v′) ∈ Es iff there exists an edge (u, u′)
in Q with (u, v) ∈ S and (u′, v′) ∈ S.

Strong simulation. A data graphGmatches a simple pattern

Q via strong simulation, denoted by Q�
S

simG, if

• there is a node v in G such that Q �D Ĝ[v, dQ], and

• the match graph Gs w.r.t. S is a subgraph of Ĝ[v, dQ],

where dQ is the diameter of Q, and S is the maximum match

for Q �D Ĝ[v, dQ]. We refer to Gs as a match in G for Q.

Intuitively, a match Gs of Q satisfies the following con-
ditions: (1) it preserves both the child and parent relation-

ships of Q; and (2) Gs is contained in a subgraph Ĝ[v, dQ]
of G with a radius bounded by the diameter of Q; and (3)

all the nodes and edges needed to match Q in Ĝ[v, dQ] are
contained in Gs; these rules out excessively large matches.

Example 6: Consider pattern graph Q4 and data graph G5

of Fig. 4. Observe the following. (1) No subgraph of G5 is
isomorphic to Q4. Indeed, there exists no directed cycle in
G5 that matches the direct cycle DM,AI,DM in Q4.

(2) When simulation is adopted, the entire data graph
G5 is included in the match relation, which maps HR,
SE, Bio, DM and AI in Q4 to {HR1,HR2}, {SE1,SE2},
{Bio1,Bio2,Bio3,Bio4}, {DM′

1, DM′
2, DM1, . . ., DMk} and

{AI′1,AI′2,AI1, . . . ,AIk} in G5, respectively.

(3) When it comes to strong simulation, the connected com-
ponent Gs of G5 that contains Bio4 is the only match, which
maps HR, SE, Bio, DM and AI in Q4 to {HR2}, {SE2}, {Bio4},
{DM′

1,DM′
2} and {AI′1,AI′2} in G5, respectively. Indeed, one

can verify the following: (1) Q4 �D Gs, mapping Bio in Q4

only to Bio4 in G5; and (b) the subgraph centered at Bio4

with radius 3 (the diameter of Q4) is exactly Gs. As op-
posed to simulation, the cycle AI1,DM1, . . ., AIk,DMk,AI1
in G5 is rightfully excluded from the match. �

Graph pattern matching. Given a graph G and a simple
pattern Q, matching via strong simulation is to find the set
MS

sim(Q,G) of all matches Gs in G for Q, such that Q �D

Ĝ[v, dQ] for some node v in G, and Gs is the match graph

with the maximum match relation S for Q �D Ĝ[v, dQ].

Matching via strong simulation is also in cubic time.

Theorem 4 [38]: For any data graph G = (V,E, fA)
and simple pattern Q = (VQ, EQ, fv, fe), M

S
sim(Q,G) is com-

putable in O(|V |(|V | + (|VQ| + |EQ|)(|V | + |E|))) time. �

It has been shown [38] that strong simulation preserves the
following topological structures in graph pattern matching.

• Child relationship. If a node u in the pattern graph Q
matches node v in the data graph G, then each child
of u in Q must match a child of v in G.

• Parents. If a node u in Q matches node v in G, then
each parent of u also matches a parent of v.

• Connectivity. If Q is connected, then so are matches
of Q in G. Here a graph is connected if for each pair
of nodes in the graph, there exists an undirected path
connecting them.

• Cycles. An undirected (resp. directed) cycle in Q must
match an undirected (resp. directed) cycle in G.

• Bounded matches. For any match Gs of Q in G, its
diameter is no larger than 2 ∗ dQ. Moreover, there
exist at most |V | matches in MS

sim(Q,G).
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matching complexity cardinality

�iso (subgraph isomorphism) NP-complete O(|V ||VQ|)
�sim (graph simulation) quadratic time O(|V ||VQ|)

�
B

sim (bounded simulation) cubic time O(|V ||VQ|)

�
R

sim (with regular patterns) cubic time O(|V ||VQ|)

�
S

sim (strong simulation) cubic time O(|V |)

Table 1: Graph pattern matching

In contrast, (1) graph simulation does not preserve the
parent relationships, connectivity and undirected cycles as
we have seen in Example 5, while it preserves the child rela-
tionships and directed cycles. (2) Dual simulation does not
have bounded matches, but it preserves the child relation-
ships, parents, connectivity, directed and indirectly cycles.
Graph pattern matching based on subgraph isomorphism
preserves all the structural properties given above.

The connections between graph simulation, dual simula-
tion, strong simulation and subgraph isomorphism are:

Proposition 5 [38]: For any simple pattern Q and any
data graph G,

• if Q�isoG, then Q�S

simG;

• if Q�S

simG, then Q �D G; and

• if Q �D G, then Q�simG. �

It is shown [38] analytically and experimentally that graph
pattern matching based on strong simulation further im-
proves the quality of matches found by bounded simulation.

Tractable Boundary for Matching? One might want to
find a notion of graph pattern matching that preserves max-
imum graph topology, and characterize PTIME along the
same lines as how Fagin’s theorem characterizes NP [48].
This is, however, very challenging. Indeed, as observed
in [30], in graph theory Fagin’s theorem implies that “if no
logic captures PTIME, then P �= NP”.

Below we present two negative results: extending strong
simulation makes its computation from PTIME to NP-hard.

Bounded cycles. Given a pattern Q and a graph G such that
Q �D G with the maximum match relation S, the bounded
cycle problem is to decide whether the longest simple cycle in
the match graph w.r.t. S is no longer than the longest simple
cycle in Q. Obviously bounded cycle is a desirable locality
property that one would have wanted to further impose on
strong simulation. Unfortunately, this additional condition
would make graph pattern matching intractable.

Theorem 6 [38]: The bounded cycle problem is coNP-
hard even when pattern graphs contain a single cycle. �

Bisimulation. One might be tempted to use graph bisim-
ulation [42] rather than graph simulation in graph pattern
matching. A graph Gs matches a pattern graph Q via bisim-
ulation, denoted by Q 
 Gs, if Q�simGs with the maximum
match relation S and Gs�simQ with the inverse S− of S as
its maximum match relation. Pattern matching via bisim-
ulation is to find all subgraphs Gs of a graph G such that
Q 
 Gs. Graph bisimulation is a notion stronger than sim-
ulation but weaker than isomorphism.

Figure 5: Querying FriendFeed incrementally

However, pattern matching via bisimulation becomes in-
tractable. Indeed, subgraph bisimulation is NP-hard [18],
although graph bisimulation is solvable in PTIME [42]. In
contrast, subgraph simulation is equivalent to graph simula-
tion, i.e., checking whether there exists a subgraph Gs of G
such that Q�simGs is the same as checking whether Q�simG.

Summary. Table 1 summarize various notions of graph
pattern matching, along with the complexity of computing
M(Q,G) and the cardinality of M(Q,G), for data graph
G = (V,E, fA, fC) and pattern graph Q = (VQ, EQ, fv, fe).

4. Querying Large Social Graphs

Graph pattern matching is costly: NP-complete for sub-
graph isomorphism [29], quadratic-time for simulation [32],
and cubic-time for bounded (strong) simulation [20]. As
remarked earlier, real-life social graphs are typically large.
These highlight the need for techniques to cope with large so-
cial graphs. In this section we present three such approaches.

4.1 Incremental Graph Pattern Matching

The first approach is incremental graph pattern matching,
to accommodate the dynamic nature of social networks.

Incremental approach. Given a pattern graph Q, a data
graph G, the matches M(Q,G) in G for Q and changes ΔG
to G, incremental graph pattern matching is to find changes
ΔM to the matches such that M(Q,G⊕ΔG) = M(Q,G)⊕
ΔM , where (1) ΔG consists of a set of edges to be inserted
into or deleted from G, and (2) operator ⊕ applies changes
ΔS to S, where S is a data graph G or the match result M .

As opposed to batch algorithms that recompute the new
output starting from scratch, an incremental matching al-
gorithm aims to minimize unnecessary recomputation and
improve response time. Indeed, in real life ΔG is typically
small. For example, only 5% to 10% of nodes are updated
weekly [47]. When ΔG is small, ΔM is often small as well,
and is much less costly to compute than M(Q,G⊕ ΔG).

Example 7: Figure 5 depicts graph G6 (excluding edges
e1–e5), a fraction of FriendFeed (a social networking service
http://friendfeed.com/). Also shown in Fig. 5 are patterns
Q5 and Q6 (all the edges in Q6 are labeled with 1 and are
omitted). With bounded simulation, MB

sim(Q5, G6) is the
relation {(cto, Ann), (db, Pat), (db, Dan), (Bio, Bill), (Bio,
Mat)}. With subgraph isomorphism, the set Miso(Q6, G6) of
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matches in G6 for the simple pattern Q6 consists of a single
subgraph of G induced by nodes Ann, Pat and Bill.

Suppose that G6 is updated by inserting five edges e1–e5,
denoted by ΔG. Then (1) ΔG incurs increment ΔM1 to
MB

sim(Q5, G6) consisting of two new pairs (cto, Don) and
(Bio, Tom). This yields the new output MB

sim(Q5, G6 ⊕ΔG)
= MB

sim(Q5, G6)∪ΔM1. (2) The new matches Miso(Q6, G6⊕
ΔG) = Miso(Q6, G6) ∪ ΔM2, where ΔM2 consists of the
subgraph of G6 ⊕ ΔG induced by edges e2–e5.

When ΔG is small, the change ΔM1 (resp. ΔM2) to the
old output MB

sim(Q5, G6) (resp. Miso(Q6, G6)) is also small.
When G is large as commonly found in practice, it is less
costly to find ΔM1 (resp. ΔM2) than to recompute the en-
tire MB

sim(Q5, G6 ⊕ ΔG) (resp. Miso(Q6, G6 ⊕ ΔG)). �

Boundedness analyses. As pointed out in [53], the tradi-
tional complexity analysis for batch algorithms is no longer
adequate for incremental algorithms. Indeed, it is not very
informative to define the cost of an incremental algorithm
as a function of the size of the input. Instead, one should
analyze the algorithms in terms of |CHANGED|, the size of
the changes in the input and output, i.e., the updating costs
that are inherent to the incremental problem itself. Below
we analyze graph pattern matching in terms of |CHANGED|,
with (bounded) simulation and subgraph isomorphism.

To characterize |CHANGED|, we define the following.

Result graphs. The result graph Gr = (Vr, Er) of a pattern Q
in a graph G is a graph representing the matches M(Q,G).

• For bounded simulation,

– Vr consists of all the nodes v in G such that
(u, v) ∈ MB

sim(Q,G), i.e., v is a match of some
pattern node u in the maximum match;

– for each edge (u1, u2) in Q, there exists an
edge (v1, v2) ∈ Er iff (u1, v1) and (u2, v2)
are in MB

sim(Q,G) and moreover, there exists a
nonempty path ρ from v1 to v2 that satisfies the
bound specified for (u1, u2) in Q. That is, the
edge (v1, v2) indicates a path in G to which the
pattern edge (u1, u2) is mapped.

Similarly result graphs are defined for simulation.

• For subgraph isomorphism, Gr is the disjoint union of
all the subgraphs of G in Miso(Q,G).

Affected areas. The changes ΔM in the matches are char-
acterized in terms of the affected area in the result graph.
Let Gr and G′

r be the result graphs of Q in G and G⊕ΔG,
respectively. Then the affected area AFF of Gr by ΔG is
defined to be the difference between Gr and G′

r, i.e., the
changes in both nodes and edges inflicted by ΔG.

Bounded incremental algorithms. We define |CHANGED| =
|ΔG|+ |AFF|, which indicates the size of changes in the data
graph (input) and match results (output). An incremental
algorithm is bounded if its complexity is determined only by
|CHANGED|, independent of G. It is said to be optimal if it
is in O(|CHANGED|) time, which characterizes the amount
of work that is absolutely necessary to perform for any in-
cremental algorithm. An incremental matching problem is

matching bounded semi-bounded
�iso × (unit updates) × (NP-complete)

�sim

� (unit deletions)
�

× (unit insertions)

�
B

sim × (unit updates) �

Table 2: Incremental graph pattern matching

said to be bounded if there exists a bounded incremental
algorithm for it, and is unbounded otherwise.

We say that an incremental graph pattern matching prob-
lem is semi-bounded if there exists an algorithm for it such
that its cost is a PTIME function of |CHANGED| and |Q|.
That is, its cost depends only on the size of the changes and
the size of pattern Q, independent of the size of data graph
G. A semi-bounded incremental algorithm often suffices in
practice since the size of pattern Q is typically small.

Boundedness results. Consider a pattern Q, a data graph
G and changes ΔG. We call ΔG a unit update if it consists
of a single edge insertion or deletion, and a batch update if it
is a sequence of edge insertions and deletions. We say that
Q is a path pattern if it consists of a single path.

The results below tell us that pattern matching based on
(bounded) simulation is unbounded even for unit updates
and path patterns. Nevertheless, it is semi-bounded [22].

Theorem 7 [22]: The incremental simulation problem is

(1) unbounded even for unit updates and general patterns;

(2) bounded for (a) single-edge deletions and general pat-
terns, and for (b) single-edge insertions and DAG pat-
terns, in optimal time O(|AFF|); and

(3) semi-bounded, in O(|ΔG|(|Q||AFF|+ |AFF|2)) time for
batch updates and general patterns. �

Theorem 8 [22]: Incremental bounded simulation is

(1) unbounded even for unit updates and path patterns;

(2) semi-bounded, in O(|ΔG|(|Q||AFF|+ |AFF|2)) time for
batch updates and general patterns. �

When it comes to subgraph isomorphism, incremental
graph pattern matching is no longer semi-bounded. To
see this, consider the following problem, denoted by IncIso,
which is to determine, given Q, G, Miso(Q,G) and ΔG,
whether Q�isoG⊕ΔG, i.e., whether there exists a subgraph
in the updated graph G⊕ΔG that is isomorphic to Q. This
problem is intractable, even when the data graph G is fixed.
Hence incremental pattern matching via subgraph isomor-
phism is not semi-bounded unless P = NP.

Theorem 9 [22]: For subgraph isomorphism,

(1) the IncIso problem is NP-complete even when G is a
fixed graph; and

(2) incremental matching is unbounded for unit updates,
even when Q is a path pattern and G is a DAG. �

The main boundedness results are summarized in Table 2.

It is shown [22] that even for batch updates and general
(possibly cyclic) patterns, incremental algorithms perform
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Figure 6: Graph pattern preserving compression

significantly better than their batch counterparts. Indeed,
when 10% of data in graphs are changed, the improvement
is from 40% to 50% for simulation, and from 30% to 40%
for bounded simulation. When it comes to subgraph isomor-
phism, incremental matching outperforms its batch counter-
part when data graphs are changed up to 20%.

Incremental algorithms have also been developed for sim-
ulation in [58] and for bisimulation in [56], which, however,
did not consider whether incremental matching is bounded.

4.2 Query Preserving Graph Compression

The second approach is based on query preserving graph
compression, relative to a class Q of queries of users’ choice.

Compression scheme. A query preserving graph compres-
sion for Q is a pair <R,P>, where R(·) is a compression
function, and P (·) is a post-processing function. For any
graph G, Gc = R(G) is a graph computed from G by R(·),
referred to as the compressed graph of G via R(·), such that

• |Gc| ≤ |G|, and

• for all queries Q ∈ Q, Q(G) = P (Q(Gc)),

where Q(G) is the answer to Q in G, and P (Q(Gc)) is the
result of post-processing the answer Q(Gc) in Gc.

As indicated in Fig. 6, (1) for any query Q ∈ Q, the an-
swer Q(G) to Q in G can be computed by evaluating the
same query Q on the (smaller) compressed graph Gc of G;
(2) the compression is generic: any algorithm for evaluating
queries in Q can be directly used to compute Q(Gc), with-
out decompressing Gc; furthermore, any data structures and
indexing techniques for the original graph G can be applied
to Gc; and (3) in contrast to generic lossless compression
schemes (e.g., [25]), we do not need to restore the original
graph G from Gc. That is, Gc only needs to retain the in-
formation necessary for answering queries in Q. Moreover,
the compressed graph Gc is not necessarily a subgraph of G.

Graph pattern preserving compression. As an exam-
ple, we next focus on query preserving graph compression
for graph pattern queries based on bounded simulation.

Theorem 10 [24]: There exists a graph pattern preserving
compression <R,P> for bounded simulation, in which for
any graph G = (V,E, fA), R(·) is in O(|E| log |V |) time, and
P (·) is in linear time in the size of the query answer. �

One way to construct such a graph pattern preserving
compression scheme is by using bisimulation relations [42]
(see Section 3.3). One can verify that for any graph G =
(V,E, fA), (1) there is a unique maximum bisimulation rela-
tion Rb ⊆ V ×V on G, and (2) Rb is an equivalence relation,
i.e., it is reflexive, symmetric and transitive.

Figure 7: A social graph and its compression

We define the bisimulation equivalence relation of G to
be the maximum bisimulation relation on G, denoted by
Rb(G) or simply Rb. We denote by [v]Rb

the equivalence
class containing node v. We say that nodes v and v′ are
bisimilar if (v, v′) ∈ Rb. Since for any nodes v and v′ in
[v]Rb

, fA(v) = fA(v′), we simply call fA(v) the label of [v]Rb
.

Based on the equivalence relations, we define <R,P>.

(1) Compression function R(·). For G = (V,E, fA), its

compressed graph is R(G) = Gc = (Vc, Ec, f
′
A), where

• Vc = {[v]Rb
| v ∈ V };

• an edge ([v]Rb
, [w]Rb

) is in Ec iff there exist nodes v′ ∈
[v]Rb

and w′ ∈ [w]Rb
such that (v′, w′) ∈ E, and

• for each [v]Rb
∈ Vc, f

′
A([v]Rb

) = fA(v).

Intuitively, (a) for each node v ∈ V , there exists a node
[v]Rb

in Vc; abusing R(·), we use R(v) to denote [v]Rb
; (b)

for each edge (v,w) ∈ E, ([v]Rb
, [w]Rb

) is an edge in Ec; and
(c) each [v]Rb

has the same attributes as v.

(2) Post processing function P (·). Recall that Q(G) =

MB
sim(Q,G) is the maximum match in G for pattern Q. We

define P (·) such that P (Q(Gc)) = Q(G) as follows. For each
(u, [v]Rb

) ∈ Q(Gc) and each v′ ∈ [v]Rb
, (u, v′) ∈ Q(G). In-

tuitively, if [v]Rb
simulates u in Gc, then so does each node

v′ ∈ [v]Rb
in G. Hence, P (·) expands Q(Gc) via the in-

verse of R(·) (omitted from Fig. 6), in O|Q(G)| time, a cost
necessary for any pattern matching algorithm.

Example 8: Graph G7 in Fig. 7 is a fraction of a multi-
agent recommendation network. Each node denotes a cus-
tomer (C), a book server agent (BSA), a music shop agent
(MSA), or a facilitator agent (FA) assisting customers to find
BSAs and MSAs. Each edge indicates a recommendation.

To locate potential buyers, a bookstore owner issues a
pattern query Q7 depicted in Fig. 7. One may verify that
MB

sim(Q7, G7) = {(X,Xi)} for X ∈ {BSA,FA,C} and i ∈ [1, 2].
It is costly to compute the matches when G7 is large.

Using the graph pattern preserving compression <R,P>,
one can get the compressed graph Gc of G7 shown in Fig. 7,
in which e.g., R(FA1) = R(FA2) = FAr, where FAr is the
equivalent class containing FA1 and FA2.

Observe that (1) Q7 can be directly evaluated on Gc; its
result {(X,Xr)} can be converted toMB

sim(Q7, G7) by simply
replacing Xr with the set of nodes represented by Xr; (2)
evaluating Q7 in Gc is more efficient than in G; and (3) for
all pattern queries Q posed on G7, not limited to Q7, we
can directly evaluate Q on the much smaller Gc instead. �
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Figure 8: Limitations of graph indexing structures

It is shown [24] that for matching with bounded simula-
tion, the compression function R(·) given above reduces the
size of G by 57% in average, for a variety of real-life social
graphs. The reduction by query preserving graph compres-
sion is more significant for reachability queries (to determine
whether a node can reach another), about 95% in average.

Remarks. Query preserving graph compression differs from
generic lossless graph compression and indexing as follows.

(1) Lossless graph compression schemes (e.g., [5, 12, 25,
52, 54]) require to restore original graphs from compressed
graphs even to answer simple queries, as observed in [5].
In contrast, query preserving compressed graphs can be
directly queried without decompression, and moreover,
achieves a better compression ratio [24] since they do not
need to retain all the information of the original graphs.

(2) For neighborhood queries [39] (to find nodes connected
to a designated node in a graph), a notion of query-able
compression has been studied. The idea is similar to query
preserving compression. However, to answer those queries,
the compact structures of [39] have to be (partially) de-
compressed [5], and query evaluation algorithms on original
graphs cannot be directly applied to the compact structures.

(3) A variety of indexing structures have been developed for
graphs, notably 1-index [44], A(k)-index [35] and their gen-
eralization D(k)-index [51] based on (parameterized) graph
bisimulation. These indices, however, do not preserve query
results for graph pattern queries, as illustrated below.

Example 9: Consider graph G8 and its index graph GA of
A(k)-index when k = 1, shown in Fig. 8. Although nodes
A1, A2 and A3 are not bisimilar, they all have and only
have B children; as such, they are 1-bisimilar [51], and are
merged into a single node in GA. However, GA cannot be
directly queried by e.g., a pattern Q consisting of two query
edges {(B,C), (B,D)}, both with bound 1. Indeed, for Q,
GA returns all the B nodes in G as matches of query node
B in Q, but only B1 and B5 are the true matches in G8. �

Incremental graph compression. For each graph G, we
need to compute its compressed graph Gc once for all queries
in Q, and Gc is incrementally maintained in response to up-
dates to G. More specifically, given a graph G, a compressed
graph Gc = R(G) of G, and batch updates ΔG to G, incre-
mental graph compression for graph patterns is to compute
changes ΔGc to Gc such that Gc ⊕ΔGc = R(G⊕ΔG).

Theorem 11 [24]: Incremental graph compression for
graph patterns is unbounded for unit updates. However, it
is in O(|AFF|2 + |Gc|) time, i.e., compressed graphs Gc can
be incrementally maintained without decompressing Gc. �

Figure 9: Querying distributed social networks

4.3 Distributed Graph Pattern Matching

The third approach is distributed graph pattern matching,
based on partial evaluation, described as follows.

Partial evaluation. Partial evaluation (a.k.a. program
specialization) has been proved useful in a variety of areas in-
cluding compiler generation, code optimization and dataflow
evaluation (see [34] for a survey). Intuitively, given a func-
tion f(s, d) and part of its input s, partial evaluation is to
specialize f(s, d) with respect to the known input s. That is,
it conducts the part of f ’s computation that depends only
on s, and generates a partial answer, i.e., a residual function
f ′ that depends on the as yet unavailable input d.

This idea can be naturally applied to distributed graph
pattern matching. Consider a pattern graph posed on a
graph G that is partitioned into fragments (F1, . . . , Fn) of
manageable sizes, where Fi is stored in site Si. To compute
M(Q,G), each site Si can find the partial answer to pattern
queryQ in fragment Fi in parallel, by taking Fi as the known
input s while treating the fragments in the other sites as
yet unavailable input d. These partial answers (matches)
are collected and combined by a coordinator site, to derive
M(Q,G), the matches for Q in the entire G.

Example 10: Figure 9 depicts a fraction G9 of a recom-
mendation network, where each node denotes a person with
name and job titles (e.g., database researcher (DB), human
resource (HR)), and each directed edge indicates a recom-
mendation. The graph G9 is geo-distributed to three data
centers DC1, DC2 and DC3, each storing a fragment of G9.

Consider a pattern query Q8 given in Fig. 9 posed on DC1.
It is to find whether there exists a chain of recommendations
from a CTO Ann to her finance analyst (FA) Mark, through ei-
ther a list of DB people or a list of HR people. Observe that
such a path exists: (Ann, CTO) → (Walt, HR) → (Mat, HR) →
(Fred, HR) → (Emmy, HR) → (Ross, HR) → (Mark, FA). How-
ever, it is nontrivial to verify this in the distributed setting.
A naive method is to first ship data from DC1, DC2 and DC3

to a single site, and then evaluate the query using an al-
gorithm developed for centralized data (i.e., graphs stored
in a single site). This is infeasible because its data ship-
ment may be prohibitively expensive and worse still, may
not even be allowed for data privacy. Another way is to use
a distributed graph traversal algorithm, by sending messages
between different sites. This, however, requires messages to
be sent along DC1 → DC2 → DC1 → DC2 → DC3 → DC1,
incurring unbounded number of visits to each site, excessive
communication cost, and unnecessary delay in response.

We can do better by using partial evaluation. We send
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the query Q8 to DC1, DC2 and DC3, as is. We compute
the partial answers to Q8 at each site, in parallel, by taking
the fragment residing in the site as known input and intro-
ducing Boolean variables to indicate unknown input (i.e.,
fragments in the other sites). The partial answers are a set
of Boolean equations defined with Boolean variables, one
associated with each node that has an edge to a fragment
stored at another site. These equations indicate (1) at DC1,
from Ann there exist an HR path to Walt and a DB path to
Bill, while there are edges from Walt to Mat, Bill to Pat

and from Fred to Emmy; (2) at DC2, from Emmy there exist an
HR paths to Mat and an edge to Ross, and there is an edge
from Mat to Fred; and (3) at DC3, there exists an HR path
from Ross to Mark. These partial answers are collected by
a coordinator site (DC1), which solves the system of (recur-
sively defined) Boolean equations, to find the truth values
of those Boolean variables. It yields answer true to query
Q9, i.e., there exists an HR path from Ann to Mark.

This method guarantees the following: (1) each site is
visited once; (2) the total amount of data shipped (network
traffic) is independent of the size of G9; and (3) the compu-
tation is conducted in parallel at each site, without waiting
for the outcome or messages from any other site. �

Distributed matching of simple patterns. Partial eval-
uation has been studied for evaluating XPath queries [3,
9, 15] on distributed XML documents, SPARQL queries on
distributed RDF graphs [26], and simple pattern queries on
distributed social graphs [23]. Below we present preliminary
results on matching in distributed social graphs [23], based
on simple Boolean patterns; distributed pattern matching
based on (bounded) simulation remains to be studied.

Consider Boolean patterns of the form Q(s, t, U), where
s, t are nodes in a graph G, and U is a regular expression:

U ::= a | UU | U ∪ U | U∗
,

where a is a label in an alphabet Σ, UU , U ∪ U and U∗

denote alternation, concatenation and the Kleene closure,
respectively. We say that a path ρ satisfies U if the label
of ρ is a string in the regular language defined by U . The
Boolean query is to determine whether there exists a path
ρ from s to t such that ρ satisfies U , i.e., the reachability.

On a graph G partitioned into F = {Fi | i ∈ [1, n]} such
that Fi resides at site Si, such a query Q(s, t, U) can be
evaluated with the following performance guarantees.

Theorem 12 [23]: On a fragmentation F of graph G,
Boolean reachability queries Q(s, t, U) can be evaluated

• by visiting each site once,

• in O(|Fm||U |2 + |U |2|Vf |
2) time, and

• with the communication cost in O(|U |2|Vf |
2),

where Fm is the largest fragment in F and Vf is the set of
nodes in G that have edges across different fragments. �

That is, (1) each site is visited a fixed number of times; (2)
the response time is dominated by the largest fragment in
F , independent of the size |G| of G; (3) the total amount of
data shipped is determined by the size of the query and how
G is fragmented, again independent of |G|, and (4) the per-
formance guarantees remain intact no matter how G is frag-

mented and distributed. Distributed evaluation of XPath
queries possesses similar performance guarantees [9, 15].

More specifically, this is conducted as follows [23].

(1) We first construct an automaton Gq(U) representing
Q(s, t, U), and post the same Gq to each fragment in F .

(2) Upon receiving Gq(U), each site computes a partial an-
swer of Q using Gq , in parallel. The partial answer at each
fragment Fi is a set of Boolean equations composed of dis-
juncts, each indicating whether a node in Vf matches a state
of Gq. The equations are sent to a coordinator site Sc.

(3) The site Sc collects the equations from each site. It
then solves the system of the Boolean equations and finds
the final answer to Q(s, t, U) in the entire graph G.

Example 11: Consider pattern Q8 and graph G9 given in
Fig. 9. The partial answer at fragment DC1 includes:

Y (Ann,Mark) = X(Pat,DB) ∨X(Mat,HR),
X(Fred,HR) = X(Emmy,HR).

Here Y (Ann,Mark) is a Boolean variable indicating whether
there exists a path from Ann to Mark that satisfies the regular
expression of Q8, and variable X(Pat,DB) indicates whether
or not there exists a DB path from Pat to Mark; similarly
for variables X(Mat,HR), X(Emmy,HR) and X(Fred,HR).
These equations can be constructed using local information
at DC1, while the site DC1 also keeps track of outgoing edges
from nodes in DC1 to another fragment, such as (Bill, Pat),
(Walt, Mat) and (Fred, Emmy). Note that the truth value of
Y (Ann,Mark) is defined as the disjunction of two Boolean
variables X(Pat,DB) and X(Emmy,HR).

Similarly, the equations at DC2 and DC3 include:

X(Emmy,HR) = X(Ross,HR) ∨X(Fred,HR), /* DC2 */
X(Mat,HR) = X(Fred,HR);
X(Pat,DB) = false, /* DC3 */
X(Ross,HR) = true.

Note that the truth value of X(Ross,HR) is determined true

locally at DC3 since there exists an HR path from Ross to
Mark. Similarly, X(Pat,DB) is evaluated to be false locally.
These equations are constructed in parallel at each site.

The equations are collected by site DC1, and form a sys-
tem of Boolean equations. Solving these equations yields
Y (Ann,Mark) = true, the answer to Q8 in G9. �

It has also been shown [23] that partial evaluation can also
be readily implemented in the MapReduce framework [17].

5. Open Research Issues

We have presented an informal overview of recent work on
graph pattern matching for social network analysis, empha-
sizing (a) revisions of traditional notions of graph pattern
matching to improve the quality of matches, and (b) tech-
niques to cope with the sheer size of real-life social graphs.
The study has raised as many questions as it has answered.

(1) In practice one may want to query both data and topol-
ogy in social network analysis, e.g., paths and subgraphs sat-
isfying constraints defined on both their topological struc-
tures and data contents. Bounded simulation (with edge
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relationships specified by regular expressions) is just a first
step towards developing a practical query language for so-
cial network analysis. There is much more to be done, to
identify primitives that are necessarily supported by such a
language, characterize the expressive power of the language,
and establish the complexity of fundamental problems as-
sociated with queries in such a language. There has been
initial work in this direction, e.g., [4, 37].

(2) There is still room to improve the lower bounds of graph
pattern matching based on, e.g., bounded and strong sim-
ulation. These suggest a full treatment of graph indexing,
summarization and compression methods, to develop more
efficient batch and incremental matching algorithms. More-
over, query preserving compression remains to be studied
for matching based on subgraph isomorphism.

(3) The study of distributed graph pattern matching is still
in its infancy. Distributed matching algorithms based on,
e.g., (bounded) simulation, are not yet in place. It remains
to be investigated whether graph pattern matching still re-
tains the same performance guarantees on the number of
visits, data shipment and response time as given above when
general graph patterns are adopted. Moreover, it is nontriv-
ial to partition graphs such that distributed graph pattern
matching can be conducted with minimum network traffic
and response time, a possibly intractable problem [49].

(4) To cope with large social networks, one may want to use
inexact or approximate matching algorithms [16, 28]. These
algorithms should be extended to support graph pattern
matching defined in terms of, e.g., bounded simulation. In
addition, such algorithms are needed both for graphs stored
at a single site and for graphs partitioned and distributed.

(5) Another approach to querying large social networks is
based on query rewriting using views, to capitalize on pre-
vious computation (cached views). This highlights the need
for studying graph pattern query rewriting using views, a
nontrivial extension to prior work on path query rewrit-
ing [10] and relational query rewriting using views [31, 36].

(6) It has been recognized that social data analysis should
be incorporated into search engines. The principal goal of
search engines has been to help people find what they are
looking for. Social networks produce an immense amount of
data about what people like and what they want to share
with their friends. It is hence natural to improve searches
by capitalizing on social data. Google, Bing and newly
launched search engines such as Blekko and DuckDuckGo
are already exploring this. To approach this, one may want
to integrate graph pattern matching and keyword search [61,
63]. It should be remarked that graph pattern matching is a
“stronger form” of keyword search, by specifying keywords
with search conditions in patterns, and imposing topological
constraints on how keywords are related. It remains to in-
vestigate what topological constraints are needed in keyword
search (e.g., [41]), and how one can extract top-k matches
from the result returned in searches, when matching is de-
fined in terms of, e.g., bounded or strong simulation.
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