

Edinburgh Research Explorer

Incremental Detection of Inconsistencies in Distributed Data

Citation for published version:
Fan, W, Li, J, Tang, N & Yu, W 2012, Incremental Detection of Inconsistencies in Distributed Data. in IEEE
28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington,
Virginia), 1-5 April, 2012. IEEE, pp. 318-329. DOI: 10.1109/ICDE.2012.82

Digital Object Identifier (DOI):
10.1109/ICDE.2012.82

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
IEEE 28th International Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington,
Virginia), 1-5 April, 2012

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979128?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/ICDE.2012.82
https://www.research.ed.ac.uk/portal/en/publications/incremental-detection-of-inconsistencies-in-distributed-data(64546ae9-b134-48c2-8d5a-771c674e25ab).html

Incremental Detection of Inconsistencies in
Distributed Data

Wenfei Fan, Jianzhong Li, Nan Tang, and Wenyuan Yu

Abstract—This paper investigates incremental detection of errors in distributed data. Given a distributed database D, a set � of
conditional functional dependencies (CFDs), the set V of violations of the CFDs in D, and updates �D to D, it is to find, with
minimum data shipment, changes �V to V in response to �D. The need for the study is evident since real-life data is often dirty,
distributed and frequently updated. It is often prohibitively expensive to recompute the entire set of violations when D is updated. We
show that the incremental detection problem is NP-complete for database D that is partitioned either vertically or horizontally, even
when � and D are fixed. Nevertheless, we show that it is bounded: there exist algorithms to detect errors such that their
computational cost and data shipment are both linear in the size of �D and �V, independent of the size of the database D. We
provide such incremental algorithms for vertically partitioned data and horizontally partitioned data, and show that the algorithms are
optimal. We further propose optimization techniques for the incremental algorithm over vertical partitions to reduce data shipment.
We verify experimentally, using real-life data on Amazon Elastic Compute Cloud (EC2), that our algorithms substantially outperform
their batch counterparts.

Index Terms—Incremental algorithms, distributed data, conditional functional dependencies, error detection

1 INTRODUCTION

REAL-LIFE data is often dirty. To clean the data, effi-
cient algorithms for detecting errors have to be in

place. Errors in the data are typically detected as viola-
tions of constraints (data quality rules), such as functional
dependencies (FDs), denial constraints [3], and conditional
functional dependencies (CFDs) [9]. When the data is in
a centralized database, it is known that two SQL queries
suffice to detect its violations of a set of CFDs [9].

It is increasingly common to find data partitioned ver-
tically (e.g., [29]) or horizontally (e.g., [18]), and distributed
across different sites. This is highlighted by the recent inter-
ests in SaaS and Cloud computing, MapReduce [7], [24] and
columnar DBMS [29]. In the distributed settings, however,
it is much harder to detect errors in the data.

Example 1. Consider an employee relation D0 shown in
Fig. 2, which consists of tuples t1–t5 (ignore t6 for the
moment), and is specified by the following schema:

EMP(id, name, sex, grade, street, city, zip, CC, AC, phn, salary, hd)

• W. Fan and W. Yu are with the Laboratory for Foundations of Computer
Science (LFCS), School of Informatics, University of Edinburgh,
Informatics Forum 5.23, Edinburgh EH8 9AB, U.K.
E-mail: wenfei@inf.ed.ac.uk; wenyuan.yu@ed.ac.uk.

• J. Li is with the Department of Computer Science and Engineering, School
of Computer Science and Technology, Harbin Institute of Technology,
Heilongjiang 150001, China. E-mail: lijzh@hit.edu.cn.

• N. Tang is with the Qatar Computing Research Institute (QCRI), Qatar
Foundation, Doha, Qatar. E-mail: ntang@qf.org.qa.

Each EMP tuple specifies the id, name, sex, salary grade
level, address (street, city, zip code), phone number
(country code CC, area code AC, phone phn), salary and
the date hired (hd). Here the employee id is a key of EMP.

To detect errors, a set of CFDs is defined on the
EMP relation, as shown in Fig. 1. Here φ1 asserts that
for employees in the U.K. (i.e., CC = 44), zip code
uniquely determines street. CFD φ2 assures that for any
U.K. employee, if the area code is 131 then the city must
be EDI.

Errors in D0 emerge as violations of the CFDs, i.e., those
tuples in D0 that violate at least one CFD in �0, as shown
in Fig. 1. For instance, t1 and t5 violate φ1: they represent
U.K. employees with the same zip, but have different
street’s. Moreover, t1 alone violates φ2: t1[CC] = 44 and
t1[AC] = 131, but t1[city] = ‘ NYC’ �= ‘ EDI’. When D0
is in a centralized database, the violations can be easily
caught by using SQL-based techniques [9].

Now consider distributed settings. As depicted in
Fig. 2, D0 is partitioned either (1) vertically into three
fragments DV1 , DV2 (grey columns) and DV3 , all with
attribute id; or (2) horizontally into DH1 (t1–t2), DH2

(t3–t4) and DH3 (t5), for employees with salary grade
‘A’ (junior level), ‘B’ and ‘C’ (senior), respectively. The
fragments are distributed over different sites.

To find violations in both settings, it is necessary to
ship data from one site to another. For instance, to find
the violations of φ1 in the vertical partitions, one has
to send tuples with CC = 44 from the site of DV3 to the
site of DV2 , or the other way around to ship attributes
(street, zip); similarly for the horizontal partitions.

It is NP-complete to find violations of CFDs, with min-
imum data shipment, in a distributed relation that is
partitioned either horizontally or vertically [10]. A heuristic

Fig. 1. Example CFDs and their violations.

algorithm was developed in [10] to compute the violations
of CFDs in horizontally partitioned data, which takes 80 sec-
onds to find violations of one CFD in 8 fragments (i.e., 8
sites) of 1.6 million tuples.

Distributed data is also typically dynamic, i.e., frequently
updated [25]. It is often prohibitively expensive to recom-
pute the entire violations in a distributed database D when
D is updated. This motivates us to study incremental detec-
tion of errors. In a nutshell, let V denote the violations of a
set � of CFDs in D, �D be updates to D, and D⊕�D denote
the database updated by �D. In contrast to batch algorithms
that compute violations of � in D starting from scratch,
incremental detection is to find changes �V to V, which aims
to minimize unnecessary recomputation. Indeed, when �D
is small, �V is often small as well, though �V may include
tuples from �D and D. It is more efficient to compute �V
than the entire violations of � in D ⊕ �D.

Example 2. Consider φ1 of Fig. 1, relation D0 and its
partitions given in Fig. 2, and the updates below.

1) Insertions. Assume that t6 is inserted into D0, as
shown in Fig. 2. Then the new violation �V is {t6}.

a) Batch computation. In the vertical partitions,
one needs to ship either tuples with the same
(zip, street) as t6 (in DV2) or 6 tuples with
CC = 44 (DV3), as shown in Example 1. In
the horizontal partition, we have to compare
all tuples with CC = 44, which requires the
shipment of 4 (partial) tuples.

b) Incremental computation. Since t5 is already
a violation of φ1 in V and (t5, t6) together
violate φ1, we can conclude that t6 is the
only new violation of φ1, i.e., �V = {t6}
for φ1. Indeed, for any tuple t, if (t, t6)

violate φ1, then either (t, t5) violate φ1 or
t[CC, zip, street] = t5[CC, zip, street]. In both
cases, t is already in V (i.e., a violation). Hence
to find �V for φ1, one needs to ship a single
tuple id in the vertical partition (Section 4),
and no data to be shipped in the horizontal
case (Section 6).

2) Deletions. Assume that t4 is deleted after the inser-
tion of t6. One can verify that only t4 has to be

removed from the violations of φ1, i.e., �V = {t4}
for φ1.

a) Batch computation. To find violations of φ1 in
D0 ⊕ �D, one has to ship the same amount
of data as in (1)(a).

b) Incremental computation. In contrast, since
t3, t4 are both in V and t3[street, zip] =
t4[street, zip], one can verify that only t4
should be removed from V. Indeed, for any
t, if (t, t4) violate φ1, so do (t, t3). Since t3
remains in V, so does t. Again, one needs to
ship a single tuple id in vertical partitions,
and no data in the horizontal case.

It has been verified in a number of applications that
incremental algorithms are more efficient than their batch
counterparts when updates are small [26]. This example
shows that this holds for distributed error detection.

Contributions. This paper establishes the complexity
bounds and provides efficient algorithms for incremen-
tally detecting the violations of CFDs in fragmented and
distributed data, either vertically or horizontally.

1) We formulate incremental detection as an opti-
mization problem, and establish its complexity
bounds (Section 3). We show that the problem
is NP-complete even when both D and CFDs are
fixed, i.e., when only the size |�D| of updates
varies. Nevertheless, we show that the problem is
bounded [27]: there exist algorithms for incremental
detection such that their communication costs and
computational costs are functions in the size of the
changes in the input and output (i.e., |�D| and |�V|),
independent of the size of database D. This tells us that
incremental detection can be carried out efficiently,
since in practice, �D and �V are typically small.

2) We develop an algorithm for incrementally detect-
ing violations of CFDs for vertical partitions
(Section 4). We show that the algorithm is opti-
mal [27]: both its communication costs and compu-
tational costs are linear in |�D| and |�V|. Indeed,
|�D| and |�V| characterize the amount of work
that is absolutely necessary to perform for incremental
detection [27].

3) We develop optimization methods (Section 5) to fur-
ther reduce data shipment for error detection in
vertical partitions. The idea is to identify and max-
imally share indices among CFDs such that when
multiple CFDs demand the shipment of the same
tuples, only a single copy of the data is shipped.

Fig. 2. EMP relation D0.

We show that the problem for building optimal
indices is NP-complete, but provide an efficient
heuristic algorithm.

4) We also provide an incremental detection algorithm
for horizontal partitions (Section 6). We show that
the algorithm is also optimal, as for its vertical
counterpart.

5) Using TPCH for large scale data and DBLP for
real-life data, we conduct experiments on Amazon
EC2. We find that our incremental algorithms out-
perform their batch counterparts by two orders of
magnitude, for fairly large updates (up to 10GB
for TPCH). Moreover, our methods scale well
with both the size of data and the number of
CFDs. We also find the optimization strategies
effective.

This work provides fundamental results and a practical
solution for error detection in distributed data. We focus
on CFDs because they carry constant patterns and are diffi-
cult to handle, and moreover, as shown in [9], they capture
inconsistencies that traditional dependencies fail to catch.
The techniques developed here, nonetheless, can be readily
used to incrementally detect violations of other dependen-
cies used in data cleaning, such as functional dependencies
and denial constraints. We discuss related work below,
review error detection in distributed data in Section 2, and
conclude in Section 8.

Related work. This work extends [11] by including (1)
detailed proofs of the fundamental problems in connection
with incremental error detection (Section 3); (2) a proof of
the intractability of the optimization problem for vertical
partitions (Section 4); (3) an optimal algorithm for hori-
zontal partitions (Section 6); and (4) its experimental study
(Section 7). Neither (3) nor (4) was studied in [11]. Proofs
of (1) and (2) were not presented in [11].

Methods for (incrementally) detecting CFD violations are
studied in [9] for centralized data, based on SQL tech-
niques. There has been work on constraint enforcement
in distributed databases (e.g., [2], [16], [17]). As observed
in [16], [17], constraint checking is hard in distributed set-
tings, and hence, certain conditions are imposed there so
that their constraints can be checked locally at individual
site, without data shipment. As shown by the examples
above, however, to find CFD violations it is often neces-
sary to ship data. Detecting constraint violations has been
studied in [2] for monitoring distributed systems, which
differs substantially from this work in that their constraints
are defined on system states and cannot express CFDs. In
contrast, CFDs are to detect errors in data, which is typi-
cally much larger than system states. Closer to this work
is [10], which studies CFD violation detection in horizontal
partitions, but considers neither incremental detection nor
algorithms for detecting errors in vertical partitions.

Incremental algorithms have proved useful in a variety
of areas (see [26] for a survey). In particular, incremen-
tal view maintenance has been extensively studied [14],
notably for distributed data [4], [6], [15], [28]. Various aux-
iliary structures have been proposed to reduce data ship-
ment, e.g., counters [6], [15], pointer [28] and tags in base
relations [4]. While these could be incorporated into our

solution, they do not yield bounded/optimal incremental
detection algorithms.

There has also been a host of work on query process-
ing [20] and multi-query optimization [19] for distributed
data. The former typically aims to generate distributed
query plans, to reduce data shipment or response time
(see [20] for a survey). Optimization strategies, e.g., semi-
Joins [5], bloomJoins [22], and recently [8], [21], [23], [30],
have proved useful in main-memory distributed databases
(e.g., MonetDB [12] and H-Store [18]), and in cloud comput-
ing and MapReduce [7], [24]. Our algorithms leverage the
techniques of [19] to reduce data shipment when validating
multiple CFDs, in particular.

2 ERROR DETECTION IN DISTRIBUTED DATA

In this section we review CFDs [9], data fragmentation [25]
and error detection in distributed data [10].

2.1 Conditional Functional Dependencies
A CFD φ on relation R is a pair (X → Y, tp), where (1)
X → Y is a standard functional dependency (FD) on R; and
(2) tp is the pattern tuple of φ with attributes in X and Y,
where for each attribute A in X∪ Y, tp[A] is either a constant
in the domain dom(A) of A, or an unnamed variable ‘_’ that
draws values from dom(A) [25].

Example 3. The CFDs in Fig. 1 can be expressed as:

φ1: ([CC, zip] → [street], tp1 = (44, _, _))
φ2: ([CC, AC] → [city], tp2 = (44, 131, EDI)).

Note that FDs are a special case of CFDs in which the
pattern tuple consists of ‘_’ only.

To give the semantics of CFDs, we use an operator �
defined on constants and ‘_’: v1 � v2 if either v1 = v2, or
one of v1, v2 is ‘_’. The operator extends to tuples, e.g., (131,
EDI) � (_, EDI) but (131, EDI) �� (_, NYC).

An instance D of R satisfies a CFD φ, denoted by D |=
φ, iff for all tuples t and t′ in D, if t[X] = t′[X] � tp[X],
then t[Y] = t′[Y] � tp[Y]. Intuitively, φ is defined on those
tuples t in D such that t[X] matches the pattern tp[X], and
moreover, it enforces the pattern tp[Y] on t[Y].

Example 4. Consider D0 in Fig. 2 and the CFDs in Fig. 1.
Then D0 does not satisfy φ1, since t1[CC, zip]=t5[CC, zip]
� (44, _) but t1[street] �= t5[street], violating φ1.

A set of CFDs of the form (X → Y, tpi) (i ∈ [1, n]) can be
converted to an equivalent form (X → Y, Tp), where Tp is
a pattern tableau that contains n tuples tp1 , · · · , tpn [9]. This
is what we used in our implementation.

We call (X → B, tp) a constant CFD if tp[B] is a constant,
and a variable CFD if tp[B] is ‘_’. For instance, φ2 in Fig. 1 is
a constant CFD, while φ1 is a variable CFD.

2.2 Data Fragmentation
We consider relations D of schema R that are partitioned
into fragments, either vertically or horizontally.

Vertical partitions. In some applications (e.g., [29]) one
wants to partition D into (D1, . . . , Dn) [25] such that

Di = πXi(D), D = �i∈[1,n] Di,

where Xi is a set of attributes of R on which D is pro-
jected, including a key attribute of R. Relation D can be
reconstructed by join operations on the key attribute.

Each vertical fragment Di has its own schema Ri with
attributes Xi. The set of attributes of R is

⋃
i∈[1,n] Xi.

As shown in Fig. 2, D0 can be partitioned vertically into
DV1 , DV2 and DV3 , where the schema of DV1 is R1(id, name,
sex and grade); similarly for DV2 and DV3 .

Horizontal partitions. Relation D may also be partitioned
(fragmented) into (D1, . . ., Dn) [18], [25] such that

Di = σFi(D), D = ⋃
i∈[1,n]Di,

where Fi is a Boolean predicate and selection σFi(D) identi-
fies fragment Di. These fragments are disjoint, i.e., no tuple
t appears in distinct fragments Di and Dj (i �= j). They
have the same schema R. The original relation D can be
reconstructed by the union of these fragments.

For example, D0 is horizontally partitioned into DH1 , DH2

and DH3 in Fig. 2, with the selection predicate as grade =
‘A’, grade = ‘B’ and grade = ‘C’, respectively.

2.3 Detecting CFD Violations in Distributed Data
When CFDs are used as data quality rules, errors in the data
are captured as violations of CFDs [9], [10].

Violations. For a CFD φ = (X → Y, tp) and an instance D
of R, we use V(φ, D) to denote the set of all tuples in D that
violate φ, called the violations of φ in D. Here a tuple t ∈
V(φ, D) iff there exists t′ ∈ D such that t[X] = t′[X] � tp[X]
but either t[Y] �= t′[Y] or t[Y] = t′[Y] �� tp[Y]. For a set �

of CFDs, we define V(�, D) = ⋃
φ∈� V(φ, D).

For instance, Fig. 1 lists violations of φ1 and φ2 in D0.
When D is a centralized database, two SQL queries suf-

fice to find V(�, D), no matter how many CFDs are in �.
The SQL queries can be automatically generated [9].

Error detection in distributed data. Now consider a rela-
tion D that is partitioned into fragments (D1, . . . , Dn), either
vertically or horizontally. Assume w.l.o.g. that Di’s are dis-
tributed across distinct sites, i.e., Di resides at site Si for
i ∈ [1, n], and Si and Sj are distinct if i �= j.

It becomes nontrivial to find V(�, D) when D is frag-
mented and distributed. As shown in Example 1, to detect
the violations in distributed D0, it is necessary to ship data
from one site to another. Hence a natural question concerns
how to find V(�, D) with minimum amount of data ship-
ment. That is, we want to reduce communication cost and
network traffic.

To characterize the communication cost, we use M(i, j)
to denote the set of tuples shipped from Si to Sj, and M the
total data shipment, i.e.,

⋃
i,j∈[1,n],i�= j M(i, j).

For each j ∈ [1, n], we use Dj(M) to denote fragment Dj
augmented by data shipped in M, i.e., Dj(M) includes data
in Dj and all the tuples in M that are shipped to site Sj.
More specifically, for vertical partitions,

Dj(M) = Dj �i∈[1,n]∧âĹğM(i,j)�=∅ M(i, j);
while for horizontal partitions,

Dj(M) = Dj ∪ ⋃
i∈[1,n]∧ M(i,j)�=∅M(i, j).

We say that a CFD φ can be checked locally after data
shipments M if V(φ, D) = ⋃

i∈[1,n] V(φ, Di(M)). As a spe-
cial case, we say that φ can be checked locally if V(φ, D)=⋃

i∈[1,n] V(φ, Di), i.e., all violations of φ in D can be found
at individual site without data shipment (i.e., M=∅).

A set � of CFDs can be checked locally after M if each φ in
� can be checked locally after M.

The distributed CFD detection problem with minimum com-
munication cost is to determine, given a positive number K,
a set � of CFDs and a partitioned and distributed relation
D, whether there exists a set M of data shipments such that
(1) � can be checked locally after M, and (2) the size |M|
of M is no larger than K, i.e., |M| ≤ K.

In contrast to the error detection problem in centralized
data, it is beyond reach in practice to find an efficient algo-
rithm to detect errors in distributed data with minimum
network traffic [10].

Theorem 1. [10] The distributed CFD detection problem with
minimum communication cost is NP-complete, when data is
either vertically or horizontally partitioned.

In light of the intractability, a heuristic algorithms was
developed in [10] to compute V(�, D) when D is hori-
zontally partitioned. We are not aware of any algorithm
for detecting CFD violations for data that is vertically
partitioned.

3 INCREMENTAL DETECTION: COMPLEXITY

We formulate the incremental detection problem and study
its complexity. We start with notations for updates.

Updates. We consider a batch update �D to a database D,
which is a list of tuple insertions and deletions. A modi-
fication is treated as an insertion after a deletion. We use
�D+ to denote the sub-list of all tuple insertions in �D,
and �D− the sub-list of deletions in �D. We use D ⊕ �D
to denote the updated database of D with �D.

In a vertical partition D = (D1, . . . , Dn) (see Section 2),
we write �Di = πXi(�D) for updates in �D to fragment
Di. For a horizontal partition, we denote the updates to Di
as �Di = σFi(�D); similarly for �D+

i and �D−
i .

Problem statement. Given D, �D and a set � of CFDs, we
want to find V(�, D ⊕ �D), i.e., all violations of CFDs of �

in the updated database D ⊕ �D.
As remarked earlier, we want to minimize unnecessary

recomputation by incrementally computing V(�, D ⊕ �D).
More specifically, suppose that the old output V(�, D) is
also provided. Incremental detection is to find the changes
�V to V(�, D) such that V(�, D⊕�D) = V(�, D)⊕�V. We
refer to this as the incremental detection problem.

In practice, when �D is small, �V is often small as well.
Hence it is more efficient to find �V rather than batch detec-
tion that recomputes V(�, D ⊕ �D) starting from scratch.
That is, we maximally reuse the old output V(�, D) when
computing the new output V(�, D ⊕ �D).

We use �V+ to denote V(�, D⊕�D)\V(�, D), i.e., viola-
tions added, and �V− for V(�, D)\V(�, D⊕�D), i.e., viola-
tions removed. Then �V = �V+ ∪�V−. Observe that �D+
only incurs �V+, and �D− only leads to �V−.

When D is partitioned into (D1, . . . , Dn) and distributed,
we say that �V can be computed locally after data shipments

M of tuples from D ⊕ �D if �V = ⋃
i∈[1,n] �Vi(M), where

�Vi(M) denotes the differences between V(�, Di(M)⊕�Di)

and V(�, Di) at site Si.
The incremental distributed CFD detection problem with

minimum communication cost is to find, given D, �,
�D, V(�, D) as input, �V with minimum data shipments
M such that �V is locally computable after M.

Its decision problem is to determine, given D, �,
�D, V(�, D) and a positive number K, whether there exists
a set M of data shipments such that (1) �V can be computed
locally after M, and (2) |M| ≤ K. We refer to the problem
as IMVD for vertically partitioned data, and as IMHD for
horizontally partitioned data.

In practice, the set � of CFDs is typically predefined and
is rarely changed, although D is frequently updated. Thus
in the sequel we consider fixed �.

Intractability results. Unfortunately, incremental detection
is no easier than its batch counterpart (Theorem 1). Below
we shall first study the case for vertical partitions, then
analyze its horizontal counterpart.

Theorem 2. The incremental distributed CFD detection prob-
lem with minimum data shipment is NP-complete for vertical
partitions (IMVD). It remains NP-hard for fixed CFDs when
(a) update consists of insertions only, for a fixed database
with fixed partitions, or (b) update consists of deletions
only.

Proof. Upper bound. To show that IMVD is in NP, we provide
an NP algorithm for incremental detection of violations
in vertical partitions. It works as follows: first guess a
set M of data shipments such that |M| ≤ K, and then
inspect whether �V = ⋃

i∈[1,n] �Vi(M). The checking can
be done in PTIME.
Lower bound. We show that IMVD is NP-hard even when

(1) �D consists of insertions only, or (2) �D consists of
deletions only. We use fixed CFDs in both cases.

1) When �D consists of insertions only. We verify the
NP-hardness of IMVD by reduction from the mini-
mum vertical detection problem (MVD). Given a set
� of CFDs, a vertically partitioned database D and a
positive number K, MVD is to decide whether there
exists a set M of data shipments such that � can be
checked locally after M, and |M| ≤ K. It is known
that MVD is NP-complete for a fixed set � defined
on a fixed schema [10].
Given an instance (�, D, K) of MVD, we construct
an instance (�, D′, V(�, D),�D+, K) of IMVD by let-
ting D′ = ∅, �D+ = D′ and V(�, D) = ∅. One can
verify that there is M such that |M| ≤ K and �

can be checked locally after M iff there exists a set
M′ of data shipments such that |M′| ≤ K and �V
can be computed locally after M′. Note that D′ = ∅
is independent of input (�, D, K). In other words,
IMVD is NP-hard when the CFDs, the database and
its partition are all fixed.

2) When �D consists of deletions only. We show the
NP-hardness of IMVD also by reduction from MVD.
Given an instance (�, D, K) of MVD, we define an

IMVD instance as follows. Assume that � is defined
on schema R.

a) We define a new schema R′ = R ∪ {B1, B2},
where B1 and B2 are distinct attributes not
appearing in R.

b) We define the set of �′ = � ∪ {ϕ}, where
ϕ is an FDB1 → B2. Assume w.l.o.g. that
there exist two distinct values v1 and v2 in
the domains of B1 and B2.

c) We define D′ such that for each ti ∈ D,
D′ includes two tuples tai and tbi, where
tai[R] = tbi[R] = t[R], tai[B1B2] = (v1, v1), and
tbi[B1B2] = (v1, v2). That is, if D consists of n
tuples. D′ consists of 2∗n tuples. The relations
D and D′ have the same partitions for all the
attributes in R. In addition, a new fragment of
D′ is added, consisting of new attributes B1,
B2 and the key attribute key of D. Obviously,
V(�, D′) = D′, since every tuple of D′ violates
ϕ with another tuple in D′.

d) We define the set �D− of deletions to be
{tbi | i ∈ [1, n]}, i.e., it is to remove all tuples
tbi.

To see that these make a reduction, observe the fol-
lowing. Before D is updated by �D−, V(�, D′) = D′.
After D is updated, V(�, D′ ⊕ �D−) = V(�, D).
From this it follows that a solution (a set of
data shipments) to (�, D, K) iff it is a solution to
(�, D′, V(�, D),�D−, K). Moreover, since MVD is
NP-complete when � and fragmentation are fixed,
so is IMVD when �D consists of deletions only, since
the newly added ϕ and the refined fragmentation
are also independent of the input.

We next analyze the case for horizontal partitions.

Theorem 3. The incremental distributed CFD detection problem
with minimum data shipment is NP-complete for horizon-
tally partitioned data (IMHD). It remains NP-hard for fixed
CFDs and for (a) insertions only, with a fixed database with
fixed partitions, or (b) for deletions only.

Proof. Upper bound. We show that IMHD is in NP by provid-
ing an NP algorithm for IMHD. It works as follows: first
guess a set M of data shipments such that |M| ≤ K, and
then inspect whether �V = ⋃

i∈[1,n] �Vi(M). The latter
can be done in PTIME.
Lower bound. We show that IMHD is NP-hard for fixed

CFDs even when (1) �D consists of insertions only with
a fixed D, or (2) �D consists of deletions only.

1) When �D consists of insertions only. We show that
IMHD is NP-hard by reduction from the minimum
set cover problem (MSC). Given a finite set X of ele-
ments, a collection C of subsets of X and a positive
number K, MSC is to decide whether there exists a
cover for X of size K or less, i.e., a subset C′ ⊆ C
such that |C′| ≤ K and every element of X belongs
to at least one member of C′. It is known that MSC is
NP-complete even when each subset in C has three
elements (see [13]).

Given an instance (X, C, K) of MSC, we construct an
instance (�, D, V(�, D), �D+, K′) of IMHD such that
the IMHD problem has a solution iff the MSC prob-
lem has a solution. Assume w.l.o.g. that X = {xj | j ∈
[1, m]}, C = {Ci | i ∈ [1, n]}, each Ci consists of three
elements of X, and that X = ⋃

i∈[1,n] Ci (i.e., there
exists a cover).

a) We define schema R = (A1, A2, A3, B, N, L).
Intuitively, A1, A2, A3 are to encode the three
elements in a subset Ci of C, B for type (i.e., a
subset or an element), N is a partition key,
and L is a tuple id within the fragment.

b) The set � consists of three fixed FDs: Ai →B,
i∈ [1, 3].

c) We construct an instance D of R that is hori-
zontally partitioned into 2 fragments Du and
Dv, residing at sites Su and Sv, respectively.
Assume an arbitrary topological order ≺ on
the elements of X, and four fixed distinct val-
ues b1, b2, u and v. Tuples in D are partitioned
into Du and Dv with the selection predicate
as N = u and N = v, respectively. Initially,
D is empty, and hence, both Du and Dv are
empty. Thus so are V(�,Du) and V(�,Dv).

d) We define insertions �D+ as follows.

• �D+
u consists of (n + m) tuples. For each

i ∈ [1, n], there exists a tuple tci in �D+
u

such that tci = (a1, a2, a3, b1, u, i), where
a1, a2, a3 are the elements in Ci∈ C, such
sorted that a1≺a2≺a3. For each i in [1, m],
there exists a tuple txi in �D+

u , such that
txi = (xi, xi, xi, b2, u, i + n). Intuitively,
each tci encodes a subset Ci, and each txi

encodes an element of X.
• �D+

v consists of m∗(n+1) tuples. For each
i ∈ [1, m], there exist (n + 1) tuples txi1,
txi2 . . . , txi(n+1) in �D+

v , such that txij =
(xi, xi, xi, b2, v, (i − 1) ∗ (n + 1) + j), for j∈
[1, n + 1]. Intuitively, for each i ∈ [1, m],
there exist (n + 1) tuples that encode xi.

Assume w.l.o.g. that tuples in �D+ have the same
size l.

(e) We define K′ to be K ∗ l.

Observe that schema R, database D and CFDs �

are all fixed, i.e., they are independent of the
MSC instance.
Intuitively, for all tuples t ∈ �D+, if t[B] = b1, then
t encodes a subset Ci ∈ C; and if t[B] = b2, then t
encodes an element xi in X. In addition, t1 and t2
in �D+ violate a CFD of � if one of them is a tuple
encoding a subset Ci, the other encodes an element
xi, and xi ∈ Ci. All the tuples in �D+

u and �D+
v

violate some CFDs of �. Note that only violations
incurred by tuples txi and tcj in �D+

u can be
detected locally, without requiring data shipment.
Tuples in �D+

v do not cause local violations; but
for each tuple txij there exists a tuple tck in �D+

u
such that txij and tck violate a CFD, where xi is an

element of Ck, i ∈ [1, m], j ∈ [1, n + 1], and k ∈ [1, n].
Intuitively, to detect violations in �D+

v locally, a
“cover” C′ ⊆ C of X must be shipped from site Su
to Sv.

We now show that (�, D, V(�, D),�D+, K′) is
indeed a reduction from MSC to IMHD. First, assume
that the MSC instance has a cover C′ of size no
larger than K. We define a set M of tuple ship-
ments M = {tci | Ci ∈ C′}. We ship M from
site Su to Sv. Note that the size of M is no larger
than K′. Since C′ is a cover, at site Sv, all tuples
t ∈ Dv(M) ⊕ �D+

v can be detected as violations
locally. Hence, �Vu(M)∪�Vv(M) = �Vu∪�Vv(M) =
�D+

u ∪ �D+
v ∪ M = �D+

u ∪ �D+
v = �V.

Conversely, assume that there exists a set M of tuple
shipments such that |M| ≤ K′ = K ∗ l, and after
M, �V can be computed locally. (a) If K′ = n ∗ l,
then the set C consisting of all subsets is a cover
and | C| ≤ n ≤ K. (b) When K′ < n ∗ l, let
M = Mu→ v ∪ Mv→ u, where Mu→ v (resp. Mv→ u)
denotes the part of M shipped from Su (resp. Sv)
to Sv (resp. Su). Since |Mv→ u| ≤ |M| ≤ K′, there
are no more than n tuples in Mv→ u. Thus for any
element xi ∈ X, there exists at least one tuple
txij ∈ �D+

v \ Mv→ u. Since each txij is detected
as a local violation, each xi has to be covered by
tuple tck in Mu→ v, which encodes a subset Ck. Let
C′ = {Ck | tck ∈ Mu→ v}. Then C′ is indeed a cover
of X, and |C′| ≤ K.

2) When �D consists of deletions only. We show that
IMHD is NP-hard also by reduction from MSC.

Given an instance (X, C, K) of MSC, we construct
an instance (�, D′, V(�, D′),�D−, K′) such that the
IMHD problem has a solution iff MSC has a solution.

We use the same R, � and K′ as defined in (1) above.
An instance D′ is also partitioned into D′

u and D′
v with

the same predicates given in (1). More specifically,

• D′
u =�D+

u , consisting of (n + m) tuples given in (1);
• D′

v consists of (m ∗ (n + 1) + n) tuples, in which m ∗
(n + 1) tuples are from �D+

v given in (1). The other
n tuples are given as follows. For each i ∈ [1, n], D′

v
includes a tuple t′ci

= (a1, a2, a3, b1, v, m ∗ (n + 1) +
i), where a1, a2, a3 are the elements in Ci ∈ C, such
sorted that a1 ≺ a2 ≺ a3 for some order ≺.

We define deletions �D− to be {t′ci
| i ∈ [1, n]}, i.e., it is to

remove all those tuples t′ci
from D′

v. Here V(�, D′) = D′,
i.e., every tuple in D′ is a violation of some CFD in �.

Note that schema R and CFDs � are both fixed,
i.e., they are independent of the MSC instance.

Observe that before D′ is updated by �D−, all the
violations can be detected locally in D′

u and D′
v. After

D′ is updated, D′ ⊕�D− became the relation D given in
(1) above, and V(�, D′ ⊕ �D−) = V(�, D). Hence along
the same lines as the proof for (1), one can verify that
(�, D′, V(�, D′),�D−, K′) is a reduction from MSC.
From the proofs of Theorem 2 and 3, it follows:

Corollary 4. The incremental distributed CFD detection prob-
lems IMVD and IMHD with minimum data shipment remains
NP-complete even for fixed FDs only.

The boundedness result. Not all is lost. As observed in [27],
the cost of an incremental algorithm should be analyzed in
terms of the size of the changes in both input and output,
denoted as |�C|, rather than the size of the entire input.
Indeed, |�C| characterizes the updating costs inherent to
the incremental problem itself.

An incremental problem is said to be bounded if its cost
can be expressed as a function of |�C|. An incremental algo-
rithm is optimal if its cost is in O(|�C|); i.e., it only does the
amount of work that is necessary to be performed by any
incremental algorithm for the problem. In other words, it
is the best one can hope for.

For incremental violation detection, |�C| = |�D|+ |�V|.
It is bounded if its communication and computational costs
are both functions of |�C|, independent of |D|.

Although the distributed incremental detection problem
is NP-complete w.r.t. minimum data shipment (Theorems 2
and 3), the good news is that it is bounded w.r.t. the changes
in both input and output.

Theorem 5. The incremental distributed CFD detection problem
is bounded for data partitioned vertically or horizontally. There
are optimal incremental detection algorithms with communi-
cation and computational costs in O(|�C|).
In the rest of the paper, we prove Theorem 5 by provid-

ing optimal algorithms for data that is partitioned vertically
(Section 4) or horizontally (Section 6).

4 ALGORITHMS FOR VERTICAL PARTITIONS

We start with an optimal incremental detection algorithm
for vertical partitions D = (D1, . . . , Dn). Here for i ∈ [1, n],
Di resides at site Si and Di = πXi(D) (see Section 2). The
main result of this section is as follows.

Proposition 6. There exists an algorithm that incrementally
detects CFD violations in vertical partitions with communica-
tion and computational costs in O(|�D| + |�V|).
It is nontrivial to develop an incremental detection algo-

rithm bounded by O(|�D| + |�V|). To find �V, not only
tuples in �D but also data in D may be needed and hence
shipped. Indeed, as in Example 2, to validate φ1 after t6 is
inserted into D0 of Fig. 1, t5[street, city] in DV2 and t5[CC]
in DV3 are necessarily involved.

Below we shall first identify when the data in D is not
needed in incremental detection. For the cases when the
involvement of D is inevitable, we propose index structures
to avoid shipping data in D. Based on the auxiliary struc-
tures, we then develop an optimal algorithm for vertically
partitioned databases.

Cases independent of D. To validate a CFD φ = (X → B, tp)

in response to the insertion or deletion of a tuple t, data in
D is not needed in the following two cases.

1) When φ is a constant CFD. Indeed, φ can be violated
by a single tuple t alone. Hence to find �V incurred
by t, there is no need to consult other tuples in D.

2) When φ is a variable CFD with X ∪ {B} ⊆ Xi. In
this case, φ can be locally checked at site Si in which
Di = πXi(D) resides. There is no need to ship data.

Index structures. Below we focus on validation of vari-

able CFD φ = (X → B, tp), i.e., tp[B] = ‘_’.

Fig. 3. Example HEV-indices and an IDX for φ1.

Observe that for a tuple t to make a violation of a CFD φ,
there must exist some tuple t′ such that t[X] = t′[X], and
moreover, either (a) t[B] = t′[B] and t is already a violation
of the CFD φ, or (b) t[B] �= t′[B], i.e., (t, t′) �|= φ. To cap-
ture this, we define an equivalence relation w.r.t. a set Y of
attributes.

Equivalence classes. We say that tuples t and t′ are equivalent
w.r.t. Y if t[Y] = t′[Y]. We denote by [t]Y the equivalence
class of t, i.e., [t]Y = {t′ ∈ D | t′[Y] = t[Y]}. We associate a
unique identifier (eqid) id[tY] with [t]Y.

We define a function eq() that takes as input the eqid’s of
equivalence classes [t]Yi (i ∈ [1, m]), and returns the eqid of
[t]Y, where Y = ⋃

i∈[1,m] Ym, i.e., eq(id[tY1], . . . , id[tYm]) =
id[tY]. As will be seen shortly, we send id[tY] rather than
data in [t]Yi to reduce the amount of data shipped.

Upon [t]Y’s, we define the following index structures.

HEV-index. For each variable CFD φ = (X → B, tp), each
sites Si maintains a set of Hash-based Equivalence class
and Value indices (HEV’s), denoted by HEVφ

i . Each non-
base HEV is a key/value store that given a tuple t and a set
of eqid’s id[tYj] (j ∈ [1, m]) as the key, returns id[tY1∪···∪ Ym]
as the value. Base HEV’s are also maintained to map distinct
attribute values to their eqid’s. These are special HEV’s that
take single attribute values as the key, and are shared by
all CFDs. We write HEVi for HEVφ

i when φ is clear from the
context.

Intuitively, HEV’s help us identify id[tX] and id[tB], since
all tuples that violate φ with t must be in [t]X, and on
attribute B, they have different values from t[B].

The HEV’s for CFD φ are organized as follows. We build
HEVX and HEVB for attributes X and B, respectively. More
specifically, we sort attributes of X into (x1, . . . , xm), and for
each i ∈ [1, m], we build an HEV for the subset {xj | j ∈ [1, i]}.
As will be seen in Example 5, to identify id[tX], we use the
HEV’s for {x1}, {x1, x2}, . . ., {x1, . . . , xm} one by one in this
order. We shall present the details of the strategy for build-
ing HEV’s in Section 5, which aims to reduce eqid shipment
when multiple CFDs are taken together.

IDX. We group tuples that violate φ with t into [t′]X∪{B}
for each t′ in [t]X. The tuples are indexed by IDX, another
hash index that is only stored at the site where id[tX] is
maintained. Given a tuple t, it returns a set(t[X]) of dis-
tinct eqid’s of [t′]X∪{B}, where t[X] = t′[X], and each eqid in
turn identifies the set of all tuple ids in the equivalence
class [t′]X∪{B}. Intuitively, for each [t]X, an IDX stores distinct
values of B attribute and their associated tuple ids.

Example 5. Fig. 3 depicts HEV’s for φ1 of Fig. 1 and relation
D0 of Fig. 2. HEV2 and HEV3 are the indices on sites S2
and S3, respectively, and the IDX is stored at S2.

Fig. 4. Single insertion/deletion for vertical partitions.

To compute id[t5{CC,zip}], we first find id[t5{CC}] = 1 from
a base hash table of HEV3, since t5[CC] = 44, at site
S3. The eqid 1 (i.e., id[t5{CC}]) is then sent to S2. Using
the base hash table at site S2, we get id[t5{zip}] = 1 from
t5[zip] = EH4 8LE. Taking these together as the input for
HEV2, we get eq(1, 1) = 1, which is for id[t5{CC,zip}].
Moreover, as shown in Fig. 3, id[t5{CC,zip}] links to two
entries in IDX, where 1 represents Mayfield with an
equivalence class {t1, t3, t4}, and 3 indicates Crichton
with an equivalence class {t5}.
Observe that during the detection, we use HEV’s for
eqid’s of any tuple in this order: {CC} and {CC, zip}.
Example 5 tells us that to identify id[tX], one only needs

to ship at most |X| − 1 eqid’s, to make the input for HEVX,
i.e., the index of X.

Algorithms. Leveraging the index structures, we develop
an incremental algorithm to detect violations in vertical par-
titions. To simplify the discussion, we first consider a single
update for a single CFD. We then extend the algorithm to
multiple CFDs and batch updates.

Single update for one CFD. Given a CFD φ, a vertically par-
titioned database D, violations V(φ, D) of � in D, and a
tuple t inserted into (resp. deleted from) D, the algorithm
identifies changes �V+(φ, D) (resp. �V−(φ, D)) to V(φ, D).
It first uses HEV to find the equivalence classes [t]X and its
associate sets in IDX. It then computes �V.

Insertions. The algorithm for single-tuple insertion is shown
in Fig. 4, referred to as incVIns. It first identifies set(t[X]) by
capitalizing on HEV-indices as discussed above (line 1). This
requires to ship at most X eqid’s, including the eqid of t[B].
When |set(t[X])| > 1, all tuples t′ such that (t′, t) violate
φ must have been found. Hence t is the only new viola-
tion (line 2; see Example 2). When |set(t[X])| = 1, there
are two cases: (1) if set(t[X]) contains the entry for tuple t′,

where (t, t′) violate φ, then t and all tuples in [t′]X∪{B} are
new violations (line 4); and (2) if set(t[X]) only contains the
entry for t, then no violation arises (line 5). Otherwise, no
tuple agrees with t on X attributes, and there is no viola-
tion (line 6). The new violations in �V+ are then returned
(line 8).

The index IDX is maintained in the same process, by
inserting a tuple t into the set [t]X∪{B}, or adding an new
entry to set(t[X]) and its associated set [t]X∪{B} = {t}. In
either case, it takes constant time. The HEV-indices are
updated together with id[tX]. If such an eqid does not exist,
a new entry is generated and added to the corresponding
HEV-indices (line 7).

Deletions. The algorithm for single-tuple deletions, denoted
as incVDel, is also shown in Fig. 4. It first finds both [t]X∪{B}
and set(t[X]) using HEV (line 1). If no tuples are in [t]X∪{B}
after t is deleted (line 2), t is the only violation removed
(line 3); otherwise there is no change to V(φ, D) (line 4).
If t is the only tuple in [t]X∪{B} (line 5), i.e., the entry of t
in set(t[X]) will be removed, there are three cases to con-
sider: (1) all violations w.r.t. t remain, and only t is removed
(line 6); (2) all violations w.r.t. t are removed together with
t when t is deleted (line 7); or (3) t does not violate φ

(line 8). HEV and IDX indices are maintained similar to
the case for insertions (line 9). Finally, �V− is returned
(line 10).

Example 6. Consider D0 (without t6) of Fig. 2, φ1 of Fig. 1,
and its indices given in Fig. 3. When t6 is inserted, at
site S3, it identifies eq(id[t6{CC}]) = 1 (t6[CC] = 44) from
HEV3 and ships this eqid (i.e., 1) to S2. At S2, it identifies
eq(id[t6{zip}]) = 1 (t6[CC] = EH8 4LE) and eq(1, 1) = 1.
This links to two entries in IDX as shown in Fig. 3, indi-
cating that t6 is the only new violation, i.e., �V+ = {t6}
(line 2). Indeed, {t5, t6} �|= φ1 and t5 is a known viola-
tion. Only a single eqid (i.e., 1) is shipped from site S3
to site S2.
Now suppose that tuple t4 is deleted. Algorithm
incVDel will find the eqid of [t4]{CC,zip} to be 1, which
links to two entries, following the same process as
above. After t4 is deleted, [t4]{CC,zip} is not empty,
i.e., [t4]{CC,zip} = {t1, t3}. Hence �V− = {t4} (line 3). Again
only a single eqid (i.e., 1) is shipped.

Batch updates and multiple CFDs. We now present an
algorithm, denoted as incVer in Fig. 5, that takes batch
updates �D, a vertically partitioned D, a set � of CFDs, and
violations V(�, D) of � in D as input. It finds and returns
the changes �V of violations to V(�, D).

The algorithm works as follows. It first removes the
updates in �D that cancel each other (line 1), and initializes
the changes (line 2). It then detects the changes of viola-
tions for multiple CFDs in parallel (lines 3-16). It deals with
three cases. (1) Constant CFDs (lines 4-10). It first identifies
at each site Si the tuple ids that can possibly match the
pattern tuple tp (line 5). These identified (partial) tuples
are shipped to a designated coordinator site, together with
corresponding B values (line 6). These tuple ids are natu-
rally sorted in ascending order (by indices). A sort merge of
them is thus conducted in linear time, and it generates a set
T of tuples in which each tuple matches the pattern tuple

Fig. 5. Batch updates for vertical partitions.

tp on X attributes (line 7). It then examines these tuples’
B attributes, to decide whether they are violations to be
removed (line 9), or violations newly incurred (line 10). (2)
Locally checked variable CFDs (lines 11-13). The changes of
violations can be detected using the same indices as for
a single CFD given above (lines 12-13). (3) General variable
CFDs (lines 14-16). The method used is exactly what we
have seen for a single CFD. The changes to violations are
then returned (line 17).

Violations are marked with those CFDs that they violate
when combining �V’s for multiple CFDs (see Fig. 1).

Complexity. For the communication cost, note that only
eqid’s are sent: for each tuple t ∈ �D and each CFD φ ∈ �,
its eqid’s are sent at most |X| times. As remarked earlier, the
set � of CFDs and the fragmentation are fixed as commonly
found in incremental integrity checking. Hence the mes-
sages sent are bounded by O(|�D|). The computational cost
is in O(|�D| + |�V|), since checking both hash-based HEV
and IDX take constant time, as well as their maintenance
for each update.

5 OPTIMIZATION FOR VERTICAL PARTITIONS

We have seen that by leveraging HEV’s and IDX’s, for ver-
tical partition an incremental detection algorithm can be
developed that is bounded in the changes in the input and
output (i.e., �D and �V). We next study how to build HEV’s
such that eqid shipment is minimized.

Recall that HEV’s and IDX’s are used together to iden-
tify the equivalent classes of the input update (line 1 of
both algorithms incVIns and incVDel in Fig. 4), whilst for
each variable CFD (X → B, tp[X]), two IDX’s must be built
with the key eqidX and eqidX∪{B} respectively for each input
tuple , and HEV’s are built to efficiently compute these keys
for IDX’s. As remarked earlier, how these HEV’s are built
decides how eqid’s are shipped for generating the keys of
IDX’s. For multiple CFDs that may have common attributes,
different orders on grouping attributes of HEV’s may affect
the number of eqid’s shipped for an single update, as
shown below.

Example 7. Consider a relation Re with 11 attributes
A, B, . . . , K that is vertically partitioned and distributed
over 8 sites: S1(A), S2(B), S3(C), S4(D), S5(E, F), S6(G, H),
S7(I), S8(J, K). Here S1(A) denotes that attribute A
is at site S1 (besides a key); similarly for the other
attributes. A set �e of CFDs is imposed on Re, includ-
ing ϕ1:(ABC → E), ϕ2:(ACD → F), ϕ3:(AG → H), and
ϕ4:(AIJ→K).
Consider different HEV’s for the CFDs in Fig. 6, in which
a rectangle indicates a site, a circle an attribute, a tri-
angle an HEV, an ellipse an IDX index, and a directed
edge indicates an eqid shipment from one site to another.
Note that one IDX is needed for each CFD. We omit
those base HEV’s that only used locally to simplify the
figure.

1) No sharing between the HEV’s of different CFDs. Fig. 6(a)
depicts a case when HEV’s are independently built
for the CFDs. These HEV’s determine how eqid’s are
shipped when validating the CFDs. For example,
when a tuple t is inserted into (or deleted from) Re,

Fig. 6. Example of minimizing eqid shipment (base hash tables used only locally are omitted). (a) No replication. (b) With replication. (c) Minimum
eqid shipment.

to detect the violations of ϕ1:(ABC → E), we need to
(a) identify the eqid of t[A] from HA at site S1, which
is shipped to S2; (b) determine the eqid of t[AB]
from HAB upon receiving the eqid of t[A], which is
in turn shipped to S3; (c) detect the new violations
(resp. removed violations) for inserting (resp. delet-
ing) t by examining HABC and the IDX index w.r.t. ϕ1
at site S3. Two eqid’s need to be shipped for ϕ1. The
process for the other CFDs is similar. In total, 9 eqid’s
(i.e., the number of directed edges in Fig. 6(a)) need
to be shipped to detect all violations of the CFDs in
�e. Note that when the eqid of t[A] is shipped
from S1 to S3, it is used by both HAC (for ϕ2) and
HABC (for ϕ1) at site S3; hence this eqid is shipped
only once.

2) In the presence of replication. Replication is common
in distributed data management, to improve reli-
ability and accessibility. Suppose that attribute I is
replicated at site S6 besides residing at S7, as shown
in Fig. 6(b). This allows us to choose either site S6
or site S7 where we build index HAI, as opposed to
Fig. 6(a) in which HAI has to be built at S7. Note that
to detect the violations of ϕ3:(AG → H), the eqid for
t[A] needs to be shipped from S1 to S6 in both
Fig. 6(a) and (b). If we build HAI at S6, we may send
the eqid of t[AI] from S6 to S8 (Fig. 6(b)), instead of
from S7 to S8 (Fig. 6(a)) to validate ϕ4 = (AIJ →K).
This saves us one eqid shipment for t[A] from S1 to
S7 (Fig. 6(a)). In total, 8 eqid’s need to be shipped
in this case, instead of 9 in Fig. 6(a).

3) Sharing HEV’s among CFDs. When I is replicated at
site S6, we can do better than Fig. 6(b), as depicted
in Fig. 6(c). The key observation is that attributes
AC are shared by CFDs ϕ1 and ϕ2. Hence, when
a tuple t is inserted or deleted, we can compute
the eqid of t[AC] by shipping the eqid of t[A] from
S1 to S3. This allows us to compute the eqid’s
of t[ABC] (with the eqid of t[B] from S2 to S3)
and t[ACD] (with the eqid of t[D] from S4 to S3)
both at S3 (Fig. 6(c)). In contrast, in the setting of
Fig. 6(b) we have to compute eqid’s by following
the order of t[A] ⇒ t[AB] ⇒ t[ABC] for ϕ1 and
t[A] ⇒ t[AC] ⇒ t[ACD] for ϕ2. In Fig. 6(c), only 7
eqid’s need to be shipped as opposed to 8 eqid’s in
Fig. 6(b).

Example 7 motivates us to find an optimal strategy for
building HEV’s, such that the keys of IDX’s could be com-
puted with minimum number of eqid shipments. It also
suggests that we reduce eqid shipment by sharing HEV’s
among multiple CFDs as much as possible (e.g., HAC at S3
for ϕ1 and ϕ2 in the case (3) above).

Below we first formalize this as an optimization prob-
lem, and show that it is NP-complete. We then provide an
effective heuristic algorithm for building HEV’s.

Optimization. A close look at the use of HEV in the detec-
tion algorithms and their complexity analysis (Section 4)
reveals the following. To handle a unit update (insertion or
deletion of a tuple t), the number of eqid’s shipped is inde-
pendent of (a) the values in database D and (b) the value of
t. Indeed, eqid is shipped only when a non-base HEV needs

eqid’s generated from HEV’s at other sites, and hence, is
decided by the dependencies between HEV’s. Thus we can
talk about eqid shipments for a unit update regardless of
the values of D and t.

We show that the problem of building HEV’s is already
challenging for unit updates. Consider a schema R, a verti-
cal partition scheme that partitions an instance D of R into
(D1, . . . , Dn) such that Di resides at site Si, and attributes of
R may be replicated, i.e., (D1, . . . , Dn) may not be disjoint.
Given a schema R, the partition and replication scheme for
R, a set � of CFDs, and a positive number K, the mini-
mum eqid shipment problem is to decide whether there exists
a set H of HEV’s such that for any instance D of R and
any single update with tuple t, it needs no more than K
eqid’s shipped to find changes to V(�, D). Here for each
ϕ = (X → B, tp[X]) ∈ �, H has to identify the keys eqidX
and eqidX∪{B} of two IDX’s for ϕ, and it needs no more
than K eqid shipments to find all such keys of IDX’s for
all CFDs in �.

Theorem 7. The problem for minimum eqid shipment is
NP-complete.

Proof. Upper bound. We show that the problem is in NP by
giving an NP algorithm. It first guesses a set H of at most
�1≤ i≤ n|Ri|+n∗m hash tables with their locations, where
|Ri| is the number of attributes in partition Di. Indeed,
for each attribute in each Di, one base hash table needs
to be built (hence �1≤ i≤ n|Ri|), and for each partition Di
and each CFD ϕ in �, we need at most 1 non-base hash
table that contains all attributes of ϕ in Di (hence (m ∗ n)

non-base hash tables). After H is in place, we check (a)
whether for any CFD (X → B, tp[X]) ∈ �, H can identify
eqidX and eqidX∪{B}; and (b) whether we need no more
than K eqid’s shipped when validating all CFDs in � for
a single update with tuple t. As remarked above, step
(b) is independent of D and t. Steps (a) and (b) can be
done by leveraging the dependencies between HEV’s, in
PTIME when the HEV’s and their locations are given.
If the number of eqid shipments is no more than K via
H, then H provides the indices we need. Otherwise we
guess another H and repeat the process. This algorithm
is in NP, and hence so is the problem.
Lower bound. We next show that problem is NP-hard by

reduction from the minimum set cover problem (MSC;
see the proof of Theorem 3 for the statement of MSC).

Given an instance (X, C, K) of MSC, we construct
(R, �, K) such that the minimum eqid shipment prob-
lem for (R, �, K) has a solution iff the MSC problem has
a solution. Assume w.l.o.g. that X = {xj | j ∈ [1, m]},
C = {Ci | i ∈ [1, n]}, each Ci has three elements of X,

and that X=⋃
i∈[1,n] Ci (i.e., there exists a cover for X).

(a) We define a schema R = (id, Y, Z, X1, X2, . . . Xm), a
partition and replication scheme that vertically par-
tition any instance D of R into n + 1 fragments
U, D1, D2, . . . , Dn, with schemas RU = (id, Y) for U
and Ri = (id, Z, Xa1 , Xa2 , Xa3) for Di. Here xa1 , xa2

and xa3 are elements in Ci ∈ C. Intuitively, each Di
encodes a set Ci. and attributes may be duplicated
in different sites.

(b) The set � consists of m FDs: X1Y → Z, X2Y → Z, . . . ,
and XmY → Z. Intuitively, each XiY → Z encodes
the element xi in X. Thus the set � encodes the set X.

We show that (R, �, K) is a reduction from MSC. First,
assume that the MSC instance has a cover C′ of size no
larger than K. We define a set H as follows.

(a) On each site Si, where Ci = {xa1 , xa2 , xa3} ∈ C′,
H has the following HEV’s: (i) (hi0:Z → eqidZ);
(ii) (hi1:Xa1 → eqidXa1

), (hi2:Xa2 → eqidXa2
),

and (hi3:Xa1 → eqidXa3
); (iii) (h′

i1: eqidXa1
,

eqidY → eqidXa1 Y), (h′
i2: eqidXa2

, eqidY →
eqidXa2 Y), and (h′

i3:eqidXa3
, eqidY → eqidXa3 Y);

(iv) (h′′
i1:eqidXa1

, eqidY, eqidZ → eqidXa1 YZ),
(h′′

i2:eqidXa2
, eqidY, eqidZ → eqidXa2 YZ), and

(h′′
i3:eqidXa3

, eqidY, eqidZ → eqidXa3 YZ).
(b) On the site SU, H includes (hU:Y → eqidY).

Intuitively, to check a unit update t posed on any
instance D of R, it suffices to ship the eqidY for t
generated by (b) from SU to Si for each Ci ∈ C′.
In total |C′| eqid’s are shipped (see the algorithms
in Section 4). Indeed, since C′ is a cover for X
and � encodes X, one can verify the following:
HEV’s in (a)(iii) (resp. (a)(iv)) generate all eqidXiY
(resp. eqidXiYZ) for each FD (XiY → Z) ∈ �, and
all eqid’s required for (a)(iii) and (a)(iv) are provided
by eqid shipments of (c) for tuple t. Hence H suf-
fices to generate all the eqid’s needed by �. Since
|C′| ≤ K, the number of eqid shipments via H is at
most K.

Conversely, assume that there exists a set H of hash
tables such that for any FD (XiY → Z) ∈ �, H can
find eqidX and eqidX∪{B}, and moreover, for any D and
unit update with a tuple t, the number of eqid’s shipped
for computing eqid’s of all CFDs in � is at most K.
Consider the following cases. (a) If K ≥ n, the set C
is a cover and | C| = n ≤ K. (b) If K < n, let C′ con-
sist of those Ci’s such that eqid’s are shipped between
U and Di (i ∈ [1, n]) of H when handling the update.
One can verify that |C′| ≤ K and C′ is a cover for X,
since otherwise, there must exist an uncovered element
xj in X such that eqidXjY for t could not be generated and
checked.

Due to the intractability, any efficient algorithm to find
an optimal plan to build HEV’s is necessarily heuristic.

A heuristic algorithm. We next provide an efficient
heuristic algorithm for building HEV’s. The idea behind the
algorithm is to start with HEV’s with the keys for IDX’s.
That is, for a CFD ϕ = (Xϕ → Yϕ , tpϕ), we first build an
HEV for Xϕ , which is necessary for detecting violations of
ϕ. We then build HEV’s for certain subsets of Xϕ , by select-
ing those subsets that contain as many attributes shared by
multiple CFDs as possible. We also include base HEV’s that
contain attributes that only reside at one site, e.g., HA at site
S1 in Fig. 6(a), since HAB at S2 requires HA at S1 and local
attribute B at S2 as input, while HAB at site S2 in Fig. 6(a))
is not. Finally, we remove redundant HEV’s while ensuring
that all violations can still be detected. It follows a greedy

Fig. 7. Heuristic algorithm for minimizing eqid shipment.

approach that determines the key (set of eqid’s) of each
HEV and retains the HEV’s with the minimum eqid ship-
ment among the solutions explored. It terminates when no
more HEV can be removed.

The algorithm, referred to as optVer, is shown in Fig. 7.
It takes as input a database D that is vertically partitioned
into Di (for i ∈ [1, n]) and allows a predefined replication
scheme, a set � of CFDs, and a parameter k for balancing
the effectiveness and efficiency. It builds a set H of HEV’s
for �. The algorithm works as follows.

(1) [Initialization.] It builds a set H of HEV’s such that
for each ϕ ∈ �, there is an HEV with key Xϕ

(lines 1-4).
(2) [Expansion.] It then expands H. For each CFD ϕ,

we add up to |�| + |Xϕ | HEV’s, by including the
HEV’s whose keys contain as many attributes shared
by multiple CFDs as possible (lines 5-6). For each
attribute of each CFD in �, we also build a base
HEV (line 7), such that all existing HEV’s can take
their outputs and compute eqid’s.

(3) [Location.] We assign a site to each HEV h in H
(line 8). The site is determined by findLoc, such that
(a) the local attributes at the site cover as many
attributes of h as possible, and (b) as many other
HEV’s reside at the site as possible. This takes into
account of the replication.

(4) [Finalization.] We follow a greedy approach to
searching an optimal solution by removing HEV’s
from H (lines 9-18). After steps (2)–(4), some tables
in H may be redundant, i.e., unnecessary for com-
puting those tables needed by IDX’s (HIDX). We
iteratively remove HEV’s from H until removing
any more table will make some HEV in HIDX no
longer computable (lines 10-18). In the process we
record the best solution so far in minH (line 13).
More specifically, we conduct search in the BFS fash-
ion: each state is a set of HEV’s, Q keeps all open
states, and the algorithm only includes the top k
solutions (measured by the number of eqid shipped)

in Q in each iteration (line 17), where k is a user
defined threshold to balance the effectiveness and
efficiency.

The function H.Neqid() computes the number of
eqid shipments for a given set H of HEV’s. It also deter-
mines the order and structure of each HEV h as follows: at
each stage, it selects an HEV h′ from H whose key attributes
contain the largest number of uncovered attributes in h. The
eqid computed from h′ is to be shipped to h.

Example 8. Consider the data partition of Fig. 6(c)
described in Example 7, where I is replicated at S6.
Taking these as input, optVer builds HEV’s as follows.

(1) [Initialization.] It first builds 4 HEV’s HABC, HACD,
HAG and HAIJ, for CFDs ϕ1, ϕ2, ϕ3, and ϕ4, respec-
tively.

(2) [Expansion.] It adds the following tables:
(a) HA, since A is shared by all CFDs, and HAC,

as attributes AC are shared by ϕ1 and ϕ2;
(b) HAI and HAJ, in which keys are subsets of

Xϕ4 , and both contain attribute A; and
(c) base HEV for the CFDs in �e: HB, . . . , HJ, HK.

(3) [Location.] It assigns a site for each HEV to reside at:
HABC, HACD at S3, HAG at S6, and HAIJ at S8; each
base HEV is located at the site where its attribute is
located (e.g., HA at S1 and HB at S2).

(4) [Finalization.] Assume that k = 5, it removes redun-
dant HAJ. The solution of Fig. 6(c) is then found,
with 7 eqid’s shipped in total.

Complexity. The algorithm is in O(k|�|4 + n|�|) time.
Indeed, it takes O(k|�|4) time for the iterations (lines 9–
18) and O(n|�|) time for site assignments (line 8). More
specifically, the outer while iteration is bounded by the
number of HEV’s in H (i.e., O(|�|2)), the inner while iter-
ates at most k times for each outer while iteration, the
inner for loop runs at most |�|2 times, and Neqid() inside
the for loop could be computed in O(1) time using proper
dynamic programming techniques. For other steps, it is in
O(|�|) time for lines 1-4, O(|�|2) time for line 5, and in
O(|�|2) time for lines 6-7. Note that the number of rules |�|
is usually small in practice, and the algorithm only needs
to be run once for given database D, replication scheme,
and CFDs � instead of each time calling optVer at each
update.

6 ALGORITHMS FOR HORIZONTAL PARTITIONS

When it comes to horizontal partitions, there also exist
incremental detection algorithms that are optimal.

Proposition 8. There exists an algorithm that incrementally
detects CFD violations in horizontal partitions with com-
munication and computational costs in O(|�D| + |�V|).

Taken together, Propositions 6 and 8 verify Theorem 5.
Along the same lines as its vertical counterpart, we first

identify when data shipment can be avoided. We then give
an optimal algorithm for horizontal partitions.

Consider a database D = (D1, . . . , Dn) that is hori-
zontally partitioned, where Di resides at site Si for i ∈
[1, n].

Local checking. For horizontal partitions, CFDs that can be
validated locally include the following.

(1) Constant CFDs. Such a CFD can be violated by a
single tuple, and does not incur global violations.
Hence no data shipment is needed for validating
constant CFDs.

(2) Variable CFDs. Notably, a horizontal fragment Di is
defined as σFi(D) (Section 2). We use XFi to denote
all attributes in Fi. To validate a variable CFD φ =
(X → B, tp), one does not have to ship data to or
from Si when

(a) XFi ⊆ X; indeed, for any tuple t ∈ Di
and t′ �∈ Di, (t, t′) do not violate φ since
t[XFi] �= t′[XFi]; or

(b) Fi ∧ Fφ evaluates to false [10], where Fφ is
a conjunction of atoms A = ‘a’ imposed by
tp, for A ∈ X. Indeed, no tuples in Di could
possibly match tp[X].

Algorithms. We first consider a single CFD and a single
update. We then extend the algorithm to multiple CFDs and
batch updates. At each site, we also maintain the indices
(only for local tuples) for equivalence classes and set()
similar to the ones introduced in Section 4.

Single update for one CFD. Given a CFD φ = (X → B, tp)

and a tuple t to be inserted into (resp. deleted from) Di,
the algorithm is to identify the changes �V+(φ, D) (resp.
�V−(φ, D)) to V(ϕ, D), outlined below.

Insertions. The algorithm handles insertions as follows.

(1) Site Si checks local violations. It deals with two
cases:

(a) There exist no local violations, i.e., there is no
t′ ∈ Di such that (t, t′) �|= φ. Then there are
again two cases:

(i) when [t]X∪{B}�=∅: �V+
i ={t} if |set(t[X])|>

1, and �V+
i =∅ otherwise; indeed, if t′∈

[t]X∪{B} is a known violation, so is t; or
neither is a violation; and

(ii) when [t]X∪{B} = ∅: we need to send t
to other sites to check global violations,
i.e., to find out whether there exists a
tuple t′ �∈Di such that (t, t′) �|= φ. We set
�V+

i = {t} if such t′ exists, and �V+
i = ∅

otherwise.

(b) Local violations exist, i.e., there exists t′ ∈ Di
such that (t, t′) �|= φ. We consider the follow-
ing two cases:

(i) when [t]X∪{B} �= ∅: then �V+
i = {t},

since any tuple that violates φ with t is
a known violation; and

(ii) when [t]X∪{B} = ∅: then there must exist
a tuple t′ ∈ Di such that (t, t′) �|= φ. If
t′ ∈ Vi, we have �V+

i = {t}; otherwise

�V+
i = {t} ∪ [t′]X∪{B} since each tuple in

[t′]X∪{B} violates φ with t. In both cases,
we need to check global violations by
sending t to all the other sites, which
check violations incurred by inserting
tuple t.

(2) Upon receiving t from Si, each site Sj (j �= i)
checks its local violations in parallel, as described
in step 1(a).

The global changes �V+ is the union of changed viola-
tions from all the sites, i.e., �V+ = ⋃

k∈[1,n]�V+
k .

Deletions. When a tuple t is deleted from Di at Site Si, the
algorithm does the following at Si and other sites.

(1) At site Si. It first identifies [t]X∪{B} and set(t[X]) at
Si for CFD ϕ. If t does not violate φ, then t is simply
deleted from Di, since deletions do not introduce
new violations. When t violates φ, there are two
cases to consider.

(a) If after t is deleted, tuples that agree with t
on both X and B remain, then all violations
except t remain.

(b) Otherwise, the entire entry for t will be
removed. There are again two cases to con-
sider:

(i) There are two items in set(t[X]), t and
t′. It broadcasts t′ to the sites that have
violations with t or t′. We record the sites
that still have violations. It removes all
violations w.r.t. t and t′ if no sites have
tuples that violate t′, and otherwise only
t is removed from violations.

(ii) Tuple t is the only entry at site Si. It
removes t as a violation, and broadcasts
t to the other sites that previously have
violations with t.

The local index is maintained and �V−
i is

then returned.

(2) At site Sj. Upon receiving t from Si, each site Sj
(j �= i) checks whether previous violations main-
tained at Sj could be removed. Note that Sj will
send two different messages: either (a) t′ from Si
((1)(b)(i) above): this means that t′ remains at Si; or
(b) t from Si ((1)(b)(ii) above): this means that t is
removed from Si.

The global changes �V− is the union of �V−
k (k = [1, n]),

from all individual sites.

Example 9. Consider D0 (without t6) given in Fig. 2 and
φ1 of Fig. 1. When tuple t6 is inserted, the algorithm
finds that (t6, t5) �|= φ1 at site S3 (step (1)(a)), i.e., no
local violations. However, since t5 is a known violation
(Fig. 1), so is t6 (step (1)(a)(i)). Hence, �V+ = {t6}.

Batch updates and multiple CFDs. We now present an
algorithm for batch updates and multiple CFDs on horizon-
tal partitions, denoted as incHor and shown in Fig. 8. Given
batch updates �D, a horizontal partition (D1, . . . , Dn) of a
database D, a set � of CFDs, and (old) violations V(�, D)

Fig. 8. Batch updates for horizontal partitions.

of � in D, the algorithm finds and outputs the changes �V
to violations V(�, D).

The algorithm first removes the local updates that cancel
each other (line 1), and initializes the changes (line 2). It
then detects the changes to violations for multiple CFDs in
parallel (lines 3-13). It deals with three cases as follows. (1)
Constant CFDs (lines 4-7). It checks at each site that whether
a deletion removes a violation (line 6) or an insertion adds a
violation (line 7). (2) Locally checked variable CFDs (lines 8-10).
The changes to violations can be detected using the same
indices as used in Section 4, in constant time (lines 9-10). (3)
General variable CFDs (lines 11-13). The changes to violations
are identified (lines 12-13), and then returned (line 14).

Complexity. For communication cost, one can see that each
tuple in �D is sent to other sites at most once. Hence at
most O(|�D| n) messages are sent, where n is the number
of fragments and is fixed, as remarked earlier. Thus the
cost is in O(|�D|). The computation cost is in O(|�|(|�D|+
|�V|)) time, where |�| is a fixed parameter. That is, it is
in O(|�D| + |�V|). Indeed, by leveraging hash tables, the
process at each site takes constant time, and the hash tables
can be maintained incrementally in the same process, also
in constant time.

Optimization using MD5. A tuple may be large. To reduce
its shipping cost, a natural idea is to encode the whole
tuple, and then send the coding of the tuple instead of the
tuple. MD5 (Message-Digest algorithm 5 [1]) is a widely
used cryptographic hash function with a 128-bit hash value.
We use MD5 in our implementation to further reduce the
communication cost, by sending a 128-bit MD5 code instead
of an entire tuple.

7 EXPERIMENTAL STUDY

We present an experimental study of our incremental algo-
rithms for vertical and horizontal partitions, evaluating
elapsed time and data shipment. We focus on their scal-
ability by varying four parameters: (1) |D|: the size of the
base relation; (2) |�D|: the size of updates; (3) |�|: the num-
ber of CFDs; and (4) n: the number of partitions. We also
evaluated the effectiveness of our optimization techniques
for building indices in vertical partitions.

Experimental setting. We used the following datasets.

Fig. 9. Experimental results for TPCH and DBLP data.

(1) Datasets. (a) TPCH: we joined all tables to build one
table. The data ranges from 2 million tuples (i.e., 2M)
to 10 million tuples (i.e., 10M). Notably, the size of
10M tuples is 10GB. (b) DBLP: we extracted a 320MB
relation from its XML data. It scales from 100K to
500K tuples.

(2) CFDs were designed manually. We first designed
functional dependencies (FDs), and then produced
CFDs by adding patterns (i.e., conditions) to the FDs.
For TPCH: the number |�| of CFDs ranges from 25 to
125, with increment of 25 by default. For DBLP: |�|
scales from 8 to 40, with increment of 8 by default.

(3) Updates. Batch updates contain 80% insertions and
20% deletions, since insertions happen more often
than deletions in practice. The size of updates is up
to 10M tuples (about 10GB) for TPCH and up to
320MB for DBLP.

(4) Partitions. Its fragment number is 10 by default.

Implementation. We denote by incVer (resp. incHor)
our incremental algorithms for batch updates and mul-
tiple CFDs in vertical (resp. horizontal) partitions. We
also designed batch algorithms for detecting errors
in vertical (resp. horizontal) partitions, denoted by
batVer (resp. batHor), following [10]. The batch algorithms
work in three steps: (1) for each CFD it copies to a coordina-
tor site a small number of relevant attributes (resp. tuples)
for vertical (resp. horizontal) partitions; (2) the violations of
each CFD φ are checked locally at the coordinator site for φ;
and (3) the violations of all CFDs are checked in parallel. All
algorithms were written in Python. We ran our experiments

on Amazon EC2 High-Memory Extra Large instances (zone:
us-east-1c).

In the following, we shall pay more attention to TPCH,
more interesting for its larger size than DBLP.

Experimental results for vertical partitions. We first
present our experimental results of detecting violations in
data that is vertically partitioned and distributed.

Exp-1: Impact of |D|. Fixing |�D| = 6M, |�| = 50 and
n = 10, we varied the size of D (i.e., |D|) from 2M to
10M tuples (10GB) for TPCH. Fig. 9(a) shows the elapsed
time in seconds when varying |D|. The result tells us that
incVer outperforms batVer by two orders of magnitude. It
also shows that the elapsed time of incVer is insensitive
to |D|. In contrast, the elapsed time of batVer increases
much faster when |D| is increased. This result further veri-
fies Proposition 6: the incremental algorithm is bounded by
the size of the changes in the input and output, and it is
independent of D.

Exp-2: Impact of |�D|. Fixing |�| = 50, n = 10 and |D| =
10M, we varied the size of �D from 2M to 10M tuples for
TPCH. We also varied |�D| from 100K to 500K tuples for
DBLP while fixing |D| = 500K, |�| = 16 and n = 10.

Fig. 9(b) (resp. Fig. 9(k)) shows the elapsed time in sec-
onds when varying |�D| for TPCH (resp. DBLP). Both figures
show that the elapsed time of incVer increases almost lin-
early with |�D|, e.g., 11 seconds when |�D| = 2M and
79 seconds when |�D| = 10M as shown in Fig. 9(b). In
addition, batVer is slower than incVer by two orders of
magnitude, consistent with Fig. 9(a).

In addition, Fig. 9(c) shows the size of data shipped (in
GB) when varying |�D| for TPCH. Note that incVer only
sends 320MB when |�D| = 2M (i.e., 2GB) and 1.6GB when

Fig. 10. Number of eqid’s shipped for vertical partitions.

|�D| = 10M (i.e., 10GB). This is because with HEVs, we
only ship eqid’s instead of the entire tuples. In contrast,
the size of data shipped for batVer is up to 17.6GB when
|�D| = 10 M. This further verifies our observation from
Fig. 9(b).

These experimental results tell us that our incremental
methods are bounded by |�D| + |�V|, independent of
the size of D, in contrast to batch algorithms that detect
violations starting from scratch, which depends on |D|.
Exp-3: Impact of |�|. Fixing n = 10, |D| = 10M and |�D| =
6M for TPCH, we varied |�| from 25 to 125. Fixing n = 10,
|D| = 500K and |�D| = 300K for DBLP, we varied |�| from
8 to 40. Fig. 9(d) (resp. Fig. 9(l)) shows the elapsed time
when varying |�| from 25 to 125 for TPCH (resp. from 8 to
40 for DBLP). Both figures show that incVer achieves almost
linear scalability when varying |�|, e.g., 35 seconds when
|�| = 25 and 72 seconds when |�| = 125 in Fig. 9(d). When
multiple CFDs are detected, multiple sites work in parallel
to improve the efficiency. Moreover, batVer runs far slower
than incVer, as expected.

The results demonstrate that incVer scale well with |�|,
and it can handle a large number of CFDs. We remark that
in practice, � is typically predefined and fixed.

Exp-4: Impact of n. In this set of experiments, we varied
the number of partitions from 2 to 10, and varied |D| and
|�D| in the same scale correspondingly. That is, we varied
both |D| and |�D| from 2M to 10M for TPCH. We study the
scaleup performance defined as follows:

scaleup = small system elapsed time on small problem
large system elapsed time on large problem .

Scaleup is said to be linear if it is 1, the ideal case.
Fig. 9(e) shows the scaleup performance when varying

n, |D| and |�D| at the same time, where x-axis represents
n and y-axis the scaleup value. The line for linear is the
ideal case. For example, we computed the scaleup when
n = 4 as follows: using the elapsed time when n = 2 and
|D| = |�D| = 2M to divide the elapsed time when n = 4
and |D| = |�D| = 4M tuples (i.e., 4GB in size), which is
0.96; similarly for all the other points. This figure shows
that incVer achieves nearly linear scaleup, which clearly
outperforms batVer that shows bad scaleup performance.

These results indicate that incVer scales well with parti-
tions, when base data and updates are large.

Optimization for vertical partitions. We next evaluate the
effectiveness of our optimization strategy (Section 5).

Exp-5. Fig. 10 shows the number of eqid’s shipped for ver-
tically partitioned TPCH (D = 10M, |�| = 50, and n = 10)
and DBLP (D = 500K, |�| = 16, and n = 10), with or without
using the optimization methods presented in Section 5. As
remarked earlier, for each tuple insertion or deletion, the
amount of eqid’s shipped is independent of |D|. The table
tells us that for both datasets, the optimization technique

significantly reduces the number of eqid’s to be shipped: it
saves 67 eqid’s (55.5%) for TPCH and 44 eqid’s (72.1%) for
DBLP per update.

Experimental results for horizontal partitions for TPCH.
We next present results on horizontally partitioned data.

Exp-6: Impact of |D|. We adopted the same setting as Exp-1.
Fig. 9(f) shows the elapsed time when varying |D|. Besides
telling us that incHor outperforms batHor, the results also
show that incHor is independent of D: when varying |D|
from 2M to 10M tuples, the time only changes slightly.
This verifies Proposition 8: incremental violation detection
in horizontal partitions depends only on |�D| and |�V|,
and is independent of D.

Exp-7: Impact of |�D|. We used the same setting as Exp-
2. Fig. 9(g) shows the elapsed time when varying |�D| for
TPCH. The results show that incHor increases almost lin-
early with the size of �D, e.g., 19 seconds when |�D| = 2M
and 93 seconds when |�D| = 10M. Fig. 9(h) shows the size
of data shipment for both methods. The results verify that
our incremental detection algorithm for horizontal parti-
tions is bounded by |�D|, similar to its vertical counterpart
(see Exp-2).

Exp-8: Impact of |�|. We adopted the same setting as Exp-3.
Fig. 9(i) shows the elapsed time when varying |�| from 25
to 125. It tells us that incHor is almost linear in |�|, e.g., 43
seconds when |�| = 25 and 61 seconds when |�| = 125.
The results verify that incHor scales well with |�|, as its
vertical counterpart (see Exp-3).

Exp-9: Impact of n. Fig. 9(j) shows the scaleup performance
of incHor when varying n, |D| and |�D| in the same scale,
where x-axis represents the number n of fragments and y-
axis the scaleup values. From the results we can see that
incHor has nearly ideal scaleup, as its vertical counterpart.
This verifies that our algorithms can work well on massive
data, updates, and partitions.

Exp-10. Algorithms incVer and incHor substantially out-
perform existing batch algorithms. To favor the batch
approach, we improved the batch algorithms, denoted by
ibatVer and ibatHor for vertical and horizontal partitions,
respectively, by using our incremental insertion algorithms
and indices. We evaluated the performance of incVer and
incHor vs. ibatVer and ibatHor starting with ∅, and inserting
and deleting tuples until it reaches D.

Fig. 11(a) (resp. Fig. 11(b)) shows the result for vertical
(resp. horizontal) partition when |D| = 6M, |�| = 50 and
n = 10, while varying |�D| from 2M to 10M with 40% dele-
tions and 60% insertions. The performance of batVer and
batHor is not shown, since they are two orders of magni-
tude slower. The results tell us that in both vertical and
horizontal partitions, the incremental algorithms do better
than the revised batch algorithms until updates � D get
rather large, e.g., |�D| = 8M for vertical partitions and 7.6M
for horizontal partitions.

Summary. From the experimental results we find the fol-
lowing. (1) Our incremental algorithms scale well with
|D|, |�D| and |�| for both vertical partitions (Exp-1 to
Exp-4) and horizontal partitions (Exp-6 to Exp-9). (2) The
incremental algorithms outperform their batch counterparts

Fig. 11. Experimental results for refined batch algorithms. (a) Ver, |�D|:
∗1M tuples. (b) Hor, |�D|: ∗1M tuples.

by two orders of magnitude, for reasonably large updates.
But when updates are very large, batch algorithms do bet-
ter, as expected (Exp-10). (3) The optimization techniques
of Section 5 substantially reduce data shipment for verti-
cal partitions (Exp-5). We contend that these incremental
methods are promising in detecting inconsistencies in large-
scale distributed data, for both vertically and horizontally
partitioned data.

8 CONCLUSION

We have studied incremental CFD violation detection for
distributed data, from complexity to algorithms. We have
shown that the problem is NP-complete but is bounded. We
have also developed optimal incremental violation detection
algorithms for data partitioned vertically or horizontally,
as well as optimization methods. Our experimental results
have verified that these yield a promising solution to
catching errors in distributed data.

There is naturally much more to be done. First, we are
currently experimenting with real-life datasets from differ-
ent applications, to find out when incremental detection
is most effective. Second, we also intend to extend our
algorithms to data that is partitioned both vertically and
horizontally. Third, we plan to develop MapReduce algo-
rithms for incremental violation detection. Fourth, we are
to extend our approach to support constraints defined in
terms of similarity predicates (e.g., matching dependen-
cies for record matching) beyond equality comparison, for
which hash-based indices may not work and more robust
indexing techniques need to be explored.

ACKNOWLEDGMENTS

This work is supported in part by a RSE-NSFC Joint Project
grant and an IBM scalable data analytics for a smarter
planet innovation award. Fan, Li, Tang and Yu are also sup-
ported in part by NSFC 61133002, and the 973 Program
2012CB316200 of China. W. Fan is also supported in part
by 973 Program 2014CB340302, Shenzhen Peacock Program
1105100030834361 and Guangdong Innovative Research
Team Program 2011D005, China, and EPSRC EP/J015377/1,
UK.

REFERENCES

[1] MD5 [Online]. Available: http://en.wikipedia.org/wiki/MD5
[2] S. Agrawal, S. Deb, K. V. M. Naidu, and R. Rastogi, “Efficient

detection of distributed constraint violations,” in Proc. ICDE,
Istanbul, Turkey, 2007.

[3] M. Arenas, L. E. Bertossi, and J. Chomicki, “Consistent query
answers in inconsistent databases,” in Proc. PODS, Philadelphia,
PA, USA, 1999.

[4] J. Bailey, G. Dong, M. Mohania, and X. S. Wang, “Incremental view
maintenance by base relation tagging in distributed databases,”
Distrib. Parall. Databases, vol. 6, no. 3, pp. 287–309, Jul. 1998.

[5] P. A. Bernstein and D.-M. W. Chiu, “Using semi-joins to solve
relational queries,” J. ACM, vol. 28, no. 1, pp. 25–40, Jan. 1981.

[6] J. A. Blakeley, P. A. Larson, and F. W. Tompa, “Efficiently updat-
ing materialized views,” in Proc. ACM SIGMOD, New York, NY,
USA, 1986.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified data process-
ing on large clusters,” in Proc. OSDI, 2004.

[8] D. DeHaan and F. W. Tompa, “Optimal top-down join enumera-
tion,” in Proc. ACM SIGMOD, New York, NY, USA, 2007.

[9] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Conditional
functional dependencies for capturing data inconsistencies,” ACM
Trans. Database Syst., vol. 33, no. 2, Article 6, Jun. 2008.

[10] W. Fan, F. Geerts, S. Ma, and H. Müller, “Detecting inconsistencies
in distributed data,” in Proc. ICDE, Long Beach, CA, USA, 2010.

[11] W. Fan, J. Li, N. Tang, and W. Yu, “Incremental detection of incon-
sistencies in distributed data,” in Proc. ICDE, Washington, DC,
USA, 2012 [Online]. Available:
http://homepages.inf.ed.ac.uk/s0949090/icde12.pdf

[12] P. W. Frey, R. Goncalves, M. L. Kersten, and J. Teubner, “A spinning
join that does not get dizzy,” in Proc. ICDCS, Genoa, Italy, 2010.

[13] M. Garey and D. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. New York, NY, USA:
Freeman, 1979.

[14] A. Gupta and I. S. Mumick, Materialized Views: Techniques,
Implementations, and Applications. Cambridge, MA, USA: MIT
Press, 1999.

[15] A. Gupta, I. S. Mumick, and V. S. Subrahmanian, “Maintaining
views incrementally,” in Proc. ACM SIGMOD, Washington, DC,
USA, 1993.

[16] A. Gupta and J. Widom, “Local verification of global integrity
constraints in distributed databases,” in Proc. ACM SIGMOD,
Washington, DC, USA, 1993.

[17] N. Huyn, “Maintaining global integrity constraints in distributed
databases,” Constraints, vol. 2, no. 3/4, pp. 377–399, 1997.

[18] R. Kallman et al., “H-store: A high-performance, distributed main
memory transaction processing system,” Proc. VLDB, vol. 1, no. 2,
pp. 1496–1499, Aug. 2008.

[19] A. Kementsietsidis, F. Neven, D. Craen, and S. Vansummeren,
“Scalable multi-query optimization for exploratory queries over
federated scientific databases,” in Proc. VLDB, Auckland, New
Zealand, 2008.

[20] D. Kossman, “The state of the art in distributed query process-
ing,” ACM Comput. Surv., vol. 32, no. 4, pp. 422–469, 2000.

[21] J. Li, A. Deshpande, and S. Khuller, “Minimizing communica-
tion cost in distributed multi-query processing,” in Proc. ICDE,
Shanghai, China, 2009.

[22] L. F. Mackert and G. M. Lohman, “R* optimizer validation and
performance evaluation for distributed queries,” in Proc. VLDB,
Kyoto, Japan, 1986.

[23] G. Moerkotte and T. Neumann, “Dynamic programming strikes
back,” in Proc. ACM SIGMOD, Vancouver, BC, Canada, 2008.

[24] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas,
“MRShare: Sharing across multiple queries in MapReduce,” Proc.
VLDB, vol. 3, no. 1–2, pp. 494–505, Sept. 2010.

[25] M. T. Özsu and P. Valduriez, Principles of Distributed Database
Systems, 2nd ed. Englewood Cliffs, NY, USA: Prentice-Hall, 1999.

[26] G. Ramalingam and T. W. Reps, “A categorized bibliography on
incremental computation,” in Proc. POPL, New York, NY, USA,
1993.

[27] G. Ramalingam and T. W. Reps, “On the computational complex-
ity of dynamic graph problems,” Theor. Comput. Sci., vol. 158,
no. 1–2, pp. 233–277, May 1996.

[28] N. Roussopoulos, “An incremental access method for viewcache:
Concept, algorithms, and cost analysis,” ACM Trans. Database
Syst., vol. 16, no. 3, pp. 535–563, 1991.

[29] M. Stonebraker et al., “C-store: A column-oriented DBMS,” in
Proc. VLDB, Trondheim, Norway, 2005.

[30] X. Wang, R. C. Burns, A. Terzis, and A. Deshpande, “Network-
aware join processing in global-scale database federations,” in
Proc. ICDE, Cancun, Mexico, 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

