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On the Complexity of Annotation Propagation
and View Update Analyses

Gao Cong Wenfei Fan Floris Geerts Jianzhong Li Jizhou Luo

Abstract—This paper investigates three problems identified in [1] for annotation propagation, namely, the view side-effect, source
side-effect and annotation placement problems. Given annotations entered for a tuple or an attribute in a view, these problems ask
what tuples or attributes in the source have to be annotated to produce the view annotations. As observed in [1], these problems are
fundamental not only for data provenance but also for the management of view updates. For an annotation attached to a single existing
tuple in a view, it has been shown that these problems are often intractable even for views defined in terms of simple SPJU queries [1].
We revisit these problems by considering several dichotomies: (a) views defined in various subclasses of SPJU, versus SPJU views
under a practical key preserving condition; (b) annotations attached to existing tuples in a view versus annotations on tuples to be
inserted into the view; and (c) a single-tuple annotation versus a group of annotations. We provide a complete picture of intractability
and tractability for the three problems in all these settings. We show that key preserving views often simplify the propagation analysis.
Indeed, some problems become tractable for certain key preserving views, as opposed to the intractability of their counterparts that are
not key preserving. However, group annotations often make the analysis harder. In addition, the problems have quite diverse complexity
when annotations are attached to existing tuples in a view and when they are entered for tuples to be inserted into the view.

Index Terms—Annotation, View updates, View maintenance, SPJU queries.

F

1 INTRODUCTION

DAtabase annotations have been recognized by sci-
entists as an essential feature for new generation

database management systems [2], [3], [4]. Annotations
are additional information attached to tuples or at-
tributes, either entered manually or generated by pro-
grams, to explain or correct the data [2]. This information
is essential to the quality and semantics of the data, and
should be carried over along with the regular data when
the data is migrated, transformed or integrated. With this
comes the need for studying annotation propagation.
The analysis of annotation propagation is important in
tracing the origin of the data [2], [1], [5], [6], [7], [8], [9]
(a.k.a. lineage [10], [11]), data cleaning [12], access con-
trol [13], semantic Web [14], and in digital libraries [15],
among other things. Several systems and tools have been
developed to support annotation propagation analysis,
e.g., DBNotes [16], MONDRIAN [17] and InfoVis [18].

Annotation propagation analysis. In many applications
data transformations are expressed as views defined as
SPJU queries in terms of the selection (S), projection
(P), join (J), union (U) and renaming operators of the
relational algebra. Annotations attached to some tuples
in a database are carried forward to the views: the selec-
tion and projection operators preserve the annotations
placed at selected tuples and the projected attributes,

• G. Cong is with the Department of Computer Science, Aalborg University,
Denmark.

• W. Fan and F. Geerts are with the School of Informatics, University of
Edinburgh, Edinburgh, U.K.

• J. Li and J. Luo are with the Department of Computer Science and
Technology, Harbin Institute of Technology, Heilongjiang, China.

respectively; join merges annotations of the tuples joined
together, while union simply copies the annotation of
each tuple. In addition, annotating a view of some data,
the annotations are carried backward to the source data
as well as forward to other views [2]. As observed
by [1], annotation propagation analysis is closely related
to classical view update problem (see, e.g., [19] for a
detailed discussion about the view update problem).

Three problems fundamental to the propagation anal-
ysis have been identified in [1], stated as follows. Con-
sider a source database D, an SPJU query Q, the view
Q(D) and a tuple 4V in the view, given as input.

• The view side-effect problem is to find a smallest set 4D
of tuples in D such that Q(D) \ 4V = Q(D \ 4D), i.e.,
with zero side effect, if such 4D exists.

• The source side-effect problem is to find a smallest set4D
of tuples in D such that 4V is in Q(D) \Q(D \ 4D).

• The annotation placement problem is to find, given a
field in the tuple 4V, a single tuple 4D in D such
that an annotation in a field of 4D propagates to the
minimum number of fields in the view including 4V.

Intuitively, when an annotation is entered for 4V in
the view, the view side-effect problem is to identify
a smallest set 4D of tuples in the source such that
annotations in those places produce the view annotation,
without spreading to other view tuples. Alternatively, it
means that the deletion of 4D from the source leads to
the removal of 4V from the view without side effect,
i.e., 4D indicates how the tuple 4V gets into the view.

We should remark that our statement of the view side-
effect problem is referred as the “side-effect free” view
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AuName Journal
Joe TKDE

John TKDE
Tom TKDE
John TODS

(a) Author(AuName, Journal).

Journal Topic #Papers
TKDE XML 30
TKDE CUBE 30
TODS XML 30

(b) Journal(Journal, Topic, #Papers).

AuName Topic
Joe CUBE
Joe XML

Tom CUBE
Tom XML
John CUBE
John XML

(c) View definition Q1:
πAuName,Topic(Author "# Journal).

AuName Journal Topic
Joe TKDE CUBE
Joe TKDE XML

Tom TKDE CUBE
Tom TKDE XML
John TKDE CUBE
John TKDE XML
John TODS XML

(d) Key preserving view:
πAuName,Journal,Topic(Author "# Journal).

∆V

Fig. 1. Example of propagation problems.

side-effect problem in [1]. Here we enforce |Q(D)\Q(D\
4D)| = 0. In contrast, [1] aims to minimize |Q(D)\Q(D\
4D)|, although all the complexity results of [1] for the
view side-effect problem are established for the “side-
effect free” version, i.e., the problem studied here.

As opposed to the view side-effect problem, the source
side-effect problem is to find a smallest set of tuples in
the source such that the desired annotation in the view
can be obtained by annotating those places in the source,
although it may have side effects on the view. Note that
the source side-effect problem does not require |∇V | = 0.

When some annotation is attached to a location in 4V,
the annotation placement problem is to find the corre-
sponding location in the source D to concretely annotate
such that the view annotation propagates backward to
the source with minimum side effects.
Example 1.1: Consider a database D with two re-
lations: Author(AuName, Journal), Journal(Journal, Topic,
#Papers) (with keys underlined), and an SPJ query (view
definition) Q1 = πAuName,Topic(Author ./ Journal). In-
stances of both relations and the view Q1(D) are shown
in Figures 1(a)–(c) (ignore Fig.1(d) for now).

Suppose that John is not a researcher on XML and
thus the tuple (John, XML) in the view Q1(D) is an error.
Let 4V ={(John, XML)}. We want to find tuples 4D in
the base relations of D to annotate the error such that
the annotations propagate to the fields in the view tuple
4V via Q1; or alternatively we want to delete 4D such
that their removal leads to the deletion of the erroneous
4V. The three problems stated above impose different
conditions on how to achieve this.

(1) View side-effect problem: There are multiple ways
to remove tuples in D in order to delete 4V from the
view. The tuples in D related to 4V, i.e., those with
matching values in 4V, are (John, TKDE), (John, TODS),
(TKDE, XML, 30) and (TODS, XML, 30). We want to find
a smallest set 4D of tuples such that deleting 4D from
D leads to the removal of 4V from Q1(D) but incurs no

side effects, i.e., it deletes 4V but no other tuples from
Q1(D). To delete 4V one can remove {(John, TKDE),
(John, TODS)} from the Author table (denoted by 41D),
or delete (John, TKDE) from Author and (TODS, XML,
30) from Journal (42D). However, none of these is side-
effect free: the first option, for example, also results in
the deletion of (John, CUBE) from the view. Hence there
exists no solution to the view side-effect problem.

(2) Source side-effect problem: It differs from (1) in that
we do not care about the view side effect when we search
for a smallest set 4D of tuples in D to delete. Thus in
this case, both 41D and 42D are solutions. In addition,
removing {(TODS, XML, 30), (TKDE, XML, 30)} from
Journal is also a solution although it incurs more severe
view side effects than 41D and 42D.

(3) Annotation placement problem: Suppose that the
information “John is not an XML researcher” is attached
to the AuName field of 4V. We want to find a single
tuple 4D in the database D to annotate such that the
annotation propagates to the AuName field of 4V and
a least number of other fields in the view Q1(D). Here
the solution is 4D = (John, TODS): by annotating the
AuName field of 4D we get the desired annotation in
the view with zero side effect.

View updates and data provenance. The need for in-
vestigating these problems is evident in view update
management and data provenance. As observed by [2],
the view and source side-effect problems are the classical
view deletion problems. Moreover, these two problems
are important to why-provenance, while the annotation
placement problem is related to where-provenance [5].

• The connection with why-provenance. Given an annota-
tion attached to some tuple t in the output of a query, the
view and source side-effect problems are to find which
tuples in the input should be annotated such that the
annotations in the input are propagated forward to the
view. To answer these questions, we need to identify a
(smallest) set of the input tuples that suffices to make
t appear in the view. This is what why-provenance
concerns, which aims to find a “proof” or “witness” for
t to appear in the output, i.e., a minimum set of source
tuples that suffices to produce t in the output.

• The connection with where-provenance. When an
annotation a is attached to some field (location) l of a
tuple in the view, the annotation placement problem
is to find a single field (location) in the input to place
the annotation a, such that a propagates to a minimum
number of output locations including l. That is, we want
to propagate annotations backwards from the output of
a query to the source database [3]. In other words, we
want to identify where the value in the output location
l is copied from. This is the focus of where-provenance,
which is to find where a value in the output comes from.

As will be discussed shortly, there has been a host of
work on annotation processing [1], [2], [4], [5], [6], [7],
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[8], [9], [10], [11], [13], [16], [17], [20], [21], [22], [23], [24],
[25], [26], [27]. However, the complexity bounds for the
problems described above are only studied in [1], [13]. In
those papers it is shown that the analysis is in general
beyond reach in practice. Indeed, the view and source
side-effect problems are NP-hard for views expressed in
fragments of SPJU. Similarly, the annotation placement
problem is NP-hard for PJ and SPJ views [13]. While
these problems are also important to the management
of view updates, their complexity bounds have not been
studied in that line of work.

Contributions. In this paper, we extend [1], [13] in sev-
eral aspects. First, we identify a practical condition under
which the analysis of annotation propagation becomes
feasible. The condition, referred to as the key preservation
condition, requires that an SPJU view Q retains a key of
every base relation involved in the definition of Q. In
other words, a view Q is key preserving if the primary
keys of all the base relations involved in Q are included
as distinct attributes in the projection fields of Q. This is
less restrictive than other proposals for restricting view
definitions [28], [29]. Furthermore, many views for data
transformation or integration found in practice can be
naturally modified to be key preserving by extending
the projection-attribute list to include the primary keys.

Second, we investigate the impact of group updates
on the analysis of annotation propagation. That is, we
generalize the problem statements given earlier by al-
lowing the given view update 4V to include multiple
tuples. The need for studying this is evident: in practice
annotations are often entered for multiple view tuples at
the same time, rather than for a single tuple.

Third, in addition to annotations attached to existing
tuples in a view, we study the view and source side-effect
problems when the given 4V is a set of tuples to be
inserted. These are the classical view insertion problems.
The motivation for studying this is that one often wants
to know, when new tuples along with annotations are
inserted into the view, how the annotations should be
propagated back to the source (a.k.a. feedback loop [12]).
We study these problems both in the presence and in the
absence of the key preservation condition.

We give a full treatment of the three problems for
annotation propagation w.r.t. the following dichotomies:

• general views vs. key preserving views,
• singleton 4V vs. a set 4V of view tuples, and
• 4V to be deleted vs. 4V to be inserted.

We examine the impact of different combinations of these
factors on the complexity of these problems.

We provide a comprehensive picture of the combined
complexity on these problems for views defined in vari-
ous fragments of SPJU queries, identifying all those cases
that are intractable. The results tell us the following.

(1) Key preserving views often simplify the analysis
of annotation propagation. For instance, the annotation
placement problem is NP-hard for general PJ (with

projection and join) views [13], but it is in polynomial
time (PTIME) for key preserving SPJU views. When 4V
consists of a single existing tuple in the view, the source
side-effect problem is NP-hard for general PJ views [1],
but it is in PTIME for key preserving SPJ views. This
tells us that key preserving views make it feasible to
efficiently conduct certain propagation analysis.

(2) Group updates complicate the propagation analysis.
For instance, the view side-effect and source side-effect
problems become NP-hard for key preserving SPJ views
when group deletions are considered, whereas they are
in PTIME for single-tuple deletions.

(3) The presence of selections in the views does not com-
plicate the analysis. More specifically, the complexity of
all problems is independent of the presence of selection
predicates in the view definition.

(4) These problems have quite diverse complexity for
view insertions and view deletions. On one hand, the
view side-effect problem is in PTIME for key preserving
SPU and SPJ views and single-tuple deletions, whereas
it is intractable for single-tuple insertions and views
defined with join only. On the other hand, the source
side-effect problem is in PTIME for key preserving SPJU
and single-tuple insertions, but it becomes NP-hard for
JU views and single-tuple deletions.

Taken together, these tell us what cases of the annota-
tion propagation analysis are intractable or in PTIME, for
all subclasses of SPJU views, from general views to key-
preserving views, and from single-tuple update to group
view updates. To our knowledge, no previous work has
established complexity results for these problems for key
preserving views, group view updates, or for view inser-
tions. These results are useful in both the analysis of data
provenance and the study of view update management.

Related work. This paper extends an earlier version [21]
as follows: (1) we investigate the annotation analysis for
key preserving views that also support the union oper-
ator, and (2) we revise the statement of the view side-
effect problem used in [21] to align with its counterpart
of [1], and redeveloped the results accordingly. Several
new intractability and PTIME results are established. In
particular, we show that the view side-effect problem for
insertions and views defined with join alone is already
NP-hard, and that the annotation placement problem is
tractable for key-preserving SPJU views.

Recent research on querying annotated databases can
be classified into two categories: annotation querying [6],
[16], [17], [20], [22], [23] and annotation propagation [1],
[7], [9], [21], [24], [25], [26]. In the former, queries access
annotations as well as the regular data directly. In the
latter, queries are directed primarily at the regular data,
while annotations are merely carried to the query results.

Annotation querying has focused on (a) propagation
schemes for processing annotations explicitly or implic-
itly [9], [16], (b) the expressive power of various propa-
gation schemes [22], [24], and (c) their extensions to deal
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with complex queries [6], [7], [23], [30]. The problems
studied there are entirely different from the problems
considered in this work.

For annotation propagation, the only previous com-
plexity results were established in [1], [13]. Key preserva-
tion, group updates and propagation of view insertions
were not considered in [1], [13].

There has also been work on modeling and managing
provenance information [8], [10], [27], [31], [32], [33], [34],
[35], [36], in which only [10] gave a complexity result.
In [10], a key-preserving condition was also considered.
It was shown there that the condition simplifies the
computation of lineage. However, [10] studied generic
mapping functions, which are quite different from SPJU
views. Hence their complexity results do not apply to the
problems considered in this paper and vice versa. The
key preservation condition was also studied in [37] for
XML view updates. The problems investigated in [37]
are quite different from those considered in this work.

An algorithm was given in [11] for translating view
deletions to base relations without side effects, based
on data lineage. It performs an exhaustive search over
all candidate solutions, which takes exponential time.
In contrast, with our key-preservation condition, the
computation of data lineage is simplified and the view
side-effect deletion problem is PTIME resolvable.

There has been a host of work on view updates (e.g.,
[38], [39], [28], [29], [35]). Algorithms were provided in
[28] for translating restricted view updates to base-table
updates without side effects in the presence of certain
functional dependencies. An algorithm was developed
in [29] to translate (with side effects) a class of SPJ view
updates to base relations, with the following restrictions:
base tables may only be joined on keys and must satisfy
foreign keys; a join view corresponds to a single tree
where each node refers to a relation; join attributes must
be preserved; and comparisons between two attributes
are not allowed in selection conditions. Our key preser-
vation condition (to be defined in Section 2) is less
restrictive than those in [28], [29]. More recently in [35],
a bi-directional query language was proposed, which
imposes conditions on the operators in the language
such that arbitrary changes to views can be carried
out. The conditions are more restrictive than the key
preservation condition studied in this paper.

On relational view updates, surprisingly few com-
plexity bounds are known. The only tractability and
intractability results we are aware of were established
in [38], [39], [40], for finding a minimal view complement
for relational views, a problem very different from ours.

Commercial database systems [41], [42], [43] allow
updates on very restricted views, while allowing users to
specify updates manually with the INSTEAD OF triggers.
For example, for views to be deletable IBM DB2 [41]
restricts the from clause to reference only one base table.

Organization. We first present key preserving views in
Section 2. We then establish the complexity bounds of the

view side-effect problem, the source side-effect problem
and the annotation placement problem in Sections 3, 4
and 5, respectively. We identify open issues in Section 6.

2 KEY PRESERVATION

In this section we define the notion of key preservation.

SPJU queries. Let R = {R1, . . . , Rn} be a relational
schema. An SPJ query (a.k.a. conjunctive query) on
databases of R is a query defined in terms of the
selection (σ), projection (π), join (./) and renaming (δ)
operators in the relational algebra. It can be expressed
in the normal form as follows [19]:

πY (Rc × Es), where Es = σF (Ec), Ec = S1 ./ · · · ./ Sn,

where (a) Y is a list of attributes in relations of R; (b)
Rc = {(A1 : a1, . . . , Am : am)}, a constant relation, such
that for each i ∈ [1,m], Ai is in Y , Ai’s are distinct, and ai
is a constant in the domain of Ai; (c) for each j ∈ [1, n],
Sj is ρj(Ri) for some Ri in R, and ρj is a renaming
operator, such that Ai does not appear in any Sj ; and
(d) F is a conjunction of equality atoms such as A = B
and A = ‘a’ for a constant a in the domain of A.

An SPJU query (a.k.a. union of conjunctive queries)
defined on R is a query of the form Q1∪· · ·∪Qn, where
Qi’s are union-compatible SPJ queries on R [19].

We study various subclasses of SPJU, denoted by
listing the operators supported. The renaming operator
is included in all subclasses by default without listing it
explicitly. For instance, PJ is the class of queries defined
with the projection, join and renaming operators.

For example, the view given in Fig. 1(c) is a PJ view.

Key preserving views. Consider an SPJ query Q =
πY (Rc × Es) defined above. We say that Q is key pre-
serving if all the primary key attributes (with possible
renaming) of each occurrence of the base relations in Es
are included in the projection fields Y of Q.

An SPJU query Q1∪· · ·∪Qn is said to be key preserving
if for each i ∈ [1, n], Qi is key preserving.
Example 2.1: The query Q1 given in Example 1.1 (and
corresponding view shown in Fig. 1(c)) can be ex-
tended such that it is key preserving. Indeed, let Q2 =
πAuName,Journal,Topic(Author ./ Journal). Then Q2 is key
preserving. The view Q2(D) is shown in Fig. 1(d).

The analysis of Example 1.1 becomes simpler for the
key preserving view of Example 2.1. Consider the dele-
tion of 4V = {(John, TKDE, XML)} from Q2(D). (1)
View side-effect problem. Since Q2 is key preserving,
it is obvious that the deletion can be performed by
deleting either (John, TKDE) from Author or (TKDE,
XML, 30) from Journal. Leveraging key preservation we
can easily check the view side effect by finding the
occurrences of key values of deleted relation tuples in
the view. This tells us that there is no solution to the
problem that has zero view side effect. (2) Source side-
effect problem. Similar to (1), we can easily determine
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that the solution is either {(John, TKDE)} or {(TKDE,
XML, 30)}. (3) Annotation placement problem. Similarly
we can see that the solution is {(John, TKDE)}.

3 THE VIEW SIDE-EFFECT PROBLEM

In this section we investigate the view side-effect prob-
lem. We first study the problem for single-tuple and
group deletions in Section 3.1. We then investigate the
problem for insertions in Section 3.2, for key preserving
SPJU views and general SPJU views.

3.1 Deletion Propagation
Given a view deletion 4V, a source database D, an SPJU
query Q and the view Q(D), the view side-effect problem
for deletion propagation is to find a smallest set of source
tuples 4D to delete such that tuples in 4V are deleted,
without side effects.

The view side-effect problem has been studied in [1]
for general SPJU views and single-tuple deletions (when
4V is a singleton set). We investigate this problem for
key preserving SPJU views and single-tuple deletions,
and for SPJU views (key preserving or not) and group
deletions (when 4V consists of multiple tuples).

We present in Table 1 the complexity of the view side-
effect problem for various subclasses of SPJU, for single-
tuple deletions and for group deletions. In Table 1 and all
other tables in the paper, we omit the selection predicate
S since it does not affect our complexity results.

Single-tuple deletions. It is known that without the key
preservation condition the view side-effect problem for
single deletions on a PJ view is NP-hard [1]. In contrast,
the problem becomes tractable for key preserving SPJ
views. This shows that key preservation may indeed
simplify the analysis of annotation propagation.

Proposition 1. The view side-effect problem is in PTIME for
key preserving SPJ views and single tuple deletions.

Proof: Let R = {R1, . . . , Rn} be a relational schema,
Q a key preserving SPJ query, D an instance of R, and
4V consist of a single tuple t to be deleted from the
view Q(D). Given D, Q, Q(D) and 4V, we show that it
is in PTIME to find 4D with zero side effects, if it exists.

Since Q is key preserving, we can associate with t
(necessarily unique) tuples si in the base relations Ri
appearing in Q, such that si and t have the same key for
this relation. In order to delete t from Q(D), it suffices
to delete a single such si from its base relation Ri. Any
such deletion obviously results in an update 4D of
minimum size since 4D consists of a single tuple only,
as illustrated in Example 2.1.

For 4D to be a solution for the view side-effect
problem, we need to find tuple si without any side
effects. Let Si be the set of tuples in Q(D) \ {t} carrying
the key of si (in Ri). Note that computing Si requires
only a linear scan over the view Q(D). Clearly, the size of
Si determines the number of side effects obtained when

choosing 4D to be {si}. Let s be the tuple si such that
its corresponding Si is of minimum size. Clearly, s can
be found in PTIME. Moreover, if |Si| = 0 then 4D = {s}
is a solution to the view side-effect problem.

However, key preservation does not make our lives
easier for JU views. From the proof of [1] for JU views
it follows that the problem remains NP-hard for key
preserving JU views.

Corollary 2. The view side-effect problem is NP-hard for key
preserving JU views and single tuple deletions.

Proof: The proof of Theorem 2.2 in [1] is applicable
here. The proof shows that the view side-effect problem
is NP-hard for single tuple deletions and JU views
by reduction from the 3SAT problem. The reduction,
however, uses JU views that are key preserving.

Group deletions. Our first result for group deletions
is a PTIME algorithm for the view side-effect problem
for SPU views, which extends the algorithm given in
the proof of Proposition 1. It should be remarked that
the complexity of group view deletions is considered in
neither [1] nor [13].

Corollary 3. The view side-effect problem is in PTIME for
SPU views and for group deletions.

Proof: Let R be a schema and D database as de-
scribed in Proposition 1, Q =

⋃k
j=1Qj a union of SP

queries, and 4V = {t1, . . . , tm} be a group deletion. We
give a PTIME algorithm for computing 4D that is side-
effect free, if it exists. The algorithm is an extension of
the algorithm for single deletions developed in [1].

The algorithm first scans D and returns for each
Ri ∈ R the set of tuples satisfying at least one of the
selection conditions in one of the SP queries Qj . We
denote the resulting database by D′0. Next, the algorithm
considers the tuples in 4V and removes them from 4V
if a side-effect free update has been found for the tuples
considered so far. That is, at each step a set 4D′ is
computed, if it exists, such that Q(D\4D′) = Q(D)\4V ′,
where 4V ′ denotes the tuples in 4V removed so far. It
is important to remark that for SPU views the set 4D′,
if it exists, is uniquely determined.

Initially, D′ = D′0, 4V ′ = ∅ and 4D = ∅. As long
as 4V \ 4V ′ 6= ∅, let t be the first tuple (based on
some arbitrary ordering) in 4V \ 4V ′. The algorithm
then computes 4D′ as the set of all tuples from D′ that
project on t. Observe that this set is indeed uniquely
determined. We distinguish between the following two
cases: (a) there exists a tuple s ∈ 4D′ such that
Q({s}) 6⊆ 4V . In this case, the algorithm halts and no
side-effect free solution exists. (b) Q(4D′) ⊆ 4V . In
this case, the deletion of 4D′ in D′ causes side effects
that all belong to 4V . Clearly, these view tuples do not
have to be further processed by the algorithm. Hence,
we set 4D = 4D ∪ 4D′ and call the algorithm with
D′ = D′ \4D′ and 4V ′ = 4V ′ ∪ (4V ∩Q(4D′)). If the
algorithm successfully terminates, i.e., when 4V ′ = 4V ,
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the side-effect free update 4D is returned. The solution
4D is minimum because of the uniqueness of each
update computed during the execution of the algorithm,
and in addition, the need to remove all tuples in these
updates that is necessary in any solution. The algorithm
clearly runs in polynomial time.

Group updates may complicate the annotation propa-
gation analysis. In contrast to Proposition 1, the view
side-effect problem becomes NP-hard for group dele-
tions and key preserving views defined with join only.

Theorem 4. The view side-effect problem is NP-hard for key
preserving J views and group deletions.

Proof: We show that the problem is NP-hard by
reduction from the minimum set cover problem. An
instance of the minimum set cover problem consists of
a collection C of subsets of a finite set S. It is to find a
subset C ′ ⊆ C such that every element in S belongs to at
least one member of C ′ and moreover, |C ′| is minimum.
This problem is NP-complete (cf. [44]).

Given S and C, we define an instance of the view side-
effect problem such that there exists a minimum side-
effect free update for the view side-effect problem if and
only if there exists a minimum cover of the set S.

Let S = {xi | i ∈ [1, n]} and C = {cj | j ∈ [1, k]}. We
construct two base tables R and RS , a join view Q and
a group view deletion 4V, as follows.

Base relations. We define two base relations R and RS .

• R(A), where A is the key and is to hold a num-
ber in [1, k]. Initially, R(A) contains k = |C| tuples
{(1), (2), . . . , (k)} that represent the index of k subsets.

• RS(j, A1, . . . , Ak), where the key consists of all the
columns. We encode each element in S with tuples in
RS as follows. For each xi in S, let Ti be the collection
of all the subsets in C that contain xi. We assume
w.l.o.g. that Ti 6= ∅ (otherwise there is no solution for the
minimum set cover problem). Enumerate the elements of
Ti as (ci1 , . . . , cini

). We generate a list of size k from Ti,
Li = 〈i1, . . . , ini

, . . . , ini
〉, by replacing cij with its index

ij and appending (k−|Ti|) ini ’s at the end of the list (to
make the size of the list to be k).

If |S| > k, then we generate |S| tuples by adding index
i ∈ [1, |S|] at the beginning of each list Li. Otherwise, we
generate k + 1 tuples by adding index i in [1, |S|] at the
beginning of each list Li and generate k+ 1− |S| tuples
by adding numbers [|S|+1, k+1] to Ln. Thus RS initially
contains l = max{|S|, k + 1} tuples.

View. We define a query Q = RS ./ δf1(R) ./ · · · ./
δfk(R), where δfi renames A in R to Ai. Initially, Q(D)
consists of l view tuples, which are the same as those in
the relation RS . Obviously, the view defined as above is
key preserving since it contains no projections.

View deletion. The group deletion 4V is to remove all
tuples in the view Q(D).

The view side-effect problem is to find a smallest set of
the tuples from R and RS so that 4V is deleted without

Fig. 2. Illustration of the proof of Theorem 4.

side-effect. We include an example toward the end of the
proof to illustrate the intuition behind the reduction.

We now verify that the construction above is indeed
a reduction from the minimum set cover problem. First
suppose that C ′ is a minimum cover of S. We define
4D such that it consists of the tuples {(i1), . . . , (i|C′|)}
from R, where ij is the index of subset cj ∈ C ′. In order
to delete a tuple t in 4V, we delete either t[RS ] (i.e.,
its component in RS) or one of its components in R.
Since C ′ is a cover of S, at least one of components of
t in R is in 4D. Hence, it is clear that Q(D \ 4D) =
Q(D) \4V = ∅. Furthermore, 4D is minimum since (1)
although deleting all the C ′-tuples from table RS suffices
to delete 4V, it is not a minimum solution since |C ′| ≤ k
(and by construction, l > k), and (2) C ′ is a minimum
cover of S.

Conversely, suppose that 4D is a solution to the view
side-effect problem. Then as discussed above 4D will
be only composed of tuples in R. Let C ′ be the subset
of C such that an element cj of C is in C ′ if and only
if 4D involves deletion of the tuple (j) from relation R.
To see that C ′ is a cover of S, note that Q(D \ 4D) =
Q(D) \4V = ∅, and thus for each xi ∈ S, some set cij is
in C ′. Moreover, C ′ is minimum since 4D is minimum.

Before we conclude the proof, we present an example
for the reader who may be interested in the details of
the reduction. The database D is the set of all tuples as
defined above. The construction is illustrated in Fig. 2
for S = {a, b, c, d} and C = {c1 = {a, b}, c2 = {a, d}, c3 =
{b, c}, c4 = {b, c, d}}. Suppose that we want to delete all
tuples in the view V shown in Fig. 2. For each view
tuple t, we indicate with colors which tuples (or ci’s) in
R should be deleted in order to remove t from V. When
all tuples are to be removed from V, i.e., 4V = V, clearly
deleting (1) and (4) from R achieves this goal (each tuple
in V contains either (1) or (4)). Hence, 4R = {1, 4} and
C ′ = {c1, c4} is a minimum cover of S.

3.2 Insertion propagation
Given a source database D, a query Q, the view V =
Q(D) and a set 4V of tuples, the view side-effect
problem for insertion propagation is to find a minimum
set 4D of tuples such that Q(D∪4D) = Q(D)∪4V, i.e.,
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the insertion of 4D into D produces 4V and does not
incur any side effect.

For single-tuple and group insertions, The complexity
bounds of the view side-effect problem are summarized
in Table 2 for various fragments of SPJU views, key
preserving or not. Compared with Table 1, one can
see that view insertions complicate the view side-effect
analysis. In particular, the problem becomes coNP-hard
for key preserving views defined with join only, even for
single-tuple insertions.

To see the complication introduced by view insertions,
consider the differences between insertions and deletions
for key preserving views. To insert a tuple t into V,
one can identify the key ki of the tuple ti that needs
to be inserted into each occurrence of each Ri relation
involved in V. As will be seen shortly, based on ki one
can either identify an existing tuple ti in the Ri relation
with ki, or otherwise, construct a tuple ti carrying ki as
its key and insert it into the Ri relation. Observe that
while view tuple deletions can always be carried out
when side effects are allowed, it is not always doable
to insert a tuple into views in the presence of the key
preservation condition, even if side effects are allowed.

Example 3.1: Consider the key preserving query Q3 =
(Author ./ Journal) in the setting of Example 1.1, and
the insertion of tuple (Kate, TODS, XML, 35) into the
view Q3(D). At first glance, it seems that this insertion
can be carried out by inserting (Kate, TODS) into table
Author and (TODS, XML, 35) into Journal. However, this
insertion is not possible: the insertion of (TODS, XML,
35) has to be rejected since taken together with (TODS,
XML, 30) it violates the key in the table Journal.

Intractability results. In contrast to Proposition 1, the
view side-effect problem is already intractable when Q
is a key preserving view defined with join only, even if
4V consists of a single tuple to be inserted.

Proposition 5. The view side-effect problem is coNP-hard for
J views and single-tuple insertions.

Proof: We prove the coNP-hardness by reduction
from the complement of the Boolean conjunctive query
problem. An instance of that problem is an SJ query
q = σC(δf1(R1) ./ · · · ./ δfk(Rk)) over an instance I
of relational schema R = {R1, . . . , Rm}. It is to decide
whether q(I) 6= ∅. This problem is NP-complete (cf. [44]).

Given q and I , we define a source database D, a J
query Q, and a single tuple 4V to be inserted into the
view V = Q(D), such that q(I) = ∅ iff there exists a
side-effect free solution 4D.

Base relations. Database D consists of 1+m+w relations,
where w is the number of the selection conditions in C
of the form “σA=c”, for some attribute A and constant
c. More specifically, the database includes (a) R0(A),
initially empty, where A is a distinct attribute; (b) R′1,
and Ri for i ∈ [2,m] to code the input instance I ,
where R′1 is R1 extended with the attribute A; and

B C

b1 c1
b2 c2

D E

c1 e1
c2 e2

R1

R2

qD!BDb.R1‰ıf2.R1/‰R2/
ıf2 WB 7!B;C 7!D

R0

A

x

A B C

x b1 c1
x b2 c2
x x x

R01
D E

c1 e1
c2 e2
x x

B

b

x

S1R2

QDR0‰R01‰ıf2.R01/‰R2‰S1

Fig. 3. Illustration of the proof of Proposition 5.

(c) a new relation Si with one attribute Ai for each
selection condition “σAi=c” in C, to encode constants in
the selection condition C. Initially, Si = {(c)}.

View. We first define a J query Q′ = R0 ./ q
′ ./ S1 ./

· · · ./ Sw, where q is obtained from q by replacing each
occurrence of R1 by R′1. Then, suppose that C contains
p selection conditions of the form “σAi=Bi

” for some
attributes Ai and Bi, for i ∈ [1, p]. We incorporate these
equality conditions into the view, one by one. Initially
Q0 = Q′. Suppose that we have already encoded the first
j−1 conditions as Qj−1. Let σAj=Bj

be the next selection
condition. We then define Qj = Qj−1 ./ δAj/Bj

(q′),
where δAj/Bj

renames Aj as Bj , while keeping the other
attributes unchanged. Finally, we define Q = Qp. Note
that the size of Q is quadratic in the size of q. Initially,
Q(D) = ∅.

View insertions. We define 4V as a single tuple
(x, x, . . . , x) to be inserted into Q(D), where x is a
distinct value.

See Fig. 3 for an illustration of the reduction.

One can readily verify that q(I) = ∅ iff there exists a
(minimum) 4D such that Q(D ∪4D) = V ∪4V.

As opposed to Corollary 3, the problem also becomes
harder for key preserving PU views and insertions. The
intractability remains intact on general PU views.

Theorem 6. The view side-effect problem is NP-hard for key
preserving PU views and single-tuple insertions.

Proof: We prove the NP-hardness by reduction from
the 1-in-3 3SAT problem. An instance of the latter is φ =
C1 ∧ · · · ∧Cn, where all variables in φ are x1, . . . , xk, and
each clause Cj is of the form `j1∨`j2∨`j3 and `ij is either
xs or x̄s, s ∈ [1, k]. The problem is to determine whether
there is a truth assignment that makes φ true and for
which exactly one literal in each clause is assigned true.
This problem is NP-complete (cf. [44]).

Given φ, we define a source database D, a key preserv-
ing PU query Q, and a single tuple 4V to be inserted
into the view V = Q(D), such that φ has a 1-in-3 truth
assignment iff there exists a minimum 4D that is side-
effect free, i.e., Q(D ∪4D) = V ∪4V.

Base relations. The database D consists of two relations
R(K,X1, . . . , Xk, Y1, . . . , Yk, C) and Rv(K,A1, A2, A3,
B1, B2, B3). Here, K is the key attribute of R and
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is to enforce that zero-side effect solutions consist of
a single tuple insertion in R only. The attributes Xi

and Yi are to encode truth values {T, F}, and C is an
auxiliary attribute needed to check that tuples in R are
truth assignments of X = {x1, . . . , xk}. Initially, R is
empty. As will be seen shortly, the view will extract all
permutations of the truth values of the literals occurring
in each clause. Clearly, when dealing with 1-in-3 truth
assignments, this set of permutations is necessarily
limited to {(T, F, F ), (F, T, F ), (F, F, T )}. However, since
our view is initially empty and we are considering
single-tuple insertions only, we use the relation Rv
to populate the initial view with two fixed tuples,
corresponding to the permutations {(T, F, F ), (F, T, F )}.
For this, Rv consists of a single tuple (0, T, F, F, F, T, F ).
As before, the key attribute K of Rv is to avoid the
insertion of additional tuples in Rv .

View. We define a key preserving PU query Q = V0∪V1∪
V2 as follows.

• V0 = πK,X,Y,Z(δf1(Rv)) ∪ πK,X,Y,Z(δf2(Rv)), where
δf1 renames A1, A2, A3 as X,Y, Z, and δf2 renames
B1, B2, B3 as X,Y, Z. This query yields two tu-
ples corresponding to two of the three valid 1-in-
3 truth assignments of clauses. Initially, V0(D) =
{(0, T, F, F ), (0, F, T, F )}.
• V1 =

⋃k
i=1

⋃
δ∈λ(Xi,Yi,C) πK,X,Y,Z(δ(R)), where

λ(Xi, Yi, C) is the set of all (bijective) renaming of
Xi, Yi, C into X,Y, Z. Intuitively, each such renaming
corresponds to a permutation of Xi, Yi, C. Since C
will be enforced to equal to F (false), the view V1
is used to verify whether tuples in R define a truth
assignment. Indeed, µ defines a truth assignment
if the permutations of (µ(x), µ(x̄), F ) correspond to
{(T, F, F ), (F, T, F ), (F, F, T )}, i.e., the tuples in the
view. Initially, V1(D) = ∅.
• V2 =

⋃n
i=1 V2,i, where each V2,i is to encode the

clause Ci of φ. Suppose that Ci = `j1 ∨ `j2 ∨ `j3 .
If `ij = xs for some s ∈ [1, k] then let Aij =
Xs; if `ij = x̄s then Aij = Ys. We then define
V2,i =

⋃
δ∈λ(Aj1

,Aj2
,Aj3

) πK,X,Y,Z(δ(R)), where as before,
λ(Aj1 , Aj2 , Aj3) is the set of all (bijective) renaming of
Aj1 , Aj2 , Aj3 into X,Y, Z. Initially, V2(D) = ∅.

This view simply checks whether all permutations of
literals in all clauses conform the 1-in-3 condition. Note
that Q is a key preserving PU query.

View insertions. We define 4V to consist of a single tuple
(0, F, F, T ) to be inserted into V = Q(D).

The reduction is illustrated in Fig. 4 for φ = (x̄1 ∨ x̄2 ∨
x3) ∧ (x2 ∨ x̄4 ∨ x5) ∧ (x1 ∨ x3 ∨ x4). The tuple inserted
into the view V and the tuple to be inserted into D are
indicated by the bold rectangles.

We next verify that there is a 1-in-3 truth assignment
for φ iff there exists a minimum side-effect free 4D.

First, assume that µ is a 1-in-3 truth assignment for
φ. Let 4D be the single tuple (0, µ(x1), µ(x2), . . . , µ(xn),
µ(x̄1), µ(x̄2), . . . , µ(x̄n), F ) to be inserted in R. Note that

X2 X3 X4 X5 Y2 Y3 Y4 Y5

R

Rv
K X Y Z

V

0 T F F
0 F T F
0 F F T

1 2 3 2 4 5 1 3 4( ) ( ) ( )x x x x x x x x xφ = ∨ ∨ ∧ ∨ ∨ ∧ ∨ ∨

X1 C

T F T F F T F TF F

K

0 T
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A2 A3 B1 B2A1

F F F TT

K

0 F

B3

Fig. 4. Illustration of the proof of Theorem 6.

V0(D ∪ 4D) remains unchanged. Since µ is a truth
assignment, µ(xi) and µ(x̄i) are complements for each
i ∈ [1, k]. In other words, for each possible renaming
δ of (Xi, Yi, C) into X,Y, Z, πK,X,Y,Z(δ(R)) consists of
tuples t of the form (0, t[X,Y, Z]) with t[X,Y, Z] having
a single T and two F -values. In other words, V1(D ∪
4D) = V ∪ 4V . In addition, there is exactly one T
among the three literals of each clause Cj , and Q2,j

takes all the permutations of the values of these three
literals. Thus, again V2(D ∪ 4D) = V ∪ 4V. That is,
Q(D ∪4D) = V ∪4V and hence 4D is side-effect free.
Furthermore, since no tuples could have been be added
to Rv (due to the key constraints) and 4D consists of a
single tuple, 4D is necessarily minimum.

Conversely, let 4D be a minimum side-effect free
solution such that Q(D ∪ 4D) = V ∪ 4V . Since
(0, F, F, T ) is in Q(D ∪ 4D) and 4D is side-effect free,
we know that 4D consists of a single tuple of the form
(0, a1, a2, . . . , an, b1, b2, . . . , bn, F ). Furthermore, from the
definition of V1 and the fact that Q(D ∪4D) = V ∪4V
we have that the mapping µ(xi) = ai and µ(x̄i) = bi
is a truth assignment for φ. Finally, since Q(D ∪ 4D)
is equal to {(0, T, F, F ), (0, F, T, F ), (0, F, F, T )}, by the
definition of V2, we have that µ is indeed a 1-in-3 truth
assignment for φ. Indeed, otherwise side effects would
occur in Q(D ∪4D).

Remark. From Proposition 5 and Theorem 6 it follows
that any fragment of SPJU that contains both PU and J
is both coNP-hard and NP-hard (lower bound), and is
intractable. Hence such a fragment is in a complexity
class that subsumes NP and coNP (see, e.g., [45] for
details about complexity hierarchies).

Tractability results. The good news is that the problem
is tractable for SP and SU views and for group insertions,
no matter whether these views are key preserving or not.

Theorem 7. The view side-effect problem is in PTIME for
(a) SP views and (b) SU views, both for group insertions.

Proof: The proof is constructive. For each of the
cases we provide a PTIME algorithm which either halts
(indicating that no solution exists) or outputs a solution
for the view side-effect problem. Note that some view
insertions may not be doable, as shown in Example 3.1.

Key preserving SP views. Let D be a source database, Q
a key preserving SP query, and 4V be a group update
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Fig. 5. Illustration of the algorithm of Theorem 7(a).

consisting of insertions only. We may assume that Q is
of the form πB1,...,Bn

(σC(δf (R))) where R is one of the
relations in the schema R. If we denote by A1, . . . , Ak the
primary key attributes of R, then by key preservation,
{A1, . . . , Ak} ⊆ {B1, . . . , Bn}.

For each tuple t ∈ 4V, we define its tuple template
t̂ = (~a,~b, ~z), where ~a = t[A1, . . . , Ak], ~b consists of the
constants in the remaining attributes in t, and z consists
of distinct variables for each remaining attribute in R.

The PTIME algorithm for the view side-effect problem
performs the following steps. We illustrate some of them
in Fig. 5 for the base relation R (with A as its key),
SP view Q = πAB(σC=′′c′′(R)) and for different group
updates 4V1, 4V2 and 4V3.

The algorithm first checks whether4V contains differ-
ent tuples with the same key attributes. If so, then clearly
no solution to the problem exists, and the algorithm
halts. This happens, e.g., for 4V2 in Fig. 5 (the gray
color indicates the conflict; it is impossible to insert two
distinct tuples with the same key e).

Otherwise the algorithm continues to test for each
tuple t ∈ 4V whether there already exists a tuple s in
R with the same key, i.e., whether s[A1, . . . , Ak] = ~a. If
so then t̂ should be equal to s. If one of the ~b attributes
of t differs from those in s, then no solution exists and
the algorithms halts. This happens, e.g., for 4V1 in Fig.
5 (the gray color indicates the conflict).

Moreover, in order to get t inserted into the view, a
necessary condition is that σC(s) holds. If not, then no
solution for the group update can be found and, again,
the algorithm halts. Otherwise, we can safely remove all
t from 4V whose key already appears in R.

Finally, for each remaining tuple t in 4V we need to
instantiate the variables in its template t̂. More specifi-
cally, we need to instantiate these variables such that the
resulting tuple (a tuple to be added to R) satisfies the
selection condition C in Q. Because Q does not contain
joins, we can treat each tuple in 4V independently.

We recall that C is a conjunction of equalities of
the form x = y, where x, y are either attributes or
constants. By plugging in C the constants available in
t̂, i.e., those in ~a and ~b, we obtain a new conjunction
C ′ (with possibly less variables). By constructing a de-
pendency graph G between the constants and variables

in C ′ and computing its transitive closure G′, one can
then easily check whether a desired instantiation of the
variables exists. Indeed, if there exists an edge (a, b) ∈ G′
with a, b two different constants, then no instantiation
exists. We say that C ′ is conflicting. Consequently, in this
case no solution to the view side-effect problem exists
and the algorithm halts. Otherwise, one assigns to all
the variables in the same connected component in G′

the same constant value (i.e., the value of the unique
constant in this component, or an arbitrary one if the
connected component consists of variables only). Vari-
ables not appearing in C can be instantiated arbitrarily.
The resulting tuple is then added to 4D.

The algorithm successfully computes a solution to the
view side-effect problem if for each tuple in4V (modulo
the ones whose key already appeared in R) a tuple is
added to 4D. In all other cases, no solution exists. For
example, in Fig. 5 a solution for 4V3 exists. First, the
tuple in 4V3 is expanded to a template (introducing the
variable z), then this variable is instantiated using the
condition C =“c” of the selection predicate of Q.

We remark that when a solution exists, 4D computed
by the above algorithm is of minimum size. Indeed, for
each new key in4V, a single tuple with this key is added
to 4D. Since Q is key preserving, this is the minimum
number of tuples required for any solution. Moreover, it
is easy to see that this solution is side-effect free.

The algorithm clearly runs in polynomial time.

Arbitrary SP views. Let us now drop the key preservation
condition on the view Q. We use the same approach
as in the key preserving case, except that we do not
have to check for conflicting keys. However, even in
the absence of key preservation, the update to the view
cannot always be performed successfully. As we will
see below, a necessary condition is that the tuples to be
inserted in the view can be extended to tuples in the
base relation satisfying the selection condition C.

Indeed, for each tuple t in 4V to be inserted into
the SP view Q(D), we create a tuple template t̂ =
(t, ~z) where ~z consists of variables for the attributes in
R \ {B1, . . . , Bm}.

We then proceed by checking for each template t̂
whether there exists already tuples s in R such that (i)
t̂ and s agree on the output schema of Q; and (ii) σC(s)
holds. If there exists such a tuple s, then t̂ is set to s, and
we can safely remove t from 4V (it will be in the view).
Otherwise, if σC(s) does not hold or no such s exists,
then we need to instantiate the variables ~z in t̂ in such
a way that for the resulting tuple t0, σC(t0) holds. The
tuples t0 will make up the update 4D to the database.

Testing whether such an instantiation exists can be
done similarly as in the key preserving case above. If
this can be done successfully for each template, then4D
will be a solution to the view side-effect problem. In fact,
this solution does not introduce any side effects. Also,
4D is minimum, because only the necessary tuples are
inserted in D (we use existing tuples where possible).
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The algorithm clearly runs in polynomial time.

Key preserving SU-views. Consider a key preserving SU
query Q =

⋃k
i=1Qi, an instance D of the schema R,

and a group insertion 4V . We assume that each S query
Qi is of form Qi = σCi

(δfi(Rji)). Observe that if there
exists a source insertion 4D that produces 4V , then
there exists a side-effect free solution. Indeed, since Q
does not involve joins one can always trim irrelevant
tuples from the query result by adjusting values in 4D.

The PTIME algorithm first models the view side-effect
problem as a flow network with integer capacity on
each edge, and then computes the maximum flow of the
network in polynomial time. If the value of the maxi-
mum flow equals to |4V |, then we can get a solution to
the view side-effect problem. Otherwise, there exists no
solution for group insertions 4V.

We first model R, Q and 4V as a flow network. The
initial vertex set of the flow network is N = {S, T} ∪
{Ti | ti ∈ 4V } ∪ {ri | Ri ∈ R}, where S is the source
node, T is the sink node, Ti represents a tuple node for
each ti ∈ 4V, and ri represents a relation node for each
relation Ri involved in V. The initial edge set consists of
E = {(S, Ti) | i ∈ [1, k]} ∪ {(ri, T ) | i ∈ [1, n]}, where k is
the size of 4V, n is the size of R, the capacity of edges
(S, Ti) is 1 and that of edge (ri, T ) is ∞.

We next encode 4V. For each tuple t in 4V, we check
for each Qi whether 1) t satisfies the selection condition
Ci in Qi; and 2) whether there exists no tuple in Qi(D)
having conflicting key with t. If both conditions are
satisfied for Qi, the relation Rji in Qi is called a candidate
host for tuple t. If there exists no such a candidate host for
t, the algorithm halts and no solution to the view side-
effect problem exists. If all tuples in group update have
at least one candidate host, then the algorithm continues.

Note, however, that t will not necessarily be inserted
in a candidate host. Indeed, whether or not t will be
inserted into one of its candidate hosts, say Rji , also
depends on whether the possible other insertions (from
4V ) into Rji cause a key violation together with the
insertion incurred by t. The information regarding key
information amongst tuples in their candidate hosts
is modeled in the flow network as follows. For each
candidate host Rji and each t` ∈ 4V, we update the
flow network N . Let ~aji be the tuple consisting of
key attributes of t` in Rji . We distinguish between the
following two cases.

• Case 1: There is no edge of the form (v(~aji), rji),
where v is a vertex with ~aji as its label. We add a new
vertex vnew with ~aji as label into N , and add new edges
(T`, vnew) and (vnew, rji). The capacity of each new edge
is 1, representing that at most one tuple with this key
can be inserted in the host Rji .

• Case 2: There is already an edge of the form (v(~aji), rji),
where v is a vertex with ~aji as its label. This indicates
that some other tuples (conflicting with t` on Rji ) with
the same key attributes ~aji exist. Note that together with
t`, only one such tuple can be inserted into Rji . Thus,

Fig. 6. Illustration of the algorithm of Theorem 7(b).

we add an edge (T`, v) with capacity 1.
These steps complete the construction of flow net-

work. The construction clearly runs in polynomial time.
Below we illustrate the construction. Figure 6 shows
the flow network for base relations Ri(Ai, Bi, Ci, Di),
for i = 1, 2, 3, and SU view V = σC=3(δf1(R1)) ∪
σC=D(δf2(R2)) ∪ σB=C(δf3(R3)), where δfi renames
Ai, Bi, Ci, Di as A,B,C,D for i = 1, 2, 3. The group
update 4V is indicated by the bold rectangle. The gray
shadowed vertexes are added following the rules in case
1 and case 2 and each of them has only one outgoing
edge. As formally shown below, there is a solution for
the insertion of 4V into V iff the value of the maximum
flow of the constructed flow network is |4V |. For this
example, there is a solution 4D that inserts t1, t2, t3, t4
into R3, R1, R2, R2, respectively.

More formally, we show that there is a solution to the
view side-effect problem iff the value of the maximum
flow of the constructed flow network is |4V |. First, we
assume that the maximum flow φ : E → R+ equals |4V |.
By definition, this implies that

∑
(S,Ti)

φ(S, Ti) = |4V |,
or in other words, that φ assigns 1 to every edge starting
from S. By the flow conversation law, i.e., for each
v ∈ N \ {S, T},

∑
(v,w)∈E φ(w, v) =

∑
(v,w)∈E φ(v, w), and

the fact that all other edges (except those adjacent to
T ) have weight 1 assigned to them, this in turn implies
that φ defines a unique path from S to T , one for each
tuple in 4V . Since the in- and outgoing edges from the
key-labeled vertexes have weight 1, these paths do not
share key-labeled vertexes. Thus, form those paths one
can infer the candidate hosts into which to insert each of
the tuples. Indeed, for ti ∈ 4V , one can simply follow
the path (as defined by φ) starting form Ti until the
corresponding host relation is reached.

Conversely, if a side-effect free solution exists, then
there is a 4D such that Q(D ∪ 4D) = V ∪ 4V . Since
the view is key preserving, for any two distinct tuples
t1, t2 ∈ 4V , there are different t′1, t′2 ∈ 4D inserted in
relations R1, R2, which guarantee that t1 and t2 appear
in the view. We distinguish between the following two
cases: (a) R1 and R2 are different relations; and (b) R1

and R2 are the same relation R. For case (a), the construc-
tion of the flow network indicates that starting from S,
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we can reach T1 and T2 through different edges, and then
reach different labeled nodes through different edges;
finally we reach different nodes r1 and r2. For case (b),
the validity of the insertion guarantees that t1 and t2
have different keys on relation R. Thus, we can start
from S and reach T1 and T2 through different edges, and
then reaches different labeled nodes, and finally reach
node r. Since t1, t2 were chosen arbitrarily, this implies
the existence of S to T paths passing through each tuple
node in N . Furthermore, all these paths share no labeled
node and tuple node. This means that there is a feasible
flow with value |4V |.

Since for any flow φ,
∑

(S,Ti)
φ(S, Ti) 6 |4V |, the

maximum flow value is |4V |. From this it follows that
the algorithm is in PTIME.

Arbitrary SU views. Since SU views do not have pro-
jections, they are key preserving. Hence the PTIME
algorithm above also works on arbitrary SU views.

4 THE SOURCE SIDE-EFFECT PROBLEM

In this section we investigate the source side-effect prob-
lem. We study the problem for various key preserving
SPJU views in Section 4.1 for both single-tuple and group
deletions. Insertions are considered in Section 4.2.

4.1 Deletion propagation
Given a view deletion4V, the source side-effect problem
for deletion propagation is to find a smallest set 4D of
source tuples to be deleted so that the tuples in 4V are
removed from the view.

Table 3 gives the complexity of determining the min-
imum 4D for various subclasses of SPJU queries, for
single-tuple and group deletions. Compared to Table 1,
the results tell us that it is already hard to determine
whether there exists 4D to produce 4V , even without
checking whether 4D is side-effect free.

It has been shown that the source side-effect problem
is already NP-hard for single deletions and PJ views [1].
We show that the problem for single deletions becomes
polynomial-time solvable when the key preservation
condition is imposed. This again verifies our observation
that key preservation simplifies the analysis.

Proposition 8. The source side-effect problem is in PTIME
for key preserving SPJ views and single-tuple deletions.

Proof: The PTIME algorithm presented in the proof
of Proposition 1 is already able to compute a minimum
source update 4D. We can therefore use the same algo-
rithm for the source side-effect problem, except that we
do not have to perform the steps for selecting the update
that minimizes the number of view side effects.

However, the problem for group deletions remains
hard. Similar to Theorem 4, we show that the source
side-effect problem is intractable for views defined with
join only and for group deletions. This problem has not
been considered by previous work.

Corollary 9. The source side-effect problem is NP-hard for
key preserving J views and group deletions.

Proof: The proof of Theorem 4 suffices to show this.
Indeed, the reduction given in that proof assures the
minimality of the size of the source updates, and it does
not impose any constraints on the size of side effects.

For JU views, the problem is getting no easier, similar
to its view side-effect counterpart (Corollary 2).

Corollary 10. The source side-effect problem is NP-hard for
key preserving JU views and single-tuple deletions.

Proof: The proof of Corollary 2 is applicable here. Its
reduction [1] concerns only the existence of a smallest
source update that produces view updates.

In contrast, for SPU views the analysis is simpler, com-
parable to its view side-effect counterpart (Corollary 3).

Corollary 11. The source side-effect problem is in PTIME for
SPU views and group deletions.

Proof: The PTIME algorithm given in the proof of
Corollary 3 suffices to find smallest source updates.

4.2 Insertion Propagation
Given a source database D, a query Q, the view V =
Q(D) and a set 4V of tuples, the source side-effect
problem for insertion propagation is to find a smallest
set 4D of tuples such that Q(D∪4D) contains 4V, i.e.,
we want to find a smallest set of tuples to insert into the
source database such that the insertion will get 4V into
the view, regardless of side effects on the view.

For single-tuple and group insertions, the complexity
results for the source side-effect problem are summa-
rized in the Table 4. Compared to its view side-effect
counterpart (Table 2), the source side-effect problem is
relatively easier for insertions since we no longer need
to check whether source insertions are side-effect free.

Intractability results. We first show that like its view
side-effect counterpart (Proposition 5), the source side-
effect problem is intractable for general PJ (and thus
SPJ) views and single-tuple insertions. This tells us that
the source side-effect analysis for insertions is more
intriguing than its deletion counterpart (Proposition 8).

Theorem 12. The source side-effect problem is NP-hard for
PJ views and for single-tuple insertions.

Proof: We prove the NP-hardness by reduction from
the minimum set cover problem (see the proof of The-
orem 4 for the statement of this problem). It is known
that this problem is NP-complete [44].

Given S and C, we define an instance of the source
side-effect problem. Let S = {xi | i ∈ [1, n]} and C =
{cj | j ∈ [1, k]}. We construct a source database D, a PJ-
query Q, the view V = Q(D), and a single tuple 4V to
be inserted into V. We show that we can find a minimum
cover C ′ of S iff there exists a smallest set 4D of tuples
such that Q(D ∪4D) contains 4V.



12

Base relations. We define k+ 2 relations, including RiS for
i ∈ [1, k + 1] and a relation RC .

• RiS(IS , IC), for i ∈ [1, k + 1], where IS and IC range
over [1, n] and [1, k], respectively. Initially, (i, j) is in D
iff xi ∈ cj , i.e., (i, j) indicates whether or not the element
xi of S is in the subset cj in the collection C. As will
be seen shortly, we keep k + 1 copies of the RiS(IS , IC)
relation to prevent insertions into any of these relations.

• RC(IC) is to hold the elements of C to be picked for
covering S. In other words, RC(IC) is to represent a
cover C ′ (after it is picked) such that (j) is in D iff
cj ∈ C ′, for j ∈ [1, k]. Initially RC in D is empty, i.e.,
no element of C is picked yet.

View. We define a PJ view Q = δf1(Q′) ./ · · · ./ δfn(Q′),
where Q′ is πIS (R1

S ./ R2
S ./ · · · ./ Rk+1

S ./ RC), and
δfi renames IS to a distinct name IiS in order to conduct
cross product (rather than natural join). A tuple in the
view is a n-vector (a1, . . . , an), where ai ∈ [1, n]. Initially,
V = Q(D) is empty. Note that Q is not key preserving.

View insertion. The tuple 4V is (1, . . . , n). It is to force a
cover C ′ to be picked, i.e., every element xi in S is to be
covered by some subset cj in C ′.

An example to illustrate the reduction can be found
toward the end of the proof.

We show that this is indeed a reduction. First, assume
that C ′ is a minimum cover of S. Then we construct
source tuples 4D such that (j) is inserted into RC(IC)
iff cj ∈ C ′. Obviously, 4V ∈ Q(D ∪ 4D) since C ′

is a cover, and moreover, 4D is minimum since C ′ is
minimum. Note that, however,4D is not side-effect free:
Q(D ∪ 4D) contains all permutations of (1, . . . , n). But
side effects are not the concern of the source side-effect
problem.

Conversely, suppose that there is a smallest 4D such
that 4V ∈ Q(D ∪ 4D). Note that 4D consists of
insertions to RC(IC) only. Indeed, if one wants to insert
tuples into RiS(IS , IC), for some i ∈ [1, k+ 1], in order to
add a tuple to the view, the same insertions always have
to be performed to all k + 1 source relations RiS(IS , IC).
The minimum solution consists of maximal k updates.

Given the minimum update 4D to RC(IC), we define
a set C ′ such that cj is in C ′ iff (j) is in RC(IC) in 4D.
Since (1, . . . , n) is in Q(D ∪4D), from the definition of
Q it follows that 4D consists of (j)’s such that for any
i ∈ [1, k], there exists (i, j) ∈ RS(IS , IC). Thus C ′ is a
cover of S. In addition, C ′ is a minimum cover since
4D is minimum. That is, C ′ is a minimum cover of S.

Finally, we present an example to illustrate the reduc-
tion. Consider S = {a, b, c, d} and C = {c1 = {a, b}, c2 =
{a, d}, c3 = {b, c}, c4 = {b, c, d}}. Figure 7 illustrates
the reduction: the tuple inserted into the view and the
tuples to be inserted into RC are indicated by the bold
rectangles. Tuples in RC determine which sets in C
are considered to be in a (minimum) cover of S. The
colors represent the two elements in C, c1 = {a, b} and

Fig. 7. Illustration of the proof of Theorem 12.

c4 = {b, c, d}, selected by the insertion of (1) and (4)
in RC . It can be seen that the intermediate relation Q′

contains all elements in S, which implies that {c1, c4}
form a cover of S. The insertion of these two elements
in RC is forced by the insertion of (1, 2, 3, 4) in the view.
As explained below, k + 1 copies of RS are needed to
prevent an insertion in those base relations (as updates
to one relation will cause an update in all k + 1).

The problem is no easier for JU views and group
insertions, even when the views are key preserving.

Theorem 13. The source side-effect problem is NP-hard for
key preserving JU views and group insertions.

Proof: We show this by reduction from the hitting-
set problem. An instance of that problem consists of a
collection C of subsets of a finite set S; it is to find a
minimum subset X of S such that X ∩ ci 6= ∅ for all
ci ∈ C. The problem is NP-complete (cf. [44]).

Given S and C, we define an instance of the source
side-effect problem. Let S = {xi | i ∈ [1, n]} and C =
{cj | j ∈ [1, k]}. We construct a source database D, a key-
preserving JU query Q, the view V = Q(D), and a group
insertion 4V . We show that we can find a minimum
hitting set X of S iff there exists a minimum set 4D
such that Q(D ∪4D) ⊇ V ∪4V.

Base relations. For each xi ∈ S (i ∈ [1, n]), we define two
relations R(i,1)(Ai, Bi) and R(i,2)(Bi, Di) as follows.

• R(i,1)(Ai, Bi), where Ai is the key, and Ai, Bi range
over [1, k] and {T, F}, respectively. Intuitively, a tuple in
R(i,1) indicates whether or not xi belongs to a subset of
C. Initially, (j, F ) is in R(i,1) iff xi /∈ cj .
• R(i,2)(Bi, Di), where Di is the key, and Bi, Di range
over {T, F} and [0, k], respectively. Intuitively, a tuple
in R(i,2) indicates whether or not xi is included in the
hitting-set. Initially, R(i,2) is empty.

View. We define a JU query Q = δf1(Q1) ∪ · · · ∪ δfn(Qn)
where Qi = R(i,1)(Ai, Bi) ./ R(i,2)(Bi, Di) and δfi re-
names Ai, Bi, Di as A,B,D respectively. Initially, V =
Q(D) = ∅. Intuitively, a tuple in the view is a triple
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Fig. 8. Illustration of the proof of Theorem 13.

(j, b, x), indicating whether at least one element of cj is
covered by the hitting set.

View Insertions. The set 4V is {(j, T, 0) | j ∈ [1, k]}.
The construction is illustrated in Fig. 8 for S =

{a, b, c, d} and C = {c1 = {a, b}, c2 = {a, d}, c3 =
{b, c}, c4 = {b, c, d}}. The tuples inserted into the view
and the tuples to be inserted into D are indicated by
the bold rectangles. As will be seen shortly, 4D in this
example corresponds to a hitting-set X = {a, b} of C.

We next show the correctness of the reduction. We first
make the following crucial observation: for any source
insertion 4D, if V ∪ 4V ⊆ Q(D ∪ 4D), then |4D| ≥
k + h, where h is the size of minimum hitting-set of C.
To show this, we consider an index set I = {i | i ∈ [1, n],
tuple (T, 0) is inserted into R(i,2), R(i,1) accepts at least
one tuple from 4D}. Tuples inserted into R(j,1) or R(j,2)

(j 6∈ I) are redundant, because they never generate any
tuple in the view. Moreover, since Q(D ∪ 4D) contains
4V , for each j ∈ [1, k], (j, T ) must be inserted into some
R(i,1) with i ∈ I . This means that each cj must contain
an element xi with i ∈ I , which results in a hitting set
{xi | i ∈ I} of C. Putting these together, |4D| ≥ k+ |I| ≥
k + h.

We next continue with verifying the correctness of the
reduction. First, assume that X is a minimum hitting-
set of C. We then construct a set of source tuples 4D
such that Q(D ∪4D) ⊇ V ∪4V and |4D| is minimum.
Let cj ∈ C and take one xi from cj ∩ X that is not
empty. Then we insert (j, T ) into relation R(i,1) and insert
(T, 0) into R(i,2). Note that by the keys, only one inser-
tion can succeed. Hence the total number of successful
insertions of (T, 0) into D will never exceed |X| = h.
As a consequence, (j, T, 0) belongs to Q(D∪4D). Thus,
Q(D ∪4D) ⊇ V ∪4V and |4D| ≤ k+ h. Together with
the observation above, we see that |4D| is minimum.

Conversely, assume that 4D is a minimum set such
that Q(D ∪ 4D) ⊇ V ∪ 4V . We construct a minimum
hitting-set X of C. Let I = {i |some tuple in 4D is
inserted into relation R(i,1)}. Since |4D| is minimum,
there are no redundant insertions and thus (T, 0) must
be inserted into R(i,2) for all i ∈ I . Similarly, since
Q(D∪4D) ⊇ 4V, we have that for each j ∈ [1, k], (j, T )
is inserted into D exactly once (into some relation R(i,1)

with i ∈ I). Thus, X = {xi | i ∈ I} is a hitting-set of
C and |4D| = k + |I| = k + |X|. If there exists another
hitting-set X ′ such that |X ′| < |X|, we can use the con-
struction method previously described to find a solution
4D′ such that |4D′| ≤ k+ |X ′| < k+ |X| = |4D|, which
contradicts the assumption that 4D is minimum.

The problem for PU views is as hard as for JU views.

Theorem 14. The source side-effect problem is NP-hard for
key preserving PU views and group insertions.

Proof: We prove this by reduction from the 1-in-3
3SAT problem. We refer to the proof of Theorem 6 for
the statement of the 1-in-3 3SAT problem.

Given an instance φ of the 1-in-3 3SAT problem, we
define a source database D, a key preserving PU query
Q, and a set 4V of tuples to be inserted into the view
V = Q(D) such that φ is 1-in-3 satisfiable iff there exists
a (minimum) source insertion 4D such that V ∪ 4V ⊆
Q(D∪4D). The reduction is similar to the one given in
the proof of Theorem 6.

Base relations. The database D consists of one relation
R(K,X1, . . . , Xk, Y1, . . . , Yk, C1, . . . , Cn+k,W ), where K
is the key, the attributes Xi and Yi range over {T, F}
for i ∈ [1, k], Cj ranges over [1, n+k] for all j ∈ [1, n+k],
and W is in {F}. Intuitively, Xi, Yi(1 ≤ i ≤ k) encode
the truth value of xi and its negation, respectively. We
use Cn+i together with W to determine whether a truth
assignment is valid, i.e., whether only one of Xi and Yi
is T . We use Cj (1 ≤ j ≤ n) to check whether clause cj
is satisfied by the truth assignment. Initially, D is empty.

View. We define a key preserving PU query Q = V1 ∪V2.

• V1 = ∪ki=1V1,i, where
V1,i = ∪δ∈λ(Xi,Yi,W )πK,X,Y,Z,C(δn+i(δ(R))),

where λ(Xi, Yi,W ) is the set of all (bijective) renaming
of Xi, Yi,W as X,Y, Z, and δn+i renames Cn+i as C.
Intuitively, renaming in λ(Xi, Yi,W ) enumerates permu-
tations of Xi, Yi and W . The query V1 is used to verify
whether tuples in R define a valid truth assignment.
Initially, V1(D) = ∅.
• V2 =

⋃n
i=1 V2,i, where each V2,i is defined according to

the clause Ci of φ. Suppose that Ci = `i1 ∨ `i2 ∨ `i3 . If
`ij = xs for some s ∈ [1, k] then let Aij = Xs; if `ij = x̄s
then let Aij = Ys. We then define

V2,i =
⋃
δ∈λ(Ai1

,Ai2
,Ai3

)πK,X,Y,Z,C(δi(δ(R))),

where as before, λ(Ai1 , Ai2 , Ai3) is the set of all (bijective)
renaming of Ai1 , Ai2 , Ai3 as X,Y, Z, and δi renames Ci
as C. Intuitively, V2,i introduces a tuple into V iff clause
ci is 1-in-3 satisfied by the truth assignment encoded by
a tuple of D. Initially, V2(D) = ∅.

View updates. Let 4V = {(0, τ, j) | τ = (τ [X], τ [Y ], τ [Z]),
τ is a permutation of (T, F, F ), j ∈ [1, n+ k]}.

We next verify the correctness of the reduction. First,
assume that µ is a 1-in-3 truth assignment for φ. Let 4D
be the tuple
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(0, µ(x1), . . . , µ(xk), µ̄(x1), . . . , µ̄(xk), 1, . . . , n+ k, F ).

By the view definition and the fact that µ is a truth
assignment, we have that V1(4D) is the set {(0, τ, j) |
τ = (τ [X], τ [Y ], τ [Z]) is a permutation of (T, F, F ), j ∈
[n + 1, n + k]}. Similarly, we have that V2(4D) is the
set {(0, τ, j) | τ = (τ [X], τ [Y ], τ [Z]) is a permutation of
(T, F, F ), j ∈ [1, n]}. Hence, Q(D ∪4D) = V ∪4V.

Conversely, assume that there exists a (minimum)
source insertion 4D such that V ∪ 4V = 4V ⊆
Q(4D) = Q(D∪4D). Since the tuple (0, T, F, F, 1) ∈ 4V
is inserted into the view, R has key attribute K, and Q
is key preserving, one can see that 4D must contain
a unique tuple t with t[K] = 0. Since all other tuples
in 4V share this key value, t is the only tuple in 4D
contributing to 4V. We can therefore assume that 4D
consists of the single tuple t. By the definition of V, each
Vi,j can only insert exactly one set of tuples into the
view, where the set is of the form {(0, τ, g(i, j)) | τ is
a permutation of (T, F, F )}, and g(i, j) is the value of
t[Cn+j ] when i = 1 and it is t[Cj ] when i = 2. Since we
know that there are precisely n+k such sets in 4V, and
there are precisely n+ k sub-queries Vi,j , each mapping
g(i, j) must be a bijection. That is, g : Vi,j → [1, n+ k] is
a bijection, where g(1, j) = t[Cn+j ] and g(2, j) = t[Cj ].

We use the mapping g to define a truth assignment
of x1, . . . , xk. For arbitrary xi, (0, T, F, F, g(1, i)) is in-
serted into V through a subquery V1,i. By the definition
of V1,i, we can conclude that {t[Xi], t[Yi]} = {T, F}.
Hence, a truth assignment for φ is defined by µ(x1) =
t[X1], . . . , µ(xk) = t[Xk]. Next, we verify that this as-
signment is a 1-in-3 truth assignment of φ. Consider
an arbitrary clause Ci of φ. Since (0, T, F, F, g(2, i)) is
inserted into V through subquery V2,i, by the definition
of V2,i, we know that there is exactly one T among the
truth values of the three literals in the clause. Hence, µ
is indeed a 1-in-3 truth assignment.

Tractability results. We next identify some polynomial-
time solvable subclasses. As in the view side-effect anal-
ysis (Theorem 7), SP views and SU views behave well.
In contrast to their view side-effect counterparts (Propo-
sition 5), the source side-effect analyses of SJ views and
key preserving SPJ views also become simpler.

The result below also tells us that the source side-effect
problem is in PTIME for SJ views and group insertions.
In contrast, for group deletions the problem is NP-hard
for any views defined with join operations, no matter
whether they are key preserving or not (Corollary 9).

Theorem 15. The source side-effect problem is in PTIME
for (a) SP views, (b) SU views, (c) SJ views, and (d) key
preserving SPJ views, for group insertions.

Proof: The PTIME algorithms for cases (a) and (b) are
similar to those of the view side-effect problem given in
the proof of Theorem 7. In fact, the algorithms provided
there return solutions for the source side-effect problem.
We therefore concentrate on cases (c) and (d). These cases

requires a bit more effort (recall that the view side-effect
problem for these cases is intractable, by Proposition 5).

SJ views. Consider an SJ query Q = σC(δf1(R1) ./ · · · ./
δfk(Rk)). A PTIME algorithm is given as follows.

Because Q does not contain any projection, we can
derive for each tuple t in 4V and for each relation Ri
(i ∈ [1, k]) in Q a candidate insert tuple t̂i = (~ai,~bi) over
the attributes of Ri, where ~ai corresponds to the key
attributes of Ri. We then check for each t ∈ 4V whether
(δf1(t̂1) ./ · · · ./ δfk(t̂k)) satisfies the selection condition
C. If not, then no solution exists and the algorithm halts.
Otherwise, we check for each t̂i whether there exists
already a tuple si in Ri having the same key ~ai. If this is
the case, t̂i should be equal to si. If there exists a tuple t̂i
for which this does not hold, then no solution exists and
the algorithm stops. Otherwise, the algorithm continues.

Denote by 4Ri the set of tuples t̂i for which no tuple
in Ri exists with the same key. We finally check whether
4Ri contains distinct tuples having the same key. If such
tuples exists, no solution can be found and the algorithm
halts. Otherwise, we define 4D to be {4R1, . . . ,4Rk}.

We remark that 4D is the minimum solution. Indeed,
in each instance Ri, the number of tuples inserted into D
is the same as the number of new keys for Ri present in
4V . This is the minimum requirement for any solution.

The algorithm clearly runs in polynomial time.

Key preserving SPJ views. Consider a key preserving SPJ
query Q = πB1,...,Bm

σC(δf1(R1) ./ · · · ./ δfk(Rk)).
As before, for each tuple t in 4V and each relation Ri

in Q, we associate a template t̂i = (~ai,~bi, ~zi).
The PTIME algorithm first checks for incompati-

ble templates. More specifically, the algorithm checks
whether (i) there are no two different templates with
the same key; and (ii) no template t̂i with the same key
as an existing tuple si in Ri, but which differs from si
in another attribute. If no incompatible templates are
found, then the algorithm continues.

If no conflicts are found, we define4Ri to be the set of
templates t̂i which have no matching tuple si in Ri. We
instantiate the variables in these templates as follows.
For each tuple t in 4V , we compute a conjunctive
formula φt representing the selection and join conditions
to hold on t̂1∧t̂2∧· · ·∧t̂k, such that it will generate t in the
view. The formula φt consists of conjuncts of equations
of the form x = y, where x and y are either variables
or constants in t̂i, for i ∈ [1, k]. We group together all
conjuncts φt into a single conjunction Φ = ∧t∈4V φt,
and check whether there exists an instantiation of the
variables that satisfies Φ, using a method similar to the
one given for case (a) in the proof of Theorem 7.

The algorithm is illustrated in Fig. 9 for the base
relations R1, R2, R3, with keys A, C and D, respectively,
the key preserving SPJ view Q = πACD(σA=E(R1 ./
R2 ./ R3)), and view update 4V . We also depict the
templates for each tuple in 4V. For example, we show Φ
and a possible instantiation of the variables. The updated
view is shown on the bottom right. In this case no side
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Fig. 9. Illustration of the algorithm of Theorem 15(d).

effects were created (while in general, side effect may be
inevitable).

Since we are not concerned about the size of the side
effects, we do not have to take into account constraints
regarding existing constants in the database (this is in
contrast to the coNP-hardness proof of Proposition 5).
Hence, if an instantiation exists, we can convert the
templates into tuples that populate the update set 4Ri.
Finally, we define 4D = {4R1, . . . ,4Rk}.

Obviously, 4D is a solution. It is also minimum.
Indeed, at most a single tuple for each new key in
tuples in 4V is added, a necessary requirement for any
solution.

As opposed to Proposition 5 and Theorem 6, we show
that the source side-effect problem is tractable for SPU
and SJU views for single-tuple insertions. Putting these
together with Theorems 13 and 14, we can see that group
insertions complicate the source side-effect analysis.

Corollary 16. The source side-effect problem is in PTIME for
(a) SPU views and (b) SJU views, for single-tuple insertions.

Proof: (a) SPU views. Consider an SPU query Q =⋃k
i=1 πB1,...,Bm(σCi(δfi(Ri))), a database D, the view

Q(D), and view update 4V consisting of a single tuple
t. We present a PTIME algorithm that, given Q, D, Q(D)
and 4V , computes a minimum 4D to produce 4V .

The algorithm first checks whether the only tuple t in
4V is already present in the view V = Q(D). If yes, then
4D = ∅. Otherwise, the algorithm proceeds as follows.

For i ∈ [1, k], we invoke the PTIME algorithm for SP
views given in the proof of Theorem 15 to check whether
or not t can be inserted into πB1,...,Bm

(σCi
(δfi(Ri))), by

inserting a source tuple 4Di into base relation Ri. If the
answer is yes for some i ∈ [1, k], then it inserts a single
tuple 4Di into the relation Ri. Otherwise, t cannot be
inserted into V. Obviously, the algorithm is in PTIME,
and 4D contains at most one tuple (thus minimum).

(b) SJU views. Similarly, one can develop a PTIME algo-
rithm to handle SJU views and single-tuple insertions.
The algorithm leverages the PTIME algorithm for SJ
views (Theorem 15), along the same lines as above.

Finally, we show that single-tuple insertions and key
preservation taken together make our lives much easier.
Contrast this with Proposition 5, which shows that the
view side-effect is intractable for (key preserving) views
defined with join alone and single-tuple insertions.

Corollary 17. The source side-effect problem is in PTIME for
key preserving SPJU views, for single-tuple insertions.

Proof: There exists a PTIME algorithm that, given
a key preserving SPJU query Q, a database D, the view
Q(D), and view update 4V with a single tuple as input,
computes a minimum 4D to produce 4V , if it exists.
The algorithm is similar to the one for SPU views given
in the proof of Corollary 16. Indeed, the only difference
between the two is that here we invoke the PTIME
algorithm for key preserving SPJ views (Theorem 15) for
single insertions, rather than the one for SP views.

5 THE ANNOTATION PLACEMENT PROBLEM

In this section we investigate the annotation placement
problem. Given a single location (field) l in a view tuple
4V, a source database D, an SPJU query Q and the view
V = Q(D), the problem is to identify a single field l′ in
a single tuple 4D such that (a) if the value of the field l
of 4V is changed to a, then so is the field l′ of 4D, and
(b) the change a to l′ is propagated to a smallest number
of fields in the view. As stated in Section 1, this problem
studies how an annotation attached to a location in the
view is propagated backward to the source data.

In contrast to the view side-effect problem and the
source side-effect problem (Sections 3 and 4), we do not
need to consider group updates or insertions for the
annotation placement problem. As a consequence this
section presents a single result: the annotation placement
problem is in PTIME for all subclasses of key preserving
SPJU views. In contrast, it was shown in [1] that the
problem is NP-hard for general PJ views, and it is in
PTIME for SJU and SPU views.

Theorem 18. The annotation placement problem is in PTIME
for any subclass of key preserving SPJU views.

Proof: It suffices to prove it for key preserving SPJU
views. Let R = {R1, . . . , Rn} be a relational schema, D
an instance of R, and Q = ∪ki=1Qi an SPJU query, where
Qi = πA1,...,Am

(σCi
(δfi1 (Ri1) ./ · · · ./ δfini

(Rini
)). We

use (V, t, Al) to denote a location in the view, i.e., an
annotation is attached to the Al attribute of tuple t ∈ V
(= Q(D)). We develop a PTIME algorithm that, given
D, Q, Q(D) and (V, t, Al) as input, finds a single tuple
4D in D and a single location (D,4D,Bl) in 4D such
that an annotation in this field of 4D propagates to a
smallest number of tuples in V including (V, t, Al).
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We first show how we process each SPJ subquery Qi,
i ∈ [1, k]. We decompose t into ti1 , . . . , tini

based on
Qi, where tij is the attribute value vector (including
key attributes) associated with the relation Rij . Utilizing
the key preservation condition, the algorithm checks
whether the following conditions are satisfied: (a) there
is a tuple t′ij ∈ Rij (unique if exists) with the same key-
attribute values as tij on Rij for each j ∈ [1, ni], (b)
t′ = t′i1 ./ · · · ./ t

′
ini

satisfies the selection condition Ci,
and (c) t = πA1,...,Am

(t′). If not, we know that t cannot be
generated by subquery Qi and thus4Di = ∅. Otherwise,
for each tij , if it contains attribute Bl and an annotation
on Bl can be propagated to the specified field Al in t,
we check the other tuples in the entire view Q(D) to
compute the side effects generated by annotating Bl of
tij . After processing all tij , j ∈ [1, ni], we can find the
location with the minimum side effects for annotating a
tuple in Qi(D), as well as its side effects Si on the entire
view Q(D), where Si is the set of view locations affected
by annotating Bl. This can be done in PTIME.

By processing each Qi as above, we find 4Di and Si
for all i ∈ [1, k]. We pick a nonempty 4Dj such that Sj
is minimum among all Si’s with nonempty 4Di. Then
4Dj is the location with minimum side effects.

6 CONCLUSION

We have identified a practical condition, namely, the key
preservation condition, which simplifies the propagation
analysis of annotations. For key preserving views, we
have shown that the annotation placement problem is
tractable for all subclasses of SPJU queries, and that the
view and source side-effect problems are in PTIME for
SPJ views and single-tuple deletions, as opposed to NP-
hard for general SPJ views [1], [13]. We have also investi-
gated the impact of group updates on the complexity of
the propagation analysis, and shown that group updates
complicate the analysis: for group deletions the view
and source side-effect problems become NP-hard for all
subclasses of key preserving SPJU views that involve join
operation. In addition, we have established the first com-
plexity results for the analysis of view insertions for SPJU
views, key preserving or not. These provide a complete
picture of the complexity (intractability and tractability)
of the annotation propagation analysis, which is useful
in both data provenance and view-update processing.

We are currently studying approximation (heuris-
tic) algorithms for conducting the propagation analy-
sis when the associated problems are intractable. We
also plan to identify other practical conditions on view
definitions such that the analysis can be performed
efficiently. Finally, we only considered lower bounds for
the intractable cases. The identification of upper bounds
is left for future work.
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