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Abstract— This paper introduces a new approach for conflict
resolution: given a set of tuples pertaining to the same entity,
it is to identify a single tuple in which each attribute has the
latest and consistent value in the set. This problem is important
in data integration, data cleaning and query answering. It is,
however, challenging since in practice, reliable timestamps are
often absent, among other things. We propose a model for
conflict resolution, by specifying data currency in terms of partial
currency orders and currency constraints, and by enforcing data
consistency with constant conditional functional dependencies.
We show that identifying data currency orders helps us repair
inconsistent data, and vice versa. We investigate a number of
fundamental problems associated with conflict resolution, and
establish their complexity. In addition, we introduce a framework
and develop algorithms for conflict resolution, by integrating data
currency and consistency inferences into a single process, and by
interacting with users. We experimentally verify the accuracy
and efficiency of our methods using real-life and synthetic data.

I. INTRODUCTION

Conflict resolution is the process that, given a set It of
tuples pertaining to the same entity, fuses the tuples into a
single tuple and resolves conflicts among the tuples of It [10].
Traditional work resolves conflicts typically by taking, e.g., the
max,min, avg, any of attribute values (see [4] for a survey).

We study a new approach for conflict resolution, by high-
lighting both data currency and data consistency. Given It, it is
to identify a single tuple in which each attribute has consistent
and the most current value taken from It, referred to as the
true values of the entity relative to It. The need for studying
this problem is evident in data integration, where conflicts
often emerge from values from different sources. It is also
common to find multiple values of the same entity residing in a
database. While these values were once correct, i.e., they were
the true values of the entity at some time, some of them may
have become stale and thus inconsistent. Indeed, it is estimated
that in a customer database, about 50% of the records may
become obsolete within two years [11]. With these comes the
need for resolving conflicts for, e.g., data fusion [4], [10], data
cleaning [1] and query answering with current values [15].

No matter how important, the problem is rather challeng-
ing. Indeed, it is already highly nontrivial to find consistent
values for an entity [1], [7]. Moreover, it is hard to identify
the most current entity values [15] since in the real world,
reliable timestamps are often absent [23], [28]. Add to this
the complication that when resolving conflicts one has to find
the entity values that are both consistent and most current.

Example 1: The photo in Fig. 1 is known as “V-J Day in

Times Square”. The nurse and sailor in the photo have been
identified as Edith Shain and George Mendonça, respectively,
and their information is collected in sets E1 and E2 of tuples,
respectively, shown in Fig. 2.

We want to find the true values of these entities, i.e., a
tuple t1 for Edith (resp. a tuple t2 for George) such that the
tuple has the most current and consistent attribute values for
her (resp. his) status, job, the number of kids, city, AC (area
code), zip and county in E1 (resp. E2). However, the values
in E1 (E2) have conflicts, and worse still, they do not carry
timestamps. They do not tell us, for instance, whether Edith
still lives in NY, or even whether she is still alive. �

The situation is bad, but not hopeless. We can often deduce
certain currency orders from the semantics of the data. In addi-
tion, dependencies such as conditional functional dependencies
(CFDs) [13] have proven useful in improving the consistency
of the data. Better still, data currency and consistency interact
with each other. When they are taken together, we can often
infer some true values from inconsistent tuples, even in the
absence of timestamps, as illustrated below.

Example 2: From the semantics of the data, we can deduce
the currency constraints and CFDs shown in Fig. 3.

(1) Currency constraints. We know that for each person, status
only changes from working to retired and from retired to
deceased, but not from deceased to working or retired. These
can be expressed as ϕ1 and ϕ2 given in Fig. 3, referred to
as currency constraints. Here t1 ≺status t2 denotes a partial
currency order on the attribute status, indicating that t2 is more
current than t1 in attribute status. Similarly, we know that job
can only change from sailor to veteran but not the other way
around. We can express this as currency constraint ϕ3, shown
in Fig. 3. Moreover, the number of kids typically increases
monotonically. We can express this as ϕ4, assuring that t2 is
more current than t1 in attribute kids if t1[kids] < t2[kids].

In addition, we know that for each person, if tuple t2 is
more current than t1 in attribute status, then t2 is also more
current than t1 in job, AC and zip. Furthermore, if t2 is more
current than t1 in attributes city and zip, it also has a more
current county than t1. These can be expressed as ϕ5–ϕ8.

(2) Constant CFDs. In the US, if the AC is 213 (resp. 212),
then the city must be LA (resp. NY). These are expressed as
conditional functional dependencies ψ1 and ψ2 in Fig. 3.

We can apply these constraints to E1 in Fig. 2, to improve
the currency and consistency of the data. By interleaving
inferences of data currency and consistency, we can actually
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Fig. 1. V-J Day

name status job kids city AC zip county

E1 r1: Edith Shain working nurse 0 NY 212 10036 Manhattan
r2: Edith Shain retired n/a 3 SFC 415 94924 Dogtown
r3: Edith Shain deceased n/a null LA 213 90058 Vermont

E2 r4: George Mendonça working sailor 0 Newport 401 02840 Rhode Island
r5: George Mendonça retired veteran 2 NY 212 12404 Accord
r6: George Mendonça unemployed n/a 2 Chicago 312 60653 Bronzeville

Fig. 2. Instances E1 for entity Edith and E2 for George

Currency constraints: ϕ1: ∀t1, t2 (t1[status] = “working” ∧ t2[status] = “retired” → t1 ≺status t2)
ϕ2: ∀t1, t2 (t1[status] = “retired” ∧ t2[status] = “deceased” → t1 ≺status t2)
ϕ3: ∀t1, t2 (t1[job] = “sailor” ∧ t2[job] = “veteran” → t1 ≺job t2)
ϕ4: ∀t1, t2 (t1[kids] < t2[kids] → t1 ≺kids t2) ϕ5: ∀t1, t2 (t1 ≺status t2 → t1 ≺job t2)
ϕ6: ∀t1, t2 (t1 ≺status t2 → t1 ≺AC t2) ϕ7: ∀t1, t2 (t1 ≺status t2 → t1 ≺zip t2)
ϕ8: ∀t1, t2 (t1 ≺city t2 ∧ t1 ≺zip t2 → t1 ≺county t2)

Constant CFDs: ψ1 : (AC = 213 → city = LA); ψ2 : (AC = 212 → city = NY);

Fig. 3. Currency constraints and constant CFDs

identify the true values of entity Edith, as follows:

(a) from the currency constraints ϕ1 and ϕ2, we can conclude
that her latest status is deceased;

(b) similarly, by ϕ4, we find that her true kids value is 3
(assuming null < k for any number k);

(c) from (a) above and ϕ5–ϕ7, we know that her latest job,
AC and zip are n/a, 213 and 90058, respectively;

(d) after currency inferences (a) and (c), we can apply the
CFD ψ1 and find her latest city as LA; and

(e) after the consistency inference (d), from (c) and (d) we
get her latest county as Vermont, by applying ϕ8.

Now we have identified a single tuple t1 = (Edith Shain,
deceased, n/a, 3, LA, 213, 90085, Vermont) as the true values
of Edith in E1 (the address is for her cemetery). �

This example suggests the following. (1) Data currency and
consistency should be interleaved when resolving conflicts.
Indeed, not only deducing currency orders helps us improve
the consistency (e.g., from steps (a), (c) to (d)), but data
consistency inferences also help us identify the most current
values (e.g., step (e) is doable only after (d)). (2) Both data
currency and consistency can be specified with constraints,
and hence, can be processed in a uniform logical framework.

While the need for deducing the consistent and most current
values has been advocated for conflict resolution [10], [22],
prior work typically assumes the availability of timestamps.
Previous work on data quality focuses on either data consis-
tency (e.g., [1], [7], [13], [26]) or data currency (e.g., [15]).
However, no models or algorithms are yet in place to combine
data consistency and currency for conflict resolution.

Contributions. We propose to study conflict resolution by
inferring both data currency and data consistency.
(1) We propose a model for conflict resolution (Section II).
We specify data currency in terms of (a) partial currency
orders denoting available (yet possibly incomplete) temporal
information on the data, and (b) simple currency constraints,
to express currency relationships derived from the semantics
of the data. Data consistency is specified in terms of constant
CFDs [13] on the latest values of the data. Given such a
specification Se on a set E of tuples pertaining to the same
entity e, we aim to derive the true values of e from Se.
(2) We introduce a framework for conflict resolution (Section
III). One may find some true values of an entity from a

specification of an entity, but not all, as illustrated below.

Example 3: Consider the set E2 of tuples for entity George
Mendonça (Fig. 2). Along the same lines as Example 2, we
find that its true (name, kids) values are (George Mendonça,
2). However, we do not have sufficient information to infer
the true values of the other attributes. �

In light of this, our framework automatically derives as
many true values as possible from a given specification Se

of an entity e, identifies attributes for which the true values of
e are not derivable from Se, and interacts with users to solicit
additional input for those attributes, so that all the true values
of e can be derived from Se and users’ input.
(3) We study problems fundamental to conflict resolution
(Section IV). Given a specification Se, we determine whether
partial currency orders, currency constraints and CFDs in Se

have conflicts among themselves? Whether some other curren-
cy orders are implied by Se? Whether true values of an entity
can be derived from Se? If not, what additional minimum
currency information has to be provided so that the true values
are derivable? We establish their complexity bounds, ranging
from NP-complete and coNP-complete to Σp

2-complete. These
results reveal the complexity inherent to conflict resolution.
(4) We develop several practical algorithms (Section V). We
propose methods for finding (a) whether a specification Se

has conflicts, (b) what true values can be derived from Se,
and (c) a minimum set of attributes that require users’ input
to find their true values. All these problems are intractable; in
particular, the last problem is Σp

2-complete. Nevertheless, we
provide efficient heuristic algorithms, by integrating inferences
of data consistency and currency into a single process.
(5) We evaluate the accuracy and efficiency of our method
using real-life and synthetic data (Section VI). We find that
unifying currency and consistency substantially improves the
accuracy of traditional methods, by 201% (F-measure).

We contend that this work provides fundamental results for
conflict resolution, and proposes a practical solution via data
currency and consistency in the absence of timestamps.

Related work. Conflict resolution has been studied for
decades, started from [8]. It aims to combine data from
different sources into a single representation (see [4], [10] for
surveys). In that context, inconsistencies are typically resolved
by selecting the max,min, avg, any value [4]. While the need
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for current values was also observed there [10], [22], they are
identified only by using timestamps. This work differs from
the traditional work in the following. (1) We revise the conflict
resolution problem to identify values of entities that are both
consistent and most current. (2) We do not assume the avail-
ability of timestamps, which are often missing in practice [28].
(3) We resolve conflicts by using currency constraints and
CFDs [1], [7], [13], instead of picking max,min, avg or any

value. (4) We employ automated reasoning to identify true
values by unifying the inferences of currency and consistency.

There has been work on truth discovery from data sources
[9], [18], [27]. Their approaches include (1) vote counting
and probabilistic computation based on the trustworthiness
of data sources [18], [27]; (2) source dependencies to find
copy relationships and reliable sources [9]; and (3) employing
lineage information and probabilities [25]. In contrast, we
assume no information about the accuracy of data sources, but
derive true values based on data currency and consistency. In
addition, we adopt a logical approach via automated reasoning
about constraints, as opposed to probabilistic computation.
This work is complementary to the previous work.

This work extends [13], [15]. A data currency model was
presented in [15] with partial currency orders and denial con-
straints [1]. CFDs were studied for specifying data consistency
[13]. This work differs from [13], [15] in the following. (1)
We propose a conflict resolution model that combines data
currency and consistency. In contrast, [15] only studies data
currency, while [13] only considers data consistency. (2) We
interleave inferences of data currency and consistency, which
is far more intriguing than handling currency and consistency
separately, and requires new techniques to capture the interac-
tion between the two. (3) We use currency constraints, which
are simpler than denial constraints, to strike a balance between
the complexity of inferring true values and the expressivity
needed for specifying currency (Section IV). (4) No practical
algorithms were given in [15] for deriving current values.

Previous work on data consistency [1], [7], [13], [20], [26]
has been focusing on consistent query answering and data
repairing [2], topics different from conflict resolution. The
study of preferred repairs [20] also advocates partial orders.
It differs from the currency orders we study here in that they
use PTIME functions to rank different repairs over the entire
database, whereas we derive the currency orders by automated
reasoning about both available partial temporal information
and currency constraints. Preferred repairs are implemented
by [7] via a cost metric, and by [26] based on a decision
theory, which can be incorporated into our framework.

There has also been a large body of work on temporal
databases (see [6] for a survey). In contrast to that line of
work, we do not assume the availability of timestamps.

It has recently been shown that temporal information helps
record linkage identify records that refer to the same enti-
ty [21]. Here we show that data currency also helps conflict
resolution, a different process that takes place after record
linkage has identified tuples pertaining to the same entity.
While [21] is based on timestamps, we do not assume it here.

II. A CONFLICT RESOLUTION MODEL

We now introduce our conflict resolution model. We start
with currency (Section II-A) and consistency (Section II-B)
specifications. We then present the model (Section II-C).
A. Data Currency

We specify the currency of data by means of (a) partial
currency orders, and (b) currency constraints.

Data with partial currency orders. Consider a relation
schema R = (A1, . . . , An), where each attribute Ai has a
domain dom(Ai). In this work we focus on entity instances
Ie of R, which are sets of tuples of R all pertaining to the
same real-world entity e, and are typically much smaller than
a database instance. Such entity instances can be identified by
e.g., record linkage techniques (see [12] for a survey).

For an attribute Ai ∈ R and an entity instance Ie of R,
we denote by adom(Ie.Ai) the set of Ai-attribute values that
occur in Ie, referred to as the active domain of Ai in Ie.

For example, two entity instances are given in Fig. 2: E1 =
{r1, r2, r3} for entity “Edith”, and E2 = {r4, r5, r6} for
“George”; and adom(E1.city) = {NY, SFC, LA}.

A temporal instance It of Ie is given as (Ie,�A1
, . . . ,�An

),
where each �Ai

is a partial order on Ie, referred to as the
currency order for attribute Ai for the entity represented by
Ie. For t1, t2 ∈ Ie, t1 �Ai

t2 if and only if (iff) either t1 and
t2 share the same Ai-attribute value (i.e., t1[Ai] = t2[Ai]), or
that t2[Ai] is more current than t1[Ai] (denoted by t1 ≺Ai

t2).
Intuitively, currency orders represent available temporal

information about the data. Observe that �Ai
is a partial

order, possibly empty. For example, for E1 above, we only
know that r3 �kids r1 and r3 �kids r2 since r3[kids] is null,
which are in the currency order �kids, while the currency
orders for other attributes are empty, excluding the case when
tuples carry the same attribute value. Similarly for E2. In
particular, t1 �Ai

t2 if t1[Ai] is null, i.e., an attribute with
value missing is ranked the lowest in the currency order.

Current instances. Currency orders are often incomplete.
Hence we consider possible completions of currency orders.

A completion Ict of It is a temporal instance Ict = (Ie,�
c
A1

,
. . . ,�c

An
), such that for each i ∈ [1, n], (1) �Ai

⊆ �c
Ai

, and
(2) for all tuples t1, t2 ∈ Ie, either t1�c

Ai
t2 or t2�c

Ai
t1. That

is, �c
Ai

induces a total order on tuples in Ie.
That is, Ict totally sorts the attribute values in Ie such that

the most current value of each attribute is the last in the order.

We define the most current Ai-attribute value of Ict to be
t[Ai] that comes last in the total order �c

Ai
. The current tuple

of Ict , denoted by LST(Ict ) (i.e., last), is the tuple tl such that
for each attribute Ai, tl[Ai] is the most current Ai-value of
Ict , i.e., tl contains the most current values from Ict .

Currency constraints. One can derive additional currency
information from the semantics of the data, which is modeled
as currency constraints. A currency constraint ϕ is of the form

∀t1, t2 (ω → t1 ≺Ar
t2),

where ω is a conjunction of predicates of the form: (1)
t1 ≺Al

t2, i.e., t2 is more current than t1 in attribute Al; (2)
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t1[Al] op t2[Al], where op is one of =, �=, >,<,≤,≥; and (3)
ti[Al] op c for i ∈ {1, 2}, where c is a constant.

In contrast to denial constraints in the model of [15],
currency constraints are defined on two tuples, like functional
dependencies. Such constraints suffice to specify currency in-
formation commonly found in practice (see, e.g., Example 2).

Currency constraints are interpreted over completions Ict of
It. We say that Ict satisfies ϕ, denoted by Ict |= ϕ, if for
any two tuples t1, t2 in Ie, if these tuples and related order
information in Ict satisfy the predicates in ω, following the
standard semantics of first-order logic, then t1 ≺c

Ar
t2.

We say that Ict satisfies a set Σ of currency constraints,
denoted by Ict |= Σ, if Ict |= ϕ for all ϕ ∈ Σ.

Example 4: Recall the entity instances E1 and E2 given in
Fig. 2. Currency constraints on these instances include ϕ1–ϕ8

as specified in Fig. 3 and interpreted in Example 2.
It is readily verified that for any completion Ec

1 of E1, if
it satisfies these constraints, it yields LST(Ec

1) of the form
(Edith, deceased, n/a, 3, xcity , 213, 90058, xcounty) for Edith, in
which the most current values for attributes name, status, job,
kids, AC and zip are deduced from the constraints and remain
unchanged, while xcity and xcounty are values determined by
the total currency order given in Ec

1. Observe that the values
of the current tuple are taken from different tuples in E1, e.g.,
kids = 3 from r2 and AC = 213 from r3.

Similarly, for any completion of E2, its current tuple has the
form (George, xstatus, xjob, 2, xcity, xAC, xzip, xcounty), if they satisfy
all constraints. Hence, currency constraints help us find some
but not all of the most current values of entities. �

B. Data Consistency

To specify the consistency of data, we use a simple class of
conditional functional dependencies (CFDs) [13] as follows.

A constant CFD [13] ψ on a relation schema R is of the
form tp[X ] → tp[B], where (1) X ⊆ R, B ∈ R; and (2) tp is
the pattern tuple of ψ with attributes in X and B, where for
each A in X ∪ {B}, tp[A] is a constant in dom(A) of A.

For example, ψ1 and ψ2 in Table 3 are constant CFDs on
the relation of Table 2, as interpreted in Example 2.

Such CFDs are defined on the current tuple of a completion.
Consider a completion Ict of It and let tl = LST(Ict ) be the
current tuple of Ict . We say that the completion Ict satisfies
a constant CFD ψ = tp[X ] → tp[B], denoted by Ict � ψ, iff
when tl[X ] = tp[X ] then tl[B] = tp[B].

Intuitively, this assures that if tl[X ] = tp[X ] and if tl[X ]
contains the most current X-attribute values, then tl[B] can
be repaired by taking the value tp[B] in the pattern, and
moreover, tl[B] is the most current value in attribute B.

We say that Ict satisfies a set Γ of constant CFDs, denoted
as Ict � Γ, iff Ict � ψ for each ψ ∈ Γ.

Observe that a constant CFD is defined on a single tuple
LST(Ict ). In light of this, we do not need general CFDs of [13]
here, which are typically defined on two tuples.

Example 5: Recall the current tuples for E1 in Example 4.
Then all completions of E1 that satisfy ψ1 in Fig. 3 have

the form (Edith, deceased, n/a, 3, LA, 213, 90058, Vermont), in
which xcity is instantiated as LA by ψ1, and as a result, xcounty

becomes Vermont by the currency constraint ϕ8. �

C. Conflict Resolution

We are ready to bring currency and consistency together.

Specifications. A specification Se = (It,Σ,Γ) of an entity
consists of (1) a temporal instance It = (Ie,�A1

, . . . ,�An
);

(2) a set Σ of currency constraints; and (3) a set Γ of constant
CFDs. A completion Ict = (Ie,�

c
A1

, . . . ,�c
An

) of It is a valid
completion of Se if Ict satisfies both Σ and Γ. We say that Se is
valid if there exists a valid completion Ict of Se, e.g., the spec-
ification of E1 (or E2) and the constraints in Fig. 3 is valid.

True values. There may be many valid completions Ict , each
leading to a possibly different current tuple LST(Ict ). When
two current tuples differ in some attribute, there is a conflict.
We aim to resolve such conflicts. If all such current tuples
agree on all attributes, then the specification is conflict-free,
and a unique current tuple exists for the entity e specified by
Se. In this case, we say that this tuple is the true value of e.

More formally, the true value of Se, denoted by T(Se), is
the single tuple tc such that for all valid completions Ic of
Se, tc = LST(Se), if it exists. For each attribute Ai of R, we
call tc[Ai] the true value of Ai in Se.

The conflict resolution problem. Consider a specification
Se = (It,Σ,Γ), where It = (Ie,�A1

, . . . ,�An
). Given Se,

conflict resolution is to find the minimum amount of additional
currency information such that the true value exists.

The additional currency information is specified in terms
of a partial temporal order Ot = (I,�′

A1
, . . . ,�′

An
). We

use Se ⊕ Ot to denote the extension S′
e = (I ′t,Σ,Γ) of Se

by enriching It with Ot, where I ′t = (Ie ∪ I,�A1
∪ �′

A1

, . . . ,�An
∪�′

An
). We only consider partial temporal orders

Ot such that �Ai
∪�′

Ai
is a partial order for all i ∈ [1, n].

We use |Ot| to denote Σi∈[1,n]|�
′
Ai

|, i.e., the sum of the
sizes of all the partial orders in Ot.

Given a valid specification Se = (It,Σ,Γ) of an entity, the
conflict resolution problem is to find a partial temporal order
Ot such that (a) T(Se ⊕Ot) exists and (b) |Ot| is minimum.

Example 6: Recall from Example 4 the current tuples for
George. Except for name and kids, we do not have a unique
current value for the other attributes. Nonetheless, if a partial
temporal order Ot with, e.g., r6 ≺status r5 is provided by the
users (i.e., status changes from unemployed to retired), then
the true value of George in E2 can be derived as (George,
retired, veteran, 2, NY, 212, 12404, Accord) from the currency
constraints and CFDs of Fig. 3. �

III. A CONFLICT RESOLUTION FRAMEWORK

We propose a framework for conflict resolution. As depicted
in Fig. 4, given a specification Se = (It,Σ,Γ) of an entity e,
the framework is to find the true value T(Se) of e by reasoning
about data currency and consistency, and by interacting with
the users to solicit additional data currency information.

The framework provides the users with suggestions. A
suggestion is a minimum set A of attributes of e such that
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Fig. 4. Framework overview

if the true values of these attributes are provided by the users,
T(Se) is automatically deduced from the users’ input, Σ, Γ
and It. The true values for A are represented as a temporal
order Ot. More specifically, the framework works as follows.

(1) Validity checking. It first inspects whether Se⊕Ot is valid,
via automated reasoning, where Ot is a partial temporal order
provided by the users (see step (4) below), initially empty. If
so, it follows the ‘Yes’ branch. Otherwise the users need to
revise Ot by following the ‘No’ branch.

(2) True value deducing. After Se⊕Ot is validated, it derives
as many true values as possible, via automated reasoning.

(3) Finding the true value. If T(Se ⊕Ot) exists, it terminates
and returns the true value, by following the ‘Yes’ branch.
Otherwise, it follows the ‘No’ branch and goes to step (4).

(4) Generating suggestions. It computes a suggestion A
along with its candidate values from the active domain of
Se, such that if the users pick and validate the true values
for A, then T(Se ⊕ Ot) is warranted to be found. The users
are expected to provide V, the true values of some attributes
in A, represented as a partial temporal order Ot. Given Ot,
Se⊕Ot is constructed and the process goes back to step (1).

The process proceeds until T(Se⊕Ot) is found, or when the
users opt to settle with true values for a subset of attributes of
e. That is, if users do not have sufficient knowledge about the
entity, they may let the system derive true values for as many
attributes as possible, and revert to the traditional methods to
pick the max,min, avg, any values for the rest of the attributes.

Remarks. (1) To specify users’ input, let It in Se be (Ie,�A1

, . . . ,�An
) and A ∪ A′ ∪ B = {A1, . . . , An}, where (i) A is

the set of attributes identified in step (4) for which the true
values are unknown; (ii) for B, their true values VB have been
deduced (step (2)); and (iii) A′ is the set of attributes whose
true values can be deduced from VB and the suggestion for
A. Given a suggestion, the user is expected to provide a set
V of true values for (a subset of) A. Here V consists of either
the candidate values from the suggestion, or some new values
not in the active domains of Se that users opt to choose. The
users do not have to enter values for all attributes in A.

From the input V, a partial temporal order Ot is automati-
cally derived, by treating V as the most current values of those
attributes involved. Indeed, Ot has the form (Ie ∪ {to},�′

A1
,

. . . ,�′
An

), where to is a new tuple such that for all attributes
A, to[A] = V(A) if V has a value V(A) for A, and to[A] = null

otherwise, while to[B] = VB remains unchanged. Moreover,
�′

A extends �A by including t[A] �A to[A] if to[A] �= null,
for all tuples t ∈ Ie. Then Se ⊕Ot can be readily defined.

(2) There have been efficient methods for discovering constant
CFDs, e.g., [14]. Along the same lines as CFD discovery [5],
[14], automated methods can be developed for discovering

currency constraints from (possibly dirty) data. With certain
quality metric in place [5], the constraints discovered can be
as accurate as those manually designed (such as those given
in Fig. 3), and can be used by the framework as input.

(3) To simplify the discussion we do not allow users to change
constraints in Se. We defer this issue to Section VII.

(4) We assume the values from entities were once correct.
When an entity contains errors, we may work on different
samples and only take those orders that are either consistent
among the samples, or with sufficient support (e.g., frequen-
cy).

IV. FUNDAMENTAL PROBLEMS

We next identify fundamental problems associated with con-
flict resolution based on both data currency and consistency,
and establish their complexity. These results are not only of
theoretical interest, but also tell us where the complexity arises,
and hence guide us to develop effective (heuristic) algorithms.
All proofs of the results are in the full version [17].

Satisfiability. The satisfiability problem is to determine, given
a specification Se = (It,Σ,Γ) of an entity, whether Se is valid,
i.e., whether there exists a valid completion of Se.

It is to check whether Se makes sense, i.e., whether the
currency constraints, CFDs and partial orders in Se, when put
together, have conflicts themselves. The analysis is needed by
the step (1) of the framework of Fig. 4, among other things.

The problem is important, but is NP-complete. One might
think that the absence of currency constraints or CFDs would
simplify the analysis. Unfortunately, its intractability is robust.

Theorem 1: The satisfiability problem for entity specifications
is NP-complete. It remains NP-hard for valid specifications
Se = (It,Σ,Γ) of an entity when (1) both Σ and Γ are fixed;
(2) Γ = ∅, i.e., with only currency constraints; or (3) Σ = ∅,
i.e., when only constant CFDs are present.

Implication. Consider a valid specification Se = (It,Σ,Γ) of
an entity and a partial temporal order Ot=(Ie,�

′
A1
, . . . ,�′

An
).

We say that Ot is implied by Se, denoted by Se |= Ot, iff
for all valid completions Ict of Se, Ot ⊆ Ict . Here Ot⊆ Ict if
�′

Ai
⊆�c

Ai
for all i∈ [1, n], where Ict = (Ie,�

c
A1

, . . . ,�c
An

).
The implication problem is to decide, given a valid specifi-

cation Se and a partial temporal order Ot, whether Se |= Ot.
That is, no matter how we complete the temporal instance

It of Se, as long as the completion is valid, it includes Ot. The
implication analysis is conducted at step (2) of the framework
of Fig. 4, for deducing true values of attributes.

Unfortunately, the implication problem is coNP-complete.

Theorem 2: The implication problem for conflict resolution is
coNP-complete.
True value deduction. The true value problem is to decide,
given a valid specification Se for an entity, whether T(Se)
exists. That is, there exists a tuple tc such that for all valid
completions Ict of Se, LST(Ict ) = tc.

This analysis is needed by step (3) of the framework (Fig. 4)
to decide whether Se has enough information to deduce T(Se).

However, this problem is also nontrivial: it is intractable.
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Theorem 3: The true value problem for conflict resolution is
coNP-complete.
Coverage analysis. The minimum coverage problem is to
determine, given a valid specification Se = (It,Σ,Γ) and a
positive integer k, whether there exists a partial temporal order
Ot such that (1) T(Se ⊕Ot) exists, and (2) |Ot| ≤ k.

Intuitively, this is to check whether one can add a partial
temporal order Ot of a bounded size to a specification such that
the enriched specification has sufficient information to deduce
all the true values of an entity. The analysis of minimum Ot

is required by step (4) of the framework of Fig. 4.
This problem is, unfortunately, Σp

2-complete (NPNP).

Theorem 4: The minimum coverage problem is Σp
2-complete.

Remark. From the results we find the following.

(1) The main conclusion is that these problems are hard. In fact
as we have shown in [17], all the lower bounds remain intact
for valid specifications Se = (It,Σ,Γ) of an entity when (1)
both Σ and Γ are fixed; (2) Γ = ∅, i.e., when constant CFDs
are absent; or (3) Σ = ∅, i.e., when currency constraints are
absent. Hence unless P = NP, efficient algorithms for solving
these problems are necessarily heuristic.

(2) The results not only reveal the complexity of conflict
resolution, but also advance our understanding of data currency
and consistency. Indeed, while the minimum coverage problem
is particular for conflict resolution and has not been studied
before, the other problems are also of interest to the study of
data currency. Theorems 1, 2 and 3 show that currency con-
straints make our lives easier as opposed to denial constraints:
they reduce the complexity of inferring data currency reported
in [15], from Σp

2-complete, Πp
2-complete (coNPNP) and Πp

2-
complete down to NP-complete, coNP-complete and coNP-
complete, respectively, When it comes to data consistency, it
is known that the satisfiability and implication problems for
general CFDs are NP-complete and coNP-complete, respective-
ly [13]. Theorems 1 and 2 give a stronger result: these lower
bounds already hold for constant CFDs.

V. ALGORITHMS FOR CONFLICT RESOLUTION

We next provide algorithms underlying the framework de-
picted in Fig. 4. We first present an algorithm for checking
whether a specification is valid (step (1) of the framework;
Section V-A). We then study how to deduce true attribute val-
ues from a valid specification (step (2); Section V-B). Finally,
we show how to generate suggestions (step (4); Section V-C).

A. Validity Checking

We start with algorithm IsValid that, given a specification
Se = (It,Σ,Γ), returns true if Se is valid, and false other-
wise. As depicted in Fig. 4, IsValid is invoked for an initial
specification Se and its extensions Se ⊕Ot with users’ input.

Theorem 1 tells us that it is NP-complete to determine
whether Se is valid. Hence IsValid is necessarily heuristic
if it is to be efficient. We approach this by reducing the
problem to SAT, one of the most studied NP-complete problem,
which is to decide whether a Boolean formula is satisfiable

(see, e.g., [3]). Several high-performance tools for SAT (SAT-
solvers) are already in place [3], which have proved effective
in software verification, AI and operations research, among
others. For instance, MiniSAT [19] can effectively solve a
formula with 4, 500 variables and 100K clauses in 1 second.

Algorithm. Using a SAT-solver, We outline IsValid as follows.
(1) Instantiation(Se): It expresses Se as a set Ω(Se) of pred-
icate formulas. (2) ConvertToCNF(Ω(Se)): It then converts
Ω(Se) into a CNF Φ(Se) (the conjunctive normal form) such
that Se is valid iff Φ(Se) satisfiable. (3) Finally, it applies an
SAT-solver to Φ(Se), and returns true iff Φ(Se) is true.

We next present the details of procedures Instantiation and
ConvertToCNF. We denote also by R the set {Ai | i ∈ [1, n]}
of attributes of R. We define a strict partial order ≺v

Ai
on the

values in the union of adom(Ie.Ai) and all the constants that
appear in attribute Ai of some constant CFDs in Γ.
Instantiation. We express the currency orders, currency con-
straints and CFDs of Se in a uniform set Ω(Se) of constraints,
referred to as instance constraints. This is done by instantiating
variables in Se with data in active domains as follows.
(1) Currency orders. To encode currency orders in It, for each
Ai ∈ R, we include the following constraints in Ω(Se).
(a) Partial orders in It: (true→ t1[Ai] ≺v

Ai
t2[Ai]) for each

t1�Ai
t2 in It, as long as t1[Ai] �= t2[Ai].

(b) Transitivity of ≺Ai
: (a1 ≺v

A a2∧a2 ≺v
A a3 → a1 ≺v

A a3)
for all distinct values a1, a2, a3 in adom(Ie.Ai).

(c) Asymmetry: (a≺v
Ai
b)→¬(b≺v

Ai
a) for a, b∈adom(Ie.Ai).

Intuitively, these assure that each ≺Ai
is a strict partial order

(via (b) and (c)), and express available temporal information
in It as predicate formulas (via (a)).
(2) Currency constraints. For each currency constraint ϕ =
∀t1, t2 (ω → t1 ≺Ar

t2) in Σ and for all distinct tuples
s1, s2 ∈ Ie, we include the following constraint in Ω(Se):

ins(ω, s1, s2) → s1[Ar ]≺
v
Ar

s2[Ar],
where ins(ω, s1, s2) is obtained from ω by (a) substituting
si[Aj ] for ti and ≺v

Aj
for ≺Aj

in each predicate t1 ≺Aj
t2,

for i ∈ [1, 2]; and (b) evaluating each conjunct of ω defined
with a comparison operator to its truth value w.r.t. s1 and s2.
Intuitively, ins(ω, s1, s2) “instantiates” ω with s1 and s2.

Example 7: For currency constraint ϕ1 in Fig. 3, and tuples
r1 and r2 in Fig. 2 for Edith, its instance constraint is (true→
working ≺v

status retired). Note that the precondition of ϕ1 is
evaluated true on these two particular tuples.

For ϕ6 and r1, r2, we get (working ≺v
status retired → 212

≺v
AC 415), by replacing ≺status with ≺v

status, and by replacing
tuples with their corresponding attribute values. �

(3) Constant CFDs. For each constant CFD tp[X ]→ tp[B] in
Γ and each b∈adom(Ie.B) \ {tp[B]}, Ω(Se) includes

ψ = (ωX → b ≺v
B tp[B]),

where ωX is a conjunction of all formulas of the form a≺v
Aj

tp[Aj ] for each a ∈ adom(Ie.Aj)\{tp[Aj ]} and each Aj ∈ X .
Intuitively, constraint ψ asserts that if tp[X ] is true in

attributes X , then tp[B] is the true value of B.

Example 8: Recall constant CFD ψ1 (Fig. 3). For E1 (Edith),
it is encoded by two instance constraints below, in ΩE1

:
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212 ≺v

AC 213 ∧ 415 ≺v

AC 213 → NY ≺v

city LA,
212 ≺v

AC 213 ∧ 415 ≺v

AC 213 → SFC ≺v

city LA,

i.e., LA is her true city value if her true AC value is 213. �

ConvertToCNF. We convert Ω(Se) into a CNF Φ(Se) as
follows. We substitute a Boolean variable xAi

a1a2
for each

predicate a1≺v
Ai

a2 in Ω(Se), and write each formula of the
form (x1∧· · ·∧xk→xk+1) as (¬x1∨· · ·∨¬xk∨xk+1). Then
Φ(Se) is a CNF with the conjunction of all formulas in Ω(Se).

One can readily verify the following (by contradiction),
which justifies the reduction from the validity of Se to SAT.

Lemma 5: Specification Se is valid iff its converted CNF
Φ(Se) is satisfiable.

Complexity: Observe the following. (a) The size |Ω(Se)| of
Ω(Se) is bounded by O((|Σ|+|Γ|)|It|

2+|It|
3), since encoding

currency orders, currency constraints and constant CFDs is in
time O(|It|3), O(|Σ||It|2) and O(|Γ||It|2), respectively. (b) It
takes O(|Ω(Se)|) time to convert Ω(Se) into Φ(Se). Hence the
size of the CNF Φ(Se) is bounded by O((|Σ|+|Γ|)|It |2+|It|3).
In practice, an entity instance It is typically much smaller than
a database, and the sets Σ and Γ of constraints are also small.
As will be seen in Section VI, SAT-solvers can efficiently
process CNFs of this size.

B. Deducing True Values

We now develop an algorithm that, given a valid specifica-
tion Se = (It,Σ,Γ) of an entity e, deduces true values for as
many attributes of e as possible. It finds a maximum partial
order Od such that Se |= Od, i.e., (a) for all valid completions
Ict of Se, Od ⊆ Ict (Section IV), and (b) for tuples t1, t2 ∈ Ie
and Ai ∈ R, if Se |= t1≺Ai

t2 then t1≺Ai
t2 is in Od.

As an immediate corollary of Theorem 2, one can show that
this problem is also coNP-complete, even when either Σ or Γ
is fixed or absent. Thus we give a heuristics to strike a balance
between its complexity and accuracy. The algorithm is based
on the following lemma, which is easy to verify.

Lemma 6: For CNF Φ(Se) converted from a valid specifi-
cation Se, and for tuples t1, t2 in Se with t1[Ai] = a1 and
t2[Ai] = a2, Se |= t1≺Ai

t2 iff Φ(Se) → xAi
a1a2

is a tautology,
where xAi

a1a2
is the variable denoting a1≺v

Ai
a2 in Φ(Se).

Here Φ(Se) → xAi
a1a2

indicates that for any truth assignment
μ, if μ satisfies Φ(Se), then μ(xAi

a1a2
) is true, i.e., the one-

literal clause xAi
a1a2

is implied by Φ(Se), which in turn encodes
Se. Based on this, our algorithm checks one-literal clauses in
Φ(Se) one by one, and enriches Od accordingly.

Algorithm. The algorithm, referred to as DeduceOrder, is
given in Fig. 5. It first converts specification Se to CNF Φ(Se)
(line 1; see Section V-A). For each literal C of the form xAi

a1a2

or ¬xAi
a1a2

, it checks whether C is a clause in (implied by)
Φ(Se) (line 3), and if so, adds it to Od (lines 4-7). It then
reduces Φ(Se) by using C and its negation ¬C (line 8). That
is, for each clause C′ that contains C, the entire C′ is removed
since C′ is true if C has to be satisfied (i.e., true). Similarly,
for each clause C′′ that contains ¬C, ¬C is removed from
C′′, as ¬C has to be false. The Od is then returned (line 9).

Algorithm DeduceOrder

Input: A valid specification Se = (It,Σ,Γ) of an entity.
Output: A partial temporal order Od such that Se |= Od.

1. Ω(Se) := Instantiation(Se); Φ(Se) := ConvertToCNF(Ω(Se));
2. Od := (Ie, ∅, . . . , ∅);
3. while there exists a one-literal clause C in Φ(Se) do

/* xA
a1a2

in C is the variable denoting a1 ≺v

A
a2 */

4. if C is a one-literal clause (xA
a1a2

) then
5. add a1 ≺v

A
a2 to Od; C¬ := ¬xA

a1a2
;

6. if C is a one-literal clause (¬xA
a1a2

) then
7. add a2 ≺v

A
a1 to Od; C¬ := xA

a1a2
;

8. Reduce Φ(Se) by using C and C¬; /* see details below */
9. return Od.

Fig. 5. Algorithm DeduceOrder

Example 9: Consider E2 in Fig. 2 and the constraints of Fig. 3,
DeduceOrder finds Od including: (1) 0 ≺v

kids 2 by ϕ4, (2)
working ≺v

status retired by ϕ1, (3) sailor ≺v
job veteran, 401

≺v
AC 212 and 02840 ≺v

zip 12404, by (2) and ϕ5, ϕ6 and ϕ7,
respectively. A current tuple of George is then of the form
(George, xstatus, xjob, 2, xcity, xAC, xzip, xcounty), with variables.

Assume that the users assure that the true value of the
attribute status is retired. Then the algorithm can deduce the
following from the extended specification:

(a) xjob, xAC and xzip as n/a, 212 and 12404, from tuple r5
via currency constraints ϕ5, ϕ6 and ϕ7, respectively;

(b) xcity = NY, from the true value of AC (i.e., 212 deduced
in step (a) above) and the constant CFD ψ2;

(c) xcounty as Accord, from constraint ϕ8 and the true values
of city and zip deduced in steps (b) and (a), respectively.

The automated deduction tells us that the true value for
George is t2 = (George, retired, n/a, 2, NY, 212, 12404, Accord).
This shows that currency constraints help consistency (from
step (a) to (b)), and vice versa (e.g., from (b) to (c)). �

Complexity. (1) It takes O((|Σ| + |Γ|)|It|2 + |It|3) time
to convert Se into Φ(Se) (line 1; see Section V-A). (2)
The total time taken by the while loop (lines 3-8) is in
O((|Σ|+ |Γ|)|It|2 + |It|3). Indeed, we maintain a hash-based
index for literals C, in which the key is C and its value
is the list of clauses in Φ(Se) that contain C or ¬C. In
the process, Φ(Se) decreases monotonically. Hence in total it
takes at most O(|Φ(Se)|) time to reduce Φ(Se) for all literals,
where |Φ(Se)| is bounded by O((|Σ|+|Γ|)|It |2+|It|3). Taken
together, the algorithm is in O((|Σ| + |Γ|)|It|

2 + |It|
3) time.

By Lemma 6, one might want to compute a temporal order
O′

d consisting of all such variables xAi
a1a2

that Φ(Se)∧¬xAi
a1a2

is not satisfiable. That is, for each variable xAi
a1a2

, we inspect
Φ(Se) ∧ ¬xAi

a1a2
by invoking a SAT-solver. However, this

approach, referred to as NaiveDeduce, calls the SAT-solver
|It|2 times. As will be seen in Section VI, DeduceOrder finds
Od with its accuracy comparable to O′

d, without incurring the
cost of repeatedly calling a SAT-solver.

True value deduction. Using Od found by DeduceOrder, one
can deduce true attributes values as follows: a value a1 is the
true value of attribute Ai if for all values a2 ∈ adom(Ie.Ai) \
{a1}, the currency order a2 ≺v

A a1 is in Od.
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C. Generating Suggestions

True value deduction given above finds us the true values VB

for a set of attributes B ⊆ R. To identify the true value of the
entity e specified by Se = (It,Σ,Γ), we compute a suggestion
for a set of attributes A ⊆ R such that if the true values for A
are validated, the true value of the entire e can be determined,
even for attributes in R \ (B ∪A) (see Fig. 4). Below we first
define suggestions and a notion of derivation rules. We then
provide an algorithm for computing suggestions.

C.1. Suggestions and Derivation rules

For an attribute Ai ∈ R \ B, we denote by V(Ai) the
candidate true values for Ai, i.e., for any a1 ∈ V(Ai), there
exists no a2∈adom(Ie.Ai)\{a1} such that a1 ≺v

A a2 is in Od.
For a set X of attributes, we write V(X)={V(Ai) | Ai ∈ X}.

Suggestion. A suggestion for Se is a pair (A,V(A)), where
A=(A1,. . . ,Am) is a set of attributes of R such that A∩B=∅
and (1) there exist values (a1,. . . ,am) such that if (a1,. . ., am)
are validated as the true values of A, then the true value T(Se)
of Se exists; and (2) for all possible values (a′1, . . . , a

′
m) that

satisfy condition (1), a′i is in V(Ai) for i∈ [1,m].
Intuitively, condition 1 says that when the true values of A

are validated, so is T(Se). That is, the true values of attributes
in A′ = R \ (B ∪ A) can be deduced from VB and the true
values of A. Condition 2 says that V(A) gives “complete”
candidates for the true values of A in their active domains.

One naturally wants a suggestion to be as “small” as
possible, so that it takes minimal efforts to validate the
true values of A. This motivates us to study the minimum
suggestion problem, which is to find a suggestion (A,V(A))
with the minimum number |A| of attributes. Unfortunately,
this problem is Σp

2-complete (NPNP), which can be verified by
reduction from the minimum coverage problem (Theorem 4).

Corollary 7: The minimum suggestion problem for conflict
resolution is Σp

2-complete.

In light of the high complexity, we develop an effective
heuristics to compute suggestions. To do this, we examine how
true values are inferred via currency constraints and CFDs, by
expressing them as a uniform set of rules.

Derivation rules. A true-value derivation rule for Se has the
form (X,P [X ]) → (B, b), where (1) X is a set of attributes,
B is a single attribute, and (2) b is a value that is either in
adom(Ie.B) or in attribute B of some constant CFD; and (3)
for each Ai ∈ X , P [Ai] is drawn from adom(Ie.Ai). It assures
if P [X ] is the true value of X , then b is the true value of B.

Derivation rules are computed from instance constraints
Ω(Se) of Se, as shown below (to be elaborated shortly).

Example 10: Sample rules for George in Fig. 2 include:

n1 : ({status}, {retired}) → (job, veteran)
n2 : ({status}, {retired}) → (AC, 212)
n3 : ({status}, {retired}) → (zip, 12404)
n4 : ({city, zip}, {NY, 12404}) → (county, Accord)
n5 : ({AC}, {212}) → (city, NY)
n6 : ({status}, {unemployed}) → (job, n/a)
n7 : ({status}, {unemployed}) → (AC, 312)
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��
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�


��
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Fig. 6. Sample compatibility graph

n8 : ({status}, {unemployed}) → (zip, 60653)
n9 : ({city, zip}, {Chicago, 60653}) → (county, Bronzeville)

Here rule n5 is derived from CFD ψ2, which states that if
his true AC is 212, then his true city must be NY. Rule n1 is
from tuple r5 and constraint ϕ5 (Fig. 3), which states that if his
true status is retired, then his true job is veteran. Note that in
n1, status is instantiated with retired. Similarly, n6 is derived
from r6 and ϕ5; n2 and n3 (resp. n7 and n8) are derived from
tuple r5 (resp. r6) and constraints ϕ6 and ϕ7, respectively; and
n4 (resp. n9) is derived from r5 (resp. r6) and ϕ8. �

To find a suggestion, we want to find a set A of attributes
so that a maximum number of derivation rules can be applied
to them at the same time, and hence, the true values of as
many other attributes as possible can be derived from these
rules. To capture this, we use the following notion.

Compatibility graphs. Consider a set Π of derivation rules.
The compatibility graph G(N,E) of Π is an undirected graph,
where (1) each node x in N is a rule (Xx, Px[Xx]) → (Bx, bx)
in Π, and (2) an edge (x, y) is in E iff Bx �= By and
Px[Xxy] = Py[Xxy], where Xxy = (Xx ∪Bx) ∩ (Xy ∪By).

Intuitively, two nodes are connected (i.e., compatible) if
their associated derivation rules derive different attributes (i.e.,
Bx �= By), and they agree on the values of their common
attributes (i.e., Px[Xxy] = Py[Xxy]). Hence these rules have
no conflict and can be applied at the same time.

Example 11: The compatibility graph of the rules given in
Example 10 is shown in Fig. 6. There is an edge (n1, n2)
since their common attribute status has the same value retired;
similarly for the other edges. In contrast, there is no edge
between n5 and n7 since the values of their common attribute
AC are different: 212 for n5 and 312 for n7. �

Observe that each clique C in the compatibility graph
indicates a set of derivation rules that can be applied together.
Let A′ be the set of attributes whose true values can be
derived from the rules in C, if C and Se have no conflicts
(will be discussed shortly). To find a suggestion, we compute
a maximum clique C from the graph, and define a suggestion
as (A,V(A)), where A consists of attributes in R \ (A′ ∪B),
and V(A) is the set of candidate true values for A.

Example 12: Example 6 shows that for George (E2), only
the true values of name and kids are known, i.e., B =
{name, kids} and VB = (George, 2). To find a suggestion for
George, we identify a clique C1 with five nodes n1–n5 in the
compatibility graph of Fig. 6. Observe the following. (a) The
values of job, AC and zip depend on the value of status by
rules n1, n2 and n3, respectively. (b) The AC in turn decides
city by n5. (c) From city and zip one can derive county by n4.
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Algorithm Suggest

Input: A specification Se = (It,Σ,Γ), order Od (Se |= Od), and VB .
Output: A suggestion (A,V(A)).

1. V(R) := DeriveVR(It, Od); Ω(Se) := Instantiation(Se);
2. Π := TrueDer(Ω(Se),V(R)); G := CompGraph(Π, Se);
3. C := MaxClique(G); A := GetSug(Se, C,VB);
4. return (A,V(A));

Fig. 7. Algorithm Suggest

Hence, the set of attributes that can be derived from clique C1
is A′ = {job,AC, zip, city, county}. This yields a suggestion
(A,V(status)), where A = R \ (A′ ∪ B) = {status}, and
V(status) = {retired, unemployed}. As long as users identify
the true value of status, the true value of George exists, and
can be automatically deduced as described in Example 9. �

However, C and Se may have conflicts, as illustrated below.

Example 13: Consider the clique C2 of Fig. 6 with three nodes
n5, n6 and n8. Observe the following: (a) n5 indicates that 312
≺v

AC 212, since 212 is assumed the latest AC value; whereas
(b) n6, n8 and constraint ϕ6 in Fig. 3 state that 312 is the
latest AC value, i.e., 212 ≺v

AC 312. These tell us that the values
embedded in clique C2 may not lead to a valid completion for
E2, i.e., C2 and Se have conflicts. �

To handle conflicts between C and Se, we use MaxSat to
find a maximum subgraph C′ of C that has no conflicts with
Se (MaxSat is to find a maximum set of satisfiable clauses
in a Boolean formula; see e.g., [24]). For instance, for clique
C2 of Example 13, we use a MaxSat-solver [24] to identify
clique C′

2 with nodes n6 and n8, which has no conflicts with
the specification for George. We then derive A′ = {job, zip}
from C′

2. Since B is {name, kids} (Example 12), we find A =
R \ (A′ ∪ B) = {status, city,AC, county} for suggestion.

C.2. Computing Suggestions

We now present the algorithm for computing suggestions,
referred to as Suggest and shown in Fig. 7. It takes as input a
specification Se of e, partial orders Od deduced from Se (Se |=
Od, by Algorithm DeduceOrder), and the set VB of validated
true values. It finds and returns a suggestion (A,V(A)).

Algorithm Suggest first computes candidate true values for
all attributes whose true values are yet unknown (line 1). It
then deduces a set of derivation rules from instance constraints
Ω(Se) (line 1) of Se (line 2; as illustrated in Example 10).
Based on these derivation rules, it builds a compatibility graph
(line 2; see Example 11) and identifies a maximum clique C
in the graph (line 3). Finally, it generates a suggestion using
the clique (line 3; see Examples 12 and 13).

We next present the procedures used in the algorithm.

DeriveVR: For each A ∈ R not in VB, it computes V(A).
Initially V(A) takes the active domain adom(Ie.A). It then
removes all a1 ∈ adom(Ie.A) from V(A) if there exists a2 ∈
adom(Ie.A) \ {a1} such that a1 ≺v

A a2 is in the deduced Od,
as a2 is more current than a1 in A. It takes O(|It|2) time with
an index, since it checks at most |Od| orders, and |Od| ≤ |It|2.

TrueDer: Given Ω(Se), it deduces a set Π of derivation rules.

(1) From a constant CFD (tp[Xϕ] → tp[Bϕ]). We add

(Xϕ, tp[Xϕ]) → (Bϕ, tp[Bϕ]) to Π, provided that tp[A] ∈
V[A] for each A ∈ Xϕ ∩ B, i.e., when the values of the CFD
have no conflict with those validated true values.

(2) From those instance constraints in Ω(Se) that represent
currency constraints and currency orders in Se. It deduces
derivation rules of the form (X,P (X)) → (B, b), for each
attribute B whose true value is unknown and for each b ∈
V(B), if such a rule exists. While it is prohibitively expensive
to enumerate all these rules, we use a heuristics to find a set
of derivation rules in O(|Ω(Se)|) time as follows:

(i) for each B and b ∈ V(B), let U(B,b) = {bi ≺v
B b | bi ∈

V(B) \ {b}}, i.e., b is assumed the true value of B;
(ii) it partitions Ω(Se) based on U(B,b): let Ω(B,b) consist of

φ ∈ Ω(Se), where φ is of the form ω → bi ≺v
B b; note

that each φ appears in at most one of the partitions;
(iii) for each bi ∈ U(B,b), it picks φ = ω → bi ≺v

B b from
Ω(B,b) if it exists; it includes those attributes of ω in X
and their instantiations in P (X), until all bi’s in U(B,b)

are covered by such a φ (see Example 10 for how P (X)
is populated). Note that |X | ≤ |R|.

The procedure is in O((|Σ| + |Γ|)|It|2 + |It|3) time. Indeed,
for (1), it is bounded by O(|Γ|); and for (2), since U(B,b)’s
are disjoint, Ω(B,b)’s partition Ω(Se), and each φ in Ω(Se) is
used at most once, the cost is in O((|Σ| + |Γ|)|It|2 + |It|3).

CompGraph: Given rules Ω, it generates their compatibility
graph G(N,E) (see Example 11). The procedure takes at most
O(|Π|2) time, where |Π| is no larger than |R||It|.

MaxClique: It computes a maximum clique C of G(N,E)
(an NP-complete problem). Several tools have been developed
for computing maximum cliques, with a good approximation
bound (e.g., [16]). We use one of these tools as MaxClique.

GetSug: Given clique C, it computes a suggestion. It first finds
the maximal subgraph C′ of C that has no conflicts with Se,
by using an efficient MaxSat-solver [24] (see Example 13). It
then derives a set A′ of attributes from C′ (see Example 12).
Finally, it returns (A,V(A)), where A = R \ (A′ ∪B), and B
is the set of attributes with validated true values VB . Note that
the input to the MaxSat-solver is no larger than |R|2|It|2.

Correctness. Algorithm Suggest guarantees to generate a
suggestion (A,V(A)). Indeed, (1) the clique C′ revised by
MaxSat has no conflicts with Se, and thus C′ and Se warrant
to have a valid completion Ict . Let tc = LST(Ict ). If V(A) are
validated for A, then tc must be the true value T(Se) of Se,
since tc[B] = VB remains unchanged for all valid completions
of Se, and tc[A′] is uniquely determined by tc[A] and VB by
the construction. (2) All possible true values for A from their
active domains are already included in V(A).

VI. EXPERIMENTAL STUDY

We conducted experiments with both real-life and synthetic
data. We evaluated the accuracy and scalability of (1) IsValid
for validating a specification, (2) DeduceOrder for deducing
true values, (3) Suggest for computing suggestions, and (4) the
overall performance of conflict resolution supporting (1-3).
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Experimental data. We used two real-life datasets (NBA
and CAREER) and synthetic data (Person). Constraints were
discovered using profiling algorithms [5], [14], and examined
manually. Timestamps for the datasets were either missing
(for CAREER and Person) or incomplete (NBA). We assumed
empty currency orders in all the experiments even when partial
timestamps were given. The available (incomplete) timestamps
were used for designing currency constraints and verifying the
derived true values.

NBA player statistics. This dataset was retrieved from
(1) http://databasebasketball.com/, (2) http://www.infochimps.com/
marketplace, and (3) http://en.wikipedia.org/wiki/List of National
Basketball Association arenas. It consists of three tables: (a)
Player (from sources 1 and 3) contains information about
players, identified by player id (pid). (b) Stat (from 1) includes
the statistics of these players from 2005/2006 to the 2010/2011
season. (c) Arenas (from 3) records the historical team names
and arenas of each team. We created a table, referred to as
NBA, by first joining Player and Stat via equi-join on the pid

attribute, and then joining Arenas via equi-join on the team

attribute. The NBA table consists of 19573 tuples for 760
entities (i.e., players). Its schema is (pid, name, true name,
team, league, tname, points, poss, allpoints, min, arena,
opened, capacity, city). When producing the NBA table we
took care of the attributes containing multiple values for a
player, e.g., multiple teams for the same player, and multiple
teams for one arena. We ensure that only one attribute value
(e.g., team) appears in any tuple. Only data from (1) and
(3) carries (partial) timestamps. Therefore, the true values of
entities in the NBA table cannot be directly derived when
putting (1), (2) and (3) together.

The number of tuples pertaining to an entity ranges from
2 to 136, about 27 in average. We consider entity instances,
i.e., tuples referring to the same entity, which are much smaller
than a database. We found 54 currency constraints: 15 for team
names (tname) as shown by ϕ1 below; 32 for arena, similar to
ϕ2; and 4 (resp. 3) for attribute allpoints that were scored since
2005 (resp. arena), similar to ϕ3 (resp. ϕ4), where B ranges
over points, poss, min and tname (resp. opened, capacity and
years). We deduced 58 constant CFDs, e.g., the ψ1 below. Note
that some rules are derived automatically, while the others are
designed manually based on the semantics of the data.

ϕ1: ∀t1, t2 (t1[tname] = “New Orleans Jazz”
∧ t2[tname] = “Utah Jazz” → t1 ≺tname t2);

ϕ2: ∀t1, t2 (t1[arena] = “Long Beach Arena”
∧ t2[arena] = “Staples Center” → t1 ≺arena t2);

ϕ3: ∀t1, t2 (t1[allpoints] < t2[allpoints] ∧ t1[B] �= t2[B] → t1 ≺B t2)
ϕ4: ∀t1, t2 (t1 ≺arena t2 ∧ t1[B] �= t2[B] → t1 ≺B t2)
ψ1: (arena = “United Center” → city = “Chicago, Illinois”)

(2) CAREER. The data was retrieved as is from the link
http://www.cs.purdue.edu/commugrate/data/citeseer. Its schema is
(first name, last name, affiliation, city, country). We chose 65
persons from the dataset, and for each person, we collected
all of his/her publications, one tuple for each. No reliable
timestamps were available for this dataset.

The number of tuples pertaining to an entity ranges from
2 to 175, about 32 in average. We derived 503 currency
constraints: if two papers A and B are by the same person and
A cites B, then the affiliation and address (city and country)
used in paper A are more current than those used in paper B.
We also deduced a single CFD of the form: (affiliation → city,
country), but with 347 patterns with different constants.

The constraints for each dataset (NBA and CAREER) have
essentially the same form, and only differ in their constants,
i.e., the number of constraints with different forms is small.

(3) Person data. The synthetic data adheres to the schema
given in Table 2. We found 983 currency constraints (of the
same form but with distinct constant values for status, job and
kid) and a single CFD AC → city with 1000 patterns (counted
as distinct constant CFDs), similar to those in Table 3. The
data generator used two parameters: n denotes the number of
entities, and s is the size of entity instances (the number of
tuples pertaining to an entity). For each entity, it first generated
a true value tc, and then produced a set E of tuples that have
conflicts but do not violate the currency constraints; we treated
E \{tc} as the entity instance. We generated n = 10k entities,
with s from 1 to 10k. We used empty currency orders here.

Algorithms. We implemented the following algorithms in
C++: (a) IsValid (Section V-A): it calls MiniSat [19] as the
SAT-solver; (b) DeduceOrder and NaiveDeduce: NaiveDeduce
repeatedly invokes MiniSat [19], as described in Section V-B;
and (c) Suggest: it uses MaxClique [16] to find a maximal
clique, and MaxSat-solver [24] to derive a suggestion (Sec-
tion V-C). We simulated user interactions by providing true
values for suggested attributes, some with new values, i.e.,
values not in the active domain. We also implemented (d)
Pick, a traditional method that randomly takes a value [4];
to favor Pick, we picked a value from those that are not less
current than any other values, based on currency constraints
∀t1, t2(ω→t1≺At2) in which ω is a conjunction of comparison
predicates only, e.g., ϕ1-ϕ3 above.

Accuracy. To measure the quality of suggestions, we used
F-measure (http://en.wikipedia.org/wiki/F-measure):

F-measure = 2 · (recall · precision)/(recall+ precision).
Here precision is the ratio of the number of values correctly
deduced to the total number of values deduced; and recall is
the ratio of the number of values correctly deduced to the total
number of attributes with conflicts or stale values.

All experiments were conducted on a Linux machine with
a 3.0GHz Intel CPU and 4GB of Memory. Each experiment
was repeated 5 times, and the average is reported here.

Experimental results. We next present our findings. Due to
the small size of the CAREER data for each entity, experiments
conducted on it took typically less than 10 milliseconds (ms).
Hence we do not report its result in the efficiency study.

Exp-1: Validity checking. We first evaluated the scalability of
IsValid. The average time taken by entity instances of various
sizes is reported in Fig. 8(a), where the lower x-axis shows
the sizes of NBA, and the upper x-axis is for Person data. The
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Fig. 8. Experimental results

results show that IsValid suffices to validate specifications of
a reasonably large size. For example, it took 220 ms for NBA

entity instances of 109-135 tuples and 112 constraints, with
14 attributes in each tuple. For Person, it took an average of
4.7 seconds on entities of 8k-10k tuples and 1983 constraints.

We also find IsValid accurate (not shown for the lack of
space): specifications reported (in)valid are indeed (in)valid.

Exp-2: Deducing true values. We next evaluated the per-
formance of algorithms DeduceOrder and NaiveDeduce. The
results on both NBA and Person data are reported in Fig. 8(b),
which tell us the following: (a) DeduceOrder scales well with
the size of entity instances, and (b) DeduceOrder substantially
outperforms NaiveDeduce on both datasets, for reasons given
in Section V-B. Indeed, DeduceOrder took 51 ms on NBA

entity instances with 109-135 tuples, and 914 ms on Person

entities of 8k-10k tuples; in contrast, NaiveDeduce spent
13585 ms and over 20 minutes (hence not shown in Fig. 8(b))
on the same datasets, respectively.

We also find that DeduceOrder derived as many true values
as NaiveDeduce on both datasets (not shown). This tells us
that DeduceOrder can efficiently deduce true values on large
entity instances without compromising the accuracy.

Exp-3: Suggestions for user interactions. We evaluated the
accuracy of suggestions generated from currency constraints

Σ and CFDs Γ put together. The results on NBA, CAREER and
Person are given in Figures 8(e), 8(i) and 8(m), respectively,
where the x-axis indicates the rounds of interactions, and the
y-axis is the percentage of true attribute values deduced.

These results tell us the following. (a) Few rounds of
interactions are needed to find all the true attribute values for
an entity: at most 2, 2 and 3 rounds for NBA, CAREER and
Person data, respectively. (b) A large part of true values can be
automatically deduced by means of currency and consistency
inferences: 35%, 78% and 22% of true values are identified
from Σ + Γ without user interaction, as indicated by the 0-
interaction in Figures 8(e), 8(i) and 8(m), respectively.

Impact of |Σ| and |Γ|. To be more precise when evaluating
the accuracy, we use F-measure, which combines precision

and recall, and take the cases of using |Γ| only or |Σ| only
into consideration. Figures 8(f)–8(h), 8(j)–8(l) and 8(n)–8(p)
show the results for NBA, CAREER and Person, respectively,
when varying both |Σ| and |Γ|, |Σ| only, and varying |Γ| alone,
respectively. The x-axis shows the percentage of Σ or Γ used,
and the y-axis shows the corresponding F-measure values.

These results tell us the following. (a) As shown in Fig-
ures 8(f), 8(j) and 8(n), our method substantially outper-
forms the traditional method Pick, by 201% in average on
all datasets, even when we favor Pick by allowing it to
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capitalize on currency orders. This verifies that data currency
and consistency can significantly improve the accuracy of
conflict resolution. (b) When Σ and Γ are taken together,
the F-measure value is up to 0.930 for NBA (Fig. 8(f), the
top right point), 0.958 for CAREER (Fig. 8(j)), and 0.903 for
Person (Fig. 8(n)), in contrast to 0.830 in Fig. 8(g), 0.907 in
Fig. 8(k), and 0.826 in Fig. 8(o), respectively, when Σ is used
alone, and as opposed to 0.210 in Fig. 8(h), 0.741 in Fig. 8(l),
and 0.234 in Fig. 8(p), respectively, with Γ only. These further
verify that the inferences of data currency and consistency
should be unified instead of taking separately. (c) The more
currency constraints and/or CFDs are available, the higher the
F-measure is, as expected. (d) The two curves for the 2- and
1-interaction overlap in Figures 8(f)–8(h) for NBA, 2- and 1-
interaction in Figures 8(j)–8(l) for CAREER, and 3- and 2-
interaction in Figures 8(n)–8(p) for Person. These indicate that
the users must provide true values for those attributes that we
do not have enough information to deduce their true values.

Exp-4: Efficiency. The overall performance for resolving
conflicts in the NBA (resp. Person) data is reported in Fig. 8(c)
(resp. Fig. 8(d)). Each bar is divided into the elapsed time
taken by (a) validity checking, (b) true value deducing, and
(c) suggestion generating, including computing the maximal
clique and running MaxSat. The result shows that conflict
resolution can be conducted efficiently in practice, e.g., each
round of interactions for NBA took 380 ms. Here validating
specifications takes most time, dominated by the cost of SAT-
solver, while deducing true values takes the least time.

Summary. We find the following. (a) Conflict resolution with
data currency and consistency substantially outperforms the
traditional method Pick, by 201%. (b) It is more effective to
unify the inferences of data currency and consistency than
treating them independently. Indeed, when Σ and Γ are taken
together, the F-measure improves over Σ only and Γ only
by 11% and 236%, respectively. (c) Our conflict resolution
method is efficient: it takes less than 0.5 second on the real-
life datasets even with interactions. (d) Our method scales well
with the size of entities and the number of constraints. Indeed,
it takes an average of 7 seconds to resolve conflicts in Person

entity instances of 8k-10k tuples, with 1983 constraints. (e) At
most 2-3 rounds of interactions are needed for all datasets.

VII. CONCLUSION

We have proposed a model for resolving conflicts in entity
instances, based on both data currency and data consistency.
We have also identified several problems fundamental to
conflict resolution, and established their complexity. Despite
the inherent complexity of these problems, we have introduced
a framework for conflict resolution, along with practical algo-
rithms supporting the framework. Our experimental study has
verified that our methods are effective and efficient.

We are now exploring more efficient algorithms for generat-
ing suggestions, and testing them with data in various domains.
Another topic concerns the discovery of data quality rules.
Prior work on discovery of such rules [5] shows that a large

number of high-quality rules can be identified from possibly
dirty data. It is also interesting is to repair data by using
currency constraints and partial temporal orders. This is more
challenging than conflict resolution, since a database to be re-
paired is typically much larger than entity instances. Finally a
challenging topic is to extend our framework by allowing users
to edit constraints, and by improving the accuracy when users
do not have sufficient currency knowledge about their data.
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