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Abstract. To detect errors in numeric data, this paper proposes nu-

meric functional dependencies (NFDs), a class of dependencies that al-
low us to specify arithmetic relationships among numeric attributes. We
show that NFDs subsume conditional functional dependencies (CFDs);
hence, we can catch data inconsistencies, numeric or not, in a uniform
logic framework by using NFDs as data quality rules. Better still, NFDs
do not increase the complexity of reasoning about data quality rules. We
show that the satisfiability and implication problems for NFDs remain
NP-complete and coNP-complete, respectively, the same as their coun-
terparts for CFDs. Moreover, NFDs can be implemented in SQL and
hence, error detection can be readily supported by DBMS. In addition,
we show that NFDs and CFDs can be extended across multiple tables,
without increasing the complexity of static analyses and error detection.

1 Introduction

One of the central problems with real-life data is data consistency. Indeed, data in
the real world is often dirty, with errors, conflicts and discrepancies. Inconsistent
data inflicts a daunting cost. For example, it costs US businesses 600 billion
dollars annually [5], and errors in medical data may have disastrous consequences
such as death [18]. The scale of the problem is even worse in big data, and it
poses one of the most pressing challenges to big data management.

To detect data inconsistencies, a number of dependency formalisms have
been studied, such as denial constraints [3], conditional functional dependencies
(CFDs) [7] and conditional inclusion dependencies (CINDs) [14]. Using these
dependencies as data quality rules, several systems have been developed for
detecting errors and repairing real-life data (see [6] for a recent survey).

These dependencies, however, fall short of effectively catching errors in nu-
meric data, e.g., integer and real numbers. Numeric values are widely found in,
e.g.,medical, scientific and financial data, and should by no means be overlooked.

Example 1. (1) A relation r1 is shown in Fig. 1(a), in which each tuple specifies
a composer with his name, year of birth (YoB), year of death (YoD) and origin
(country, town). The data in r1 is, however, inconsistent: (a) Bonn is a city in
Germany, not in Belgium (tuple t2), and (b) it is normally expected that no one
lives more than 120 years, i.e., YoD− YoB ≤ 120, in contrast to tuple t1.

The error in tuple t2 can be detected by a CFD ψ1: town = “Bonn” →
country = “Germany”, which asserts that if the town is Bonn then the country is
Germany. When ψ1 is used as a data quality rule, the inconsistency in t2 emerges



name YoB YoD town country

t1: Wolfgang Amadeus Mozart 1756 1891 Salzburg Austria
t2: Ludwig van Beethoven 1770 1827 Bonn Belgium

(a) A composer relation r1

SS# name cno hw tests lab proj

t3: 14311 Joe Lee C1 5% 35% 40% 35%
t4: 14311 Joe Lee C2 15% 55% 0% 30%

(b) A report relation r2

cno start end day

s1: C1 9am 11am Tue
s2: C2 10am 11am Tue

(c) Course relation r′2

CC# name street city zip when where amnt

t5: 610000253253775 Mark Smith Main St. Edi EH8 9LE 21:00/7/7/2013 EDI £350
t6: 610000253253775 Mark Smith Main St. Edi EH8 9LE 22:00/7/7/2013 NYC £500

(d) A transaction relation r3

Hid Pid relationship sex age status

t7: 237654 1 reference M 35 married
t8: 237654 2 child F 24 single

(e) A census relation r4

Fig. 1. Example relations

as a violation of ψ1. However, to detect the inconsistency in t1, it requires an
arithmetic operation YoD−YoB on the numeric attributes YoB and YoD, which
is, unfortunately, not supported by denial constraints, CFDs or CINDs.

(2) Relation r2 of Fig. 1(b) shows the academic report of a high-school student,
one tuple for each course taken, with the distribution of the score into homework
(hw), tests, lab and projects (proj) (ignore Fig. 1(c) for now). Obviously the sum
of these elements should be 100%. However, for tuple t3, its total percentage is
115%. To detect this error, arithmetic operations are again needed.

(3) Relation r3 of Fig. 1(d) is a sample of data from a bank. A tuple in r3 specifies
a transaction record of a credit card: the card number (CC#), card holder in
the UK (name, street, city, zip), when and where the card was physically used,
and the amount charged to the card (amnt). Note that tuples t5 and t6 indicate
a possible fraud. Indeed, Edinburgh (Edi) is 5 hours ahead of New York city
(NYC), and flights from Edi to NYC take 7 hours. Hence, we have the constraint
t6[when]−t5[when] ≥ 2, where t5[when] and t6[when] are the local time in Edi and
NYC, respectively. That is, there is no way for one to use a card in Edinburgh
at 21:00, and use the same card again in New York at 22:00 on the same day.
The fraud, however, cannot be detected by the dependencies mentioned earlier.

(4) Relation r4 of Fig. 1(e) is a piece of census data from [10]. Each household is
identified by an Hid, and within each household, Pid is a key for persons. There
is a reference person for each Hid, and every other person in the household
specifies a relationship with the reference, e.g., child, spouse, along with age, sex
and marital status. One rule for census data is that a parent must be at least 12
years older than a child [10]. However, t7[age]−t8[age] = 11, where t8 is a child of
t7. Unfortunately, the dependencies mentioned earlier are unable to detect this.�



This example tells us that to clean real-life data, we need new dependencies
to detect errors in numeric attributes. Moreover, as the dependencies will be
incorporated into existing data cleaning systems that support, e.g., CFDs, the
extension with the new dependencies should not incur substantial extra costs.

Contributions. This paper studies new dependencies in response to the need.

(1) We propose numeric functional dependencies (NFDs, Section 2). NFDs are
defined in a QBE-like syntax [16], and support arithmetic operations. We show
that CFDs are a special form of NFDs. Hence, NFDs can serve as data quality
rules for detecting inconsistencies commonly found in practice, numeric or not.

(2) We show that NFDs do not increase the complexity of the static analyses of
data quality rules (Section 3). Indeed, the classical problems – the satisfiability
and implication problems – are NP-complete and coNP-complete for NFDs,
respectively, the same as their counterparts for CFDs [7].

(3) We show that error detection with NFDs can be built on top of relational
DBMS without requiring any additional functionality (Section 4). Indeed, for
each NFD ϕ, an SQL query Qϕ can be automatically generated such that when
Qϕ is evaluated on a dataset D, Qϕ(D) returns all and only those tuples in D
that violate ϕ, i.e., data inconsistencies, in low polynomial time (ptime).

(4) Finally, we present an extension of NFDs and CFDs (Section 5). While NFDs

and CFDs are defined on a single table, we show that they can be naturally
extended to span across multiple tables, in a QBE-like syntax. Better still, the
extended NFDs do not make our lives harder: they retain the same complexity
bounds of the static analyses and error detection as their NFD counterparts.

We contend that NFDs are a natural extension of CFDs. They can be readily
employed by data cleaning systems that already support CFDs [6], and extend
the capabilities of those system to detect numeric errors in real-life data.

Related work. A variety of dependencies have been studied as data quality
rules for detecting data inconsistencies, from traditional functional and inclu-
sion dependencies [2] to CFDs, CINDs and denial constraints [6]. Several data
quality systems based on CFDs are already in place, and have proven effective
in various applications. However, such dependencies cannot express arithmetic
relationships and hence, do not effectively catch inconsistencies in numeric data.

The need for detecting numeric errors has long been recognized [4, 9–11, 13,
17]. Metric functional dependencies [13] and sequential dependencies [11] extend
functional dependencies by supporting (numeric) metrics and intervals on or-
dered data, respectively. However, they do not support arithmetic operations
and cannot capture the inconsistencies of Example 1. A class of powerful aggre-
gation constraints was proposed in [17], defined in terms of aggregate functions
(e.g., max, min, sum, avg, count). Using these constraints as data quality rules,
data repairing and consistent query answering were studied in [4]. It is, however,
too expensive to use aggregation constraints: it is undecidable even to decide
whether a given set of aggregation constraints is satisfiable. There has also been



work on repairing numeric data using constraints defined in terms of aggregate
functions [9] and disjunctive logic programming [10]. These constraints are far
more complicated than data quality rules that are already employed by data
cleaning systems such as CFDs. The complexity of their static analyses (satisfi-
ability and implication) is not yet known and is suspected high. In contrast to
the previous work, NFDs aim to strike a balance between the complexity of their
reasoning and the expressive power needed for detecting numeric inconsistencies
commonly found in practice. We want NFDs to be seamlessly incorporated into
data quality systems that already use CFDs, without incurring much extra cost.

It is known that the satisfiability and implication analyses of CFDs are NP-
complete and coNP-complete, respectively [7]. Moreover, for each CFD ψ, two
SQL queries can be automatically generated to detect all violations of ψ in a
dataset [7]. We will show that NFDs retain the same complexity and property.

2 Numeric Functional Dependencies

Below we first define NFDs. We then show that CFDs are a special case of NFDs.

Numeric functional dependencies. NFDs are defined on instances of a single
relation schema R(A1, . . . , An). Each Ai is an attribute, with domain dom(Ai).

A numeric functional dependency ϕ (NFD) defined on R is a pair of tables:

(1) a pattern table Tp of schema R has two tuples p1 and p2; for j ∈ [1, 2] and
i ∈ [1, n], pj[Ai] is a constant in dom(Ai), a variable x(i,j) or wildcard ‘ ’; and

(2) a condition table Tc with a single condition tuple of the form e op z, where
• e is either a variable or a linear arithmetic expression;
• op is one of the built-in predicates =, 6=, <,≤, >,≥; and
• z is either a constant c or a variable y in Tp.

Here an arithmetic expression is built up from terms of numeric constants c
or variables x in Tp with a numeric domain, by closing them under arithmetic
operators +,−,×,÷ and | · | (for absolute value). Note that variables x(i,j) and
x(l,s) that appear in pattern tuples p1 and p2 of Tp may be identical, asserting
condition pj [Ai] = ps[Al]. When pj[Ai] is a constant c, it denotes condition
pj [Ai] = c. If p1 and p2 are identical, Tp consists of a single tuple p1 only.

Example 2. (1) An NFD ϕ1 = (TP1, TC1) is defined on the composer relation of
Fig. 1(a). As shown in Figures 2(a) and 2(b), TP1 consists of a single pattern
tuple tp1 with tp1[YoB] = x and tp1[YoD] = y, and TP1 consists of a single
condition. It is to ensure that for any composer tuple t, t[YoD]− t[YoB] ≤ 120.

(2) Figures 2(c) and 2(d) define an NFD ϕ2 = (TP2, TC2) on the academic report
relation of Fig. 1(b). It states that for any report tuple t, the sum t[hw]+t[tests]+
t[lab] + t[proj] of the distribution of the marks should be equal to 100%.

(3) Another NFD ϕ3 = (TP3, TC3) is given in Figures 2(e) and 2(f), defined on the
transaction data of Fig. 1(d). Note that pattern table TP3 consists of two tuples.
The NFD states that for any two transaction records of the same credit card
(specified by p1[CC#] = xc and p2[CC#] = xc), if it was used in Edi and NYC,



name YoB YoD town country

x y

(a) Pattern table TP1

condition

y − x ≤ 120

(b) Condition table TC1

SS# name cno hw tests lab proj

x1 x2 x3 x4

(c) Pattern table TP2

condition

x1 + x2 + x3 + x4 = 100

(d) Condition table TC2

CC# name street city zip when where amnt

p1: xc xt Edi
p2: xc yt NYC

(e) Pattern table TP3

condition

|xt − yt| ≥ 2

(f) Condition table TC3

Hid Pid relationship sex age status

p3: x reference y1
p4: x child y2

(g) Pattern table TP4

condition

y1 − y2 ≥ 12

(h) Condition table TC4

Fig. 2. Example NFDs

then the two transactions had to be at least two-hour apart. Note that constants
“Edi” and “NYC” are used to specify a pattern, along the same lines as CFDs [7].
In addition, variable xc is used to enforce condition p1[CC#] = p2[CC#].

(4) Finally, an NFDs ϕ4 = (TP4, TC4) is given in Figures 2(g) and 2(h), defined
on the census relation of Fig. 1(e). It assures that for any two persons in the
same household (p3[hid]) = x and p4[hid] = x), if one is the “reference” and the
other is his/her “child”, then the parent must be at least 12-years older than the
child. Again, constants “reference” and “child” specify patterns. �

Semantics. To give a formal semantics of NFDs, we use an operator D defined
on constants, variables and ‘ ’: η1 D η2 is interpreted as the truth value true

if η2 is ‘ ’, and it is an equality predicate η1 = η2 otherwise. The operator D

naturally extends to tuples and produces true or a conjunction of equality atoms,
e.g., (Main St, EDI, NYC) D ( , x, y) yields ‘Edi’ = x ∧ ‘NYC’ = y.

Given D, an NFD ϕ = (TP , TC) in the QBE-like syntax [16] given above can
be rewritten into an equivalent first-order logic (FO) sentence as follows. Assume
that Tp has two pattern tuples p1 and p2, Tc is e op z, and that all the variables
appearing in TP are x1, . . . , xm. Then ϕ can be written as the FO sentence:

ϕ = ∀t1, t2, x1, . . . , xm
(

(t1 D p1 ∧ t2 D p2) → e op z
)

.

As remarked earlier, t1Dp1 and t2Dp2 yield two conjunctions ω1 and ω2, possibly
equal to true. The variables xi are specified in tj D pj and used in e and z.

An instance D of relation schema R satisfies the NFD ϕ, denoted by D |= ϕ,
if for all tuples t1 and t2, if t1 and t2 satisfy ω1 ∧ ω2 following the standard
semantics of first-order logic, then the condition e op z is also satisfied. We say
that D satisfies a set Σ of NFDs, denoted by D |= Σ, if for all ϕ ∈ Σ, D |= ϕ.

Intuitively, if tuples t1 and t2 match pattern tuples p1 and p2, respectively,
then the predicate e op z defined with arithmetic operations in e and the compar-
ison operation op has to be satisfied. Observe that pattern tableau TP supports



patterns of semantically related values such as “t[where] = “Edi” like CFDs [7].
Moreover, they also enforce equality by using variables, e.g., t1[CC#] = xc and
t2[CC#] = xc entail that t1[CC#] = t2[CC#]. In contrast to traditional FDs that
are defined on all tuples in D (see, e.g., [2]), the NFD ϕ is applicable only to the
subset of tuples in D that match patterns p1 and p2. Note that when TP consists
of a single tuple p only, it is equivalent to two identical patterns p1 = p2 = p,
and hence the semantics given above is also well-defined in this case.

Example 3. Consider NFD ϕ1 = (TP1, TC1) given in Figures 2(a) and 2(b). It is
interpreted as ∀ t, x, y

(

t[YoB] = x ∧ t[YoD] = y) → (y − x ≤ 120)
)

.
The NFD ϕ3 = (TP3, TC3) given in Figures 2(e) and 2(f) is interpreted as

∀ t1, t2, xc, xt, yt
(

t1[CC#] = xc ∧ t2[CC#] = xc ∧ t1[where] = “Edi”

∧ t2[where] = “NYC” ∧ t1[when] = xt ∧ t2[when] = yt) → (|yt − xt| ≥ 2)
)

.

which is in turn equivalent to ∀ t1, t2
(

t1[CC#] = t2[CC#] ∧ t1[where] = “Edi” ∧

t2[where] = “NYC” → (|t2[when]− t1[when]| ≥ 2)
)

. The semantics of ϕ2 and ϕ3

given in Example 2 can be similarly interpreted in first-order logic. �

Taking NFDs and CFDs together. Recall that CFDs on schema R can be
written in a normal form ψ = (X → A, tp) [6], where (a) X is a set of attributes
of R, A is a single attribute of R, and (b) tp is a pattern tuple with attributes in
X and A such that for each B ∈ X ∪ {A}, tp[B] is either a constant in dom(B)
or a wildcard ‘ ’. An instance D of R satisfies the CFD ψ, denoted by D |= ψ,
if for any two tuples t1, t2 ∈ D, when t1[X ] D tp[X ] and t2[X ] D tp[X ], then
t1[A] = t2[A]D tp[A] (here CFDs restrict “D” to constants and ‘ ’ only).

One can readily verify that ψ is equivalent to an NFD ϕ of the following form.

(1) If tp[A] is a constant c, then the NFD ϕ = (Tp, Tc), where Tp consists of a
single pattern tuple p such that (a) p[A] is a distinct variable, and (b) for all the
other attributes B of R, p[B] = tp[B] if B ∈ X , and p[B] = ‘ ’ otherwise; and
(c) Tc is xA = c. Such a CFD is referred to as a constant CFD in [6].

(2) If tp[A] is wildcard ‘ ’, then ϕ = (Tp, Tc), where Tp consists of two pattern
tuples p1 and p2, such that (a) p1[A] and p2[A] are distinct variables x1 and x2,
respectively; (b) for all the other attributes B of R, p1[B] and p2[B] are defined
in the same way as for constant CFDs; and (c) Tc is x1 = x2. Such CFDs are
called variable CFDs [6], which subsume traditional functional dependencies [2].

Example 4. The constraint ψ1 given in Example 1 is a constant CFD, and can
be expressed as an equivalent NFD ϕ0 = (TP0, TC0), where

TP0 =
name YoB YoD town country

Bonn x
TC0 =

condition

x = Germany �

Based on the discussions above, one can readily verify the following.

Proposition 1: CFDs of [7] are a special cases of NFDs. �

This tells us that NFDs provide us with a uniform logic formalism to ex-
press data quality rules for detecting data inconsistencies, numeric or not. In
other words, NFDs are capable of capturing all errors that CFDs can catch, and
moreover, errors in numeric attributes that CFDs are not able to detect.



3 Reasoning about NFDs

NFDs are strictly more expressive than CFDs. Indeed, Proposition 1 tells us
that NFDs subsume CFDs; moreover, NFDs can specify arithmetic relationships
among numeric attributes such as those in ϕ1–ϕ4, which CFDs cannot express.
Despite the increase in expressive power, we next show that NFDs do not increase
the complexity of reasoning about data quality rules. More specifically, we study
two classical problems that are associated with any dependency class C.

Consider a set Σ of dependencies in C defined on a relation schema R. To
use Σ as data quality rules, we have to answer the following questions.

– The satisfiability problem for C is to decide, given a set Σ of dependencies
in C, whether there exists a nonempty instance D of R such that D |= Σ.

– The implication problem for C is to determine, given Σ and another depen-
dency ϕ in C that is also defined on R, whether Σ implies ϕ, denoted by
Σ |= ϕ, i.e., for each instance D of R, if D |= Σ, then D |= ϕ.

The satisfiability analysis checks whether Σ has conflicts, i.e., whether the
data quality rules in Σ are “dirty” themselves. It help us find out what goes
wrong in the rules. The implication analysis allows us to optimize our rules by
eliminating redundant ones: if Σ |= ϕ, then it suffices to use Σ instead of Σ∪{ϕ}.

When C is the class of traditional functional dependencies, any finite subset
Σ of C is satisfiable, and its implication problem is in linear-time [2]. When it
comes to NFDs, however, these problems are no longer simple.

To understand where the complication arises, we consider a special form of
NFDs, denoted by AFDs, in which conditions have the form of e op c, where
e is a linear arithmetic expressions defined on numeric attributes, and c is a
constant. One can show that AFDs cannot express CFDs (not even constant
CFDs (X → A, tp) when A is a non-numeric attribute), and that CFDs cannot
express AFDs. We show below that there exists a set of AFDs that is not
satisfiable, even when all the attributes in R have an infinite domain. In
contrast, for a set of CFDs to be unsatisfiable, the CFDs must be defined on
some attributes with a finite domain (see [7] for more details).

Example 5. Consider a relation schema R(A,B), where A and B have an infinite
integer domain. Let Σ be a set consisting of two AFDs φ1 = (TP , T

′

C1) and
φ2 = (TP , T

′

C2), where TP consists of a single tuple (x, y), the condition of T ′

C1

is x − y = 0, and T ′

C2 is y − x > 0. Then there exists no nonempty instance D
of R such that D |= Σ. Indeed, for any instance D of R, if there exists a tuple
t ∈ D, then φ1 requires t[A] = t[B] whereas φ2 asks for t[A] 6= t[B]. �

The good news is that the extra expressive power introduced by NFDs over
CFDs does not make our lives harder: their static analyses have the same com-
plexity as their counterparts for CFDs [7], and as well as for AFDs.

Theorem 2. For NFDs, (1) the satisfiability problem is NP-complete, and (2)
the implication problem is coNP-complete. For AFDs, (3) the satisfiability and
implication problems remain NP-complete and coNP-complete, respectively. �



Proof Sketch. (1) NFDs. The lower bounds follow from their counterparts for
CFDs [7], since CFDs are a special case of NFDs. The upper-bound proofs are
far more involved. To see the complications, observe that if arbitrary arithmetic
expressions were allowed in NFDs, the satisfiability problem would be undecid-
able, which could be verified by reduction from undecidable Diophantine equa-
tions [12]. That is why we restrict arithmetic expressions in NFDs to be linear.

For the satisfiability problem, we first show that NFDs have a small model
property: given a setΣ of NFDs defined on a schemaR, if there exists a nonempty
instance of R that satisfies Σ, then there exists an instance D0 of R such that
D0 |= Σ, D0 consists of a single tuple t0, and moreover, it suffices to consider the
values of the attributes of t0 from a finite domain determined by the domains of
the attributes and those constants in Σ. The proof of the small model property is
nontrivial and needs to distinguish integers and non-integers. Based on the small
model property, one can develop an NP algorithm for satisfiability checking as
follows: (a) guess a tuple t0 with values drawn from the finite domain, and (b)
check whether {t0} |= Σ. The algorithm is in NP since step (b) is in ptime.

Similarly, the implication problem for NFDs is shown in coNP by establishing
a small model property, where D0 consists of two tuples.

(b) AFDs. The upper bounds follow from their counterparts for NFDs, since AFDs

are a special case of NFDs. The lower bound for the satisfiability problem is
verified by reduction from the linear integer programming problem (LIP), which
is NP-complete (cf. [15]). The latter problem is to determine whether a set of
linear inequalities has an integer solution. Similarly, the implication problem for
AFDs is verified coNP-complete by reduction from the complement of LIP. �

4 Validating NFDs in SQL

Recall that we introduce NFDs to detect data inconsistencies. We next present an
SQL technique for relational DBMS to detect inconsistencies as violation of NFDs.

Consider a set Σ of NFDs defined on a relation schema R, an instance D
of R, and an NFD ϕ = (Tp, Tc) in Σ, where Tp consists of two pattern tuples p1
and p2, and Tc is a condition e op z (see Section 2 for the definition of NFDs).
We say that a tuple t ∈ D is a violation of ϕ if there exists a tuple t′ ∈ D such
that {t, t′} 6|= ϕ, i.e., either tDp1 and t′Dp2 or t′Dp1 and tDp2, but ¬(e op z).
Here we use ¬(e op z) to denote that the condition e op z is not satisfied. For
instance, if op is ‘=’, then ¬(e op z) is e 6= z, and if op is ‘≤’, then ¬(e op z)
is e > z. Note that violations of ϕ are defined on single tuples.

The error detection problem can then be stated as follows. Given Σ and D,
it is to find the set of all tuples in D that are violations of some NFD in Σ,
denoted by vio(Σ,D); i.e., vio(Σ,D) = {t ∈ D | ∃ϕ ∈ Σ, t is a violation of ϕ}.

The main result of this section is as follows.

Proposition 3: (1) For any NFD ϕ defined on a schema R, there exists an SQL

query Qϕ such that for any instance D of R, Qϕ(D) returns all violations of ϕ in
D. (2) For any set Σ of NFDs defined on R and any instance D of R, vio(Σ,D)



is computable in at most O(||Σ|||D|2) time, where ||Σ|| is the cardinality of Σ
(i.e., the number of NFDs in Σ), and |D| is the size of D. �

To prove Proposition 3, we show howQϕ is (automatically) generated from ϕ.
Assume that ϕ = (Tp, Tc), Tp = {p1, p2}, and Tc is condition e op z. Then Qϕ is:

select t

from R t, R t′

where (Ω1(t, t
′, p1, p2) and C1(t, t

′, e, z)) or (Ω2(t, t
′, p1, p2) and C2(t, t

′, e, z))

Here Ω1(t, t
′, p1, p2) encodes tD p1 and t′ D p2 in SQL, as a conjunction of terms

such that for each attribute A of R, (1) t[A] = c is a term if p1[A] is a constant
c; similarly for t′[A] = c; and (2) t[A] = t′[A] is a term if p1[A] and p2[A] are
the same variable xA. The conjunct C1(t, t

′, e, z) encodes ¬(e op z) as described
above, by substituting attributes of t and t′ for variables in e or z; more
specifically, each variable x occurring in e or z is replaced with t[A] if p1[A] = x

(resp. with t′[A] if p2[A] = x). This is possible since SQL supports arithmetic
operations (see, e.g., [1]). Along the same lines, Ω2(t, t

′, p1, p2) encodes t D p2
and t′ D p1 in SQL, and C2(t, t

′, e, z) encodes ¬(e op z) accordingly.

Example 6. The NFD ϕ1 given in Example 2 can be implemented in SQL as Q1:

select t

from composer t

where t[YoD]− t[YoB] > 120

Here we need a single variable t to range over composer tuples in this simple SQL

query, since TP1 has a single pattern tuple. Similarly, ϕ4 can be validated by Q4:

select t

from census t, census t′,
where t[Hid]=t′[Hid] and
(t[relationship]=“reference” and t′[relationship] =“child” and t[age]− t′[age] < 12) or
(t[relationship] = “child” and t′[relationship] = “reference” and t′[age]− t[age] < 12)

In contrast to Q1, the SQL query Q4 uses two variables t and t′ to range over
census tuples, since TP4 consists of two pattern tuples. Similarly, one can get
SQL queries to validate the NFDs ϕ2 and ϕ3 given in Example 2.

As another example, recall the NFD ϕ0 of Example 4 for expressing the CFD

ψ1; this NFD can be validated by using the following SQL query Q0:

select t

from composer t

where t[town] = “Bonn” and t[country] 6= “Germany”
�

One can readily verify that given any instance D of R, it takes O(|D|2) time
to evaluate Qϕ(D) in the worst case, to compute all violations of the NFD ϕ in
D (note that |ϕ| is determined by the arity of R). From this it follows that to
validate a set Σ of NFDs, it takes at most O(||Σ|||D|2) time. The cost can be sub-
stantially reduced via, e.g., indexing. This completes the proof of Proposition 3.

Remark. Proposition 3 tells us that one can support inconsistency detection
based on NFDs directly on top of commercial DBMS, without requiring any
additional functionality. We conclude this section with the following remarks.



(1) To detect violations of a CFD ψ in a database, an SQL method has been
presented in [7], which requires two SQL queries in general. In contrast, we show
that a single SQL query Qϕ suffices to validate an NFD ϕ, although NFDs are
more expressive than CFDs. Nonetheless, the SQL queries in [7] are in O(|ψ||D|)
time, where |ψ| denotes the size of ψ, whereas the SQL query Qϕ takes O(|D|2)
time (although the cost can be reduced as mentioned above).

(2) After we have seen the static analyses and validation of NFDs, we now justify
the definition of NFDs (Section 2). One might be tempted to extend NFDs by al-
lowing (a) non-linear arithmetic expressions in Tc, or (b) an unbounded number
of pattern tuples in Tp instead of at most two. However, either extension would
lead to substantial increase in the complexity. Indeed, (a) non-linear arithmetic
expressions in conditions would make the satisfiability and implication analyses
of NFDs undecidable, as shown in the proof of Theorem 2; and (b) an unbounded
number of pattern tuples would require exponential time to validate an NFD

ϕ; more specifically, it would take O(|D|n) time to validate ϕ in the worst
case, where n is the number of pattern tuples of ϕ. As remarked earlier, we
want to strike a balance between the expressive power and the complexity of
NFDs. The current definition of NFDs, on one hand, suffices to catch (numeric)
errors commonly found in the real world, and on the other hand, extends CFDs

without increasing the complexity of the static analyses of data quality rules.

5 Extending NFDs and CFDs across Multiple Tables

Both NFDs and CFDs are defined on a single relation schema R. We next show
that they can be readily extended to detect data inconsistencies across multiple
tables, without increasing the complexity of their validation and reasoning.

To illustrate the need for such an extension, consider the following example.

Example 7. Consider the report relation r2 of Fig. 1(b) and course relation r′2 of
Fig. 1(c). Suppose that the inconsistency in tuple t1 of r2 is fixed by the NFD ϕ2

of Example 2. Then each of the relations r2 and r′2, when taken separately, seems
consistent. However, when r2 and r′2 are put together, inconsistencies emerge:
course C1 specified by tuple s1 of r′2 and course C2 given by tuple s2 overlap
with each other for an hour; this accounts for a conflict when some student
takes both courses, which is witnessed by tuples t3 and t4 in relation r2. �

Such a conflict cannot be directly captured by NFDs or CFDs that are defined
on a single table. Moreover, it cannot be detected by CINDs [14] although CINDs

are defined on two tables. To catch this, one may want to compute the natural
join r′′2 of r2 and r

′

2 on attribute cno and then define an NFD on r′′2 . This is doable,
but costly: to detect such inconsistencies one has to compute a number of joins.

Extended NFDs. This motivates us to extend NFDs across multiple tables,
so that we can directly catch data inconsistencies between these tables.

Consider a relational schema R, which is a collection (R1, . . . , Rm) of
relation schemas. Let k ≥ 2 be a predefined natural number (a constant). We
define an extended NFD ϕ on relational schema R to be a pair of (Tp, Tc), where



(1) Tp is a set of k pattern tables defined on k relation schemas of R; each Tp
of Tp is a pattern table of a schema R of R, consisting of two pattern tuples
p1 and p2 defined with constants, variables and wildcard ‘ ’ as before; and

(2) Tc is the condition table of ϕ with a tuple that is either (a) e op z as before,
or (b) a Boolean expression e defined with terms of comparison predicates
(=, 6=,≤, <,≥, >) on constants and variables, by closing them under ∧,∨
and ¬. Here e and z may include variables from any pattern table Tp of Tp.

The semantics of extended NFDs is defined along the same lines as NFDs.

Example 8. We define an extended NFDs ϕe across report and course relations:

SS# name cno hw tests lab proj

x y1
x y2

TPr

cno start end day

y1 z1 w1 d

y2 z2 w2 d

TPc

condition

(z1 > w2) ∨ (z2 > w1)

TC

It asserts that for any two courses y1 and y2, (a) if there exists a student x
taking both (pattern table TPr), and (b) if the two courses are on the same day
d (table TPc), then they do not overlap (condition TC). To ensure this, we also
use an NFD to assert that for any course tuple s, s[start] < s[end] (omitted). �

Validating and reasoning about extended NFDs. Extended NFDs do not
increase the complexity of validation and static analyses of data quality rules.
Along the same lines as the argument of Section 4, one can verify the following.

Corollary 4: (1) For any extended NFD ϕ defined on a relational schema R,
there exists an SQL query Qϕ such that for any instance D of R, Qϕ(D) finds all
violations of ϕ in D. (2) For any set Σ of extended NFDs on R and instance D of
R, vio(Σ,D) can be computed in O(|Σ||D|2) time, where |Σ| is the size of Σ. �

We should remark that Corollary 4 would no longer hold if one would allow
either arbitrary number of pattern tables (i.e., without the constant bound k)
or unbounded number of tuples in a pattern table in extended NFDs.

Extending the proof of Theorem 2, one can verify the following corollary,
in which extended AFDs refer to the subclass of extended NFDs in which the
conditions are linear arithmetic expressions e op c for some constant c.

Corollary 5: For extended NFDs and for extended AFDs, (1) the satisfiability
problem is NP-complete, and (2) the implication problem is coNP-complete. �

6 Conclusion

We have proposed NFDs and shown the following. (1) NFDs extend CFDs [7]
and are capable of detecting inconsistencies in numeric attributes. (2) Despite
the increased expressive power, NFDs do not increase the complexity of the
satisfiability and implication analyses of data quality rules. (3) Better still,
NFDs allow us to detect errors in low ptime by using existing relational DBMS,
by means of automatically generated SQL queries. (4) In addition, NFDs (and
hence CFDs) can be extended to catch inconsistencies across different tables,



without incurring substantial extra overhead. In light of these, we suggest to
use NFDs to detect errors, numeric or not, in a uniform logic framework.

Several topics are targeted for future work. (1) It is known that CFDs are
finitely axiomatizable [7]: there exists a finite set of axioms for the implication
analysis of CFDs. The finite axiomatizability of NFDs remains to be investi-
gated. (2) To make practical use of NFDs, algorithms need to be developed for
automatically discovering NFDs from (possibly dirty) data, along the same lines
as discovery algorithms for CFDs (e.g., [8]). (3) To simplify the discussion, we
prove Proposition 3 by using a separate SQL query for each NFD in a given
set Σ of NFDs (Section 4). It is possible to find a fixed number of SQL queries
for error detection, regardless of the cardinality of Σ, along the same lines as
CFDs [7]. (4) Finally, data repairing algorithms based on NFDs should be in
place to fix errors detected by NFDs (see [6] for data repairing based on CFDs).
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