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ABSTRACT

This paper studies fundamental problems for distributed
graph simulation. Given a pattern query Q and a graph
G that is fragmented and distributed, a graph simulation
algorithm A is to compute the matches Q(G) of Q in G. We
say that A is parallel scalable in (a) response time if its paral-
lel computational cost is determined by the largest fragment
Fm of G and the size |Q| of query Q, and (b) data shipment
if its total amount of data shipped is determined by |Q|
and the number of fragments of G, independent of the size
of graph G. (1) We prove an impossibility theorem: there
exists no distributed graph simulation algorithm that is par-
allel scalable in either response time or data shipment. (2)
However, we show that distributed graph simulation is par-
tition bounded, i.e., its response time depends only on |Q|,
|Fm| and the number |Vf | of nodes in G with edges across
different fragments; and its data shipment depends on |Q|
and the number |Ef | of crossing edges only. We provide the
first algorithms with these performance guarantees. (3) We
also identify special cases of patterns and graphs when par-
allel scalability is possible. (4) We experimentally verify the
scalability and efficiency of our algorithms.

1. INTRODUCTION
Graph pattern matching is widely used to search and an-

alyze, e.g., social graphs, biological data and transportation
networks. Given a graph pattern Q and a data graph G, it is
to compute Q(G), the set of all matches of Q in G. In the
real world, graphs G are often “big”. For example, Face-
book has more than 1 billion users with 140 billion links [2].
Moreover, the graphs are often fragmented and distributed.
Indeed, (1) social graphs of Twitter and Facebook are geo-
distributed to data centers [34], and (2) to query big graphs,
one wants to partition the data and leverage parallel com-
putation, e.g., Pregel [26] and GraphLab [22].

These highlight the need for efficient algorithms A that,
given a pattern Q and a graph G that is fragmented into F =
(F1, . . . , Fn) and distributed to sites (S1, . . . , Sn), compute
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Figure 1: Querying a distributed social network

Q(G). To query big G, we want A to be parallel scalable in
◦ response time, if its parallel computational cost (re-

sponse time) is determined only by the largest frag-
ment Fm of G and the size |Q| of pattern Q; and

◦ data shipment, if its total amount of data shipped is
decided by |Q| and the number |F| of fragments in F ;

independent of the size |G| of the underlying big graph G;
here |G| is measured by the total number of nodes and edges
in G; similarly for the sizes of fragment |Fm| and pattern |Q|.

The need for parallel scalability is evident when querying
big distributed graphs: the more processors are available,
the smaller the fragments tend to be, and hence, the less
response time it takes. That is, it allows us to divide the
computation on a big graph G into parallel computation on
small fragments of G of manageable sizes, i.e., to make bigG
“small”. If it is parallel scalable in data shipment, then net-
work traffic does not substantially increase when G grows.

Example 1: Consider a social graph G consisting of peo-
ple with different interests: Food (f nodes), Sports (sp), and
among Youtube users, beer lovers (yb) and worldcup fans
(yf), as depicted in Fig. 1. An edge (A,B) in G indicates a
trusted recommendation [19] from A to B. For example, edge
(f3, sp2) indicates that sp2 trusts the recommendation of f3
for e.g., beer. Graph G is distributed to sites S1, S2 and S3.

To identify potential customers for a beer brand [21], a
company issues a graph pattern Q (Fig. 1). It is to find (1)
Youtube users who favor beer ads (YB); (2) Youtube users
interested in videos about “2014 FIFA World-cup” (YF), (3)
Food lovers and (4) soccer fans (SP). The conditions are that
F and YF people trust recommendations from the YB users,
and the SP, F and YF folks form a recommendation cycle.

When G is big, it is cost prohibitive to compute Q(G).
Graph pattern matching is intractable if it is based on sub-
graph isomorphism [33], and it takes quadratic time in |G|
based on graph simulation [11, 18]. Worse still, data has
to be shipped from one site to another as G is distributed.
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With this comes the need for a parallel scalable algorithm
A, to allow a high degree of parallelism and to efficiently
find potential customers independent of |G|. ✷

The practical need raises the following fundamental ques-
tions. Is it possible at all to find a distributed algorithm
A that is parallel scalable for graph pattern matching? If
not, under what conditions such A exists? Are there other
(weaker) performance bounds that allow A to scale with
|G|? While a number of algorithms have been developed
for distributed pattern matching (e.g., [10, 15, 29, 30]), and
several distributed graph systems are in place [4,26], to the
best of our knowledge, these questions have not been settled.

Contributions. This paper tackles these questions. We
focus on graph pattern matching defined with graph sim-
ulation [18], as it is commonly used in social community
detection [7], biological analysis [23], and wireless and mo-
bile network analyses [16]. While conventional subgraph iso-
morphism often fails to capture meaningful matches, graph
simulation fits into emerging applications with its “many-to-
many” matching semantics [7, 11, 18]. Moreover, it is chal-
lenging since graph simulation is “recursively defined” and
has poor data locality [9] (see Section 2 about data locality).

The main contributions of the paper are as follows.

(1) We identify desirable performance guarantees for dis-
tributed graph pattern matching algorithms (Section 3). We
use parallel scalability to characterize that the response time
and data shipment are independent of the size of graph G.

(2) No matter how desirable, we show that parallel scala-
bility is beyond reach for distributed graph simulation (Sec-
tion 3). We prove an impossibility theorem: there exists no
algorithm for distributed graph simulation that is parallel
scalable in either its response time or data shipment.

(3) Nonetheless, we identify doable cases for distributed
graph simulation with performance guarantees (Section 4).
For patterns Q and distributed graphs G, we provide a
distributed simulation algorithm that is partition bounded.
That is, its response time depends only on the largest frag-
ment Fm of G, the size |Q| of Q, and the number |Vf | of
nodes with edges across different fragments. Better still, its
data shipment is bounded by O(|Ef ||Q|), where Ef is the
set of all crossing edges. In practice |Vf | and |Ef | are typi-
cally much smaller than |G|, and |Q| is small. Hence both
the response time and data shipment of the algorithm are
often independent of |G|, i.e., they are not a function of |G|.

(4) When either query Q or graph G is an acyclic direct
graph (i.e., a DAG), we show that better bounds exist (Sec-
tion 5). We develop a distributed simulation algorithm for
DAGs that is parallel scalable in response time under certain
conditions. When G is a tree, we give an algorithm that
is parallel scalable in data shipment. To the best of our
knowledge, these are the first distributed graph simulation
algorithms that have these performance bounds.

The bounds of our algorithms are shown in Table 1 (the
last three rows), compared with prior work. They remain
intact no matter how graphs are partitioned and distributed.

(5) Using real-life and synthetic graphs, we experimentally
verify the scalability and efficiency of our algorithms. We
find that our algorithms scale well with graphs G: their
response time and data shipment are not a function of |G|.

The algorithms are efficient: they take 21 seconds for cyclic
queries on graphs with 18 million nodes and edges. Our
algorithms substantially outperform previous algorithms for
distributed graph simulation: on average they are 3.5 and
21.6 times faster, and ships 3 and 2 orders of magnitude
less data than those of [25] and [14], respectively. On DAGs,
they are 4.7 times faster than the algorithm of [25].

To the best of our knowledge, (1) the results are among the
first that tell us what is doable and what is undoable for dis-
tributed graph simulation. (2) Our algorithms possess the
lowest known bounds on response time and data shipment.
(3) In addition, the algorithms highlight a new approach
for distributed query processing, by combining partial eval-
uation [10, 12, 30] and message passing [22, 26] (see details
shortly). Taken together with approximation algorithms [27]
that minimize |Fm| and |Vf | in graph partitioning, the algo-
rithms are a step toward making distributed graph pattern
matching scalable with real-life graphs.

Related Work. We categorize related work as follows.

Distributed graph databases. There have been several graph
systems for storing and querying distributed graphs [22,26,
36]. Microsoft Trinity [36] is a distributed graph storage and
(SPARQL) querying system. Facebook TAO [34] is a geo-
graphically distributed system that supports simple graph
queries (e.g., neighborhood retrieval). Below we discuss two
representative systems, Pregel [26] and GraphLab [22].

Pregel [26] is a distributed graph system based on synchro-
nized message passing. It partitions a graph into clusters,
and selects a master machine to assign each cluster to a slave
machine. A graph algorithm is executed in a series of super-
steps, during which slave machines send messages to each
other and change their status (voting or halt). The master
machine communicates with slaves after each superstep, to
guide them for the next step. The algorithm terminates if all
the nodes halt. Several graph query algorithms (distance,
PageRank, etc.) are supported by Pregel (see [26]).

GraphLab [22] is an asynchronous parallel-computation
framework for graphs, optimized for scalable machine learn-
ing and data mining algorithms. Given data graph G, a user-
defined update function modifies the data attached to the
nodes in G, and a sync operation gathers final results. The
major difference between Pregel and GraphLab is that the
latter decouples the scheduling of computation from message
passing, by allowing “caching” information at edges.

These frameworks provide system-level optimizations for
e.g., usability and scalability. However, it is hard to assure
provable performance bounds in these frameworks, espe-
cially for graph pattern matching in arbitrarily partitioned
graphs. (1) Message passing of Pregel may serialize opera-
tions that can be conducted in parallel, hence incur excessive
network traffic. (2) GraphLab reduces, to some extent, un-
necessary messages. However, the improvement is only ver-
ified empirically, and highly depends on update and parti-
tioning strategy. In fact, we show (Section 3) that the impos-
sibility theorem of this work also holds in both frameworks.

Distributed graph query evaluation. Several algorithms have
been developed for querying distributed graphs with perfor-
mance guarantees, via partial evaluation or message passing.
Methods based on partial evaluation [10, 12, 15, 25, 29, 30]
specify a coordinator site S0 and a set of worker sites. Upon
receiving a query Q, S0 posts Q to workers. Each worker
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Query Datagraph Type PT DS

XPath [10] XML trees P O(|Q||Fm|+ |Q||F|) O(|Q||F|)
regular path [5] XML trees P O(|Q||Vf ||Fm|+ |Fm||F|) O(|Ef |

2)
regular path [30] general graphs P O(|Q||Vf ||Fm|+|Vf |

2|F|) O(|Ef |
2)

regular path [29] general graphs M - O(|Q|2|G|2)
regular path [12] general graphs P O((|Fm|+ |Vf |

2)|Q|2) O(|Q|2|Vf |
2)

bisimulation [6] general graphs M O(
|V |2+|V ||E|

|F|
) (total) O(|V |2)

simulation [25] general graphs M O((|Vq|+|V |)(|Eq|+|E|)) O(|G|+4|Vf |+ |F||Q|)

simulation (this work) general graphs P&M O((|Vq|+ |Vm|)(|Eq |+ |Em|)|Vq ||Vf |) O(|Ef ||Vq|)
simulation (this work) DAGs P&M O(d(|Vq |+ |Vm|)(|Eq|+ |Em|) + |Q||F|) O(|Ef ||Vq|)
simulation (this work) trees P O(|Q||Fm|+ |Q||F|) O(|Q||F|)

Table 1: Distributed graph pattern matching: performance bounds

performs partial evaluation to compute a partial result in
parallel. The coordinator S0 then collects and assembles the
partial results to get the complete result. Methods based on
message passing [5, 22, 26], on the other hand, exchange in-
termediate results between two sites. Each site is repeatedly
visited until a complete answer is generated.

We summarize the performance bounds of the algorithms
in Table 1, for data shipment (DS) and parallel computation
time (PT), categorized by partial evaluation (P) and mes-
sage passing (M). For a fragmentation F that partitions
G, Vf is the set of nodes with edges “crossing” sites, Ef is
the set of all crossing edges. For G (resp. query Q and
fragment Fm), V and E (resp. Vq and Eq, Vm and Em) are
its set of nodes and edges, respectively. We use d to denote
the diameter of Q, i.e., the longest shortest path in Q.

From Table 1 we can see the following. (1) Partial evalua-
tion often guarantees bounds on response time and network
traffic; however, redundant local computation may be con-
ducted. (2) Message passing often incurs unbounded data
shipment, and is hard to have provable bounds on response
time. On the other hand, local evaluation can be minimized
with specifically designed routing and scheduling plans.

To the best of our knowledge, our algorithms (Sections 4
and 5) are the first that integrate partial evaluation and mes-
sage passing for graph pattern matching, with provable per-
formance guarantees on data shipment and response time.

Closer to our work are [14, 25], which also study dis-
tributed graph simulation, by scheduling inter-site message
passing. In [25], subgraphs from different sites are collected
to a single site to form a directly query-able graph, where
matches can be determined for the strongly connected com-
ponents in the query. In [14], a vertex-centric model is de-
veloped for distributed simulation, following Pregel.

As shown in Table 1, the response time and data ship-
ment of the algorithm of [25] are functions of the size of
the entire G. No performance guarantees for data shipment
or response time are given in [14]. In contrast, (1) we give
algorithms that are parallel scalable when G or Q satisfies
certain conditions; (2) we develop a partition bounded al-
gorithm for general Q and G, i.e., its response time and
data shipment are not a function of |G|; one major differ-
ence between our algorithms and [25] is that instead of ship-
ping large chunks of data to a single site, we only ship the
truth values among the sites; this significantly reduces the
data shipment and query processing time; and (3) we prove
the impossibility of parallel scalability, while [14,25] did not
study what is doable and what is undoable.

Hardness of distributed query processing. The hardness has
been studied for reducing communication costs by graph
partitioning [8, 27] and for the message-passing model [35].

Performance bounds are established for MapReduce algo-
rithms [31] on e.g., network traffic, MapReduce steps, and
optimal local computation. However, these bounds are for
MapReduce operators in e.g., sorting and aggregation, not
for graph pattern matching. This work provides both im-
possibility results and algorithms with provable performance
bounds, particularly for distributed graph simulation.

2. DISTRIBUTED GRAPH SIMULATION
In this section we first review graphs, patterns, data local-

ity and graph simulation [18] (Section 2.1). We then extend
graph simulation to distributed graphs (Section 2.2).

2.1 Graphs, Patterns and Graph Simulation

Data graphs. A data graph is a node-labeled, directed
graph G = (V,E,L), where (1) V is a finite set of data nodes;
(2) E ⊆ V × V , where (v, w) ∈ E denotes a directed edge
from node v to w; and (3) L(·) is a function such that for each
node v in V , L(v) is a label from an alphabet Σ. Intuitively,
L(·) specifies e.g., interests, social roles, ratings [20].

To simplify the discussion, we do not explicitly mention
edge labels. Nonetheless, our techniques can be readily
adapted for edge labels: for each labeled edge e, we can
insert a “dummy” node to represent e, carrying e’s label.

Pattern graphs. A pattern query is a directed graph Q =
(Vq, Eq, fv), where (1) Vq is the set of query nodes, (2) Eq is
the set of query edges, and (3) fv(·) is a function defined on
Vq such that for each node u ∈ Vq , fv(u) is a label in Σ.

Graph simulation [18]. A graph G matches a pattern Q
if there exists a binary relation R ⊆ Vq × V such that
(1) for each query node u ∈ Vq, there exists a node v ∈ V

such that (u, v) ∈ R, referred to as a match of u; and

(2) for each pair (u, v) ∈ R, (a) fv(u) = L(v), and (b)
for each query edge (u, u′) in Eq, there exists an edge
(v, v′) in graph G such that (u′, v′) ∈ R.

It is known that if G matches Q, then there exists a unique
maximum relation [18], referred to as Q(G). If G does not
match Q, Q(G) is the empty set. Moreover, Q(G) can be
computed in O((|Vq |+ |V |)(|Eq|+ |E|)) time [11,18].

We consider two types of pattern queries. (1) A Boolean
pattern Q returns true on G if G matches Q, and false oth-
erwise. (2) A data selecting query Q returns the maximum
match Q(G). That is, a Boolean Q simply decides whether
G matches Q, while a data selecting Q returns Q(G).

We denote |Vq|+ |Eq| as |Q|, and |V |+ |E| as |G|.

Example 2: Consider Q and G of Fig. 1. G matches Q with
the unique maximum match, where yb2, yb3 match YB, f2,
f3, f4 match F, and all yf and sp are the matches of YF and
SP, respectively. Here f1 does not match F since no SP nodes
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Figure 2: Lack of data locality

trust his recommendation. The answer to Q is true if Q is a
Boolean query, and is the relation if Q is data selecting. ✷

Data locality. A class of graph pattern queries Q is said
to have data locality if for any graph G and any node v in G,
one can decide whether v is a match of a query node u in Q
locally, by inspecting only those nodes of G that are within
d hops from or to v, where d is determined only by |Q|.

For example, graph pattern matching defined in terms of
subgraph isomorphism [33] and strong simulation [24] have
data locality. However, graph simulation does not have it.
Data locality makes distributed query evaluation easier since
only a bounded number of sites may have to be visited [9].

Example 3: Consider Q0 and G0 of Fig. 2. Each node Ai

(resp. Bi) has label A (resp. B). One may verify that as
a Boolean pattern query, Q0(G0) = true, while as a data
selecting query, Q0(G0) = {(A,Ai), (B,Bi) | (i ∈ [1, n])}.
Note that Q0 does not have data locality: although it has
only 2 edges, to decide if a node v in G0 is a match of a node
in Q0, those nodes of G0 even n hops from v may have to be
visited and inspected. In contrast, to determine whether a
subgraph of G0 with node v is isomorphic to Q0, it suffices
to visit only the nodes of G0 within 2 hops of v. ✷

Graph simulation fits better than strong simulation [24]
in, e.g., social community detection. The latter may miss
potential matches, e.g., the node yb2 for YB in Fig. 1. We
focus on graph simulation as it finds more potential matches,
and it is more challenging due to poor data locality.

2.2 Distributed Graph Pattern Matching
We next present distributed graph simulation.

Distributed data graphs. A fragmentation F of a graph
G = (V,E,L) is (F1, . . . , Fn), where each fragment Fi is
specified by (Vi ∪ Fi.O, Ei, Li) such that

(a) (V1, . . . , Vn) is a partition of V ,

(b) Fi.O is the set of nodes v′ such that there exists an edge
e = (v, v′) in E, v ∈ Vi and node v′ is in another fragment;
we refer to v′ as a virtual node and e as a crossing edge; and

(c) (Vi∪Fi.O, Ei, Li) is a subgraph ofG induced by Vi∪Fi.O.

We assume w.l.o.g. that each Fi is stored at site Si for
i ∈ [1, n]. For multiple fragments residing in the same site,
they are simply treated as a single fragment.

Here Fi contains “local” nodes in Vi, and virtual nodes in
Fi.O from other fragments. The set Ei consists of (a) edges
between “local” nodes in Vi and (b) crossing edges from local
nodes in Vi to virtual nodes. In a distributed social graph,
crossing edges are indicated by either IRIs (universal unique
IDs) or semantic labels of the virtual nodes [26,28].

We also use Fi.I to denote the set of in-nodes of Fi, i.e.,
those nodes v′ ∈ Vi such that there exists an edge (v, v′)

symbols notations
F Graph fragmentation (F1, . . . , Fn)
|F| The number of fragments in F
Fi.I The set of in-nodes in a fragment Fi

Fi.O The set of virtual nodes in a fragment Fi

Vf

⋃
i∈[1,n] Fi.O

Ef The set of all crossing edges in F

Table 2: Notations: graphs and queries

incoming from a node v in another fragment Fj , i.e., v
′ is a

virtual node in Fj . Note that
⋃

i∈[1,n] Fi.O =
⋃

i∈[1,n] Fi.I .

We will use the following notations:
◦ Vf =

⋃
i∈[1,n] Fi.O is the set of all virtual nodes in F :

◦ Ef is the set of all crossing edges in F ; and

◦ |F| denotes the number of fragments in F .

We summarize the notations in Table 2. Note that |Ef | ≤
|Vf | ∗ df , where df is the average out-degree of nodes in Vf .

Distributed graph simulation. Given a pattern query Q
and a fragmentation F of a graph G, a distributed pattern
matching algorithm A computes the answer to Q in G, i.e., a
truth value if Q is a Boolean pattern query, and the unique,
maximum match Q(G) if Q is a data selecting query.

Example 4: As shown in Fig. 1, a fragmentation of G
is (F1, F2, F3), where F1, F2 and F3 are stored in sites
S1, S2 and S3, respectively. In fragment F1, F1.O consists
of virtual nodes f4, f2 and yf2, set F1.I of the in-nodes
contains sp1 and yf1, and the crossing edges are (f1, f4),
(yf1, f2), (sp1, yf2) and (sp1, f2); similarly for F2 and F3.

To decide that f3 matches F, for instance, any algorithm
has to find a path from f3 in G, ending with a cycle of sp, yf
and f nodes. Such a cycle exists: f3, sp2, yf3, f4, sp3, yf1, f2,
sp1, yf2, across all three fragments. To find the cycle, the
algorithm has to ship data between different sites.

As another example, Figure 2 depicts a fragmentation F0

of a graph G0. The fragments are distributed over n sites
such that site Si contains a single edge (Ai, Bi) and a virtual
node Ai+1. This fragmentation demonstrates the extreme
case when Vf consists of all the nodes in G0. ✷

3. UNDOABLE AND DOABLE
In this section we first present parallel scalability. We

prove that, however, parallel scalability is beyond reach in
practice for distributed graph simulation (Section 3.1). In
light of this, we propose a weaker notion of partition bound-
edness, and show that partition boundedness is achievable
for distributed graph simulation. We also identify special
cases that are parallel scalable (Section 3.2).

3.1 Undoable: Parallel Scalability
A naive algorithm for distributed graph simulation is as

follows: given a pattern Q and a graph G that is fragmented
and distributed, it ships all the fragments of G to a single
site, and uses a centralized algorithm to compute the answer
to Q. This approach ships data almost as large as |G|, and
takes at least O((|Vq | + |V |)(|Eq| + |E|)) time. The cost is
often prohibitive when G is big. It may not even be feasible
in distributed applications with limited bandwidth, space
and time [17, 35]. To this end, we advocate the following
performance guarantees for distributed graph algorithms.

We focus on two metrics for computingQ(G): (a) response
time, the amount of time to compute Q(G) from the time
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when Q is issued; and (b) data shipment, the total amount
of data shipped between the sites in order to compute Q(G).

Parallel scalability. We say that a distributed graph sim-
ulation algorithm A is parallel scalable

◦ in response time if for all patterns Q, graphs G and all
fragmentations F of G, its cost for parallelly comput-
ing Q(G) is bounded by a polynomial in the sizes |Q|
and |Fm|, where Fm is the largest fragment in F ; and

◦ in data shipment if it ships at most a polynomial
amount of data in |Q| and |F|, where |F| is the number
of fragments (sites) involved in communication;

both independent of the size of the entire graph G.

If an algorithm is parallel scalable in response time, then
one can partition a big graph and distribute its fragments to
different processors, such that the more processors are avail-
able, the less response time it takes, i.e., this notion aims to
characterize the degree of parallelism. If an algorithm is par-
allel scalable in data shipment, then it scales with |G| when
G grows (note that |F| is typically much smaller than G).

Impossibility theorems. No matter how desirable, how-
ever, we show below that it is impossible to find a parallel
scalable algorithm for distributed graph simulation.

Theorem 1: There exists no algorithm for distributed graph
simulation that is parallel scalable in (1) either response time
(2) or data shipment, even for Boolean pattern queries. ✷

Proof sketch: We prove (1) and (2) by contradiction. For
the lack of space we defer the detailed proof to [3].

(1) Assume that there exists a distributed graph simulation
algorithm A that is parallel scalable in response time. Then
there exist a Boolean pattern Q0, a graph G0 and a fragmen-
tation F0 of G0 of the form shown in Fig. 2 (see Examples 3
and 4), such that A does not correctly decide whether G0

matches Q0. Indeed, if A is parallel scalable, then it takes
constant time t when processing Q0 on F0, since |Q0| is
a constant, and each fragment of F0 has a constant size.
However, F0 has n fragments, for a “variable” n. To decide
whether G0 matches Q0, we show that information has to
be assembled from m sites and analyzed, for t < m ≤ n.

(2) Assume that there exists an algorithm A that is paral-
lel scalable in data shipment. We show that there exist a
Boolean pattern Q1, a graph G1 and a fragmentation F1

of G1, such that A does not correctly decide whether G1

matches Q1. We use the same Q0 above as Q1, a variation
G1 of G0, and an F1 with two fragments, one consisting of
all the A nodes of G1 and the other with all the B nodes.
Then only a constant amount c of data can be sent by A,
since |Q0| and |F1| are constants. However, we show that
to correctly decide whether G1 matches Q0, data about at
least m nodes has to be sent, where c < m ≤ n, and n is the
number of nodes in a fragment of F1. ✷

Remarks. The result is generic: it holds on distributed
models in which each site makes decisions based on the mes-
sages received and local evaluation, e.g., partial evaluation
models [10, 12, 30]. It also holds on vertex-centric graph
processing systems, e.g., Pregel [26] and GraphLab [22],
in which each node makes decision on local computation
and message sending. One can verify that the proof above
applies to vertex-centric computation, regardless of e.g.,
how the asynchronous local strategy schedules the messages

(GraphLab), or how a synchronized superstep coordinates
the shipment of messages (Pregel). See [3] for details.

3.2 Doable: Partition Boundedness
Theorem 1 suggests that we consider weaker performance

guarantees for distributed graph simulation.

Partition boundedness. We say that an algorithm A for
distributed graph simulation is partition bounded

◦ in response time if its parallel computation cost is a
polynomial function in |Q|, |Fm| and |Vf | (or |Ef |), and

◦ in data shipment if the total data shipped is bounded
by a polynomial in |Q| and |Ef | (or |Vf |).

That is, A depends on how G is partitioned, not on its
size |G|. For a partition F (thus fixed |Vf | and |Ef |), neither
its response time nor data shipment is measured in the size
of G. In practice |Vf | and |Ef | are typically much smaller
than |G|; hence, if A is partition bounded, it often scales well
with big G. In addition, approximation graph partitioning
methods are already in place [27] to minimize |Vf | and |Ef |,
possibly making the sizes of Vf and Ef independent of |G|.

Positive results. Despite Theorem 1, we show that it is
still possible to find efficient algorithms for distributed graph
simulation with performance guarantees.

Theorem 2: There exists an algorithm for distributed graph
simulation that is partition bounded in both response time
and data shipment. Over any fragmentation F of a graph
G, it evaluates a pattern query Q = (Vq, Eq, fv)

◦ in O(|Vf ||Vq |(|Vq |+ |Vm|)(|Eq|+ |Em|)) time, and

◦ ships at most O(|Ef ||Vq |) amount of data,
where Fm = (Vm, Em, Lm) is the largest fragment in F. ✷

When eitherQ orG is a directed acyclic graph (i.e., DAG),
we have better bounds, and moreover, parallel scalability in
response time when the number |F| of fragments is fixed.

Theorem 3: When either graph G or pattern Q is a DAG,
there exists an algorithm that computes Q(G)

◦ in O(d(|Vq | +|Vm|)(|Eq|+ |Em|) + |Q||F|) time, and

◦ ships at most O(|Ef ||Vq |) amount of data,
where d is the diameter of Q, and F is a fragmentation of
G. If |F| is fixed, it is parallel scalable in response time. ✷

When G is a tree, parallel scalability is achievable in data
shipment, and furthermore, possible in response time when
|F| is fixed. The bounds below are the same as those for eval-
uating XPath queries on distributed XML trees [10]. That
is, we show that the bounds of [10] on XPath extend to
distributed graph simulation on trees.

Corollary 4: When G is a tree and each fragment of F is
connected, there exists a parallel scalable algorithm in data
shipment. More specifically, it (a) is in O(|Q||Fm|+ |Q||F|)
time, and (b) ships at most O(|Q||F|) amount of data. If
|F| is fixed, it is also parallel scalable in response time. ✷

We will prove Theorem 2 in Section 4, and Theorem 3 and
Corollary 4 in Section 5, by providing such algorithms.

Remarks. (1) Our performance bounds and techniques do
not require any particular fragmentation strategy, while they
work better on fragmentations that minimize |Vf | and |Ef |.

(2) Table 1 shows that only the algorithms of [10] guaran-
tee parallel scalability in data shipment. Those of [5,12,30]
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are partition bounded in data shipment, and among these,
only [12] is partition bounded in response time. These
algorithms are for either XML trees [5] or regular path
queries [12, 30]. Distributed graph simulation is more chal-
lenging, and we are not aware of any prior algorithms for dis-
tributed graph simulation that are partition bounded. The
algorithms of [6, 25], for instance, require to ship data of
O(|G|) size, i.e., the entire graph, and take as much time as
the naive algorithm given above in the worst case.

4. PARTITION BOUNDED ALGORITHMS
In this section we prove Theorem 2 by developing an al-

gorithm for distributed graph simulation with the desired
bounds. In contrast to conventional distributed algo-
rithms, the algorithm leverages both partial evaluation and
message passing. (1) As opposed to partial evaluation, it
adopts asynchronous message passing to direct partial re-
sults among fragments. (2) In contrast to vertex-centric
models (e.g., Pregel, GraphLab) where each node has a com-
puting node for local computation, it conducts local evalu-
ation on a fragment with effective optimization.

We first present a baseline algorithm in Section 4.1, and
then improve it with optimization techniques in Section 4.2.

4.1 Algorithm for Graph Simulation
We start with the baseline algorithm, denoted as dGPM.

We first study data selecting queries, and then Boolean ones.

Algorithm dGPM uses partial evaluation to compute par-
tial answers on a fragment at each local site in parallel. Each
site then refines its partial answer upon receiving messages
from others, and sends updated answers to others, guided
by the dependency among the sites, i.e., whether a site needs
the values of its virtual nodes from other sites. The process
repeats until no change happens at any site.

We first present auxiliary structures used by dGPM. Con-
sider Q = (Vq, Eq, Lq), G = (V,E,L), and a fragmentation
F = (F1, . . . , Fn) of G, where each Fi is stored at site Si.

Partial answers. A straightforward way to define partial
answer for a site Si is to induce the subgraph of Fi from all
the candidate nodes, assuming that they are all matches [25].
However, this incurs unbounded data shipment. Instead of
shipping data of Fi, we send Boolean variables denoting par-
tial results of Q on local fragment Fi, defined as follows.

(a) With each node v in Fi and each pattern node u in Q,
we associate a Boolean variable X(u,v) to indicate whether
v is a match of u. All such variables for v form a Boolean
vector v.rvec of size |Vq|, for all pattern nodes u in Q.

(b) A partial answer is a set Li of vectors v.rvec consisting
of all the in-nodes v in Fi, such that v.rvec[u] is defined by
a Boolean formula only in terms of the Boolean variables of
the virtual nodes in Fi. We say that v is unevaluated for u
if the truth value of X(u,v) is not yet known.

Local dependency graphs. A local dependency graph
at site Si keeps track of all the sites with virtual nodes as
in-nodes at Si, More specifically, each site Si stores a local
dependency graph Gi

d = (V i
d , E

i
d, A

i
d), where

◦ each node Sj in V i
d represents a site,

◦ there is an edge (Sj , Si) in Ei
d if there is a virtual node

vj in Fj as an in-node in Fi; and

coordinator

site 1

site 2

site k
...

1. pattern query 1. pattern query

1. pattern 

   query

  3. partial 

   matches

3. partial 

matches

3. partial 

matches

  1. (incremental) 

partial evaluation

2. message passing

 local dependency graph

site 1

site 2

...
2.partial 

results

Figure 3: Distributed pattern matching: framework

◦ a function Ai
d(·) on Ed such that for each edge

(Sj , Si), A
i
d(Sj , Si) is the set of all virtual nodes vj in

Fj (resp. in-nodes in Fi) as described above.

Such a Gi
d is determined by fragmentation F only and is

small. Each site Si can compute Gi
d offline in parallel, by

sharing the identifiers of its virtual and in-nodes [26,28] with
other sites, using hashing [26] or indexing techniques [36].

Example 5: Consider Q and G of Fig. 1. Each site Si keeps
a local dependency graph Gi

d. For site S3, G
3
d contains edges

(S1, S3) (annotated with f4) and (S2, S3) (annotated with
{sp3, yf3}), as site S1 has a virtual node f4 as an in-node
in S3; similarly for S2. A partial answer at e.g., site S3 is a
set of Boolean vectors, one for each of its in-nodes sp3, yf3
and f4. For, e.g., sp3, the truth value of an entry X(SP,sp1)

in its associated vector indicates if sp3 is a match for SP. ✷

Algorithm. Algorithm dGPM computes and refines the
partial answers in three phases, as depicted in Fig. 3.

(1) It first conducts partial evaluation (see Section 1). Upon
receiving Q at a coordinator site Sc, it ships Q to each site
Si in which fragment Fi in F resides. Each site computes a
partial answer in parallel, by invoking procedure lEval (to be
given shortly), which keeps track of its in-nodes and virtual
nodes that cannot be locally decided as matches.

(2) Each site then follows a local message passing procedure
lMsg to (a) ship its partial results to other sites guided by
its local dependency graph, and (b) receive updated partial
results from other sites and use procedure lEval to refine its
own partial answer using the input; all sites conduct these in
parallel and asynchronously. If new result appears at some
site, the site sends a flag to Sc to indicate the change. The
communication repeats until no change happens at any site
(indicated by a Boolean variable changed = false at Sc), i.e.,
no more invalid matches exist and a fixpoint is reached.

(3) Finally, coordinator Sc collects partial matches Q(Fi)
from each site, and takes their union as Q(G). If there exists
some node u in Q that does not appear in Q(G), Sc returns
∅, i.e., no match exists. Otherwise, it outputs Q(G).

We next present the two procedures: lEval and lMsg.

Local evaluation. We start with lEval, shown in Fig. 4.
The procedure first initializes a list Li to store the partial
results (line 1). It then initializes vector v.rvec for each node
v in Fi and each node u in Q as follows (lines 2-8). For v and
u with the same label, if u has no children, then v.rvec[u]
is assigned true (lines 4-5). Otherwise v.rvec[u] is assigned
a Boolean variable X(u,v) (lines 6-7). The variable X(u,v) is
assigned false if u and v have distinct labels (line 8).
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Procedure lEval/* executed locally at each site Si, in parallel */

Input: A fragment Fi, and a pattern query Q.
Output: Partial answer to Q in Fi.

1. list Li := ∅;
2. for each node v in Fi do

3. for each node u ∈ Vq do

4. if L(v) = fv(u) and u has no child then

5. v.rvec[u] := true;
6. else if L(v) = fv(u) then

7. v.rvec[u] := X(u,v);
8. else v.rvec[u] := false;
9. compute Q(Fi) by incorporating Boolean variables;
10. for each node vj ∈ Fi.I do

11. update Boolean equations in vj .rvec and Li;

Procedure lMsg/* executed locally at each site Si, in parallel */

Input: Updated partial answer Li, and local dependency graph Gi
d
.

Output: A set of sites and corresponding messages to be sent.

1. for each in-node v in Fi.I do

2. for each updated Boolean variable X(u,v)=false in Li do

3. for each edge (Sj , Si) in Gi
d

annotated with v (v ∈ Ai
d
(Sj , Si)) do

4. set LSj
:= LSj

∪ {X(u,v)};
5. for each site Sj and X(u,v) ∈ LSj

do

6. send X(u,v) to site Sj ;

Figure 4: Procedure lEval and lMsg

After these, lEval computes Q(Fi) by invoking a revised
graph simulation algorithm of [11,18] (line 9). More specifi-
cally, we construct Boolean equations in Li. Recall that for
each node v in G and each u in Q, v matches u if and only if
(a) fv(u) = L(v), and (b) for each child u′ of u, there exists
a child v′ of v, such that v′ matches u′. Thus, X(u,v) can
be deduced from the vectors of the children of v as follows:

X(u,v) =
∧

(
∨

X(ui,vj)),

for each pair of child ui of u and child vj of v with the same
label. Therefore, X(u,v) is defined by a Boolean equation in
terms of the variables associated with the children of v.

Leveraging this property, lEval computes Q(Fi). To cope
with Boolean variables, (1) it always assumes the unevalu-
ated virtual nodes as match candidates (i.e.,true), and (2)
it traverses Fi, instantiates the variables with their truth
values whenever possible, and moreover, reduces equations
such that for each in-node v of Fi, its equations are defined
in terms of variables associated with virtual nodes only.

After the initial process, upon receiving newly updated
variables of virtual nodes from other sites (see procedure
lMsg), lEval reevaluates the Boolean equations, and attempts
to instantiate variables for unevaluated nodes by evaluating
the Boolean equations of in-nodes with the new truth values
of virtual nodes. The updated variables are prepared to
trigger a local message passing to other sites following lMsg.

Example 6: Consider Q and G of Fig. 1. dGPM first posts
Q to each site, where lEval is invoked in parallel to compute
Boolean equations. At F1, e.g., it assigns X(F,f4), X(F,f2),
X(YF,yf2)

to the virtual nodes, and reduces the Boolean equa-
tions for each node using these variables only. (a) It infers
e.g., X(YF,yf1)

= X(F,f2), following query edge (YF, F). (b)
For sp1, it computes sp1.rvec[SP] as X(YF,yf2)

∨ X(YF,yf1)
,

following query edge (SP, YF). By X(YF,yf1)
= X(F,f2) from

(a), it reduces sp1.rvec[SP] as X(YF,yf2)
∨ X(F,f2).

After the parallel evaluation, the Boolean equations in
each Li are shown in the table below.

fragment in-node Boolean equations

F1
yf1 X(YF,yf1) = X(F,f2)

sp1 X(SP,sp1) = X(YF,yf2) ∨ X(F,f2)

F2
f2 X(F,f2) = X(SP,sp1)

yf2 X(YF,yf2) = X(YF,yf3)

F3

f4 X(F,f4) = X(YF,yf1)

sp3 X(SP,sp3) = X(YF,yf1)

yf3 X(YF,yf3) = X(YF,yf1)

For each in-node (e.g., sp1 of F1), its vector is defined
only with the Boolean variables of virtual nodes (e.g., f2
and yf2). Note that the vectors of some “local” nodes
(e.g., yb2.rvec[YB]) are also updated (e.g., to X(YF,yf3)

).
Although X(YB,yb2)

= X(YF,yf2)
∧ X(F,f3), lEval finds that

X(YB,yb2)
can be defined by using X(YF,yf3)

only. ✷

Message passing. We next present procedure lMsg, shown
in Fig. 4. Given local dependency graph Gi

d and updated
partial answer at site Si, lMsg dynamically generates mes-
sages and determines which sites to send the messages. At
each site Si, after lEval is completed, lMsg (1) collects the
set of newly evaluated Boolean variables X(u,v) that are
changed to “false”, and (2) finds all the sites Sj following
edges (Sj , Si) in Gi

d that are annotated with v (lines 1-4).
It then sends the updated truth values of X(u,v) to such Sj

(lines 5-6), which trigger the next round of local evaluation.

Example 7: Continuing with Example 6, upon receiving
a message of updated Boolean variables, lEval and lMsg are
invoked at each site in parallel to find local matches based on
the truth values of updated variables. For example, lEval
is invoked at site S1 to reevaluate X(YF,yf1)

and X(SP,sp1)
.

It finds that all the Boolean variables for each in-node at
all sites are true, i.e., no variable is updated to false. Hence
no message needs to be sent (line 2). The updated vectors
before and after the communications are shown below.

Fi node 1st Round Partial Evaluation Result

F1

yb1 X(YB,yb1) = false X(YB,yb1) = false

f1 X(F,f1) = false X(F,f1) = false

f4 X(F,f4) = X(YF,yf1
) X(F,f4) = true

f2 X(F,f2) = X(SP,sp1
) X(F,f2) = true

yf2 X(YF,yf2) = X(YF,yf3) X(YF,yf2) = true

F2

f3 X(F,f3) = X(YF,yf3) X(F,f3) = true

yb2 X(YB,yb2) = X(YF,yf3) X(YB,yb2) = true

sp2 X(SP,sp2) = X(YF,yf3
) X(SP,sp2) = true

yf3 X(YF,yf3) = X(YF,yf1
) X(YF,yf3) = true

sp3 X(SP,sp3) = X(YF,yf1
) X(SP,sp3) = true

sp1 X(SP,sp1) = X(YF,yf2)∨ X(F,f2) X(SP,sp1) = true

F3
yb3 X(YB,yb3) = X(YF,yf1) X(YB,yb3) = true

yf1 X(YF,yf1) = X(F,f2
) X(YF,yf1) = true

Finally, all the local matches are sent to Sc, where the
complete match relation is assembled. For example, three
matches f1, f2 and f3 are identified for node F at Sc. ✷

Analyses. The correctness of dGPM is warranted as follows.
(1) Algorithm dGPM always terminates. Indeed, for any
node v in G and node u in Q, once v.rvec[u] is updated from
true to false, it never changes back; and in each round of
communication (Phase (2)), at least one variable v.rvec[u]
is updated to false. (2) For any v and u, v matches u iff
v.rvec[u] is true. Indeed, dGPM refines v.rvec in the same
way as the algorithm of [18], until dGPM terminates.

For performance bounds, one may verify the following.

(1) Data shipment. Data shipment is guided by the local
dependency graph, which indicates crossing edges (v, v′) in
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Ef , where v
′ is both a virtual node in fragment Fi and an in-

node in another fragment Fj . The edge is followed only when
v′.rvec[u] is changed to false for some u ∈ Vq, at most |Vq |
times. Moreover, each v′.rvec[u] is changed at most once.
Hence the total data shipment is bounded by O(|Ef ||Vq |) in
all rounds of communications in the worst case.

(2) Response time. In each round of communication, local
matching takes at most t = O((|Vq| + |Vm|)(|Eq| + |Em|))
time [11, 18], and there are at most O(|Vf ||Vq |) rounds.
In the final step, it takes O(|Vq ||F|) time to merge all
the matches and check whether every query node has a
match from a site. Hence the worst-case response time is in
O((|Vq |+ |Vm|) (|Eq|+ |Em|) |Vq ||Vf | + |Vq|F|). In practice,
|F| ≤ |Vf |, since fragments are typically not isolated, and
each fragment yields at least one distinct node in Vf . Hence,
the overall time complexity is in O((|Vq |+|Vm|) (|Eq|+|Em|)
|Vq ||Vf |). Moreover, |Q| (i.e., |Vq |, |Eq|) is typically small,
and |Fm| is much smaller than |G| when |F| is large.

Boolean queries. Algorithm dGPM processes Boolean
queries Q by following the same steps (1) and (2) as for data
selecting queries. The only difference is that in step (3), Sc

simply checks whether each node of Q has a match in any
local site. It returns true if so, and false otherwise.

This completes the proof of Theorem 2.

4.2 Optimization Strategies
We next introduce two optimization strategies. The first

one reduces unnecessary computation of lEval following the
idea of incremental pattern matching [13], upon receiving
a message with updated Boolean variables. The second one
enables tunable performance of dGPM between data ship-
ment and response time, by allowing a site to send not only
evaluated Boolean variables, but also Boolean equations.

Incremental local evaluation. Recall that in Phase (2)
of dGPM, when a site Si receives a message from another
site with evaluated values X(u,v) for some virtual node v of
Si, it calls procedure lEval to revise its local matches Q(Fi).

A better idea is to conduct lEval incrementally. It only
propagates updated truth values, following a “bottom-up”
traversal starting from virtual nodes v, and updates the vec-
tors of the “ancestors” of v. When it reaches a node v′ with
an unchanged vector, it stops the traversal at v′. Finally, if
no vector changes in the entire process, lEval sends false to
coordinator Sc. Otherwise, it sends true to Sc. It also sends
messages with those X(u,v) for all v ∈ Fi.I that are updated
to false, guided by its local dependency graph.

Following [13], one can verify that this incremental version
of lEval takes optimally O(|AFF|) time to update all matches,
where AFF is the set of changed variables, the “area” that
must be visited in response to the changes. This strategy
allows us to minimize unnecessary recomputation.

Example 8: Consider Q and G′ by removing the edge (f2,
sp1) from G (Example 6). After partial evaluation, X(F,f2)

is updated to false and sent from S2 to S1. Upon receiving
X(F,f2), instead of recomputing all the Boolean formulas,
lEval incrementally updates those affected byX(F,f2) starting
from virtual node f2. It updates X(YF,yf1)

to false, following
X(YF,yf1)

= X(F,f2) (see Example 6). Similarly, X(SP,sp1)
=

X(YF,yf2)
∨ X(F,f2) is reduced to X(SP,sp1)

= X(YF,yf2)
. As

no new variables can be updated to false, S1 terminates the
local evaluation, and sends the updated X(YF,yf1)

to S3. ✷

Tunable message passing strategy. In Phase (2) of
dGPM, a site may do nothing but wait for evaluated vari-
ables from its children. To reduce the waiting time and
hence, improve the overall response time, we introduce a
push operation that allows a site Si to send Boolean equa-
tions to another site Sj , instead of Boolean variables, such
that Sj can “inline” these equations in the equations of its
in-nodes, and hence bypass message passing from Si to Sj .

Push operation. We first extend the local dependency graph

Gi
d of Si by including the edges (Si, Sk), for all sites Sk

having in-nodes as the virtual nodes in Si. Given Gi
d at site

Si, a push operation does the following. (1) At site Si, for
each in-node v in Fi, it sends the equations in v.rvec[u] to all
the parent sites Sj in Gi

d if Ai
d(Sj , Si) contains v, i.e., Sj has

an unevaluated virtual node as in-node v of Si. Site Si also
sends all its children sites Sk in Gi

d to Sj that contribute
virtual nodes to the evaluation of v. (2) Each parent Sj

(resp. child Sk) of Si then updates its dependency graph
by replacing (Sj , Si) (resp. (Si, Sk)) with edges (Sj , Sk), for
such child sites Sk (resp. parent site Sj) of Si. Intuitively,
this operation outsources part of computation at Si to Sj ,
and bypasses the communication via edge (Sj , Si).

To determine when to perform a push operation, site Si

checks whether a benefit function B(Si) exceeds a threshold
θ. The function B(Si) is defined as follows:

B(Si) =
|Fi.O

′|

m ∗ |Fi.I ′|
where Fi.I

′ (resp. Fi.O
′) denotes the number of unevaluated

in-nodes (resp. virtual nodes) at Si, and m denotes the to-
tal size of the equations (messages) to be sent. Intuitively,
(1) the more unevaluated virtual nodes and the less uneval-
uated in-nodes at Si, the longer a parent Sj has to wait for
messages from Si, and hence, the better if Si ships its local
computation to Sj , bypassing Si; and (2) the less amount of
data requires to be sent, the better a push operation is. If
B(Si) ≥ θ, procedure lMsg triggers a push operation at Si.

Remarks. A push operation ships more data in exchange
for better waiting time. To strike a balance, we use m in
B(·) to suppress the overhead of shipment. While waiting
time is the bottleneck in response time (as observed in our
experiments; see [3]), B(·) can be adjusted (e.g., to be pos-
itively correlated with m) to balance local evaluation time.
That is, lMsg outsources more computation via push oper-
ations for larger m. Other performance metrics (e.g., site
visit times, workload and processing capacity) can also be
integrated into B(·) to improve the performance of dGPM.

Our experimental study shows that these two optimiza-
tion strategies substantially improve the performance. In-
deed, dGPM extended with these strategies (also denoted by
dGPM) is 20 times faster than its counterpart without them
(denoted as dGPMNOpt) on average (see Section 6).

5. PARALLEL SCALABLE ALGORITHMS
We next prove Theorem 3 and Corollary 4 by giving dis-

tributed graph simulation algorithms for DAGs and trees in
Sections 5.1 and 5.2, respectively, with the desired bounds.

5.1 DAG Patterns and Graphs
We start with an algorithm for DAG Q, denoted as dGPMd.

Algorithm dGPMd reduces the number of messages sent by
scheduling the shipment of the updated Boolean variables,
following the (topological) ranks of query nodes in Q.
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The rank r(u) of a node u in a DAG Q is defined as fol-
lows: (a) r(u) = 0 if u has no child; (b) otherwise, r(u) =
max(r(u′)) +1 for each child u′ of u. Note that 0 ≤ r(u) ≤ d,
where d is the diameter of Q, i.e., the length of the longest
shortest path between two nodes in Q. Moreover, d ≤ |Eq|.

Recall that for each node v in G and u in Q, X(u,v) de-
pends only on X(u′,v′) for children u′ and v′ of u and v,
respectively. Thus, X(u,v) is determined only by X(u′,v′) if
r(u) ≥ r(u′) when Q is a DAG. This suggests that we ship
variables X(u,v) among sites guided by the rank r(u) of u,
and send them in a single batch, such that each message to
site Si allows Si to find the matches for the query nodes
that have the same rank r(u). Observe that since r(u) ≤ d,
each site sends at most d batches of messages. This further
indicates less number of partial evaluation over all the sites.

Example 9: Consider a DAG query Q′′ and a graph G′′

depicted in Fig. 5. One may verify that the rank r(FB) = 0
as it has no child in Q′′. Similarly, r(YB2) = 1, r(SP) = 2,
r(YF) = r(F) = 3, and r(YB1) = 4. Here YB1 and YB2 are
two distinct query nodes with the same label YB.

Note that G′′ does not match Q′′. When algorithm dGPM

of Section 4 is used to check whether G′′ matches Q′′, in
total 12 messages have to be sent: 2 messages from F4 to
F7 and F8, 4 messages from F7 and F8 to F5 and F6, and 6
messages from F5 and F6 to F4. For example, two messages
for variables X(SP,sp4)

and X(SP,sp5)
have to be sent from

F7 to F5. This further triggers two rounds of (incremental)
partial evaluation on F5. However, the updated variables
X(SP,sp4)

and X(SP,sp5)
can be “merged” and sent as a single

message from F7 to F5, following the rank of SP. Note that
this also reduces one round of partial evaluation at F5. ✷

Algorithm dGPMd. Motivated by this observation, we de-
velop dGPMd, which has the same three phases as in dGPM,
but uses a different message passing strategy lMsgd.

(1) In the first phase, upon receiving a query Q from the
coordinator Sc, each site invokes lEval as in dGPM. It then
assigns to each Boolean variable X(u,v) the topological order
r(u) of the query node u, for each virtual node and in-node v.

(2) For message passing in Phase (2), each site Si keeps
track of the topological ranks of nodes in Q being processed,
and lists Lr of updated variables collected from each site.
Each list consists of variables X(u,v) with the same rank
r(u) for u in Q. Instead of shipping a Boolean variable
X(u,v) once evaluated, lMsgd waits until all the variables
in Lr are evaluated, following the ascending order of r. It
then sends the evaluated variables in Lr, in a single batch,
to the parent sites guided by Gi

d, and waits for the next
batch of variables (i.e., with rank r + 1) to be evaluated.
This reduces the numbers of messages without increasing
the overall response time.

(3) This refinement and message passing process repeats un-
til no Boolean variable is unevaluated, i.e., query modes of
all ranks are checked (no data needs to be shipped when
r = d). It then informs coordinator Sc for termination.

Example 10: Given Q′′ and G′′ in Fig. 5, dGPMd finds
that Q′′ cannot match G′′ by shipping at most 6 messages
as follows. As no variable is associated with FB (r = 0), no
data shipment is incurred. It then starts with r = 1. Follow-
ing the local dependency graph G4

d at site S4, it ships only
X(YB2,yb4) to F7 and F8, as two messages (locally evaluated
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Figure 5: Scheduling data shipment

as false). After the local evaluation, the variables associated
with SP nodes in F7 and F8 are all false, where the local rank
r = 2 at both sites. Since no more variables are unevaluated
for query nodes with topological rank 2 at this time, S7 and
S8 send these updated values as two messages to F5 and F6,
for r = 2. Sites S5 and S6 collect all the variables of query
nodes ranked at 3, i.e.,YF and F, and send them to S4, again
in two messages. Now at S4, X(YB1,yb4)

is evaluated false. In
total 6 messages are sent, as opposed to 12 by dGPMt. ✷

Analyses. Algorithm dGPMd computes Q(G) in O(d(|Vq|+
|Vm|) (|Eq| + |Em|) + |Q||F|) time. To see this, note that
(a) it performs d rounds of parallel partial evaluation, (b)
each round of evaluation takes O((|Vq |+ |Vm|) (|Eq|+ |Em|))
time, and (c) it takes O(|Q||F|) time for the coordinator Sc

to merge and assembles Q(G). Further, the bound on the
total data shipped by dGPM carries over to dGPMd.

DAG G. Algorithm dGPMd also works on acyclic G. To see
this, it suffices to consider the following cases. (a) WhenQ is
cyclic, G does not match Q. Indeed, at least one query node
in a cycle of Q cannot find a match in G, by the definition
of graph simulation. (b) When both Q and G are DAGs,
dGPMd applies. Hence given a DAG G, all we need to do is to
check whether Q is also a DAG (in linear time by using, e.g.,
Tarjan’s algorithm [32]), and if so, apply dGPMd to Q and G.

These tell us that for DAGs, dGPMd is partition bounded
in data shipment, and it is parallel scalable in response time
if |F| is fixed. This completes the proof of Theorem 3.

Remark. Algorithm dGPMd sends a bounded number of
messages, hence with low communication cost in applica-
tions where site-to-site communication is the bottleneck [35].
Moreover, this reduces the total number of partial evalua-
tion at the sites, which further improves the response time.

5.2 Data Graphs as Trees
When G is a distributed tree (with each fragment a con-

nected subtree of G), there exists an algorithm that is paral-
lel scalable in data shipment. We present such an algorithm,
denoted as dGPMt, for data selecting queries.

Algorithm dGPMt. The algorithm uses two rounds of com-
munications between coordinator Sc and each site as follows.

(1) Algorithm dGPMt posts Q to all sites Si. Each site Si

invokes procedure lEval to compute the partial answer Li in
parallel, as in Phase (1) of dGPM.

(2) Instead of sending messages following its dependency
graph, each site ships the partial answer Li and the Boolean
vector of its “root” to coordinator Sc. Algorithm dGPMt

puts all Li’s together as a Boolean equation system [10]. It
solves the equations and instantiates all Boolean variables in
O(|Q||F|) time by iteratively unifying variables in the equa-
tions, following a “bottom-up” computation induced from
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the tree fragments, where the variables associated with vir-
tual nodes are connected to the variables of in-node they
define. This completes the first round of communication.

(3) The instantiated Boolean variables are sent back to each
site, where lEval is invoked again to complete the matching
process. After this, each site sends its local matches to Sc,
which are assembled at Sc to get answer Q(G), as in dGPM.

Analysis. Observe the following. (1) Each site is visited at
most twice by dGPMt. (2) lEval computes the partial answer
at each fragment Fi in O(|Q||Fi|) time. Hence, the total par-
allel computational cost of dGPMt is in O(|Q||Fm|). The to-
tal response time, including the time for evaluating Boolean
equations, is in O(|Q||Fm|+ |Q||F|). (3) Each fragment has
at most a single in-node. Hence, dGPMt ships at most a
single Boolean vector of size O(|Q|) for each fragment, and
the total data shipment is in O(|Q||F|). Note that the linear
bound on Boolean equations does not hold when G is a DAG

or a cyclic graph, i.e., the idea only works for trees.

Algorithm dGPMt extends the idea of partial evaluation
of XPath queries on fragmented XML trees [10] to graph
simulation on distributed trees, as well as its performance
bounds. This completes the proof of Corollary 4.

6. EXPERIMENTAL EVALUATION
We next present an experimental study of our distributed

algorithms. Using real-life and synthetic graphs, we con-
ducted three sets of experiments to evaluate the efficiency
and data shipment of algorithms (1) dGPM, for general pat-
tern queries and data graphs; (2) dGPMd, for DAG queries or
graphs; and (3) the scalability of dGPM over large synthetic
graphs. More experimental results are reported in [3].

Experimental setting. We used two real-life graphs.

(1) Real-world graphs. (a) Yahoo (http://webscope.

sandbox.yahoo.com/catalog.php?datatype=g), which has
3M nodes and 15M edges. Each node denotes a Web page
with attributes such as domain. An edge from x to y in-
dicates that x links to y. Its size is 1.6GB. (b) Citation
(http://www.arnetminer.org/citation/) has 1.4M nodes
and 3M edges, in which nodes represent papers with at-
tributes such as title, authors, year and venue, and edges
denote citations. It is a DAG of 628MB.

(2) Synthetic data. We designed a generator to produce

synthetic graphs G = (V,E,L), controlled by the numbers
of nodes |V | and edges |E|, where L is taken from a set Σ
of 15 labels. We use (|V |, |E|) to denote the size of G.

In all our tests we used data selecting patterns.

(2) Graph fragmentation. We randomly partitioned G into

a set F of fragments, controlled by size(F), the average size
of the fragments. Unless stated otherwise, the size |Fm| of
the largest fragment is size(F) = |G|/|F|. To control |Vf |
(resp. |Ef |), we iteratively “swapped” two nodes in different
fragments that maximally reduced |Vf | (resp. |Ef |) follow-
ing [27], until the ratio |Vf |/|V | (resp. |Ef |/|E|) reached a
threshold. We represent the size of Vf by the ratio |Vf |/|V |.

(3) Algorithms. We implemented the following algorithms,

all in Java: (1) dGPM (Section 4.1); (2) dGPMd (Section 5);
(3) Match, which first ships all fragments to a site, and then
computes Q(G) using a centralized graph simulation algo-
rithm (see Section 3.1); (4) algorithm disHHK of [25]; and

(5) dGPMNOpt, a version of dGPM without using incremental
evaluation or push operations (Section 4.2), to evaluate the
effectiveness of our optimization strategy.

We also developed a message-based algorithm dMes, to
simulate the vertex-centric model of Pregel [14, 26]. Upon
receiving Q from a coordinator Sc, each site Si, as a worker,
does the following (as a superstep [14]) for each virtual node
in fragment Fi. (1) It requests the Boolean values from other
sites for the variables of its virtual nodes. (2) It performs
local evaluation to update all its local variables. (3) If no
change happens, it sends a flag to Sc to vote for termination.
It collects the matches from all the sites if at a superstep,
all the sites vote to “terminate”. For a fair comparison, we
do not assume message passing for local evaluation.

Machines. We deployed these algorithms on Amazon EC2
General Purpose instances [1]. Each site stored a fragment.
Each experiment was run 5 times and the average is
reported here. We report the response time (PT) and data
shipment (DS) of the algorithms. As dGPMNOpt has the same
data shipment as dGPM, we do not show DS for dGPMNOpt.
We do not show DS for Match as it always ships the entire
G. We fixed threshold θ for push operations at 0.2.

Experimental results. We next report our findings.

Exp-1: Performance of dGPM. We first evaluated the
performance of algorithm dGPM for general Q and G, com-
pared with disHHK, Match, dMes and dGPMNOpt, using Ya-
hoo. We identified 20 cyclic patterns with conditions such
as “domain = ‘.uk’ ”, and report the average here. We use
logarithmic scale for the y-axis in the figures for PT and DS.

Varying |F|. Fixing |G| = (3M, 15M), |Q| = (5, 10) and |Vf |

= 25%, we varied the number |F| of sites from 4 to 20. Fig-
ures 6(a) and 6(b) report the PT and DS, respectively. The
results verify that dGPM allows a high degree of parallelism:
the more processors are available (i.e., the larger |F| is), the
less time dGPM takes. In contrast, Match is indifferent to
|F|. Compared to disHHK, dGPM is 3.5 times faster, and
ships 3 orders of magnitude less data, when |F| is 20. The
improvement over disHHK is more significant when |F| in-
creases: it is 2.8 times faster (resp. ships 0.07% of the data
by disHHK) when |F| = 4, and 3.32 times faster when |F|
= 16 (resp. ships 0.05% of data). On average, dGPM is 21.6
times faster than dMes, while the latter ships 80 times more
data, since dMes incurs redundant message passing. We
observed slightly increased DS as larger |F| induces slightly
larger |Vf | (resp. |Ef |), despite of the adjustment using [27].

Varying |Q|. Fixing |F| = 8, |G| = (3M, 15M) and |Vf | =

25%, we varied query size |Q| from (4, 8) to (8, 16). As shown
in Figures 6(c) and 6(d), when |Q| gets larger, so do the re-
sponse time of all these algorithms (the logarithmic scale
makes the increase of Match less obvious), and data ship-
ment of all but Match, as expected. Compared to disHHK

and dMes, dGPM is 3.6 and 20 times faster, and ships at
most 0.044% and 1.5% of their DS, respectively, when |Q| =
(8, 16). Moreover, the data shipment of dGPM is much less
sensitive to the change of |Q| than the other two.

Varying |Vf |. Fixing |F| = 8, |G| = (3M, 15M) and |Q| =

(5, 10), we varied |Vf | (resp. |Ef |) from 25% to 50%. As
shown in Figures 6(e) and 6(f), (1) when |Vf | (resp. |Ef |)
increases, dGPM takes more time (from 11 to 19 sec-
onds) and ships more data (from 0.54K to 0.97K), as ex-
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Figure 6: Performance evaluation

pected. Nonetheless, (2) in all cases dGPM is more efficient
than Match and disHHK and moreover, ships less data.

These results also verify the effectiveness of our optimiza-
tion strategies (Section 4.2). Indeed, dGPM is 20.3 times
faster than dGPMNOpt on average. The improvement is more
significant over larger fragments: dGPM is 20 times faster
than dGPMNOpt when |Fm| is (0.15M, 0.75M), and is 21.5
times faster when |Fm| increases to (0.75M, 3.75M).

Exp-2: Performance of dGPMd. The second set of exper-
iments evaluated algorithm dGPMd, when G is a DAG. We
compared dGPMd with Match, disHHK and dMes, using Ci-
tation, which is a DAG. We generated 8 sets of DAG queries
Q1, . . . , Q8 such that all the queries in Qi have d = i + 1,
where d is the diameter of pattern query Q (Section 5).

Varying d. Fixing |F| = 8, |G| = (1.4M, 3M), |Q| = (9, 13)
and |Ef | = 25%, we varied diameter d from 2 to 8. As
shown in Figures 6(g) and 6(h), dGPMd takes more time
when d increases, but its data shipment does not increase.
This is consistent with the analysis of Section 5. Despite
this, dGPMd is much faster and ships much less data than
the other three. When d = 4, for example, dGPMd takes 3.6
seconds on average, 44, 4.1 and 18 times faster than Match,
disHHK and dMes, respectively; it ships only 0.024% and
1.06% of data by disHHK and dMes, respectively.

The impact of |Q| on dGPMd is consistent with Fig-
ures 6(c) and 6(d) for dGPM, and thus is not shown here.

Varying |F|. Using the same |G|, |Q| and |Vf | as above and

fixing d = 4, we varied |F| from 4 to 20. The results given
in Figures 6(i) and 6(d) show that given more processors,
dGPMd takes less time (from 7.3 seconds with |F| = 4 to 4

seconds for |F| = 20). When |F| = 20, dGPMd is 4.7, 12.5
and 15.8 times faster than disHHK, dMes and Match, and
ships 2, 3 and 6 orders of magnitude less data, respectively.

Varying |Vf |. Fixing |F| = 8, |Q| = (9, 13), d = 4 and |G| =

(1.4M, 3M), we varied |Vf | from 25% to 50%. As shown in
Fig. 6(k), the PT of dGPMd is insensitive to |Vf |. This exper-
imentally verifies Theorem 3. Contrast this with the 81% in-
crease of the PT of dGPM caused by the same change of |Vf |
(Fig. 6(e)). As shown in Fig. 6(l), dGPMd ships more data
with larger |Vf | (hence larger |Ef |), but disHHK and dMes

incurs 2144 and 87 times more DS on average, respectively.

Exp-3: Synthetic graphs. Using larger scale synthetic
graphs, we evaluated the scalability of dGPM compared with
disHHK, dMes and dGPMNOpt, by varying |F| and |G|. The
performance of Match is not reported, as it is not capable to
cope with large |G| due to memory limit using a single site.

Varying |F|. Fixing |G| = (30M, 120M), |Q| = (5, 10) and

|Vf | = 20%, we varied the number |F| of sites from 8 to 20.
Figures 6(m) and 6(n) verify that dGPM allows a high degree
of parallelism: the more processors are available (indicated
by |F|), the less time dGPM takes. Compared to disHHK

(resp. dMes), dGPM is 3.4 (resp. 23 ) times faster, and ships
3 (resp. 2) orders of magnitude less data, when |F| is 20.

Varying |G|. Fixing |F| = 20, |Q| = (5, 10), and |Vf | = 20%,

we varied |G| from (20M, 80M) to (80M, 320M), i.e., |Fm|
from (1M, 4M) to (4M, 16M). As shown in Figures 6(o) and
6(p), the larger |Fm| is, the longer dGPM takes, as expected.
While disHHK and dMes are not directly related to |Fm|,
their response time and data shipment are functions of |G|,
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and increase when |G| gets larger. Observe that dGPM is
24.7, 3.6 and 27.5 times faster than dGPMNOpt, disHHK and
dMes. It ships at most 0.077% and 0.9% of data shipped
by disHHK and dMes on average, respectively.

Summary. We find the following. (1) Our algorithms scale
well with large G: their response time and data shipment
are not a function of |G|. (2) They allows a high degree
of parallelism: their response time is significantly reduced
when more processors are used. For example, dGPM is
twice faster when |F| is increased from 4 to 20. Compared
to Match, disHHK and dMes, it is 55.4, 3.5 and 21.6 times
faster, and ships 6, 3 and 2 orders of magnitude less data,
respectively, when |F| = 20. The improvement over other
algorithms is even bigger when more processors are used.
(3) The algorithms are efficient, e.g., dGPM takes less
than 21 seconds when |G| = (3M, 15M), |Q| = (5, 10) and
|F| = 12, and ships only 0.94K data. When Q or G is a
DAG, dGPMd is 15.8, 4.7 and 12.5 times faster than Match,
disHHK and dMes on average, respectively, with orders
of magnitude less data shipment. (4) Our optimization
strategies are effective, and make dGPM 20 times faster.

7. CONCLUSION
We have studied what is doable and what is undoable

for distributed graph simulation. We have shown that it
is impossible to find distributed simulation algorithms that
are parallel scalable in response time or data shipment.
Nonetheless, we have shown that distributed simulation
is partition bounded, by providing algorithms whose re-
sponse time and data shipment are not a function in the
size of graph G. We have also verified, analytically and
experimentally, that our algorithms scale well with big G.

One topic for future work is to study parallel scalabil-
ity and partition boundedness for other graph queries, e.g.,
graph pattern matching with subgraph isomorphism [33] and
strong simulation [24]. Another topic is to give a full treat-
ment of the model advocated in this work by combining
partial evaluation and message passing, comparing them
with, e.g., MapReduce and GraphLab [22]. In addition,
to effectively query real-life graphs, one wants to combine
distributed processing with, e.g., graph compression, view-
based query processing and top-k query answering.
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