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Abstract 

 

Low-power, and relatively low-cost, gas sensors have potential to improve understanding of 

intra-urban air pollution variation by enabling data capture over wider networks than is 

possible with ‘traditional’ reference analysers. We evaluated an Aeroqual Ltd. Series 500 

semiconducting metal oxide O3 and an electrochemical NO2 sensor against UK national 

network reference analysers for more than two months at an urban background site in central 

Edinburgh. Hourly-average Aeroqual O3 sensor observations were highly correlated (R2 = 

0.91) and of similar magnitude to observations from the UV-absorption reference O3 analyser. 

The Aeroqual NO2 sensor observations correlated poorly with the reference 

chemiluminescence NO2 analyser (R2 = 0.02), but the deviations between Aeroqual and 
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reference analyser values ([NO2]Aeroq – [NO2]ref) were highly significantly correlated with 

concurrent Aeroqual O3 sensor observations [O3]Aeroq. This permitted effective linear 

calibration of the [NO2]Aeroq data, evaluated using ‘hold out’ subsets of the data (R2  0.85). 

These field observations under temperate environmental conditions suggest that the Aeroqual 

Series 500 NO2 and O3 monitors have good potential to be useful ambient air monitoring 

instruments in urban environments provided that the O3 and NO2 gas sensors are calibrated 

against reference analysers and deployed in parallel.  

 

Keywords: semiconductor gas sensor; electrochemical gas sensor; NO2; O3; air pollution 

exposure.  

 

 

Introduction 

 

Ozone (O3) and nitrogen dioxide (NO2) are very important air pollutants subject to mandatory 

air quality limits in many jurisdictions. Road traffic and static combustion are major sources 

of the NOx gases (NO and NO2) leading to pronounced spatiotemporal gradients in NO2 in 

urban areas (Cyrys et al., 2012). As a consequence of the fast photochemical cycling between 

NOx and O3, concentrations of O3 also exhibit strong spatiotemporal variability in urban areas 

(McConnell et al., 2006; Malmqvist et al., 2014). At present, NO2 and O3 are measured using 

expensive, but traceably-calibrated, fixed-site monitors in sparse networks, or via passive 

diffusion samplers (Martin et al., 2010; Matte et al., 2013). The former lack spatial resolution, 

whilst the latter lack temporal resolution.  

 

The development of low-power gas-sensitive semiconductor and electrochemical technology 

has potential to improve understanding of intra-urban air pollution variation by enabling 

simultaneous data capture, at lower net cost, over wide urban networks (Mead et al., 2013; 

Williams et al., 2013; Bart et al., 2014), and via peripatetic and mobile sampling designs 
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(Abernethy et al., 2013; Saraswat et al., 2013). However, the quality of the data generated by 

these monitors compared with established techniques remains a concern (Snyder et al., 2013), 

in particular interference in the sensing of NO2 by O3 (Williams et al., 2009; Mead et al., 

2013). One such type of monitor is the Aeroqual Ltd. Series 500 ENV portable gas monitors 

(www.aeroqual.com/category/products/handheld-monitors). These are relatively compact and 

lightweight (460 g), and can be operated from an inbuilt battery (for ~8 h) or from mains 

power. Interchangeable metal oxide semiconductor and electrochemical sensors permit 

continuous monitoring of a range of gases at low mixing ratios (Williams et al., 2009). The 

Aeroqual monitors are a factor of approximately 5 to 10 times lower cost than standard air 

quality monitoring instrumentation for these gases.  

 

In this study, we evaluated the capabilities of two Aeroqual Series 500 portable gas monitors, 

one with a semiconductor oxide O3 sensor (OZU 0-0.15 ppm) and one with an 

electrochemical NO2 sensor (GSE 0-1 ppm), to measure ambient concentrations of these 

gases in Edinburgh, UK. We demonstrate the applicability of a linear calibration for the NO2 

sensor using parallel measurements of the O3 sensor and deployment of both against reference 

instruments.  

 

Methods 

 

The two Aeroqual monitors were placed under a weatherproof plastic shelter at ~1.5 m 

elevation above the ground on a post adjacent to the cabin housing the O3 and NO2 reference 

gas analysers of the Edinburgh St. Leonard’s air quality monitoring station (55.946 N, 3.182 

W). The site is near the centre of the city of Edinburgh, UK, and is classified as urban 

background in the UK national network (http://uk-air.defra.gov.uk/data). The air inlet for the 
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reference analysers was approximately 1.8 m horizontal distance from and 1.2 m higher than 

the Aeroqual monitors. The Aeroqual sensor inlets were positioned so that the sensor heads 

were level with the lower edge of the waterproof shelter and sampled freely flowing ambient 

air in close vicinity to the reference analysers. The monitoring location was approximately 30 

m from the nearest road (with no other primary pollutant sources nearby) hence any 

differences in pollution concentrations resulting from the small separation distance between 

the reference analyser and Aeroqual monitor inlets were anticipated to be minor in the 

comparison of observed concentrations. The Aeroqual units were used as received, with 

mains power; the waterproof enclosure available from Aeroqual was not used. An Onset 

HOBO U23 Pro v2 External Data Logger (with solar radiation shield) was also attached to the 

shelter to record ambient T and RH at 1 min resolution. 

 

The Aeroqual monitors were programmed to record 5-min average concentrations of NO2 and 

O3 continuously between 7th June and 15th August 2013. Data were downloaded to a laptop 

every two weeks, at which time the internal clocks of both monitors were synchronised via 

the Aeroqual software with the laptop, which was in turn regularly synchronised with Internet 

Time Servers. 

 

Time stamps for the 5-min averages downloaded from the Aeroqual monitors were adjusted 

from BST to GMT. The 5-min averages were aggregated to hourly means, denoted as 

[NO2]Aeroq and [O3]Aeroq. No data capture threshold was set for the averaging.   

 

The NO2 reference instrument was an EnviroTechnology Model 200E chemiluminescence 

analyser (range 0-20 ppm, precision 0.5%) and the O3 reference instrument was an 

EnviroTechnology Model 400E photometric analyser (range 0-10 ppm, precision <0.5%). 
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Both instruments were maintained and calibrated in accordance with the QA/QC protocol for 

the UK ambient air quality monitoring network (http://uk-air.defra.gov.uk/networks/network-

info?view=aurn). All data from the reference analysers were subject to the network data 

review and ratification process. Hourly-averaged NO2 and O3 derived from these instruments 

were downloaded from www.scottishairquality.co.uk, and are denoted as [NO2]ref and [O3]ref.  

 

Results and Discussion 

 

The ambient hourly T (range: 10–33°C; mean ± sd: 19 ± 4°C) in this study was within the 

operating range of the Aeroqual sensors (5 to 45°C). The vast majority of the hourly RH 

measurements (2997%; 69 ± 17%) were also in the sensor operating range of 0-95% (<3% 

of hourly RH measurements were in the range 95-97%). 

 

Figure 1 shows the time series and scatter plot of hourly averaged O3 data. The Aeroqual and 

UV-absorbance reference analyser O3 data were highly correlated (R2 = 0.91, n = 1274), albeit 

with a trend for this Aeroqual O3 sensor to overestimate on average compared with the 

reference instrument when O3 concentrations from the latter exceeded ~43 µg m-3 (e.g. an 

Aeroqual value of 86 µg m-3 for a reference instrument value of 80 µg m-3), and to 

underestimate on average for concentrations below a reference instrument O3 concentration of 

~43 µg m-3 (e.g. 16 µg m-3 Aeroqual value for a reference instrument value of 20 µg m-3). 

These small systematic differences are readily corrected for by application of the linear 

relationship shown in the figure. 

 

In contrast, the time series and scatter plot in Figure 2 show very limited agreement between 

the Aeroqual NO2 sensor and the reference NO2 chemiluminescence analyser (R2 = 0.02, and 
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sensor overestimation compared with the reference analyser by approximately 3-fold on 

average). In contrast, a closer correspondence of an Aeroqual gas-sensitive semiconductor 

(GSS) NO2 sensor and reference analyser observations was reported in a similar comparison 

by Delgado Saborit (2012) ([NO2]Aeroq(GSS) = 0.76[NO2]ref + 7.05; R2 =0.89).  

 

Some sensitivity of gas sensors to ambient water vapour has previously been noted (Bart et 

al., 2014). Figure 3 shows the relationships between the deviations in the observations of both 

Aeroqual sensors from their respective reference analyser values and the ambient RH 

recorded by the HOBO logger. Although the deviations of both sets of Aeroqual values 

appear to show some trends with RH, these are very weak and the correlations 

correspondingly poor (R2 = 0.02 and 0.01, for NO2 and O3, respectively), and over a range in 

ambient RH from ~30% to almost 100%. The negative relationship with RH for the O3 sensor 

is consistent with the observations of Bart et al. (2014), although the latter present a slightly 

greater negative trend, albeit with considerable scatter as is the case with our data. We 

observe a small, but again non-significant, positive trend between Aeroqual NO2 deviations 

and RH. Overall, we conclude that any systematic impact of RH on our sensor bias and 

imprecision is limited. In particular, there is no obvious systematic relationship of Aeroqual 

electrochemical NO2 sensor observations with RH that might account for the limited 

agreement between NO2 sensor and NO2 reference analyser observations. There were similar 

lack of associations between ‘Aeroqual – reference analyser’ O3 and NO2 deviations and 

ambient T (data not shown).  

 

Instead, we examined whether the substantial deviation of Aeroqual electrochemical sensor 

NO2 measurement from the reference measurement may have been driven by interference 

from ambient O3. We used the first two-thirds of the measured data (between 7 June and 24 
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July) as a ‘test’ dataset to investigate this. Figure 4 shows the plot of ([NO2]Aeroq – [NO2]ref) 

against [O3]Aeroq for these data, indicating a highly significant linear correlation (R2 = 0.92, n 

= 849) up to the maximum [O3]Aeroq observation of almost 100 µg m-3 in this dataset. The 

OLS linear regression relationship from the data in Figure 4 was used to derive calibrated 

hourly [NO2]Aeroq-C data from the original [NO2]Aeroq and [O3]Aeroq data for the remaining one-

third of the study period (25 July to 15 August). The time series and scatter plot of the 

[NO2]Aeroq-C values with the reference data are shown in Figure 5. The major axis linear 

regression (which allows for uncertainty in both sets of data) shows close agreement between 

calibrated Aeroqual NO2 data and reference instrument observations for this test dataset with 

a correlation coefficient, r = 0.94 (R2 = 0.88), a slope not significantly different from unity 

confidence interval: 0.99, 1.07) and an intercept very close to zero (95% CI: 1.8, 0.4) 

(Figure 5). Only 13 negative values of [NO2]Aeroq-C out of 425 (~3% of the ‘test’ dataset) were 

generated in this calibration.  

 

Neither the differences ([NO2]Aeroq – [NO2]ref) plotted in Figure 4, nor the differences between 

the [NO2]Aeroq-C and [NO2]ref values plotted in Figure 5, showed any trend with time. This 

indicates that the measurements used to derive both the calibration relationship and its 

subsequent application were not subject to long-term drifts on the timescales of the data 

collection in this study.   

 

The proportion of the full dataset assigned to derivation of calibrated Aeroqual NO2 values 

above was arbitrary. Table 1 presents statistics for the linear relationships in ‘test’ evaluations 

of [NO2]Aeroq-C against measured [NO2]ref values derived from the use of different portions of 

the time series of measurements as the ‘training’ dataset for generation of the linear 

calibration for [NO2]Aeroq-C values. The R2 values for the ‘test’ evaluations of [NO2]Aeroq-C 
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against [NO2]ref values exceed 0.85 in all the examples in Table 1. The parameters of the 

regressions have some variation, but the slopes are all within 12% of each other and the 

intercept never exceeds 2 µg m-3. As before, there were no long-term trends in the calibration 

performance (within the duration of this study) with splits between ‘training’ and ‘test’ data 

given in Table 1.  

 

These results demonstrate that accurate linear calibrations of our [NO2]Aeroq observations by 

reference monitors was feasible. The small amount of scatter remaining in the relationship 

between [NO2]Aeroq-C and [NO2]ref is assumed to reflect the measurement uncertainties in both 

the Aeroqual and reference analyser data. The very close agreement between the O3 sensor 

readings and the reference O3 instrument in this study suggests that any cross-interference of 

the O3 sensor to other ambient species is negligible for this sensor. The consistent functional 

relationship observed for adjustment of the NO2 sensor values by O3 sensor values likewise 

suggests that any other cross-interference on the NO2 sensor is much smaller than that of O3. 

Finally, it is noted that a potential operational disadvantage of these portable low-power 

instruments is the minimum ambient operating temperature of 5C currently specified. 

 

Conclusions 

 

An Aeroqual Series 500 ENV O3 semiconductor oxide gas sensor yielded close agreement 

with hourly-averaged observations from a reference UV-absorbance O3 analyser in temperate 

ambient conditions. Although an Aeroqual NO2 electrochemical sensor appeared to suffer 

considerable co-sensitivity to O3 (to the point of the NO2 sensor evaluated in this study being 

inadequate as a measure of NO2 on its own), it was demonstrated that the O3 interference can 

be corrected for by co-deployment with an Aeroqual O3 sensor plus prior calibration 
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alongside an NO2 reference instrument. Individual sensor heads may vary in performance so 

further tests with different instruments at different locations are clearly required to confirm 

the findings. Overall, however, this study suggests that the Aeroqual Series 500 NO2 and O3 

monitors could be potentially useful ambient air monitoring instruments. 
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Table 1: Statistics for the linear relationships in the ‘test’ evaluation of calibrated Aeroqual 

NO2 values ([NO2]Aeroq-C) against measured [NO2]ref values resulting from the use of different 

splits of the full time series of measurements between ‘training’ and test datasets. Slope and 

intercept parameters in bold do not differ significantly (at the 95% level) from unity and zero, 

respectively. The shaded line in the table corresponds to the example shown in Figure 5. 

   
 
Portion of the full dataset used for 
the regression to derive [NO2]Aeroq-C 

R2 Slope [95% C.I.] Intercept [95% C.I.] 
/ µg m-3 

1st 1/3 0.85 1.00 [0.97, 1.03] 0.25 [0.76, 0.25] 
2nd 1/3 0.88 1.10 [1.07, 1.13] 2.00 [2.50, 1.51] 
3rd 1/3 0.86 1.07 [1.05, 1.10] 0.83 [1.32, 0.34] 
    
1st 2/3 0.88 1.03 [0.99, 1.07] 1.10 [1.82, 0.40] 
1st 1/3 & 3rd 1/3 0.85 1.03 [0.99, 1.07] 0.22 [0.94, 0.47] 
2nd 2/3 0.87 1.12 [1.08, 1.17] 1.88 [2.59, 1.20] 
    
1st 1/2 0.85 1.01 [0.97, 1.04] 0.22 [0.83, 0.36] 
2nd 1/2 0.87 1.11 [1.08, 1.15] 1.91 [2.48, 1.36] 
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Figure captions 

 

Figure 1: (a) Time series, and (b) scatter plot, of hourly-averaged [O3] from measurements 

made by the Aeroqual O3 monitor and the O3 UV absorption analyser between 7 June and 15 

August 2013 (1,274 pairs of hourly averages). 

 

Figure 2: (a) Time series, and (b) scatter plot, of hourly-averaged [NO2] from measurements 

made by the Aeroqual NO2 monitor and the NO2 chemiluminescence analyser between 7 June 

and 15 August 2013 (1,274 pairs of hourly averages). 

 

Figure 3: Scatter plot of the deviations of hourly-average O3 and NO2 Aeroqual measurements 

from their respective reference measurements versus RH.  

 

Figure 4: Relationship between ([NO2]Aeroq – [NO2]ref) and [O3]Aeroq measurements between 7 

June and 24 July 2013 (849 pairs of hourly averages). 

 

Figure 5. Comparison of the calibrated Aeroqual NO2 values and measured [NO2]AURN 

between 25 July and 15 August 2013. The [NO2]Aeroq-C values were derived according to the 

OLS regression established using [NO2]Aeroq, [NO2]ref and [O3]Aeroq measured at the same site 

between 7 June and 24 July 2013.  
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Figure 1: (a) Time series, and (b) scatter plot, of hourly-averaged [O3] from measurements 

made by the Aeroqual O3 monitor and the O3 UV absorption analyser between 7 June and 15 

August 2013 (1,274 pairs of hourly averages). 
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Figure 2: (a) Time series, and (b) scatter plot, of hourly-averaged [NO2] from measurements 

made by the Aeroqual NO2 monitor and the NO2 chemiluminescence analyser between 7 June 

and 15 August 2013 (1,274 pairs of hourly averages). 
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Figure 3: Scatter plot of the deviations of hourly-average O3 and NO2 Aeroqual measurements 

from their respective reference measurements versus RH.  
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Figure 4: Relationship between ([NO2]Aeroq – [NO2]ref) and [O3]Aeroq measurements between 7 

June and 24 July 2013 (849 pairs of hourly averages). 
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Figure 5. Comparison of the calibrated Aeroqual NO2 values and measured [NO2]AURN 

between 25 July and 15 August 2013. The [NO2]Aeroq-C values were derived according to the 

OLS regression established using [NO2]Aeroq, [NO2]ref and [O3]Aeroq measured at the same site 

between 7 June and 24 July 2013.  
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