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DIGITAL WAVEGUIDE NETWORKSASMULTIDIMENSIONAL WAVE DIGITAL FILTERS

Stefan Bilbao

Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University
bi | bao@cr ma. st anf ord. edu

1. INTRODUCTORY REMARKS

Multidimensional wave digital filters (MDWDFs) [1, 2] have-r
cently been applied toward the numerical simulation ofriisted
systems. The basic procedure for deriving an algorithrnis|ar
to that which was originally developed for deriving waveitig
filter [3, 4] structures from lumped analog networks, thoirgthat
case, the application was to filter design, and not explititlsim-
ulation. In the lumped case, one begins from a given analég ne
work structure, composed typically of RLC elements (andsiug
more exotic devices such as transformers, gyrators, €ng.then
appl;ies a continuous-to-discrete spectral mapping th esactive
element, and, after the introductionwéve variable43], ends up
with a recursible filter structure. The spectral mappinga(ipular
type of bilinear transform, which corresponds, in the digeitime
domain, to the use of the trapezoid rule of numerical intiégn
is chosen so that the energetic properties of the analogretwe
mirrored by the discrete-time structure. It has the form

g 21-27"
T14+ 21

@
wheres is the continuous-time frequency variable and is the
unit delay in the frequency domaifi. is the sampling period. In-
deed, the digital filter topology is the same as that of thgioai
analog filter, and structures so derived possess many diesira-
merical properties (including guaranteed stability eves ffinite
word-length computer implementation) [4]. In effect, swkil-
ter is an explicit numerical integration scheme for the exysof
ordinary differential equations (ODEs) which describes time
evolution of the state of the analog network.

The procedure is very similar in multiple dimensions (MD).
For simulation purposes, however, a suitable multidirreerediKir-
choff circuit (MDKC) representation [2] of a given systempzfr-
tial differential equations (PDEs) must be first found; diiza-

tion is then performed in the same way as in the lumped case,

namely through generalized MD spectral transformationgchivh
preserve passivity in a MD sense [5], and the introductiowadfe
variables. A bare-bones summary of the basics of MDWD ele-
ments and connections is given in Section 2; for a thoroueg-r
ment, we refer the reader to [1, 2, 5].

The resulting algorithms are similar to those of digital egv
uide networks (DWNSs) [6], in that they are composed of sciaige
junctions (called adaptors in the WDF context, but funcign
identical) and shifting operations; all operations ardgrened on
wave variables in either case. Indeed, DWNs can be direpty a
plied to the same types of PDESs, namely those of hyperbagtie ty
[7] (for which propagation speed is bounded). The two types o
structures, are, however, not the same, though they bothiettre

same good numerical properties (a direct result of theietgithg
discrete passivity). In particular, DWNs can be shown todpgve
alent to simple finite difference schemes [8], but MDWD netvgo
can be identified with multi-step schemes of higher degrad, a
their respective numerical dispersion properties aréndisf9]. In
addition, there has not as yet been a convenient MD repiasamt
for a DWN as there is for a MDWDF (i.e. a MD circuit), and thus
no simple way of arriving at a DWN from a given system of PDEs.

Itis shown in Section 3 that DWNs and MDWD networks can
be unified in a straightforward way. In fact, a DWN may be de-
rived from an MD circuit representation in a way nearly idesit
to the wave digital approach—the differences are in the fokthe
circuit representation and the type of spectral mappingl.uyée
will examine, in particular, the (1+1)D transmission linestem in
the presence of distributed spatially-varying materiabpaeters
(inductance and capacitance). The same result may be @jplie
order to generate DWNs from the existing MD circuit repréaen
tions for various more complex systems in higher dimensidns
particular, it is possible to arrive at DWNs which simulaggious
systems of interest in musical physical modelling appiice, in-
cluding beam [10, 9] plate and shell dynamics problems [8], a
well as full (3+1)D elastic solid vibration [10, 9].

2. REVIEW OF MULTIDIMENSIONAL WAVE DIGITAL
FILTERS

We briefly outline here the MDWD discretization procedurs, a
presented initially in [1, 2]; unfortunately, space lintitas pre-
clude a full review of lumped WDF principles (a prerequidite
the material in this section). We refer the reader to [3, 4]do0
thorough introduction to WDFs.

An (n + 1)D dynamic distributed problem is defined with re-
spect to the variablea = [z1,...,z.,t]7. Here, thex;, j =
1,...,n are then spatial coordinates, ards physical time. (For
simplicity, we will leave out any discussion of boundary dbn
tions in this paper.) Generally speaking, the wave digparaach
to numerical integration entails modelling a system of PREs
network of interconnected circuit elements which are thelves
distributed objects. If the model system is passive, it isallg
possible to represent it by a distributed network whose efem
are all individually passive; sources (driving functiorijhey are
present, are excepted in this respect. Passivity-presesyiectral
mappings or integration rules can then be applied to digerétte
elements individually; when reconnected, these elememts &
discrete passive network which simulates the model system.

DAFX-1
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2.1. Coordinate changesand sampling grids

In order to extend the notion of passivity to multiple dimiens (in
which case it has been call&tD-passivity, Fettweis and Nitsche
introduced coordinate changes in [2]. The purpose of inicoty
these new coordinates is to ensure passivity with respet tioe
coordinates in the problem; in the untransformed coordmgias-
sivity for most systems of interest holds with respect tcet@one
[2]. A useful type of coordinate change is given by

t=H '"Vu )
for some new set of coordinatés= [t1,...,t.+1]7, an orthog-
onal matrixH, and a scaling matriv = diag(1,...1,v0). A
positivity constraint on the elements of the last rontHbfensures
that all of the new coordinates are all at least partiallgraid with
the positive time directionu later takes on an important role as
the space-step/time-step ratio, and is subject to a gtaboindi-
tion, as per other explicit numerical methods [7].

Because we will be examining only a (1+1)D problem in this
paper—that is, the transmission-line problem is definedh et
spect to coordinatea = [z, t]”—we introduce the transformed
coordinates = [t1,t2]” defined by

111 -1

1
Clearly, a positive change in either or ¢t5 implies a positive
change int, accompanied by a spatial shift. We also define the
scaled time variabl€ = wvot.

For a numerical scheme which is to be used to solvéram

1)D problem, it will be necessary for it to operate on a finite-sub
set of points in the domain. Such a grid can be obtained (& thi
context) by uniform sampling in thecoordinates. As an example,
suppose that the (1+1)D coordinates defined above are oniyfor
sampled such thdt:, t2) = (n171, n2T2) is a grid point for step-
sizesT; andTxs, and for integern; andnz. Assuming that

®)

T =T, = V2A 4
then in terms of thex coordinates, the grid points can be indexed
by (z,t) = (mA, kA/vo), for integerm andk such thain + k is
even; hereA is the grid-spacing in the untransformed coordinates,
and A /v is the time-step (which we can redefine8y Infor-
mation on grid generation in higher dimensions can be found i

[2].

2.2. Circuit Elements

Wave digital filtering is essentially concerned with thecdétiza-
tion of connectedN-portdevices [11]; associated with tih port,
k=1,..., N of such a device is a voltage and a current. In
the distributed, or MD setting, we will in general hasg = vy (t)
andi, = ix(t). In other words, the port quantities are themselves
distributed.

The principal one-port MD circuit elements are ihductor,
of inductanceL and thecapacitor of capacitance”; their defi-
nitions as well as schematic representations are as shofig-in
ure 1. Both are defined with respect to the directional déviea
D; £ 2 wheret;, j = 1,...n+1is one of the transformed co-
ordinatejdirectionstj, in either case, indicates both the direction
of stored energy flos] and, in the numerical context, an integra-
tion direction (see Subsection 2.5 for more information)citcuit

models of systems of PDESs, such elements are usually limehr a
shift-invariant (LSI). It is usually possible to consoltdaany spa-
tial material parameter variation in an inductor or capagcithose
direction ist’ (such an element is still linear and time-invariant, if
not LSI). We have left out a discussion of the resistor [4daese
we will work only with lossless systems in this paper.

ik

Figure 1:Left: Inductor of inductancé., and directiont;. Right:
Capacitor of capacitanc€' and directiont ;.

v = LDji (L, Dy) (C, D)

We also mention the standard lossless two-port elemerds, th
ideal transformer and gyrator (see Figure 2), which are ddfoy
®)
(6)
Here, nr is the transformer turns ratio, anél; is the gyration

coefficient, assumed positive. Both will play importane®in the
circuit models of Section 3.
7 .
1 1:nr Ra

U1B| 1@2 vli N( lw

Figure 2:Left: Transformer, of turns rationr. Right: Gyrator, of
gyration constaniR¢.

Transformer:
Gyrator:

V2 = NTv1 i1 = 77’LTZ.2

v1 = —Rgi2 v2 = Rgi1

2

2.3. Kirchoff’sLaws

One requirement on the networks that we will discuss is tey t
be decomposable into portwise connections\aports, through
Kirchoff’s Laws. That is, for a series connection of aRyports,
we require

vi4+ve+...+vKk =0 1 =12 = =1iK (7)
and for a parallel connection,
i1+i+...+ixg =0 V1 =V =...=VUK (8)

A Kirchoff connection is aK'-port in its own right.

2.4, Power and Passivity

The instantaneous power absorbed by\aport with voltages,
and currents,, k = 1,..., N is defined by

N
Winst = é vkik
k=1

This definition holds in MD, and in this case may be inter-
preted as an instantaneous absorbed paleasity For the trans-
former and gyratorwi,s: is identically zero; these elements are

9)
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thuslossless The same is true of a Kirchoff connection. A full dis-
cussion ofMD-passivityrequires introducing the concept of stored
energy flow, and a generalized definition of passivity. Wen#ie
reader to [5] for details, and simply mention that the MD iadu
tor and capacitor will be MD-passive (and lossless) for fpasil

or C, as long asl, and C are shift-invariant with respect to the
defining direction.

2.5. Discretization

Discretization, in the case of memoryless elements, sudheas
transformer, gyrator, or the Kirchoff connection, is gitdfor-
ward. The element definitions remain the same, but the vedtag
and currents are assumed to take on values over a set of gnig po
(defined as in Subsection 2.1).

For reactive elements such as the inductor or capacitop-an a
proximation to the directional derivative is necessarhieis et.
al. have applied the trapezoid rule in a directional senseg, i

2 _
Dj%ﬁ(uan) '(1-0r,) (10)
Here,d, is a shift operator defined by
6Tju(t) = u(t — Tj) (11)

when applied to a function(t). We have used™; = T}e;, where
e; IS a unit vector pointing in the directiar), and7} is thestep-
size As such, the equation for the inductor is discretized as

L . .
-7 (i(t) —i(t = Ty))

(v(t) +o(t —Ty)) (12)

N =

v andi may be approximated by grid functions. This rule approxi-
mates the equation of the continuous MD-inductor to secdey
accuracy infT;. The capacitor can be similarly discretized.
If a particular N-port to be discretized is LSI, then it is possi-
ble to interpret (12) in the frequency domain as a spectraling
(at least, until it is connected to elements which are nof) LiSdr
example, ifs; is the frequency variable conjugatetto andz].’1 is
the transmittance of a unit shift in directiep, then the mapping
can be written as
21— z;l
S5 — 1+ Z]-_l

Itis also necessary to use inductors and capacitors oftidirec
t’, in order to accommodate material parameter variationhis t
case, it is permissible to apply rule (12) igeneralized sende],
with D; anddr, replaced by a time derivativb,, and a shiftsy
of lengthT” in directiont’. In this casel or C may have spatial
dependence; passivity is still maintained.

(13)

2.6. Wave Variables

As in the lumped case, discretization via the trapezoidladds to
discreteN-ports which may have a delay-free path from input to
output, and can hence not be connected to others withoufpthe a
pearance of delay-free loops [3, 4]. For a given port, witliage

v and current, it is possible to defingoltage wave variablept]

by

v+ iR
v—1iR

Input Wave
Output Wave

(14a)
(14b)

The parameteR? > 0 is called theport resistanceand is to be
defined separately for each port; it is introduced as an @dra
gree of freedom which can be used to remove delay-free piéths,
wave variables are employed as the signals in the netwastead

of voltages and currents. The resultingport is called a wave-
digital N-port. For the MD inductor of inductande, and direction
t;, it is straightforward to show that for a choice Bf= 2L /T3,
the wave digital one-port of Figure 3 results. For the MDWDP in
ductor, a signak enters, is shifted b{I';, sign-inverted, and exits
asb. Itis important to keep in mind that the input and output
waves of any MDWD one-port are grid functions; thus in theecas
of the inductor, it is an entire array of signals which is sdfand
sign-inverted. The wave-digital capacitor is also showfrigure

Gl

Figure 3:Left: MDWD inductor, of direction; and port resistance
R = 2L/Tj. Right: MDWD capacitor, of direction; and port
resistanceR = T} /2C.

Kirchoff’s Laws for a connection ok ports can be written in
terms of wave variables as

2R X
b =ar — ——— > ap k=1,...,K (Series)
Em:l R"L p=1
2 K
by = —ar+ ———— 2 _Gpap, k=1,...,K (Parallel)
Zm:l Gm p=1

whereG, = 1/R, for any portp. This scattering operation (or
signal-processing block) is represented, as in the lumpsed,@s
per Figure 4.

Figure 4:Left: SeriesK-port adaptor (scattering junction). Right:
Parallel K-port adaptor.

2.7. Multidimensional Unit Elements

In order to bridge the gap between MDWDFs and digital waveg-
uide networks, it will be necessary to define the multidinnemel
unit element. Referring to (1+1)D coordinates defined byg@sh

an element is shown in Figure 5. This MDWD two-port is clearly
lossless (indeed, its action is merely to shift the signayarenter-
ing from the left- and right-hand ports y; andT'; respectively),
and its port resistance are both assumed equal to somevpositi
constantR. As such, it is an MD representation of an array of
bidirectional delay lines [6] of impedand® We note that we have
generalized here the definition of multidimensional unéneénts

DAFX-3
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b1 a2
al b2 -

Figure 5: Left: MD unit element, with shift€; and Ts. Right:
Series/parallel connection of two MD unit elements, oné& wign
inversion.

proposed in [12]. Because this two-port is LS|, we may aralyz
in the frequency domain; it is defined by

61 _ O 22_1 dl
62 o Zl_l 0 d2
in terms of the steady-state wave quantities (hatted). Weimvart
the definition of wave variables (14), in order to obtain arbte

impedance relation,
—1 “d
2 [i] ae
12

o _ R 1+21_122_1
5 227t 14271250

(15)

= —1_—1
1—27 "2,

in terms of the discrete steady-state voltaggsand v¢ and cur-
rents:{ and:%. Note that the MD unit element is not reciprocal
[11]. It is useful to rewrite (16) in &ybrid form as

p=Hu(z 2 )a an
wherep = [0¢,73]" andq = [+¢, 94]" and
R(1—27"2;") 2251
Hu(z 2 ) = | 7L 11515 1 i;; (18)

1+zflz;1 R(1+zflz;1)

where the order of the argumentsHf,. is enforced. As a prelude

to the material in Subsection 3.2, we also examine a pair of MD

unit elements whose left-hand ports are connected in semes
whose right-hand ports are connected in parallel (see Eigyur

Mappings similar to these were mentioned very briefly in [2].
Though itis straightforward to show the passivity-pregeg\prop-
erty of these mappings, we forego a formal treatment here and
merely note that passivity is obvious from the structures tesult
from their application. They are also second-order aceurathe
spacingsl; andTs.

3. THE (1+1)D TRANSMISSION LINE EQUATIONS

The lossless, source-free (1+1)D transmission line egusitide-
fined by

i Ou

la + % = 0 (21&)
ou 01

CE + % = 0 (Zlb)

provide a useful model problem for the scattering methodseto
discussed in this paper [13]. Heié¢z) > 0 andc(z) > 0 are the
inductance and capacitance per unit lengthafid ¢) and:(z, t)
are the voltage across and current in the line. We neglecidzoy
conditions here, so that the problem is assumed to be defimed f
—o00 < x < oo. This problem can be simplified to include (1+1)D
systems of interest in musical sound synthesis, includauyistic
tubes, and lossless strings (with possibly spatially-waygdensity)
etc. Loss and source terms can be easily added to systemA21).
remark that system (21) requires two initial conditionstiatiza-
tion of scattering methods in the numerical context is dised in
detail in [9].

3.1. Multidimensional Kirchoff Circuit and MDWD networ k

The MDKC for the transmission line equations is shown at tie t
left of Figure 6. It is important to realize that this circigtsimply
a graphical representation of system (21). Itis itself atigimhen-
sional object; in particular it is not a circuit which can Haufit.”
The currents in the two loops are defined by

(22)

ilzi igzu/ro

wherer is a positive constant which has dimensions of resistance,

The two MD unit elements have opposite orientations, and one and which is used to “tune” the resulting MDWD structure stoas

incorporates a pair of sign inversions. These two unit efeéme
may be considered together as a single two-port; its hybattim
relation [11] is

P=(Hue(zi 25 ") + Hue(—2 ', —21 1)) q

(for a series/parallel combination of two two-ports, hybmatri-
ces sum, as may be easily verified [9]).

(19)

2.8. Alternative Spectral Mappings

One might well ask whether the bilinear transform or traj@zo
rule is the only way of passively discretizing a given passw-
port. In fact, other such mappings or integration rules eadable.
In the case of the (1+1)D coordinates defined by (3), consrder
pair of spectral mappings defined by

L (-2 +2")
Ty 1427025t
L (-2 )tz
T 14270250

S1  — (20a)

s2 = (20b)

achieve maximum computational efficiency [2]. Kirchoff'®lt
age Law applied around the two loops yields system (21)

When approaching the discretization of the MDKC at the top
of Figure 1, it is best to think of it as a two-paRtP’QQ’ termi-
nated on two one-port inductors, of inductanégsand L,. Each
of these threeV-ports is discretized separately, and then all are
reconnected to one-another via adaptors, or scatterirgigus.
The two one-port inductors in directiah become delays (with
sign-inversion). The so-called “Jaumann” two-p&tP' QQ’ [2]
deserves a bit more commentary. Referring to Figure 6, ieis d

fined by the relation
D1 — Dg il
D1+ D2 |i2

ul _ g D1+ Do
V2 -0 D1 — DQ
Because this two-port is LSl is a constant), it is permissible
to work with steady-state amplitudés, 02, :1 andiz, and the
frequency variables; andsz, in which case (23) becomes
01 - s1+S2  S1— S2 ?1
0 S1 + 82| |19

) §1 — S2

(23)

(24)
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(L1, Dyr)

Pl

U1

(Lo, D2) (Lo, D1)

Figure 6:Top left: MDKC for the (1+1)D transmission line system
(21), with L1 = vol — 1o, Lo = 1)07"(2)0 — 70, andLo = 7’0/\/5.
Top right: MDWD network, withRy = 2L, /T’, Ry = 2L /T’
and Ry = 4Lo/T1, where we have used the step sizeq4f

as well asT’ = 2A (see comment at end of Section 2.5). Bot-
tom: Expanded signal-flow diagram (port-resistances nowst).
Grey/white coloration of junctions indicates that calditas are

to be performed at alternating time instants.

Employing wave variables defined by (14), with port resis&m
Ry = 4Ly /T, and the spectral mappings as defined by (13) yields
the scattering relation
by 1
-1

R

The corresponding signal-flow graph for this discrete twat-prhich
connects the two series adaptors is as shown in Figure 6.€Fhe r
sulting structure is again to be interpreted in a multidisienal
sense, and is a short-hand notation for an integration sehbma
computer implementation, at a given grid location, thediomal
shifts T1 andT refer to neighboring grid points. When the spa-
tial dependence of this diagram is expanded out, the fuliaig
flow graph appears as in the bottom of Figure 1 (we have chosen
the step-sizes such that affset sampledl] algorithm results).
The lower bound omg which is sufficient for stability follows im-
mediately from the positivity of the inductancés and L,. For
the special choice of

1

2

1
1

1
-1

0

|

2

1
1

a1

a2

—1
21

: | e

ro = 1] Dine { (26)
miny c
the bound is
1
_ 27
o ming [ ming ¢ @7
DAFX-

3.2. An Alternative MDK C and Digital Waveguide Network

We now reexamine the MDKC of Figure 6, and note that the lower
one-port inductor, with terminal@ andQ’ is equivalent to a gyra-
tor of gyration coefficient, terminated on a capacitor; the trans-
formed MDKC is shown in Figure 7, and we note that although its
topology is different from that of Figure 6, it also repretsesystem
(21). Also, we have scaled the system (21) by a fact@f(the
grid-spacing); this has no influence on the numerical smhytnd
merely makes the transition to DWNs simpler. We may consider
this network to be a two-pofX X'Y'Y’, terminated in series on an
inductor, now of inductancé, = 2A (vol — 19), and in parallel
on a capacitor of capacitan¢& = 2A (voc — 1/7¢) Discretiza-
tion of the one-port inductor and capacitor may be perforined
ing the trapezoid rule as before, with a step siz&of= 2A; the
LSI connecting two-porfX X'Y'Y’, however, is treated somewhat
differently.

The continuous hybrid relation for this two-port is

-] 8

Under the application of the spectral mappings (20), with sizes
again given by (4), the discrete hybrid relation is exact§)( with

R = ro. Thus the discrete image of the two-pditX'YY' de-
composes into a series/parallel combination of MD unit elets;
the discrete MD network, as well as the expanded flow graph are
shown in Figure 7. At this point, we mention that the portsesi
tancesro can, in the DWN context, be interpreted \maveguide
impedances The stability bound ony is unchanged from (27),
if 7o is chosen as per (26). Also, ifand ¢ are constants, and
(27) holds with equality, therl; and C> are zero, so the one-
port inductance and capacitance can be dropped from theretw
entirely, leaving (as expected) a signal flow-graph of thenfof

a single bidirectional delay line (the standard form of th&/ID
which implements a traveling-wave solution to the (1+1)Dveva
equation).

11
>

70 (51 + 52)
S1 — 82

S1 — S2
% (514 s2)

(28)

4. CONCLUSIONS

There are three main conclusions that can be drawn here:

1) Though we have examined only a simple example in this
paper, it can be shown that the complete theory underlyieg th
construction of passive wave digital networks for the setioh
of physical systems can be carried over directly to digitaleg-
uide networks [9]. This is important, because this theomnyéd-
developed, and makes use of the powerful concept of MD-i&ssi
[5]. We note, however, that there are DWNSs, in particulaistho
which operate on irregular grids, which can not be derivednfr
an MDKC [9]. Also, there exist forms of the DWN for which the
waveguide impedances may vary spatially [8, 9].

2) A wide range of physical systems have been successfully
modeled using circuit representations. Besides the systeen-
tioned in this paper, it is possible to develop MDWD simudati
schemes for beam [10, 9], plate and shell dynamics systejns [9
Maxwell’s Equations [10], and even nonlinear fluid dynansgs-
tems [14]. DWNSs are now also feasible alternative integrati
methods for all these systems, and possess all the good inumer
cal properties of MDWDFs.

3) Most importantly, it should be clear that by applying san
formations from classical network theory to an MDKC, anatigh
the use of passivity-preserving mappings (regardlessaffibrm),

5
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11 (Lq, D,/)

X/

(Lo, D2) (Lo, D1)

Ps R

(Ca,Dy/)

Figure 7: Top left: Transformed MDKC for the (1+1)D trans-

mission line systenf2l), with L1 = 2A (vol —r¢), Co =
2A (voc — 1/7¢), and Ly = +/2Ar. Top right: MDWD net-
WOI’k, Witth = 2L1/T/, Ry = T//(QCQ) and Ry = ro. Bot-
tom: Expanded signal-flow diagram (port-resistances notst).
Grey/white coloration of junctions indicates calculatiah alter-
nating time instants.

passivity of the resulting simulation routine is never coampised.

As such, the door is opened to a wide range of schemes whith wil

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]
(10]

(11]

all be composed of the same robust signal processing blacks ( [12]

particular, they all will make use of scattering junctigre)d will
propagate wave variables; these forms may be quite diffémem
MDWD or DWN networks.

(13]

(14]
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