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DIGITAL WAVEGUIDE NETWORKS AS MULTIDIMENSIONAL WAVE DIGITAL FILTERS

Stefan Bilbao

Center for Computer Research in Music and Acoustics (CCRMA)
Stanford University

bilbao@ccrma.stanford.edu

1. INTRODUCTORY REMARKS

Multidimensional wave digital filters (MDWDFs) [1, 2] have re-
cently been applied toward the numerical simulation of distributed
systems. The basic procedure for deriving an algorithm is similar
to that which was originally developed for deriving wave digital
filter [3, 4] structures from lumped analog networks, thoughin that
case, the application was to filter design, and not explicitly to sim-
ulation. In the lumped case, one begins from a given analog net-
work structure, composed typically of RLC elements (and possibly
more exotic devices such as transformers, gyrators, etc.).One then
appl;ies a continuous-to-discrete spectral mapping to each reactive
element, and, after the introduction ofwave variables[3], ends up
with a recursible filter structure. The spectral mapping (a particular
type of bilinear transform, which corresponds, in the discrete-time
domain, to the use of the trapezoid rule of numerical integration)
is chosen so that the energetic properties of the analog network are
mirrored by the discrete-time structure. It has the form

s → 2

T

1− z−1

1 + z−1
(1)

wheres is the continuous-time frequency variable andz−1 is the
unit delay in the frequency domain.T is the sampling period. In-
deed, the digital filter topology is the same as that of the original
analog filter, and structures so derived possess many desirable nu-
merical properties (including guaranteed stability even in a finite
word-length computer implementation) [4]. In effect, sucha fil-
ter is an explicit numerical integration scheme for the system of
ordinary differential equations (ODEs) which describes the time
evolution of the state of the analog network.

The procedure is very similar in multiple dimensions (MD).
For simulation purposes, however, a suitable multidimensional Kir-
choff circuit (MDKC) representation [2] of a given system ofpar-
tial differential equations (PDEs) must be first found; discretiza-
tion is then performed in the same way as in the lumped case,
namely through generalized MD spectral transformations which
preserve passivity in a MD sense [5], and the introduction ofwave
variables. A bare-bones summary of the basics of MDWD ele-
ments and connections is given in Section 2; for a thorough treat-
ment, we refer the reader to [1, 2, 5].

The resulting algorithms are similar to those of digital waveg-
uide networks (DWNs) [6], in that they are composed of scattering
junctions (called adaptors in the WDF context, but functionally
identical) and shifting operations; all operations are performed on
wave variables in either case. Indeed, DWNs can be directly ap-
plied to the same types of PDEs, namely those of hyperbolic type
[7] (for which propagation speed is bounded). The two types of
structures, are, however, not the same, though they both exhibit the

same good numerical properties (a direct result of their underlying
discrete passivity). In particular, DWNs can be shown to be equiv-
alent to simple finite difference schemes [8], but MDWD networks
can be identified with multi-step schemes of higher degree, and
their respective numerical dispersion properties are distinct [9]. In
addition, there has not as yet been a convenient MD representation
for a DWN as there is for a MDWDF (i.e. a MD circuit), and thus
no simple way of arriving at a DWN from a given system of PDEs.

It is shown in Section 3 that DWNs and MDWD networks can
be unified in a straightforward way. In fact, a DWN may be de-
rived from an MD circuit representation in a way nearly identical
to the wave digital approach—the differences are in the formof the
circuit representation and the type of spectral mapping used. We
will examine, in particular, the (1+1)D transmission line system in
the presence of distributed spatially-varying material parameters
(inductance and capacitance). The same result may be applied in
order to generate DWNs from the existing MD circuit representa-
tions for various more complex systems in higher dimensions. In
particular, it is possible to arrive at DWNs which simulate various
systems of interest in musical physical modelling applications, in-
cluding beam [10, 9] plate and shell dynamics problems [9], as
well as full (3+1)D elastic solid vibration [10, 9].

2. REVIEW OF MULTIDIMENSIONAL WAVE DIGITAL
FILTERS

We briefly outline here the MDWD discretization procedure, as
presented initially in [1, 2]; unfortunately, space limitations pre-
clude a full review of lumped WDF principles (a prerequisitefor
the material in this section). We refer the reader to [3, 4] for a
thorough introduction to WDFs.

An (n+ 1)D dynamic distributed problem is defined with re-
spect to the variablesu = [x1, . . . , xn, t]

T . Here, thexj , j =
1, . . . , n are then spatial coordinates, andt is physical time. (For
simplicity, we will leave out any discussion of boundary condi-
tions in this paper.) Generally speaking, the wave digital approach
to numerical integration entails modelling a system of PDEsas a
network of interconnected circuit elements which are themselves
distributed objects. If the model system is passive, it is usually
possible to represent it by a distributed network whose elements
are all individually passive; sources (driving functions), if they are
present, are excepted in this respect. Passivity-preserving spectral
mappings or integration rules can then be applied to discretize the
elements individually; when reconnected, these elements form a
discrete passive network which simulates the model system.

DAFX-1
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2.1. Coordinate changes and sampling grids

In order to extend the notion of passivity to multiple dimensions (in
which case it has been calledMD-passivity), Fettweis and Nitsche
introduced coordinate changes in [2]. The purpose of introducing
these new coordinates is to ensure passivity with respect toall the
coordinates in the problem; in the untransformed coordinates, pas-
sivity for most systems of interest holds with respect to time alone
[2]. A useful type of coordinate change is given by

t = H
−1

Vu (2)

for some new set of coordinatest = [t1, . . . , tn+1]
T , an orthog-

onal matrixH, and a scaling matrixV = diag(1, . . . 1, v0). A
positivity constraint on the elements of the last row ofH ensures
that all of the new coordinates are all at least partially aligned with
the positive time direction.v0 later takes on an important role as
the space-step/time-step ratio, and is subject to a stability condi-
tion, as per other explicit numerical methods [7].

Because we will be examining only a (1+1)D problem in this
paper—that is, the transmission-line problem is defined with re-
spect to coordinatesu = [x, t]T —we introduce the transformed
coordinatest = [t1, t2]

T defined by

H =
1√
2

[

1 −1
1 1

]

(3)

Clearly, a positive change in eithert1 or t2 implies a positive
change int, accompanied by a spatial shift. We also define the
scaled time variablet′ = v0t.

For a numerical scheme which is to be used to solve an(n +
1)D problem, it will be necessary for it to operate on a finite sub-
set of points in the domain. Such a grid can be obtained (in this
context) by uniform sampling in thet coordinates. As an example,
suppose that the (1+1)D coordinates defined above are uniformly
sampled such that(t1, t2) = (n1T1, n2T2) is a grid point for step-
sizesT1 andT2, and for integern1 andn2. Assuming that

T1 = T2 =
√
2∆ (4)

then in terms of theu coordinates, the grid points can be indexed
by (x, t) = (m∆, k∆/v0), for integerm andk such thatm+k is
even; here∆ is the grid-spacing in the untransformed coordinates,
and∆/v0 is the time-step (which we can redefine asT ). Infor-
mation on grid generation in higher dimensions can be found in
[2].

2.2. Circuit Elements

Wave digital filtering is essentially concerned with the discretiza-
tion of connectedN-portdevices [11]; associated with thekth port,
k = 1, . . . , N of such a device is a voltagevk and a currentik. In
the distributed, or MD setting, we will in general havevk = vk(t)
andik = ik(t). In other words, the port quantities are themselves
distributed.

The principal one-port MD circuit elements are theinductor,
of inductanceL and thecapacitor of capacitanceC; their defi-
nitions as well as schematic representations are as shown inFig-
ure 1. Both are defined with respect to the directional derivative
Dj , ∂

∂tj
, wheretj , j = 1, . . . n+1 is one of the transformed co-

ordinate directions.tj , in either case, indicates both the direction
of stored energy flow[5] and, in the numerical context, an integra-
tion direction (see Subsection 2.5 for more information). In circuit

models of systems of PDEs, such elements are usually linear and
shift-invariant (LSI). It is usually possible to consolidate any spa-
tial material parameter variation in an inductor or capacitor whose
direction ist′ (such an element is still linear and time-invariant, if
not LSI). We have left out a discussion of the resistor [4], because
we will work only with lossless systems in this paper.

(L,Dj) (C,Dj)v = LDji

i = CDjvi

v

Figure 1:Left: Inductor of inductanceL, and directiontj . Right:
Capacitor of capacitanceC and directiontj .

We also mention the standard lossless two-port elements, the
ideal transformer and gyrator (see Figure 2), which are defined by

Transformer: v2 = nT v1 i1 = −nT i2 (5)

Gyrator: v1 = −RGi2 v2 = RGi1 (6)

Here,nT is the transformer turns ratio, andRG is the gyration
coefficient, assumed positive. Both will play important roles in the
circuit models of Section 3.

v1 v1v2 v2

i1 i1i2 i21 : nT RG

Figure 2:Left: Transformer, of turns rationnT . Right: Gyrator, of
gyration constantRG.

2.3. Kirchoff’s Laws

One requirement on the networks that we will discuss is that they
be decomposable into portwise connections ofN -ports, through
Kirchoff’s Laws. That is, for a series connection of anyK ports,
we require

v1 + v2 + . . .+ vK = 0 i1 = i2 = . . . = iK (7)

and for a parallel connection,

i1 + i2 + . . .+ iK = 0 v1 = v2 = . . . = vK (8)

A Kirchoff connection is aK-port in its own right.

2.4. Power and Passivity

The instantaneous power absorbed by anN -port with voltagesvk
and currentsik, k = 1, . . . , N is defined by

winst =

N
∑

k=1

vkik (9)

This definition holds in MD, and in this case may be inter-
preted as an instantaneous absorbed powerdensity. For the trans-
former and gyrator,winst is identically zero; these elements are
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thuslossless. The same is true of a Kirchoff connection. A full dis-
cussion ofMD-passivityrequires introducing the concept of stored
energy flow, and a generalized definition of passivity. We refer the
reader to [5] for details, and simply mention that the MD induc-
tor and capacitor will be MD-passive (and lossless) for positive L
or C, as long asL andC are shift-invariant with respect to the
defining direction.

2.5. Discretization

Discretization, in the case of memoryless elements, such asthe
transformer, gyrator, or the Kirchoff connection, is straightfor-
ward. The element definitions remain the same, but the voltages
and currents are assumed to take on values over a set of grid points
(defined as in Subsection 2.1).

For reactive elements such as the inductor or capacitor, an ap-
proximation to the directional derivative is necessary. Fettweis et.
al. have applied the trapezoid rule in a directional sense, i.e.,

Dj → 2

Tj

(1 + δTj
)−1(1− δTj

) (10)

Here,δTj
is a shift operator defined by

δTj
u(t) = u(t−Tj) (11)

when applied to a functionu(t). We have usedTj = Tjej , where
ej is a unit vector pointing in the directiontj , andTj is thestep-
size. As such, the equation for the inductor is discretized as

1

2
(v(t) + v(t−Tj)) =

L

Tj

(i(t) − i(t−Tj)) (12)

v andi may be approximated by grid functions. This rule approxi-
mates the equation of the continuous MD-inductor to second-order
accuracy inTj . The capacitor can be similarly discretized.

If a particularN -port to be discretized is LSI, then it is possi-
ble to interpret (12) in the frequency domain as a spectral mapping
(at least, until it is connected to elements which are not LSI). For
example, ifsj is the frequency variable conjugate totj , andz−1

j is
the transmittance of a unit shift in directiontj , then the mapping
can be written as

sj → 2

Tj

1− z−1

j

1 + z−1

j

(13)

It is also necessary to use inductors and capacitors of direction
t′, in order to accommodate material parameter variation. In this
case, it is permissible to apply rule (12) in ageneralized sense[2],
with Dj andδTj

replaced by a time derivativeDt′ and a shiftδT′

of lengthT ′ in directiont′. In this caseL or C may have spatial
dependence; passivity is still maintained.

2.6. Wave Variables

As in the lumped case, discretization via the trapezoid ruleleads to
discreteN -ports which may have a delay-free path from input to
output, and can hence not be connected to others without the ap-
pearance of delay-free loops [3, 4]. For a given port, with voltage
v and currenti, it is possible to definevoltage wave variables[4]
by

a = v + iR Input Wave (14a)

b = v − iR Output Wave (14b)

The parameterR > 0 is called theport resistance, and is to be
defined separately for each port; it is introduced as an extrade-
gree of freedom which can be used to remove delay-free paths,if
wave variables are employed as the signals in the network, instead
of voltages and currents. The resultingN -port is called a wave-
digitalN -port. For the MD inductor of inductanceL, and direction
tj , it is straightforward to show that for a choice ofR = 2L/Tj ,
the wave digital one-port of Figure 3 results. For the MDWD in-
ductor, a signala enters, is shifted byTj, sign-inverted, and exits
as b. It is important to keep in mind that the input and output
waves of any MDWD one-port are grid functions; thus in the case
of the inductor, it is an entire array of signals which is shifted and
sign-inverted. The wave-digital capacitor is also shown inFigure
3.

Tj Tj

b b

a a

-1

R R

Figure 3:Left: MDWD inductor, of directiontj and port resistance
R = 2L/Tj . Right: MDWD capacitor, of directiontj and port
resistanceR = Tj/2C.

Kirchoff’s Laws for a connection ofK ports can be written in
terms of wave variables as

bk = ak − 2Rk
∑K

m=1
Rm

K
∑

p=1

ap k = 1, . . . ,K (Series)

bk = −ak +
2

∑K

m=1
Gm

K
∑

p=1

Gpap k = 1, . . . ,K (Parallel)

whereGp = 1/Rp for any portp. This scattering operation (or
signal-processing block) is represented, as in the lumped case, as
per Figure 4.

a2 a2

b2 b2

a1 a1b1 b1

aK aK

bK bK

R2 R2

R1 R1

RK RK

. . . . . .

Figure 4:Left: SeriesK-port adaptor (scattering junction). Right:
Parallel K-port adaptor.

2.7. Multidimensional Unit Elements

In order to bridge the gap between MDWDFs and digital waveg-
uide networks, it will be necessary to define the multidimensional
unit element. Referring to (1+1)D coordinates defined by (3), such
an element is shown in Figure 5. This MDWD two-port is clearly
lossless (indeed, its action is merely to shift the signal arrays enter-
ing from the left- and right-hand ports byT1 andT2 respectively),
and its port resistance are both assumed equal to some positive
constantR. As such, it is an MD representation of an array of
bidirectional delay lines [6] of impedanceR. We note that we have
generalized here the definition of multidimensional unit elements
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b1

a1 b2

a2

T1

T2

T1

T2

T1

T2

-1

-1R R

R R

R R

Figure 5: Left: MD unit element, with shiftsT1 andT2. Right:
Series/parallel connection of two MD unit elements, one with sign
inversion.

proposed in [12]. Because this two-port is LSI, we may analyze it
in the frequency domain; it is defined by

[

b̂1
b̂2

]

=

[

0 z−1

2

z−1

1 0

] [

â1

â2

]

(15)

in terms of the steady-state wave quantities (hatted). We may invert
the definition of wave variables (14), in order to obtain a discrete
impedance relation,
[

v̂d1
v̂d2

]

=
R

1− z−1

1 z−1

2

[

1 + z−1

1 z−1

2 2z−1

2

2z−1

1 1 + z−1

1 z−1

2

] [

îd1
îd2

]

(16)

in terms of the discrete steady-state voltagesv̂d1 and v̂d2 and cur-
rents îd1 and îd2. Note that the MD unit element is not reciprocal
[11]. It is useful to rewrite (16) in ahybrid form, as

p = Hue(z
−1

1 , z−1

2 )q (17)

wherep = [v̂d1 , î
d
2 ]

T andq = [̂id1 , v̂
d
2 ]

T and

Hue(z
−1

1 , z−1

2 ) =







R(1−z
−1
1 z

−1
2 )

1+z
−1
1 z

−1
2

2z
−1
2

1+z
−1
1 z

−1
2

−2z
−1
1

1+z
−1
1 z

−1
2

1+z
−1
1 z

−1
2

R(1+z
−1
1 z

−1
2 )






(18)

where the order of the arguments ofHue is enforced. As a prelude
to the material in Subsection 3.2, we also examine a pair of MD
unit elements whose left-hand ports are connected in series, and
whose right-hand ports are connected in parallel (see Figure 5).
The two MD unit elements have opposite orientations, and one
incorporates a pair of sign inversions. These two unit elements
may be considered together as a single two-port; its hybrid matrix
relation [11] is

p =
(

Hue(z
−1

1 , z−1

2 ) +Hue(−z−1

2 ,−z−1

1 )
)

q (19)

(for a series/parallel combination of two two-ports, hybrid matri-
ces sum, as may be easily verified [9]).

2.8. Alternative Spectral Mappings

One might well ask whether the bilinear transform or trapezoid
rule is the only way of passively discretizing a given passive N -
port. In fact, other such mappings or integration rules are available.
In the case of the (1+1)D coordinates defined by (3), considerthe
pair of spectral mappings defined by

s1 → 1

T1

(1− z−1

1 )(1 + z−1

2 )

1 + z−1

1 z−1

2

(20a)

s2 → 1

T2

(1− z−1

2 )(1 + z−1

1 )

1 + z−1

1 z−1

2

(20b)

Mappings similar to these were mentioned very briefly in [2].
Though it is straightforward to show the passivity-preserving prop-
erty of these mappings, we forego a formal treatment here and
merely note that passivity is obvious from the structures that result
from their application. They are also second-order accurate in the
spacingsT1 andT2.

3. THE (1+1)D TRANSMISSION LINE EQUATIONS

The lossless, source-free (1+1)D transmission line equations, de-
fined by

l
∂i

∂t
+

∂u

∂x
= 0 (21a)

c
∂u

∂t
+

∂i

∂x
= 0 (21b)

provide a useful model problem for the scattering methods tobe
discussed in this paper [13]. Here,l(x) > 0 andc(x) > 0 are the
inductance and capacitance per unit length andu(x, t) andi(x, t)
are the voltage across and current in the line. We neglect boundary
conditions here, so that the problem is assumed to be defined for
−∞ < x < ∞. This problem can be simplified to include (1+1)D
systems of interest in musical sound synthesis, including acoustic
tubes, and lossless strings (with possibly spatially-varying density)
etc. Loss and source terms can be easily added to system (21).We
remark that system (21) requires two initial conditions; initializa-
tion of scattering methods in the numerical context is discussed in
detail in [9].

3.1. Multidimensional Kirchoff Circuit and MDWD network

The MDKC for the transmission line equations is shown at the top
left of Figure 6. It is important to realize that this circuitis simply
a graphical representation of system (21). It is itself a multidimen-
sional object; in particular it is not a circuit which can be “built.”
The currents in the two loops are defined by

i1 = i i2 = u/r0 (22)

wherer0 is a positive constant which has dimensions of resistance,
and which is used to “tune” the resulting MDWD structure so asto
achieve maximum computational efficiency [2]. Kirchoff’s Volt-
age Law applied around the two loops yields system (21)

When approaching the discretization of the MDKC at the top
of Figure 1, it is best to think of it as a two-portPP ′QQ′ termi-
nated on two one-port inductors, of inductancesL1 andL2. Each
of these threeN -ports is discretized separately, and then all are
reconnected to one-another via adaptors, or scattering junctions.
The two one-port inductors in directiont′ become delays (with
sign-inversion). The so-called “Jaumann” two-portPP ′QQ′ [2]
deserves a bit more commentary. Referring to Figure 6, it is de-
fined by the relation

[

v1
v2

]

= L0

[

D1 +D2 D1 −D2

D1 −D2 D1 +D2

] [

i1
i2

]

(23)

Because this two-port is LSI (L0 is a constant), it is permissible
to work with steady-state amplitudeŝv1, v̂2, î1 and î2, and the
frequency variabless1 ands2, in which case (23) becomes

[

v̂1
v̂2

]

= L0

[

s1 + s2 s1 − s2
s1 − s2 s1 + s2

] [

î1
î2

]

(24)
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i1

i2

v1

v2

(L1, D
t′

)

(L2, D
t′

)

(L0, D2) (L0, D1)

Q Q′

P P ′

−1

1

−
1
2

−
1
2

R0

R0

R1

R2

−1

−1

2T

2T

T2

T1

∆

- -

-

-

-

-

-

-
T T T T T T

2T 2T 2T 2T 2T 2T

- 1
2

- 1
2

- 1
2

- 1
2

- 1
2

- 1
2

-1 -1 -1 -1 -1 -1

Figure 6:Top left: MDKC for the (1+1)D transmission line system
(21), withL1 = v0l − r0, L2 = v0r

2
0c − r0, andL0 = r0/

√
2.

Top right: MDWD network, withR1 = 2L1/T
′, R2 = 2L2/T

′

and R0 = 4L0/T1, where we have used the step sizes of(4),
as well asT ′ = 2∆ (see comment at end of Section 2.5). Bot-
tom: Expanded signal-flow diagram (port-resistances not shown).
Grey/white coloration of junctions indicates that calculations are
to be performed at alternating time instants.

Employing wave variables defined by (14), with port resistances
R0 = 4L0/T1, and the spectral mappings as defined by (13) yields
the scattering relation

[

b̂1
b̂2

]

= −1

2

[

1 1
1 −1

] [

z−1

1 0
0 z−1

2

] [

1 1
1 −1

] [

â1

â2

]

(25)

The corresponding signal-flow graph for this discrete two-port which
connects the two series adaptors is as shown in Figure 6. The re-
sulting structure is again to be interpreted in a multidimensional
sense, and is a short-hand notation for an integration scheme. In a
computer implementation, at a given grid location, the directional
shiftsT1 andT2 refer to neighboring grid points. When the spa-
tial dependence of this diagram is expanded out, the full signal
flow graph appears as in the bottom of Figure 1 (we have chosen
the step-sizes such that anoffset sampled[1] algorithm results).
The lower bound onv0 which is sufficient for stability follows im-
mediately from the positivity of the inductancesL1 andL2. For
the special choice of

r0 =

√

minx l

minx c
(26)

the bound is

v0 ≥
√

1

minx lminx c
(27)

3.2. An Alternative MDKC and Digital Waveguide Network

We now reexamine the MDKC of Figure 6, and note that the lower
one-port inductor, with terminalsQ andQ′ is equivalent to a gyra-
tor of gyration coefficientr0 terminated on a capacitor; the trans-
formed MDKC is shown in Figure 7, and we note that although its
topology is different from that of Figure 6, it also represents system
(21). Also, we have scaled the system (21) by a factor of2∆ (the
grid-spacing); this has no influence on the numerical solution, and
merely makes the transition to DWNs simpler. We may consider
this network to be a two-portXX ′Y Y ′, terminated in series on an
inductor, now of inductanceL1 = 2∆ (v0l − r0), and in parallel
on a capacitor of capacitanceC2 = 2∆ (v0c− 1/r0) Discretiza-
tion of the one-port inductor and capacitor may be performedus-
ing the trapezoid rule as before, with a step size ofT ′ = 2∆; the
LSI connecting two-portXX ′Y Y ′, however, is treated somewhat
differently.

The continuous hybrid relation for this two-port is
[

v̂1
î2

]

=
√
2∆

[

r0 (s1 + s2) s1 − s2
s1 − s2

1

r0
(s1 + s2)

] [

î1
v̂2

]

(28)

Under the application of the spectral mappings (20), with step sizes
again given by (4), the discrete hybrid relation is exactly (19), with
R = r0. Thus the discrete image of the two-portXX ′Y Y ′ de-
composes into a series/parallel combination of MD unit elements;
the discrete MD network, as well as the expanded flow graph are
shown in Figure 7. At this point, we mention that the port resis-
tancesr0 can, in the DWN context, be interpreted aswaveguide
impedances. The stability bound onv0 is unchanged from (27),
if r0 is chosen as per (26). Also, ifl and c are constants, and
(27) holds with equality, thenL1 andC2 are zero, so the one-
port inductance and capacitance can be dropped from the network
entirely, leaving (as expected) a signal flow-graph of the form of
a single bidirectional delay line (the standard form of the DWN
which implements a traveling-wave solution to the (1+1)D wave
equation).

4. CONCLUSIONS

There are three main conclusions that can be drawn here:
1) Though we have examined only a simple example in this

paper, it can be shown that the complete theory underlying the
construction of passive wave digital networks for the simulation
of physical systems can be carried over directly to digital waveg-
uide networks [9]. This is important, because this theory iswell-
developed, and makes use of the powerful concept of MD-passivity
[5]. We note, however, that there are DWNs, in particular those
which operate on irregular grids, which can not be derived from
an MDKC [9]. Also, there exist forms of the DWN for which the
waveguide impedances may vary spatially [8, 9].

2) A wide range of physical systems have been successfully
modeled using circuit representations. Besides the systems men-
tioned in this paper, it is possible to develop MDWD simulation
schemes for beam [10, 9], plate and shell dynamics systems [9],
Maxwell’s Equations [10], and even nonlinear fluid dynamicssys-
tems [14]. DWNs are now also feasible alternative integration
methods for all these systems, and possess all the good numeri-
cal properties of MDWDFs.

3) Most importantly, it should be clear that by applying trans-
formations from classical network theory to an MDKC, and through
the use of passivity-preserving mappings (regardless of their form),
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Figure 7: Top left: Transformed MDKC for the (1+1)D trans-
mission line system(21), with L1 = 2∆ (v0l − r0), C2 =

2∆ (v0c− 1/r0), and L0 =
√
2∆r0. Top right: MDWD net-

work, withR1 = 2L1/T
′, R2 = T ′/(2C2) andR0 = r0. Bot-

tom: Expanded signal-flow diagram (port-resistances not shown).
Grey/white coloration of junctions indicates calculationat alter-
nating time instants.

passivity of the resulting simulation routine is never compromised.
As such, the door is opened to a wide range of schemes which will
all be composed of the same robust signal processing blocks (in
particular, they all will make use of scattering junctions), and will
propagate wave variables; these forms may be quite different from
MDWD or DWN networks.
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