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Abstract

We address the problem of semantic segmentation: clas-
sifying each pixel in an image according to the semantic
class it belongs to (e.g. dog, road, car). Most existing meth-
ods train from fully supervised images, where each pixel is
annotated by a class label. To reduce the annotation ef-
fort, recently a few weakly supervised approaches emerged.
These require only image labels indicating which classes
are present. Although their performance reaches a satisfac-
tory level, there is still a substantial gap between the accu-
racy of fully and weakly supervised methods. We address
this gap with a novel active learning method specifically
suited for this setting. We model the problem as a pairwise
CRF and cast active learning as finding its most informa-
tive nodes. These nodes induce the largest expected change
in the overall CRF state, after revealing their true label.
Our criterion is equivalent to maximizing an upper-bound
on accuracy gain. Experiments on two data-sets show that
our method achieves 97% percent of the accuracy of the
corresponding fully supervised model, while querying less
than 17% of the (super-)pixel labels.

1. Introduction
In this paper, we consider the problem of semantic

segmentation, where a label must be predicted for every

pixel in an image (e.g. ”dog”, ”car” or ”road”). Se-

mantic segmentation has recently attracted a lot of atten-

tion [1, 2, 3, 4, 5]. The standard approach is to train with

full supervision, where every pixel is manually labeled by a

human annotator. Producing this annotation is very time-

consuming. Recently, a few weakly supervised methods

have emerged [6, 7, 8], which can train from image labels

indicating which classes are present, but their location is un-

known. Although weakly supervised methods reach a good

performance, there is still a significant gap between weakly

and fully supervised methods. In this paper, we try to bridge

this gap by active learning (fig. 1).

As in most existing works [1, 2, 3, 5, 8, 6], we model the

problem with a pairwise conditional random field (CRF),

which we define over superpixels. The unary potential carry

appearance models to classify a superpixel based on im-

age measurements, while the pairwise potential encourages

connected superpixels to assume the same label. In our set-

ting, the training images are initially weakly labeled. The

label of each superpixel they contain is a latent variable in

the CRF. First, we train a weakly supervised model Multi

Image Model (MIM) [6] to recover a first approximation of

these labels. Then we run a active learning algorithm which

queries the oracle for the true state of a few latent variables

selected by a novel criterion. When the true state of a vari-

able is revealed, it induces change to the state of other vari-
ables as well. These changes propagate locally through the

pairwise potentials of the CRF, as well as globally through

the unary potential, because the appearance models are re-

trained according to the newly revealed label. Due to this

long-range interaction, changes can reach very far, often

propagating to several other images.

There are relatively few works on active learning in com-

puter vision [9, 10, 11, 12]. One criterion for choosing

queries is uncertainty sampling [11, 12]. However, this cri-

terion can be misguided in two ways. First, after the ora-

cle reveals the state of an uncertain variable, it may induce

changes in the state of only a few other variables, thus hav-

ing a low impact. Second, a valuable query might be missed

due to a false certainty about a variable label. In this paper,

we propose a method based on a different criterion: query

for the labels of variables that induce the largest expected

change (EC) in the labeling of the whole training set. We

show this method to directly maximizes the expectation of

an upper-bound in accuracy improvement over the training

set. Computing our score naively would be prohibitively

expensive, as it involves retraining appearance model pa-

rameters and rerunning CRF inference, for each latent vari-

able (superpixel) and each possible label. We show how to

employ dynamic graph cuts [13] to greatly reduce computa-

tional cost. While computing the EC score we also estimate

the influence area of each latent variable, i.e. the subset of

variables which are expected to change if its true label is

revealed. This information suggests a further speedup by

querying for more than a single variable per active learn-

ing cycle. To maximize efficiency, in terms of how much
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Figure 1. weakly supervised semantic segmentation with active learning. The input is a weakly supervised training set, where images

are labeled by the classes they contain. The active learning proceeds by querying an oracle for the true label of superpixels selected by a

specialized criterion. We use acquired information to classify superpixels in previously unseen test images.

change is achievable from a fixed number of queries, we

choose the variables with the highest EC scores whose in-

fluence areas do not overlap. The combined effect of the

two speedups renders our change-driven strategy computa-

tionally feasible. Note that this change-driven strategy does

not suffer from the problems of uncertainty sampling, as

it maximizes the expected impact of the queries, measured

by the total change in the CRF state. A related criterion was

proposed before [9, 10], but never for structured models like

CRFs.

Experiments on two popular benchmark data-sets

MSRC-21 and the subset of LabelMe used by [14] demon-

strate that our method outperforms uncertainty sampling for

semantic segmentation. Our approach achieves 97% per-

cent of the accuracy of the corresponding fully supervised

model, while querying less than 17% of the (super-)pixel

labels. This provides an insight into the latent structure of

semantic segmentation data, i.e. there are strong and far-

reaching dependencies between labels of different superpix-

els, that span over several images. Because of these rela-

tions, knowledge of even a small subset of the labels allows

us to determine most of the other labels.

2. Related work

Semantic segmentation is represented by many fully su-

pervised methods [1, 2, 3, 4, 5] and a few weakly super-

vised ones [6, 7, 8]. In computer vision, active learning was

mostly used for the task of object detection or whole-image

classification [15, 11, 12, 16]. To our knowledge, active

learning for semantic segmentation was considered by only

very few works [9, 10]. Vijayanarasimhan et al. [9] focus

on predicting the cost of labeling (in seconds of annotators

time) and trading it for informativeness of the query. Sid-

diquie et al. [10] introduce contextual queries, such as ”is
sky above ground?” and model them as special edges in a

pairwise CRF. Analog to us, [9, 15] compute the reduction

in expected misclassication risk over all of the training data

in order to assess the influence of a potential query. Unlike

these works, our model is structured - it includes pairwise

connections between variables (superpixels).

The problem of selecting the most informative subset of

variables in a graphical model was studied by [17, 18, 19].

Krause et al. [17] present optimal algorithms for computing

and optimizing the value of information on a chain graph-

ical models. In another paper [18] they address the same

problem for Bayesian networks. In [19] a fast way to eval-

uate the informativeness of a variable in a graphical model

was proposed. All of these works are concerned with set-

ting where exact inference is possible (trees, Bayesian net-

works). CRF models for the semantic segmentation task

have a rough grid structure where nodes have a state space

of about 20-50 labels, thus exact inference is not feasible.

To our knowledge, we are the first to go beyond uncertainty

sampling for such CRF models.

Another relevant work [20] considers the task of active

multiple instance learning. It is essentially a two-class ver-

sion of our setting. The method builds upon multiple in-

stance logistic regression. They introduce the expected gra-

dient length (EGL) criterion: choose the query which max-

imizes the expectation of the gradient for the regression co-

efficients. This heuristic is similar in spirit to our expected

change criterion. However, we quantify change differently,

as our model (multilabel CRF) is structured and a gradient

is not well-defined for it. We also show that our strategy

directly maximizes the expected upper-bound on accuracy

improvement, which is not true for EGL.

3. weakly supervised semantic segmentation
with a pairwise CRF

We follow the method introduced in [6], for self-

consistency and to introduce notation we briefly review it

below. Images are represented by their superpixels, ob-

tained by an oversegmentation algorithm [21]. Let τ =



{
Ij =

(
{xj

i}Nj

i=1, Y
j
)}N

j=1
be the training set, where im-

age Ij consists of superpixels xj
i . For each image, we are

given a label set Y j ⊂ Y , which is a subset of the set of

all possible labels Y ={1, ..., C}, corresponding to classes.

Each superpixel xj
i has an associated latent label yji ∈ Y j .

The image label set Y j is the union over the (unknown) la-

bels of all superpixels in the image (Y j =
⋃
yji ). The task

of weakly supervised learning is to recover the latent labels

yji and to learn appearance models for the classes. These

will later help to predict superpixel labels in new test im-

ages.

Model. We model the weakly labeled training set as a
CRF, where nodes correspond to the latent superpixel la-
bels. The total energy E of the model is a function of these

labels yji and appearance model parameters θ

E
(
{yj

i }, θ
)
=

∑
x
j
i∈Ij ;Ij∈τ

(
ψ
(
yj
i , x

j
i , θ

)
+ π(yj

i , Y
j
i )

)
+

∑
(y

j
i ,y

j′
i′ )∈E

φ
(
yj
i , y

j′
i′ , x

j
i , x

j′
i′

)
(1)

The first unary potential ψ
(
yji , x

j
i , θ

)
measures how well

the appearance of xj
i matches the appearance model θyj

i

of class yji . If f(x, θ) → RC is a multiclass classi-
fier outputting probabilities fy(x, θ) for superpixel x tak-
ing label y, then we can define the unary potential as
ψ (y, x, θ) = − log fy (x, θ). In this paper we consider a
Naive Bayes as an appearance model. The second unary

potential π(yji , Y
j
i ) makes sure that a superpixel can only

take a label from the label set Y j of the image

π(yj
i , Y

j
i ) =

{
∞ yj

i �∈ Y j

0 yj
i ∈ Y j

(2)

A CRF labeling which respects this constraint for all nodes

is called admissible.
The pairwise potential φ encourages connected superpix-

els to take the same label if their appearance similarity is
high

φ
(
yj
i , y

j′
i′ , x

j
i , x

j′
i′

)
=

{
1−D

(
xj
i , x

j′
i′

)
yj
i �= yj′

i′

0 yj
i = yj′

i′
(3)

where D
(
xj
i , x

j′
i′

)
is a similarity metric between two su-

perpixels, scaled to [0, 1]. Our particular choice of similar-

ity metric is discussed in sec. 5. Note how these potentials

are submodular, since 1 − D
(
xj
i , x

j′
i′

)
≥ 0 always. The

pairwise potentials are defined on the set of edges E. Usu-

ally, these edges connect spatial neighbours in the same im-

age [8, 1, 2, 3, 5]. We show later that extending E to include

edges between superpixels from different images, as origi-

nally done in [6] can significantly improve performance.

Weakly supervised learning. We minimize the energy in

eq. (1) by alternating minimization. Starting from an ad-

missible random labeling, we alternate between learning ap-

pearance model parameters θ and inferring the latent labels

yji . When keeping the labeling fixed and assuming our fea-

tures are histograms, learning a Naive Bayes classifier pa-

rameters has a closed form solution. Let θl be the likelihood

vector, such that θil = P (xi|l); then θl = XY l, where X is

a matrix of superpixel features and Y l is a binary column-

vector with Y l
i = 1, when yi = l. If Y is a matrix, who’s

columns are Y l, then parameter matrix θ = XY can be

obtained by just one matrix multiplication, plus one more

multiplication for if we want to incorporate a prior. Our par-

ticular choice of features is described in sec. 5. When keep-

ing the appearance parameters fixed, the energy (1) is sub-

modular. Since it is a multilabel problem, we cannot obtain

global minima, at least not exact, but we can efficiently find

a good approximation using the alpha-expansion algorithm

[22, 23, 24, 25]. Therefore, we alternate between these two

steps to efficiently determine both θ and {yji }.

CRF structure. Most approaches [1, 2, 3, 5, 8] establish

connections E (eq. (1)) only between neighbouring super-

pixels in one image. This produces a set of disconnected

components, sharing only the appearance models θ. As pro-

posed in [6], we establish connections also between super-

pixels in different images. We do so by connecting super-

pixels from images that share a label: Y j
⋂
Y j′ �= ∅. For

each superpixel yji , we first select the q = 3 most similar

superpixels from each other image sharing a label with Y j .

We then establish connections from yji to the top p = 21
selected superpixels. The reason for this procedure is to

add only a moderate number of most-valuable connections

(to keep inference fast and memory requirements low). Re-

call that connections between superpixels with very differ-

ent appearance have little influence, as eq. (3) is near 0 for

any labeling. Appearance similarity is measured by D (de-

fined above). As in [26], we can interpret E as a model for

the manifolds formed by superpixels in the space defined

by the similarity metric D. Pairwise potentials penalize la-

belling {yji } that cut through these manifolds.

4. Active Learning

The active learning stage starts from the output of weakly

supervised learning, i.e. a partially incorrect labeling. Dur-

ing active learning, the computer can submit a query (i, j)
to an oracle O, that reveals O(i, j) = lji the true state lji
of a latent variable yji , i.e. the label of the corresponding

superpixel. The goal is to achieve the maximum increase

in accuracy over the whole training set τ with a minimal

number of queries.

The active learning protocol that we consider is summa-

rized in Alg. 1. First, all possible queries Ω = {(i, j)|yji ∈



τ} are evaluated according to some score function S : Ω →
R (e.g. uncertainty). Next, a query set Q ⊂ Ω consisting of

one or more queries is selected by a rule U and is submit-

ted to the oracle. Usually [11, 12, 16, 9, 10] U selects only

one query, according to S, or the highest scored k queries.

However, later we discuss other possible forms of U . After

the oracle delivers the answers O(Q) = {lji |(i, j) ∈ Q}, the

model is retrained and the procedure restarts. To integrate

the revealed state lji of a variable yji into the model, we set

yji = lji .
Let F (x, θ) be the output (a label) of the CRF for a train-

ing superpixel x, with the appearance model parameter vec-

tor θ. Also, let F (x, θt|yji = l), be the output of the model,

given that the latent variable yji is assigned to label l (imply-
ing that θt is relearnt accordingly). The Expected Change

(EC) score of yji is defined as

EC(i, j) =

1

|Y j |
∑
l∈Y j

∑
i′ �=i,j′ �=j

wj
i

[
F
(
xj′
i′ , θ

t|yj
i = l

)
�= F

(
xj′
i′ , θ

t
)]

(4)

Here wj
i is the importance weight of yji , i.e. the num-

ber of pixels in superpixel xj
i . The EC score measures the

expected amount of change in the CRF, measured as the
weighted change in superpixel labels over the whole train-

ing set. It can be shown that querying the oracle for the yji
with the largest EC(i, j) maximizes the expectation of the

Algorithm 1 Generic active learning procedure

Input: Training set τ , initial parameters θ0, initial labeling

L0 = {yji = F (xj
i , θ

0)}, maximum number M of queries

to the oracle O, query scoring function S, query selection

rule U .

Output: updated labeling and parameters θ∗

1. t = 0 and m = 0

2. while m < M

(a) for each unknown latent variable yji , evaluate

S(i, j)

(b) Select query set Q with selection rule U

(c) Query the oracle for the labels lji =
O(i, j), ∀(i, j) ∈ Q

(d) Set yji = lji ∀(i, j) ∈ Q

(e) Retrain appearance models θt+1 and infer latent

variable labels

(f) m = m+ |Q| and t = t+ 1

3. return θ∗ = θT and latest labeling of the training set

LT = {yji = F (xj
i , θ

T )}

upper-bound of the accuracy improvement over the training
set ∑

i,j

wj
i

[
F (xj

i , θ
t+1) = lji

]
−

∑
i,j

wj
i

[
F
(
xj
i , θ

t
)
= lji

]

≤
∑
i,j

wj
i

[
F
(
xj
i , θ

t+1
)
�= F

(
xj
i , θ

t
)]

(5)

where lji is the true label of yji . Since true labels are

not known, we cannot maximize the bound directly and

must take the expectation over all admissible labels instead

(eq. (4)).

Computational cost. To evaluate the EC score for each

latent variable, we have to run through all (still unknown)

latent variables. For each admissible label of each variable

we must do (Alg.2, fig. 2): i) retrain appearance models θ
for two classes (the former label yji and the hypothesized

label l); ii) infer new labeling with alpha-expansion; iii)

record the change. This amounts to NK retraining and in-

ference runs, where K is an average number of admissible

labels per variable and N is the total number of latent vari-

ables that are still unknown. Retraining θ is quite fast. It

involves only three matrix multiplications, as we have to

update only two appearance models. However, the alpha-

expansion step over our large CRF is very slow. Therefore,

in a naive implementation, the computational cost of the al-

gorithm is enormous. In the following subsections, we pro-

pose two techniques to accelerate the algorithm. The first is

based on recycling computations between graph-cut runs in

the inference stage (step 1.a.iii of Alg. 2). The second tech-

nique is a new selection rule U that queries for several labels

in a batch, while avoiding redundant queries (i.e. inducing

changes to similar set of variables).

Algorithm 2 Evaluating expected change

Input: Training set τ , current parameters θ, current labeling

L = {yji = F (xj
i , θ)}

Output: EC scores for each latent variable

1. for each latent variable yji

(a) for each admissible label l ∈ Y j

i. retrain appearance model parameters θ′ =
(θt|yji = l)

ii. infer MAP labeling with unary potentials

ψ
(
yji , x

j
i , θ

′
)

and yji clamped to l

iii. record change C(yj
i , l) =∑

i′ �=i,j′ �=j w
j′
i′

[
F
(
xj′
i′ , θ

t|yj
i = l

)
�= F

(
j′
i′ , θ

t
)]

(b) set EC(i, j) = 1
|Y j |

∑
l∈Y j C(yji , l)

2. return EC



Figure 2. Evaluating Expected Change (EC). (Leftmost panel) Current state of the CRF. Each node is a variable and different colours

represent different states (i.e. class labels). The states of nodes with thick borders are known, as previously revealed by the oracle, the

others are latent. (Next three panels) EC is evaluated for three latent variables y1, y2, y3 (blue halo in their respective panel). For each y,

every admissible state is hypothesized in turn, and we measure the change induced by setting y to that state. The area of influence for each

hypothesized state is enclosed in black (i.e. the set of variables which are changed as a consequence). Note, that disconnected nodes can

influence each other via retraining of appearance models.

4.1. Fast Expected Change via dynamic graph cuts

During EC evaluation, NK runs of alpha-expansion

must be performed. We explain here how to speed up this

expensive step by employing dynamic graph-cuts [13].

A single run of alpha-expansion iterates through all pos-

sible labels Y . For the current label α a binary problem is

setup, where each latent variable has the choice to either

retain its current label, or switch to α. This problem can

be solved efficiently and exactly via graph-cuts [23], and it

is guaranteed not to increase the original multilabel energy.

The algorithm cyclically iterates over labels until no label

can expand further.

All binary problems operate on the same graph with the

same edges between nodes. This constraint holds true be-
yond a single run of alpha-expansion, over the loops over

variables and labels in Alg. 2. Therefore, at each consec-

utive graph-cut step we recycle the labeling (primal solu-

tion) and the flow (dual solution) from the previously solved

graph-cut, both inside an alpha-expansion run and from the

previous variable/label combination in Alg. 2). As detailed

in [13], this recycling involves updating the flow to render

it consistent with the new problem, and then running binary

graph-cut (now at a much lower cost thanks to the recycled

flow). This make alpha-expansion in consecutive runs up to

12× faster than in the initial run.

4.2. Batch queries

When the oracle reveals the label of a latent variable, this

induces changes in the labels of other variables as well. Lo-

cally, through the pairwise potentials, and globally, through

the unary potentials, due to the retraining of the appearance

models. During EC evaluation (Alg. 2) we directly esti-

mate the influence area of each latent variable y, i.e. which

variables are expected to change if we query the oracle for

the label of y. . The crucial observation is that often the

influence areas of different variables overlap (fig. 2). We

can exploit this fact in Alg. 1 by using a rule that queries

for the labels of several variables in a single batch Q. This

produces a speedup equal to the size of Q, economizing on

the most expensive part of the algorithm - score computa-

tion. We aim to query labels for variables whose influence

areas overlap the least, so that Q induces a maximal total

expected change. Let the expected influence area of yji be

δ(yji , θ) = {yba : ∃l ∈ Y j : F (xb
a, θ) �= F (xb

a, θ|yji = l)}
and |Υ| =

∑
a,b:yb

a∈Υ wb
a. We want to find the set of

queries Q that maximizes expectation of expected influ-

ence area of the query: |⋃yj
i∈Q δ(yji , θ)| . Direct maxi-

mization is NP-hard as this is an instance of the set cover

problem [27]. Therefore we use a greedy approximation.

We start with Q containing only the variable with the high-

est EC score. We then add the next highest-scored variable

which does not belong to the influence area of any variable

in Q. The process is repeated until a predefined number of

queries is selected.

In our experiments, using dynamic graph cuts and batch

queries bring a combined speedup of about factor 1200x.

5. Experimental results
We evaluate the proposed methods on two well known

data-sets for semantic segmentation: MSRC-21 [5] and the

subset of LabelMe defined by [14].

Image features. We describe the appearance of superpix-

els with a bag of semantic textons (BoST) [4] trained from

weakly supervised data using [7]. BoST enables to rep-

resent superpixels as histograms, on which we train a lin-

ear regressor to predict class labels (appearance model θ,

sec. 3). It also enables to use as a similarity D(xj
i , x

y′
i′ ) His-

togram Intersection [4] in the pairwise potential (eq. (3)).

We scale φ by median of maximum per superpixel contri-

bution of all pairwise potentials to energy in MIM to make
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Figure 3. Results on MSRC data-set. Plotted is the accuracy over share of queries asked: a) accuracy on weakly supervised training set; b)

accuracy on test set; c) comparison between a CRF with only pairwise connections between spatial neighbours within one image vs also

including multi-image connections.

them comparable to unary potentials.

Baselines. We compare to three competing criteria for

scoring queries: i) a baseline random sampling, ii) the un-

certainty sampling by the entropy of the unary potential

(this score is calculated from the outputs of Naive Bayes

appearance models). iii) the third criterion samples ac-

cording to maximal uncertainty measured by the Bethe en-

tropy [28] of the full CRF. It was used in [10] for active

learning for semantic segmentation, which makes it a very

relevant baseline. Bethe entropy is a more sophisticated

technique, which takes the CRF connectivity into account

and it approximates the full entropy of the CRF (more de-

tails in [28, 10]). Computing Bethe involves looping over

i) all pairs of nodes, and ii) all possible labellings of the

pair to compute partition sums. This makes this criterion

expensive to compute, thus recomputing the score for each

node after every query is prohibitive. To make it feasible we

query top N nodes instead of one, after computing the score

for each unknown node. We match N , such that wall time

of Bethe and EC are, approximately, the same. With batch

queries disables for both EC and Bethe, we observed EC

being approximately only 25% slower. Notice that Bethe

does not allow for a principled batch query as our method

does (Sec. 4.2).

All criteria are embedded in the same Alg. 2. For EC and

Bethe the sizes of batch queries are 0.4% and 0.3% of the

variables respectively. For all data-sets, we query until 97%
of the performance of the fully supervised model on the test

set is reached by the best method.

Generalizing to test data. After the learning stage has

recovered the labels of the superpixels in the training im-

ages (sec. 4), we can train any standard fully supervised

method and then employ it to label a new test image T .

In our experiments, we use a method from [6]. First, we

retrieve the most similar training images to T , using a pre-

trained multiple kernel metric [29]. Using this metric, we

predict image-level label probabilities for T , called image-
level prior (ILP) in [4]. Then the following energy is min-

imized to find the optimal labeling of the superpixels yti of

T :
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=
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ψ
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(6)

The first unary potential ψ (yti , x
t
i, θ

∗) measures how well

xt
i matches the appearance model of class θ∗yt

i
(note the pa-

rameters θ∗ are fixed as learnt during training). The second

unary potential is ILP, which can be seen as a soft version

of π in eq. (1). Pairwise potentials φ connect neighbouring

superpixels in the test image (set S). We also connect each

test image superpixel yti to its 3 most similar superpixels in

each retrieved training image (set M ). Note how variables

yji from the training images are fixed, which facilitates op-

timization.

MSRC-21. This popular data-set [5] contains 591 images

of 320x213 pixels, accompanied by ground-truth segmen-

tations of 21 classes 1. We use the standard split into 276
training and 256 test images defined by [5]. This data-set

is best suited for our task, as all classes are labeled in all

images and there exist significant co-occurrence between

classes.

Fig. 3a reports the accuracy in recovering superpixel la-

bels on the weakly labeled training set, as a function of

the percentage of queries asked to the oracle. Our newly

proposed EC criterion performs considerably better than all

competing criteria we compare to, over the whole range

of percentage of queries. Until 10% queries are asked,

the competing criteria perform approximately equally, with

Bethe entropy sampling taking the lead afterwards. As

fig. 3b shows, on the test set EC and Bethe are clear leaders,

and they converge to the same result after 17% queries. Sur-

prisingly, random sampling performs better than the entropy

1Two additional classes in this data-set (mountain and horse) are usu-

ally discarded as they occur very rarely.
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Figure 4. Results on LabelMe data-set. Plotted is the accuracy over share of queries asked: a) accuracy on weakly supervised training set;

b) accuracy on test set; c) variations of the batch query scheme: our full scheme from sec. 4.2 (0.4%, full), a scheme with a 10× smaller

batch size (0.04%), and a simplified scheme where the top-k superpixel labels are queried, without taking into account their influence

areas.

of the unary potential. This effect might be due to the lat-

ter method neglecting the CRF connections, thereby over-

fitting to unary potential uncertainty. Moreover, the good

performance of the random strategy suggests this data-set

to be fairly simple. As a reference, we also plot the test ac-

curacy of a fully supervised method (equivalent to asking

100% queries). Both EC and Bethe reach 97% of its accu-

racy after querying 17% of the training data. Note the sud-

den jumps in test accuracy. These discontinuous improve-

ments correspond to critical amounts of information where

the learning algorithm has ”understood” special subclasses,

like grey sky or yellowish grass.

LabelMe [14]. The LabelMe subset of [14] contains 2500

images with 34 classes and it is more challenging than

MSRC-21. For computational reasons, we train on subset

of 800 images of the training set defined by [14] (but we use

the same test set as [14]). As in MSRC-21, all classes are

labeled in all images and there is significant co-occurrence

between classes. All learning procedure parameters are kept

the same as for MSRC-21.

As fig. 4 shows, EC performs better than all other meth-

ods on the weakly labeled training set, as on MSRC-21.

However, different than on MSRC-21, EC is clearly the best

method also on the test set. Sampling schemes based on

unary potential entropy and Bethe entropy perform about

the same on the test set. Random sampling performs much

worse then other criteria, confirming our judgement that this

data-set is more challenging.

Evaluation of components. Here, we present an experi-

ment to evaluate the contribution of pairwi potentials con-

necting superpixels between different images in the CRF

model for the training set. Generalization to the test set is

kept same (sec. 5). Fig. 3(c) plots results of our EC crite-

rion on MSRC-21, using connections E including only spa-

tial neighbours within an image, vs also including multi-

image connections (sec. 3). The initial accuracy (pure

weakly supervised learning) is significantly lower without

multi-image connections. The learning rate is faster though,

which is natural as both of them will eventually converge to

the accuracy of a fully supervised method. The difference

emphasizes the benefits of exploiting the hidden dependen-

cies between distant superpixel labels.

In fig. 4(c) we evaluate variations on our batch query

scheme (sec. 4.2). First, we use a 10× smaller batch size

(i.e. 0.04curves (red and blue) are very close, conrming that

the proposed batch query scheme considerably accelerates

active learning without compromising accuracy. Another

variation is a simplied scheme which takes the top-k queries

based only of their EC score without taking inuence areas

into account. Its performance is signicantly worse, which

demonstrate the value of selecting queries affecting differ-

ent regions of the CRF, as in our full scheme.

6. Conclusion

We presented an exploration of the gap between weakly

and fully supervised methods for semantic segmentation by

active learning. For this purpose, we introduced a novel

Expected Change score of the informativeness of nodes in a

pairwise CRF model. High computational complexity is be-

ing remedied by application of dynamic graph cuts and prin-

cipled batch query strategy. Our method consistently out-

performs relevant baselines, including Bethe entropy sam-

pling, on both an easy and a difficult data-set, having the

same wall time speed as Bethe. It reaches 97% of total

pixel accuracy of the corresponding fully supervised model,

while querying less than 17% of the superpixel labels. The

experiments reveal the existence of strong and far-reaching

hidden dependencies in semantic segmentation data. Ex-

ploiting those dependencies enables to significantly reduce

the supervision effort. Finally, our method could be used for

other problems that can be formulated as a pairwise CRF

estimation.

Acknowledgments
A. Vezhnevets was supported by the SNSF under grant

#200021-117946. V. Ferrari was supported by a SNSF Pro-

fessorship.



��������	�
���� 
�����	����� ������	������	�������� �����	������	�������� ��������	�
���� 
�����	����� ������	������	�������� �����	������	��������

����������
�	

�
��
�

Figure 5. Semantic segmentation results on MSRC data-set. Columns 1-4 present results on training set, column 5-8 on test set. From

left to right, images present (i) original image (ii) ground truth, (iii) semantic segmentation before active learning (only weakly supervised

learning) (iv) after 6.8% of labels queried using EC criterion. In original images superpixels highlighted by green changed their labels to the

correct one after active learning, highlighted by blue changed their label to the wrong one; on training set, red highlights those superpixels

that had their label queried. Notice, that in training images a lot of change happens with only few labels being queried. This is achieved

by directly targeting those queries, that produce maximum expected change. In row two, training image has most of its superpixel labels

changed, although only one of its superpixel labels has been queried. This is due to propagation of change through unary and multi-image

potentials.
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