

Edinburgh Research Explorer

The Strategy Challenge in SMT Solving

Citation for published version:
de Moura, L & Passmore, G 2013, The Strategy Challenge in SMT Solving. in M Bonacina & M Stickel
(eds), Automated Reasoning and Mathematics: Essays in Memory of William W. McCune. vol. 7788,
Lecture Notes in Computer Science, vol. 7788, Springer Berlin Heidelberg, pp. 15-44. DOI: 10.1007/978-3-
642-36675-8_2

Digital Object Identifier (DOI):
10.1007/978-3-642-36675-8_2

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Published In:
Automated Reasoning and Mathematics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979025?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-36675-8_2
https://www.research.ed.ac.uk/portal/en/publications/the-strategy-challenge-in-smt-solving(46fccf87-ea39-4a4a-91c7-adb47758c88a).html

The Strategy Challenge in SMT Solving

Leonardo de Moura1 and Grant Olney Passmore2,3

leonardo@microsoft.com, gp351@cam.ac.uk

1 Microsoft Research, Redmond
2 Clare Hall, University of Cambridge

3 LFCS, University of Edinburgh

Abstract. High-performance SMT solvers contain many tightly inte-
grated, hand-crafted heuristic combinations of algorithmic proof meth-
ods. While these heuristic combinations tend to be highly tuned for
known classes of problems, they may easily perform badly on classes
of problems not anticipated by solver developers. This issue is becoming
increasingly pressing as SMT solvers begin to gain the attention of prac-
titioners in diverse areas of science and engineering. We present a chal-
lenge to the SMT community: to develop methods through which users
can exert strategic control over core heuristic aspects of SMT solvers.
We present evidence that the adaptation of ideas of strategy prevalent
both within the Argonne and LCF theorem proving paradigms can go a
long way towards realizing this goal.

1 Introduction

SMT (Satisfiability Modulo Theories) solvers are a powerful class of automated
theorem provers which have in recent years seen much academic and industrial
uptake [11]. They draw on some of the most fundamental discoveries of computer
science and symbolic logic. They combine the Boolean Satisfiability problem
with the decision problem for concrete domains such as arithmetical theories
studied in convex optimization and term-manipulating symbolic systems. They
involve, in an essential way, decision problems, completeness and incompleteness
of logical theories and complexity theory.

The standard account of modern SMT solver architecture is given by the so-
called DPLL(T) scheme [23]. DPLL(T) is a theoretical framework, a rule-based
formalism describing, abstractly, how satellite theory solvers (T-solvers) for de-
cidable theories such as linear integer arithmetic, arrays and bit-vectors are to be
integrated together with DPLL-based SAT solving. Decision procedures (com-
plete T-solvers) for individual theories are combined by the DPLL(T) scheme
in such a way that guarantees their combination is a complete decision proce-
dure as well. Because of this, one might get the impression that heuristics are
not involved in SMT. However, this is not so: heuristics play a vital role in
high-performance SMT, a role which is all too rarely discussed or championed.

By design, DPLL(T) abstracts away from many practical implementation
issues. High-performance SMT solvers contain many tightly integrated, hand-
crafted heuristic combinations of algorithmic proof methods which fall outside

the scope of DPLL(T). We shall discuss many examples of such heuristics in
this paper, with a focus on our tools RAHD [24] and Z3 [10]. To mention but
one class of examples, consider formula pre-processing. This is a vital, heav-
ily heuristic component of modern SMT proof search which occurs outside the
purview of DPLL(T). We know of no two SMT solvers which handle formula
pre-processing in exactly the same manner. We also know of no tool whose doc-
umentation fully describes the heuristics it uses in formula pre-processing, let
alone gives end-users principled methods to control these heuristics.

While the heuristic components of SMT solvers tend to be highly tuned for
known classes of problems (e.g., SMT-LIB [3] benchmarks), they may easily per-
form very badly on new classes of problems not anticipated by solver developers.
This issue is becoming increasingly pressing as SMT solvers begin to gain the
attention of practitioners in diverse areas of science and engineering. In many
cases, changes to the prover heuristics can make a tremendous difference in the
success of SMT solving within new problem domains. Classically, however, much
of the control of these heuristics has been outside the reach4 of solver end-users5.
We would like much more control to be placed in the hands of end-users, and
for this to be done in a principled way.

We present a challenge to the SMT community: to develop principled meth-
ods through which users can exert strategic control over core heuristic aspects of
SMT solvers. We present evidence, through research undertaken with the tools
RAHD and Z3, that the adaptation of a few basic ideas of strategy prevalent
both within the Argonne and LCF theorem proving paradigms can go a long
way towards realizing this goal. In the process, we solidify some foundations
for strategy in the context of SMT and pose a number of questions and open
problems. We state this challenge as follows:

The Strategy Challenge

To build theoretical and practical tools allowing users to exert strategic
control over core heuristic aspects of high-performance SMT solvers.

In this way, the proof procedure may be tailored to specific problem domains,
especially ones very different from those normally considered.

4 Some SMT solvers expose a vast collection of parameters to control certain behav-
ioral aspects of their core proof procedures. We view these parameters as a primitive
way of exerting strategic control over the heuristic aspects of high-performance SMT
solvers. As the use of SMT solvers continues to grow and diversify, the number of
these options has steadily risen in most solvers. For instance, the number of such
options in Z3 has risen from 40 (v1.0) to 240 (v2.0) to 284 (v3.0). Many of these
options have been requested by users. Among users, there seems to be a wide-spread
wish for more methods to exert strategic control over the prover’s reasoning.

5 We use the term end-user to mean a user of an SMT solver who does not contribute
to the essential development of such a solver. End-users regularly embed SMT solvers
into their own tools, making SMT solvers a subsidiary theorem proving engine for
larger, specialised verification tool-chains.

1.1 Caveat Emptor: What This Paper Is and Is Not

We find it prudent at the outset to make clear what this paper is and is not. Let
us first enumerate a few things we shall not do:

– We shall not give a new theoretical framework or rule-based formalism cap-
turing the semantics of heuristic proof strategies, as is done, for instance, in
the influential STRATEGO work on term rewriting strategies [20].

– We shall not prove any theorems about the algebraic structure underlying
the collection of heuristic proof strategies, as is done, for instance, in the
insightful work on the proof monad for interactive proof assistants [18].

– We shall not propose a concrete syntax for heuristic proof strategies in the
context of SMT, as, for instance, an extension of the SMT-LIB standard [3].

We shall not attempt any of the (worthy) goals mentioned above because
we believe to do so would be premature. It is simply too early to accomplish
them in a compelling way. For example, before a standard concrete syntax is
proposed for heuristic SMT proof strategies, many different instances of strategy
in SMT must be explicated and analyzed, in many different tools, from many
contrasting points of view. Before any theorems are proved about the collection
of heuristic SMT proof strategies, we must have a firm grasp of their scope and
limitations. And so on. Instead, our goals with this Strategy Challenge are much
more modest:

– To bring awareness to the crucial role heuristics play in high-performance
SMT, and to encourage researchers in the field to be more explicit as to the
heuristic strategies involved in their solvers.

– To convince SMT solver developers that providing flexible methods (i.e., a
strategy language) for end-users to exert fine-grained control over heuristic
aspects of their solvers is an important, timely and worthy undertaking.

– To show how the adaptation of some ideas of strategy prevalent both within
the Argonne and LCF theorem proving paradigms can go a long way towards
realizing these goals.

– To stress that from a scientific point of view, the explication of the ac-
tual heuristic strategies used in high-performance SMT solvers is absolutely
crucial for enabling the reproducibility of results presented in publications.
For instance, if a paper reports on a new decision procedure, including ex-
perimental findings, and these experiments rely upon an implementation of
the described decision method incorporating some heuristic strategies, then
these heuristics should be communicated as well.

Throughout this paper, we shall present many examples in (variants of) the
concrete syntaxes we have developed for expressing heuristic proof strategies in
our own tools. These are given to lend credence to the practical value of this
challenge, not as a proposal for a standard strategy language.

§

As we shall see, our initial approach for meeting this Strategy Challenge is
based on an SMT-specific adaptation of the ideas of tactics and tacticals as found
in LCF-style [22,27] proof assistants. This adaptation has a strong relationship
with the approach taken by the Argonne group on theorem proving toolkits, work
that began with the Argonne systems NIUTP1 - NIUTP7 in the 1970s and early
1980s, and has continued through to modern day with Bill McCune’s LADR
(Library for Automated Deduction Research), the foundation of his powerful
Prover9 and MACE4 tools [21]. The way in which we adapt ideas of tactics and
tacticals to SMT results in notions of strategy which, though borrowing heavily
from both of these sources, are quite distinct from those found in LCF-style
proof assistants and Argonne-style theorem provers.

Finally, let us assure the reader that we are not proposing a tactic-based
approach for implementing “low-level” aspects of SMT solvers such as unit prop-
agation, nor for implementing core reasoning engines such as a SAT solver or
Simplex. This would hardly be practical for high-performance SMT. Again, our
goals are more modest: We are proposing only the use of this strategy machinery
for facilitating the orchestration of “big” reasoning engines, that is, for prescrib-
ing heuristic combinations of procedures such as Gaussian Elimination, Gröbner
bases, CNF encoders, SAT solvers, Fourier-Motzkin quantifer elimination and
the like. In this way, “big” symbolic reasoning steps will be represented as tac-
tics heuristically composable using a language of tacticals.

While we do not propose a particular concrete strategy language for SMT
solvers, we will present some key features we believe a reasonable SMT strat-
egy language should have. These features have been implemented in our tools,
and examples are presented. One important requirement will be that a strategy
language support methods for conditionally invoking different reasoning engines
based upon features of the formula being analyzed. We shall exploit this ability
heavily. In some cases, when high-level “big” engines contain within themselves
heavily heuristic components made up of combinations of other “big” reasoning
engines, we also propose that these components be modularized and made re-
placeable by user-specified heuristic proof strategies given as parameters to the
high-level reasoning engine. These ideas will be explained in detail in Sec. 3,
where we give the basis of what we call big-step strategies in SMT, and in Sec. 4,
where we observe that certain strategically parameterized reasoning engines can
be realized as tacticals.

1.2 Overview

Finally, let us end this introduction with an overview of the rest of the paper. In
Sec. 2 we begin with the question What is strategy? and explore some possible
answers by recalling important notions of strategy in the history of automated
theorem proving. In Sec. 3, we give the foundations of big step strategies in SMT.
In Sec. 4, we observe that there is a natural view of some reasoning engines as
tacticals, and we present a few examples of this in the context of RAHD and
Z3. In Sec. 5, we show some promising results of implementations of many of

these strategy ideas within the two tools. Finally, we conclude in Sec. 6 with a
look towards the future.

2 Strategy in Mechanized Proof

There exists a rich history of ideas of strategy in the context of mechanized proof.
In this section, we work to give a high-level, hopelessly incomplete survey of the
many roles strategy has played in automated proof. In the process, we shall keep
an eye towards why many of the same issues which motivated members of the
non-SMT-based automated reasoning community to develop powerful methods
for user-controllable proof search strategies also apply, compellingly, to the case
of SMT.

2.1 What is Strategy?

Before discussing strategy any further, we should certainly attempt to define it.
What is strategy, after all? Even restricted to the realm of mechanized proof,
this question is terribly difficult to answer. There are so many aspects of strategy
pervasive in modern proof search methods, and there seems to be no obvious
precise delineations of their boundaries. Where does one, for instance, draw the
line between the “strategic enhancement” of an existing search algorithm and
the advent of a new search algorithm altogether?

Despite the difficulties fundamental to defining precisely what strategy is,
many researchers in automated reasoning have proposed various approaches to
incorporating strategy into automated proof. Some approaches have been quite
foundational in character, shedding light on the nature of strategy in partic-
ular contexts. For instance, in the context of term rewriting, the ideas found
within the STRATEGO system have given rise to much fruit, both theoretical
and applied, and elucidated deep connections between term rewriting strategy
and concurrency theory [20]. In the context of proof strategies in interactive the-
orem provers, the recent work of Kirchner-Muñoz has given heterogeneous proof
strategies found in proof assistants like PVS a firm algebraic foundation using
the category-theoretic notion of a monad [18].

Though a general definition of what strategy is seems beyond our present
faculties, we may still make some progress by describing a few of its most salient
aspects. In particular, the following two statements seem a reasonable place to
begin:

1. There is a natural view of automated theorem proving as being an exercise
in combinatorial search.

2. With this view in mind, then strategy may be something like adaptations
of general search mechanisms which reduce the search space by tailoring its
exploration to a particular class of problems.

We are most interested in these adaptations when end-users of theorem proving
tools may be given methods to control them.

To gain a more concrete understanding of the importance of strategy in
automated theorem proving, it is helpful to consider some key examples of its
use. In working to gather and present some of these examples, we have found
the vast number of compelling uses of strategy to be quite staggering. There are
so many examples, in fact, that it seems fair to say that much of the history
of automated reasoning can be interpreted as a series of strategic advances. As
automated reasoning is such a broad field, let us begin by focusing on the use
of strategy in one of its particularly telling strands, the history of mechanized
proof search in first-order predicate calculus (FOL).

§

When the field of first-order proof search began and core search algorithms
were first being isolated, most interesting strategic advancements were so pro-
found that we today consider them to be the advent of genuinely “new” theorem
proving methods. For example, both the Davis-Putnam procedure and Robin-
son’s resolution can be seen to be strategic advancements for the general prob-
lem of first-order proof search based on Herbrand’s Theorem. But, compared to
their predecessors, the changes these strategic enhancements brought forth were
of such a revolutionary nature that we consider them to be of quite a different
kind than the strategies we want to make user-controllable in the context of
SMT.

Once resolution became a dominant focus of first-order theorem proving,
however, then more nuanced notions of strategy began to take hold, with each of
them using resolution as their foundation. Many of the most lasting ideas in this
line of research were developed by the Argonne group. These ideas, including
the set of support, term weighting, pick/given ratio, hot lists and hints, did
something very interesting: They provided a fixed, general algorithmic search
framework upon which end-users could exert some of their own strategic control
by prescribing restrictions to guide the general method. Moreover, beginning
in the 1970s, the Argonne group promoted the idea of theorem proving toolkits,
libraries of high-performance reasoning engines one could use to build customized
theorem provers. This idea has influenced very much the approach we propose
for strategy in SMT.

Let us now turn, in more detail, to uses of strategy in the history of mech-
anized first-order proof. Following this, we shall then consider some aspects of
strategy in the context of LCF-style interactive proof assistants. Ideas of strategy
from both of these histories will play into our work.

2.2 Strategy in Automated Theorem Proving over FOL

One cannot attempt to interpret the history of mechanized proof in first-order
logic without bearing in mind the following fact: Over two decades before the
first computer experiments with first-order proof search were ever performed,
the undecidability of FOL was established. This result was well-known to the
logicians who began our field. Thankfully, this seemingly negative result was

tempered with a more optimistic one: the fact that FOL is semi-decidable. This
allowed programs such as the British Museum Algorithm (and quickly others of
a more sophisticated nature) to be imagined which, in principle, will always find
a proof of a conjecture C over an axiomatic theory T if C is in fact true in all
models of T .

Early in the field, and long before the advent of algorithmic complexity theory
in any modern sense, obviously infeasible approaches like the British Museum
were recognized as such. Speaking of the earliest (1950s) research in computer
mechanized proof, Davis writes in “The Early History of Automated Deduction”
[7]:

[...] it was all too obvious that an attempt to generate a proof of some-
thing non-trivial by beginning with the axioms of some logical system
and systematically applying the rules of inference in all possible direc-
tions was sure to lead to a gigantic combinatorial explosion.

Thus, though a semi-complete theorem proving method was known (and such
a method is in a sense “best possible” from the perspective of computability
theory), its search strategy was seen as utterly hopeless. In its place, other
search strategies were sought in order to make the theorem proving effort more
tractable. This point of view was articulated at least as early as 1958 by Hao
Wang, who writes in [32]:

Even though one could illustrate how much more effective partial strate-
gies can be if we had only a very dreadful general algorithm, it would
appear desirable to postpone such considerations till we encounter a more
realistic case where there is no general algorithm or nor efficient general
algorithm, e.g., in the whole predicate calculus or in number theory. As
the interest is presumably in seeing how well a particular procedure can
enable us to prove theorems on a machine, it would seem preferable to
spend more effort on choosing the more efficient methods rather than on
enunciating more or less familiar generalities.

At the famous 1957 five week Summer Institute for Symbolic Logic held at
Cornell University, the logician Abraham Robinson6 gave a remarkably influen-
tial short talk [30] in which he singled out Skolem functions and Herbrand’s The-
orem as potentially useful tools for general-purpose first-order theorem provers
[7]. Aspects of this suggestion were taken up by many very quickly, notably
Gilmore [14], Davis and Putnam [9], and eventually J.A. Robinson [31]. Let us
examine, from the perspective of strategy, a few of the main developments in
this exceedingly influential strand.

As noted by Davis [7], the first Herbrand-based theorem provers for FOL em-
ployed completely unguided search of the Herbrand universe. There was initially
6 It is useful to note that this Abraham Robinson, the model theorist and inventor of

non-standard analysis, is not the same person as John Alan Robinson who would
some 8 years later invent the proof search method of first-order resolution.

neither a top-level conversion to a normal form such as CNF nor a systematic
use of Skolem functions. When these first Herbrand-based methods were applied,
through for instance the important early implementation by Gilmore [14], they
proved unsuccessful for all but the simplest of theorems. Contemporaneously,
Prawitz observed the same phenomena through his early work on a prover based
on a modified semantic tableaux [7]. The lesson was clear: unguided search, even
when based on deep results in mathematical logic, is not a viable approach.
Again, new strategies were sought for controlling search space exploration.

The flurry of theorem proving breakthroughs in the early 1960s led to a
wealth of new search strategies (and new notions of strategy) which still form
the foundation for much of our field today.

First, based on shortcomings they observed in Gilmore’s unguided explo-
ration of the Herband universe, in particular the reliance of his method upon
a DNF conversion for (what we now call) SAT solving, Davis and Putnam de-
vised a new Herbrand universe exploration strategy which systematically applied
Skolemization to eliminate existential quantifiers and used a CNF input formula
representation as the basis to introduce a number of enhanced techniques for
recognising the unsatisfiability of ground instances [9]. In the process, they spent
much effort on enhancing the tractable recognition of ground unsatisfiability,
which they believed at the time to be the biggest practical hurdle in Herbrand-
based methods [7]. When further enhanced by Davis, Logemann and Loveland,
this propositional component of Davis and Putnam’s general first-order search
strategy gave us what we now call DPLL, the foundation of modern SAT solv-
ing [8]. Nevertheless, once implementations were undertaken and experiments
performed, the power of their first-order method was still found completely un-
satisfactory. As Davis states [7],

Although testing for satisfiability was performed very efficiently, it soon
became clear that no very interesting results could be obtained without
first devising a method for avoiding the generation of spurious elements
of the Herbrand universe.

In the same year, Prawitz devised an “on-demand” method by which the gener-
ation of unnecessary terms in Herbrand expansions could be avoided, at the cost
of sequences of expensive DNF conversions [29]. Though these DNF conversions
precluded the practicality of Prawitz’s method, his new approach made clear the
potential utility of unification in Herbrand-based proof search, and Davis soon
proposed [6,7] that effort be put towards

... a new kind of procedure which seeks to combine the virtues of the
Prawitz procedure and those of the Davis Putnam procedure.

Two years later, Robinson published his discovery of such a method: Reso-
lution, a single, easily mechanizable inference rule (refutationally) complete for
FOL. This new method soon became a dominant high-level strategy for first-
order proof search [31]. That resolution was a revolutionary improvement over
previous methods is without question. But, practitioners soon discovered that

the game was by no means won. Even with resolution in hand, the act of proof
search was utterly infeasible for the vast majority of nontrivial problems without
the introduction of some techniques for guiding the generation of resolvents. It
is here that a new class of strategies was born.

In the 1960s, the group centered around Larry Wos at Argonne National
Laboratory contributed many fundamental developments to first-order proving.
At Argonne, Robinson made his discovery of resolution, first communicated in
a privately circulated technical report in 1964, and then published in his influ-
ential JACM paper the year that followed. Almost immediately, Wos and his
colleagues championed the importance of user-controllable strategies during res-
olution proof search and began developing methods for their facilitation. At least
two important papers in this line were published by the end of 1965: “The Unit
Preference Strategy in Theorem Proving” [34] and “Efficiency and Completeness
of the Set of Support Strategy in Theorem Proving” [35]. The first gave rise to a
strategy that the resolution prover would execute without any influence from the
user. The second, however, introduced a strategy of a different kind: a method
by which end-users could exert strategic control over the proof search without
changing its underlying high-level method or impinging upon its completeness.

In resolution, the idea of set of support is to partition the CNF representation
of the negated input formula into two sets of clauses, a satisfiable set A and
another set S, and then to restrict the generation of clauses to those who can
trace their lineage back to at least one member of S. Importantly, the choice of
this division of the input clauses between A and S may be chosen strategically by
the end-user. This general approach to heuristic integration — parameterizing
a fixed proof search method by user-definable data — has proven enormously
influential. Other methods in this class include clause weighting, the use of term
orderings to guide rewriting, hot lists, pick/given ratio, and many more.

Beginning in the 1970s, the Argonne group made an important methodolog-
ical decision. This was the introduction of theorem proving toolkits. As Lusk
describes [19],

The notion of a toolkit with which one could build theorem provers was
introduced at this time and became another theme for later Argonne de-
velopment. In this case the approach was used to build a series of systems
incorporating ever more complex variations on the closure algorithm
without changing the underlying data structures and inference functions.
The ultimate system (NIUTP7) provided a set of user-definable theorem-
proving “environments,” each running a version of the closure algorithm
with different controlling parameters, and a meta-language for control-
ling their interactions. There was enough control, and there were enough
built-in predicates, that it became possible to “program” the theorem
prover to perform a number of symbolic computation tasks. With these
systems, Winker and Wos began the systematic attack on open problems
[...].

Finally, we shall end our discussion of strategy in first-order provers with
a few high-level observations. Given that the whole endeavor is undecidable,

researchers in first-order theorem proving recognized very early that strategy
must play an indispensible role in actually finding proofs. In the beginning of
the field, new strategies were often so different from their predecessors that we
consider them to be genuinely new methods of proof search altogether. But, once
a general method such as resolution had taken hold as a dominant foundation,
then strategies were sought for allowing users to control specific aspects of this
fixed foundation. Abstractly, this was accomplished by providing a resolution
proof search loop which accepts strategic data to be given as user-specifiable
parameters.

Let us turn our attention now to another important contributor to ideas of
strategy in computer-assisted proof, the LCF-style of interactive proof assistants.

2.3 Strategy in LCF-style Interactive Proof Assistants

In the field of interactive proof assistants, strategy appears in many forms. The
fact that humans contribute much more to the proof development process in
proof assistants than in fully automatic provers gives rise to ideas of strategy
quite distinct from those encountered in our discussion of first-order provers. As
above, we must limit our discussion to a very small segment of the field. Let
us in this section discuss one key exemplar of strategy in proof assistants, the
approach of LCF.

Strategy in the LCF Approach The original LCF was an interactive proof
checking system designed by Robin Milner at Stanford in 1972. This system, so-
named for its mechanization of Scott’s Logic of Computable Functions, provided
a proof checker with the following high-level functionality [15]:

Proofs [were] conducted by declaring a main goal (a formula in Scott’s
logic) and then splitting it into subgoals using a fixed set of subgoaling
commands (such as induction to generate the basis and step). Subgoals
[were] either solved using a simplifier or split into simpler subgoals until
they could be solved directly.

Soon after the birth of Stanford LCF, Milner moved to Edinburgh and built
a team to work on its successor. A number of shortcomings had been observed in
the original system. In particular, Stanford LCF embodied only one high-level
proof strategy: ‘backwards’ proof, working from goals to subgoals. Moreover,
even within a backwards proof, Stanford LCF had only a fixed set of proof con-
struction commands which could not be easily extended [15]. Finding principled
techniques to free the system from these strategic shackles became a driving
motivation behind the design of Edinburgh LCF.

To address these problems, Milner devised a number of ingenious solutions
which still today form the design foundation for many widely-used proof assis-
tants. Fundamentally, Edinburgh LCF took the point of view of treating proofs
as computation. New theorems were to be computed from previously established

theorems by a fixed set of theorem constructors. To ensure that this computa-
tion was always done in a correct way, Milner designed an abstract datatype
thm whose predefined values were instances of axioms and whose constructors
were inference rules [15]. The idea was that strict type-checking would guar-
antee soundness by making sure that values of type thm were always actual
theorems. The strictly-typed programming language ML (the Meta Language
of Edinburgh LCF) was then designed to facilitate programming strategies for
constructing values of type thm. It was a remarkable achievement. The strate-
gic shackles of Stanford LCF had most certainly been relinquished, but much
difficult work remained in order to make this low-level approach to proof con-
struction practical. Many core strategies, both for facilitating high-level proof
methods like backwards proof, as well as for implementing proof methods such
as simplifiers and decision procedures needed to be built before it would be
generally useful to end-users.

As mentioned, with the bare foundaton of a type thm and the meta language
ML, the system did not directly support backwards proof. To remedy this, Milner
introduced tactics and tacticals. The idea of backwards proof is that one begins
with a goal, reduces it to simpler subgoals, and in the process forms a proof tree.
When any of these subgoals have been made simple enough to be discharged,
then a branch in the proof tree can be closed. A tactic reduces a goal to a set
of subgoals such that if every subgoal holds then the goal also holds. If the set
of unproved subgoals is empty, then the tactic has proved the goal. A tactic not
only reduces a goal to subgoals, but it also returns a proof construction function
to justify its action. Tacticals are combinators that treat tactics as data, and are
used to construct more complex tactics from simpler ones. Gordon summarizes
nicely [15]:

By encoding the logic as an abstract type, Edinburgh LCF directly sup-
ported forward proof. The design goal was to implement goal directed
proof tools by programs in ML. To make ML convenient for this, the
language was made functional so that subgoaling strategies could be
represented as functions (called “tactics” by Milner) and operations for
combining strategies could be programmed as higher-order functions tak-
ing strategies as arguments and returning them as results (called “tacti-
cals”). It was anticipated that strategies might fail (e.g. by being applied
to inappropriate goals) so an exception handling mechanism was included
in ML.

Since the time of Edinburgh LCF (and its soon-developed successor, Cam-
bridge LCF), the technology within LCF-style proof assistant has grown consid-
erably. However, the underlying design principles centered around user-definable
proof strategies have remained more-or-less the same, and are found today in
tools like Isabelle [28], HOL [16], Coq, MetaPRL and Matita. For each of these
tools, immense work has gone into developing powerful tactics which embody
particular proof strategies. Many of them, such as the proof producing real closed
field quantifier elimination tactic in HOL-Light, are tactics embodying complete

decision procedures for certain logical theories. Others, such as the implementa-
tion by Boulton of a tactic based on Boyer-Moore induction heuristics in HOL,
are powerful, incomplete heuristic strategies working over undecidable theories.

There are many things to learn from the success of the LCF paradigm. One
lesson relevant to our work is the following: By “opening up” strategic aspects of
the proof effort and providing principled, sound programming methods through
which users may write their own proof strategies, it has been possible for enor-
mously diverse ecosystems of powerful proof strategies to be developed, con-
tributed and shared by communities of users of LCF-style proof assistants. As
these ecosystems grow, the theorem proving tools become stronger, and the re-
alizable practical verification efforts scale up significantly more than they would
if it these user-specifiable strategic enhancements were not possible.

3 Foundations for Big-Step Strategies

In this section, we propose a methodology for orchestrating reasoning engines
where “big” symbolic reasoning steps are represented as functions known as
tactics, and tactics are composed using combinators known as tacticals. We define
notions of goals, tactics and tacticals in the context of SMT. Our definitions
diverge from the ones found in LCF for the following main reasons:

– in SMT, we are not only interested in proofs of goals, but also in counter-
examples (models yielding satisfying instances), and

– we want to support over and under-approximations when defining strategies.

Goals. The SMT decision problem consists of deciding whether a set of formulas
S is satifisfiable or not modulo some background theory. We say each one of
the formulas in S is an assumption. This observation suggests that a goal might
be simply a collection of formulas. For practical reasons, a goal will also have
a collection of attributes. Later, we describe some of the attributes we use in
our systems. Thus, a goal is a pair comprised of a sequence of formulas and a
sequence of attributes. Using ML-like syntax, we define this as:

goal = formula sequence × attribute sequence

We say a goal is trivially satisfiable if the formula sequence is empty, and it is
trivially unsatisfiable if the formula sequence constains the formula false. We say
a goal is basic if it is trivially satisfiable or unsatisfiable.

Tactics. In our approach, when a tactic is applied to some goal G, four differ-
ent outcomes are possible. The tactic succeeds in showing G to be satisfiable;
succeeds in showing G to be unsatisfiable; produces a sequence of subgoals; or
fails. A tactic returns a model when it shows G to be satisfiable, and a proof
when it shows G to be unsatisfiable. When reducing a goal G to a sequence
of subgoals G1, . . . , Gn, we face the problems of proof and model conversion.
A proof converter constructs a proof of unsatisfiability for G using the proofs
of unsatisfiability for all subgoals G1, . . . , Gn. Analogously, a model converter
construct a model for G using a model for some subgoal Gi.

proofconv = proof sequence → proof
modelconv = model × nat → model
trt = sat model

| unsat proof
| unknown goal sequence × modelconv × proofconv
| fail

tactic = goal → trt

The second parameter of a model converter is a natural number used to com-
municate to the model converter which subgoal was shown to be satisfiable. We
intentionally did not specify how proofs and models are represented. Actually,
RAHD and Z3 use different representations. A proof of unsatisfiability may be
a full certificate that can be independently checked by a proof checker, or it may
be just a subset of the goals (also known as an unsat core) that were used to
demonstrate the unsatisfiability.

Let us gain some intuition about tactics and tacticals in the context of SMT
with a few simple examples.

The basic tactic returns sat and the empty model if the goal is trivially
satisfiable; unsat and a proof of the form false ⇒ false if the goal is trivially
unsatisfiable; and fails otherwise. The tactic elim eliminates constants whenever
the given goal contains equations of the form a = t, where a is a constant and
t is a term not containing a. For example, suppose elim is applied to a goal
containing the following sequence comprised of three formulas:

[a = b + 1, (a < 0 ∨ a > 0), b > 3]

The result will be unknown(s, mc, pc), where s is a sequence containing the single
subgoal:

[(b + 1 < 0 ∨ b + 1 > 0), b > 3]

The model converter mc is a function s.t. when given a model M for the subgoal
above, mc will construct a new model M ′ equal to M except that the interpre-
tation of a in M ′ (M ′(a)) is equal to the interpretation of b in M plus one (i.e.,
M(b) + 1). Similarly, the proof converter pc is a function s.t. given a proof of
unsatisfiability for the subgoal will construct a proof of unsatisfiability for the
original goal using the fact that (b + 1 < 0 ∨ b + 1 > 0) follows from a = b + 1
and (a < 0 ∨ a > 0).

The tactic split-or splits a disjunction of the form p1 ∨ . . .∨ pn into cases and
then returns n subgoals. If the disjuction to be split is not specified, the tactic
splits the first disjuction occurring in the input goal. For example, given the goal
G comprising of the following sequence of formulas:

[a = b + 1, (a < 0 ∨ a > 0), b > 3]

split-or G returns unknown([G1, G2], mc, pc), where G1 and G2 are the subgoals
comprised of the following two formula sequences respectively:

[a = b + 1, a < 0, b > 3]

[a = b + 1, a > 0, b > 3]

The model converter mc is just the identity function, since any model for G1

or G2 is also a model for G. The proof converter pc just combines the proofs of
unsatisfiability for G1 and G2 in a straighforward way. If G does not contain a
disjuction, then split-or just returns the input goal unmodified. Another option
would be to fail.

RAHD and Z3 come equipped with several built-in tactics. It is beyond the
scope of this paper to document all available tactics. Nonetheless, we list some
of them for didactic purposes:

– simplify: Apply simplification rules such as constant folding (e.g., x+0 x).
– nnf: Put the formula sequence in negation normal form.
– cnf: Put the formula sequence in conjunctive normal form.
– tseitin: Put the formula sequence in conjunctive normal form, but use fresh

Boolean constants and predicates for avoiding exponential blowup. The model
converter produced by this tactic “erases” these fresh constants and predi-
cates introduced by it.

– lift-if: Lift term if-then-else’s into formula if-then-else’s
– bitblast: Reduce bitvector terms into propositional logic.
– gb: Let E be the set of arithmetic equalities in a goal G, gb replaces E with

the Gröbner basis induced by E.
– vts: Perform virtual term substitution.
– propagate-bounds: Perform bound propagation using inference rules such as

x < 1 ∧ y < x implies y < 1.
– propagate-values: Perform value propagation using equalities of the form t =

a where a is a numeral.
– split-ineqs: Split inequalities such as t ≤ 0 into t = 0 ∨ t < 0.
– som: Put all polynomials in sum of monomials form.
– cad: Apply cylindrical algebraic decomposition.

Tacticals. It is our hope7 that tactics will be made available in the APIs of next
generation SMT solvers. Developers of interactive and automated reasoning sys-
tems will be able to combine these tactics using their favorite programming
language. Like in LCF, it is useful to provide a set of combinators (tacticals)
that are used to combine built-in tactics into more complicated ones. The main
advantage of using tacticals is that the resulting tactic is guaranteed to be cor-
rect, that is, it is sound if the used building blocks are sound, it connects the
model converters and proof converters appropriately, and there is no need to keep
track of which subgoals were already proved to be unsatisfiable. We propose the
following basic tacticals:

7 In fact, Z3 4.0 is now available with all of the strategy machinery described in this
paper. It uses the strategy language internally and publishes a strategy API. Bindings
of the strategy API are also available within Python. This Python Z3 strategy
interface can be experimented with on the web at http://rise4fun.com/Z3Py.

http://rise4fun.com/Z3Py

then : (tactic× tactic) → tactic
then(t1, t2) applies t1 to the given goal and t2 to every subgoal produced by
t1.

then∗ : (tactic× tactic sequence) → tactic
then∗(t1, [t21 , ..., t2n]) applies t1 to the given goal, producing subgoals g1, ..., gm.
If n 6= m, the tactic fails. Otherwise, it applies t2i to every goal gi.

orelse : (tactic× tactic) → tactic
orelse(t1, t2) first applies t1 to the given goal, if it fails then returns the result
of t2 applied to the given goal.

par : (tactic× tactic) → tactic
par(t1, t2) executes t1 and t2 in parallel.

repeat : tactic → tactic
Keep applying the given tactic until no subgoal is modified by it.

repeatupto : tactic× nat → tactic
Keep applying the given tactic until no subgoal is modified by it, or the
maximum number of iterations is reached.

tryfor : tactic×milliseconds → tactic
tryfor(t, k) returns the value computed by tactic t applied to the given goal
if this value is computed within k milliseconds, otherwise it fails.

The tactic skip is the unit for then: then(skip, t) = then(t, skip) = t; and fail is
the unit for orelse: orelse(fail, t) = orelse(t, fail) = t.

Formula Measures. Several SMT solvers use hard-coded strategies that perform
different reasoning techniques depending on structural features of the formula
being analyzed. For example, Yices [13] checks whether a formula is in the
difference logic fragment or not. A formula is in the difference logic fragment if
all atoms are of the form x− y ./ k, where x and y are uninterpreted constants,
k a numeral, and ./ is in {≤,≥,=}. If the formula is in the difference logic
fragment, Yices checks if the number of inequalities divided by the number of
uninterpreted constants is smaller than a threshold k. If this is the case, it uses
the Simplex algorithm for processing the arithmetic atoms. Otherwise, it uses
an algorithm based on the Floyd-Washall all-pairs shortest distance algorithm.
We call such structural features formula measures. This type of ad hoc heuristic
strategy based upon formula measures is very common.

We use formula measures to create Boolean expressions that are evaluated
over goals. The built-in tactic failif : cond → tactic fails if the given goal does not
satisfy the condition cond. Many numeric and Boolean measures are available in
RAHD and Z3. Here is an incomplete list for illustrative purposes:

bw: Sum total bit-width of all rational coefficients of polynomials.
diff: True if the formula is in the difference logic fragment.
linear: True if all polynomials are linear.
dim: Number of uninterpreted constants (of sort real or int).
atoms: Number of atoms.
degree: Maximal total multivariate degree of polynomials.

size: Total formula size.

Using formula measures, the Yices strategy described above can be encoded as:

orelse(then(failif(diff ∧ atom

dim
> k), simplex), floydwarshall)

Now, we define the combinators if and when based on the combinators and tactics
defined so far.

if(c, t1, t2) = orelse(then(failif(¬c), t1), t2)
when(c, t) = if(c, t, skip)

These are often helpful in the construction of strategies based upon formula
measures.

Under and over-approximations. Under and over-approximation steps are com-
monly used in SMT solvers. An under-approximation step consists of reduc-
ing a set of formulas S to a set S′ such that if S′ is satisfiable, then so is S,
but if S′ is unsatisfiable, then nothing can be said about S. For example, any
strengthening step that adds new formulas not deducible from S into S is an
under-approximation.

A more concrete example is found in many SMT solvers for nonlinear integer
arithmetic, where lower and upper bounds are added for every uninterpreted
constant of sort int, and the resulting set of formulas is then reduced to SAT.
Under-approximations are also used in finite model finders for first-order logic
formulas, where the universe is assumed to be finite, and the first-order formula
is then reduced into SAT. Analogously, an over-approximation step consists is
reducing a set of formulas S into a set S′ such that if S′ is unsatisfiable, then so
is S, but if S′ is satisfiable, then nothing can be said about S. For example, any
weakening step that removes formulas from S is an over-approximation. Boolean
abstraction is another example used in many interactive theorem provers and
SMT solvers. This comprises replacing every theory atom with a fresh proposi-
tion variable. Clearly, if the resulting set of formulas is unsatisfiable then so is
the original set. Of course, given a set of formulas S, arbitrarily applying un-
der and over-approximation steps result in set of formulas S′ that cannot be
used to establish the satisfiability nor the unsatisfiability of S. To prevent un-
der and over-approximation steps from being incorrectly applied, we associate a
precision attribute with every goal. A precision marker is an element of the set
{prec, under, over}. A tactic that applies an under (over) approximation fails if
the precision attribute of the input goal is over (under).

4 Parametric Reasoning Engines as Tacticals

Some reasoning engines utilize other engines as subroutines. It is natural to
view these higher-level reasoning engines as tacticals. Given a subsidiary engine
(a tactic given to the higher-level engine as a parameter), these tacticals produce
a new tactic. Let us describe two examples of such parametric engines.

Lazy SMT solvers. We observe three main phases in state-of-the-art SMT solvers:
preprocessing, search, and final check.

Preprocessing During preprocessing, also known as pre-solving, several sim-
plifications and rewriting steps are applied. The main goal is to put the
problem in a form that is suitable for solving. Another objective is to sim-
plify the problem, eliminate uninterpreted constants, unconstrained terms,
and redundancies. Some solvers may also apply reduction techniques such as
bit-blasting where bit-vector terms are reduced to propositional logic. An-
other commonly used reduction technique is Ackermannization [2,5] where
uninterpreted function symbols are eliminated at the expense of introducing
fresh constants and additional constraints.

Search During the search step, modern SMT solvers combine efficient SAT
solving with “cheap” theory propagation techniques. Usually, this combina-
tion is an incomplete procedure. For example, consider problems containing
arithmetic expressions. Most solvers ignore integrality and nonlinear con-
straints during the search step. These solvers will only propagate Boolean
and linear constraints, and check whether there is a rational assignment that
satisfies them. We say the solver is postponing the application of “expensive”
and complete procedures to the final check step. Solvers, such as Z3, only
process nonlinear constraints during final check. The word “final” is mislead-
ing since it may be executed many times for a give problem. For example,
consider the following nonlinear problem comprising of three assumptions
(over R):

[x = 1, y ≥ x + 1, (y × y < 1 ∨ y < 3 ∨ y × y > x + 3)]

In the preprocessing step, a solver may decide to eliminate x using Gaussian
elimination obtaining:

[y ≥ 2, (y × y < 1 ∨ y < 3 ∨ y × y > 4)]

During the search step, the solver performs only Boolean propagation and
cheap theory propagation such as y ≥ 2 implies ¬(y < 3). Nonlinear mono-
mials, such as y × y, are treated as fresh uninterpreted constants. Thus, the
incomplete solver used during the search may find the candidate assigment
y = 2 and y×y = 0. This assignment satisfies the atoms y ≥ 2 and y×y < 1,
and all Boolean and linear constraints.

Final check During final check, a complete procedure for nonlinear real
arithmetic is used to decide [y ≥ 2, y × y < 1]. The complete procedure
finds it to be unsatisfiable, and the solver backtracks and learns the lemma
(¬y ≥ 2 ∨ y × y < 1). The search step resumes, and finds a new assignment
that satisfies [y ≥ 2, y × y > 4]. The final check step is invoked again,
and this time it finds the constraints to be satisfiable and the SMT solver
terminates. The procedure above can be encoded as tactic of the form:

then(preprocess, smt(finalcheck))

where preprocess is a tactic corresponding to the preprocessing step, and
finalcheck is another tactic corresponding to the final check step, and smt
is a tactical. The smt tactical uses a potentially expensive finalcheck tactic
to complement an incomplete and fast procedure based on SAT solving and
cheap theory propagation.

Abstract Partial Cylindrical Algebraic Decomposition (AP-CAD). AP-CAD [24,26]
is an extension of the well-known real closed field (RCF) quantifier elimination
procedure partial cylindrical algebraic decomposition (P-CAD). In AP-CAD, ar-
bitrary (sound but possibly incomplete) ∃-RCF decision procedures can be given
as parameters and used to “short-circuit” certain expensive computations per-
formed during CAD construction. The ∃-RCF decision procedures may be used
to reduce the expense of the different phases of the P-CAD procedure. The key
idea is to use some fast, sound and incomplete procedure P to improve the per-
formance of a complete but potentially very expensive procedure. The procedure
P may be the combination of different techniques based on interval constraint
propagation, rewriting, Gröbner basis computation, to cite a few. These com-
binations may be tailored as needed for different application domains. These
observations suggest that P is a tactic, and AP-CAD is tactical that given P
returns a tactic that implements a complete ∃-RCF decision procedure.

We now illustrate the flexibility of our approach using the following simple
strategy for nonlinear arithmetic:

then(then(simplify, gaussian), orelse(modelfinder, smt(apcad(icp))))

The preprocessing step comprises of two steps: simple rewriting rules such as
constant folding and gaussian elimination. Then, a model finder for nonlinear
arithmetic based on SAT [36] is used. If it fails, smt is invoked using AP-CAD
(apcad) in the final check step. Finally, AP-CAD uses interval constraint prop-
agation (icp) to speedup the P-CAD procedure.

5 Strategies in Action

We demonstrate the practical value of our approach by describing successful
strategies used in RAHD and Z3. We also provide evidence that the overhead
due to the use of tactics and tacticals is insignificant, and the gains in perfor-
mance substantial.

5.1 Z3 QF LIA strategy

SMT-LIB is a repository of SMT benchmark problems. The benchmarks are di-
vided in different divisions. The QF LIA division consists of linear integer arith-
metic benchmarks. These benchmarks come from different application domains
such as: scheduling, hardware verification, software analysis, and bounded-model
checking. The structural characteristics of these problems are quite diverse. Some

of them contain a rich Boolean structure, and others are just the conjunction
of linear equalities and inequalities. Several software analysis benchmark make
extensive use of if-then-else terms that need to eliminated during a preprocess-
ing step. A substantial subset of the benchmarks are unsatisfiable even when
integrality constraints are ignored, and can be solved using a procedure for lin-
ear real arithmetic, such as Simplex. We say a benchmark is bounded if every
uninterpreted constant a has a lower (k ≤ a) and upper bound (a ≤ k), where
k is a numeral. A benchmark is said to be unbounded if it is not bounded. A
bounded benchmark is said to be 0-1 (or pseudo-boolean) if the lower (upper)
bound of every uninterpreted constant is 0 (1). Moreover, some of the problems
in QF LIA become bounded after interval constraint propagation is applied.

Z3 3.0 won the QF LIA division in the last SMT competition8 (SMT-COMP’11).
The strategy used by Z3 can be summarized by the following tactic:

then(preamble, orelse(mf, pb, bounded, smt)

where the preamble, mf, pb and bounded tactics are defined as

preamble = then(simplify, propagate-values, ctx-simplify,
lift-if, gaussian, simplify)

mf = then(failif(not is-ilp), propagate-bounds,
orelse(tryfor(mip, 5000),

tryfor(smt-no-cut(100), 2000),
then(add-bounds(-16, 15), smt),
tryfor(smt-no-cut(200), 5000),
then(add-bounds(-32, 31), smt),
mip))

pb = then(failif(not is-pb), pb2bv, bv2sat, sat)

bounded = then(failif(unbounded),
orelse(tryfor(smt-no-cut(200), 5000),

tryfor(smt-no-cut-no-relevancy(200), 5000),
tryfor(smt-no-cut(300), 15000)))

The tactic smt is based on the Yices approach for linear integer arithmetic. The
tactic ctx-simplify performs contextual simplification rules such as:

(a 6= t ∨ F [a]) (a 6= t ∨ F [t])

The tactic mip implements a solver for mixed integer programming. It can only
process conjunctions of linear inequalities and equalities. The tactic fails if the
input goal contains other Boolean connectives. The tactic smt-no-cut(seed) is
a variation of the Yices approach where Gomory cuts are not used. The pa-
rameter seed is a seed for the pseudo-random number generator. It is used to
8 http://www.smtcomp.org

randomize the search. The tactic smt-no-cut-no-relevancy(seed) is yet another
variation where “don’t care” propagation is disabled. The tactic pb2bv converts
a pseudo-boolean formula into a bit-vector formula. It fails if the input goal is
not pseudo-boolean. Similarly, the tactic bv2sat bitblasts bit-vector terms into
propositional logic. The tactic sat implements a SAT solver. Finally, the tactic
add-bounds(lower, upper) performs an under-approximation by adding lower and
upper bounds to all uninterpreted integer constants. The idea is to guarantee
that the branch-and-bound procedure used in smt and mip terminates. The tac-
tic mf is essentially looking for models where all integer variables are assigned to
small values. The tactic pb is a specialized 0-1 (Pseudo-Boolean) solver. It fails
if the problem is not 0-1.

To demonstrate the benefits of our approach we run all QF LIA benchmarks
using the following variations of the strategy above:

pre = then(preamble, smt)
pre+pb = then(preamble, orelse(pb, smt))
pre+bounded = then(preamble, orelse(bounded, smt))
pre+mf = then(preamble, orelse(mf, smt))
combined = then(preamble, orelse(mf, pb, bounded, smt)

All experiments were conducted on an Intel Quad-Xeon (E54xx) processor, with
individual runs limited to 2GB of memory and 600 seconds. The results of our
experimental evaluation are presented in Table 1. The rows are associated with
the individual benchmark families from QF LIA division, and columns separate
different strategies. For each benchmark family we write the number of bench-
marks that each strategy failed to solve within the time limit, and the cumulative
time for the solved benchmarks.

Overall, the combined strategy is the most effective one, solving the most
problems. It fails only on 234 out of 5938 benchmarks. In constrast, the ba-
sic smt strategy fails on 978 benchmarks. The results also show which tactics
are effective in particular benchmark families. The tactics ctx-simplify and lift-if
are particularly effective on the NEC software verification benchmarks (sf nec-
smt). The pseudo-boolean strategy reduces by half the number of failures in the
industrial pseudo-boolean benchmarks coming from the 2010 pseudo-boolean
competition. The convert software verification benchmarks become trivial when
Gomory cuts are disabled by the tactic bounded. Finally, the model finder tactic
mf is very effective on crafted benchmark families such as CAV 2009, cut lemmas,
dillig, prime-cone, and slacks.

Figure 1 contains scatter plots comparing the strategies described above.
Each point on the plots represents a benchmark. The plots are in log scale.
Points below (above) the diagonal are benchmarks where the strategy on y-axis
(x-axis) is faster than the strategy on the x-axis (y-axis). Note that in some
cases, the combined strategy has a negative impact, but it overall solves more
problems.

We observed several benefits when using tactics and tacticals in Z3. First,
it is straighforward to create complex strategies using different solvers and tech-
niques. The different solvers can be implemented and maintained independently

Fig. 1. smt, pre, pre+pb, pre+bounded, pre+mf and combined strategies.

Table 1. Detailed Experimental Results.

smt pre pre+pb pre+bounded pre+mf combined
benchmark family failed time (s) failed time (s) failed time (s) failed time (s) failed time (s) failed time (s)

Averest (19) 0 4.0 0 5.9 0 6.0 0 5.9 0 5.9 0 5.9
bofill sched (652) 1 1530.7 1 1208.3 1 1191.5 1 1205.4 1 1206.0 1 1205.9
calypto (41) 1 2.0 1 7.7 1 8.0 1 7.8 1 7.9 1 7.8
CAV 2009 (600) 190 1315.3 190 1339.3 190 1329.7 190 1342.7 1 8309.5 1 8208.1
check (5) 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1
CIRC (51) 17 188.4 17 239.8 17 238.2 17 336.1 17 221.5 8 158.66
convert (319) 206 1350.5 190 3060.6 190 3025.9 0 112.7 190 3030.2 0 112.5
cut lemmas (100) 48 2504.0 48 2532.4 48 2509.2 48 2543.4 27 3783.9 27 3709.0
dillig (251) 68 1212.0 68 1237.6 68 1226.9 68 1242.5 3 2677.8 3 2763.9
mathsat (121) 0 171.4 0 150.2 0 149.9 0 151.1 0 150.9 0 150.2
miplib2003 (16) 5 53.8 5 57.7 5 424.4 5 109.5 5 58.8 5 430.5
nec-smt (2780) 147 224149.0 8 59977.4 8 59968.3 8 59929.3 8 60042.1 8 60032.9
pb2010 (81) 43 90.3 43 96.2 25 2581.2 43 146.3 43 96.2 25 2583.1
pidgeons (19) 0 0.3 0 0.4 0 0.4 0 0.3 0 0.3 0 0.3
prime-cone (37) 13 9.6 13 9.5 13 9.5 13 9.7 0 11.0 0 11.0
rings (294) 48 4994.4 46 5973.7 46 6016.2 48 9690.0 46 6024.6 48 9548.2
rings pre (294) 57 441.5 54 1288.7 54 1261.9 54 1260.9 54 1274.7 54 1261.5
RTCL (2) 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1 0 0.1
slacks (251) 135 1132.9 136 550.0 136 545.9 136 550.8 53 8969.3 53 8803.9
total (5938) 978 239153.0 819 77737.4 801 80495.2 631 78646.5 449 95872.4 234 98995.2

of each other. The overhead of using tactics and tacticals is insignificant. We
can provide custom strategies to Z3 users in different application domains. Fi-
nally, the number of SMT-LIB problems that could be solved by Z3 increased
dramatically. Z3 2.19 uses only the (default) smt tactic, and fails to solve 978
(out of 5938) QF LIA benchmarks with a 10 minutes timeout. In contrast, Z3
3.0 fails in only 234 benchmarks. In Z3 4.0, tactic and tacticals are available in
the programmatic API and SMT 2.0 frontend.

5.2 Calculemus RAHD strategies

The calculemus RAHD strategies9 combine simplification procedures, interval
constraint propagation, Gröbner basis computation, non-strict inequality split-
ting, DNF conversion, OpenCAD and CAD. OpenCAD is a variation of the
CAD procedure that can be applied to problems containing only strict inequali-
ties. OpenCAD is substantially faster than the general CAD procedure because
it uses rational numbers instead of algebraic numbers. The key insight in the
calculemus strategy is to split non-strict inequalities (p ≤ 0) appearing in a con-
junctive formula F into (p < 0 ∨ p = 0), resulting in two sub-problems F< and
F=. The branch F< containing the strict inequality is then closer to being able
to be processed using OpenCAD, while the branch F= containing the equality
has an enriched equational structure which is then be used, via Gröbner basis
computation, to inject equational information into the polynomials appearing in
the strict inequalities in F=. If the ideal generated by the equations in the branch
F= is rich enough and the original formula is unsatisfiable, then this unsatisfi-
ability of F= may be recognized by applying OpenCAD only to the resulting
9 Detailed descriptions of these strategies may be found in Passmore’s PhD thesis [24].

strict inequational fragment of F= after this Gröbner basis reduction has been
performed.

In this section, we consider the basic calculemus strategy calc-0, and two
refinements: calc-1 and calc-2. These refinements use formula measures to control
inequality splitting. Moreover, interval constraint propagation is used to close
goals before further splitting is performed.

Table 2. The three RAHD calculemus proof strategies compared with QEPCAD-B
and Redlog on twenty-four problems.

calc-0 calc-1 calc-2 qepcad-b redlog/rlqe redlog/rlcad
benchmark dimension degree time (s) time (s) time (s) time (s) time (s) time (s)

P0 5 4 0.9 1.6 1.7 416.4 40.4 >600.0
P1 6 4 1.7 3.1 3.4 >600.0 >600.0 >600.0
P2 5 4 1.3 2.4 2.6 >600.0 >600.0 >600.0
P3 5 4 1.5 2.5 2.7 >600.0 >600.0 >600.0
P4 5 4 1.1 2.0 2.7 >600.0 >600.0 >600.0
P5 14 2 0.3 0.3 0.3 >600.0 97.4 >600.0
P6 11 5 147.4 <0.1 <0.1 >600.0 <0.1 <0.1
P7 8 2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
P8 7 32 4.5 0.1 <0.1 8.4 <0.1 >600.0
P9 7 16 4.5 0.2 <0.1 0.3 <0.1 6.7
P10 7 12 100.7 20.8 8.9 >600.0 >600.0 >600.0
P11 6 2 1.6 0.5 0.5 <0.1 <0.1 <0.1
P12 5 3 0.8 0.3 0.4 <0.1 <0.1 <0.1
P13 4 10 3.8 3.9 4.0 >600.0 >600.0 >600.0
P14 2 2 4.5 1.7 <0.1 <0.1 >600.0 >600.0
P15 4 3 0.2 0.2 0.1 <0.1 <0.1 <0.1
P16 4 2 10.0 2.2 2.1 <0.1 <0.1 <0.1
P17 4 2 0.6 0.6 0.7 0.3 <0.1 0.6
P18 4 2 1.3 1.3 1.3 <0.1 <0.1 <0.1
P19 3 6 3.3 1.7 2.1 <0.1 <0.1 0.7
P20 3 4 1.2 0.7 0.7 <0.1 <0.1 0.3
P21 3 2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
P22 2 4 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
P23 2 2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Table 2 shows the performance of the calculemus RAHD strategies on the
twenty-four benchmarks considered in [25] and compares this performance to
that of QEPCAD-B [4] and two quantifier elimination procedures available in
Reduce/Redlog [1]:

– Rlqe, which is an enhanced implementation by Dolzmann and Sturm of
Weispfenning’s quadratic virtual term substitution (VTS) [33] , and

– Rlcad, which is an implementation by Seidl, Dolzmann and Sturm of Collins-
Hong’s partial CAD [12].

For each benchmark we write the dimension and maximal total multivariate
degree of polynomials, and the total runtime for each strategy and solver. Ex-
periments were performed on a 2 x 2.4 GHz Quad-Core Intel Xeon PowerMac
with 10GB of 1066 MHz DDR3 RAM.

For brevity, let us only compare calc-0 with the QEPCAD-B and Redlog
procedures. With this restriction, the results of these experiments can be broadly
summarized as follows:

– The calc-0 strategy is able to solve a number of high-dimension, high-degree
problems that QEPCAD-B, Redlog/Rlqe, and Redlog/Rlcad are not. It is
interesting that while the calc-0 strategy involves an exponential blow-up
in its reliance on inequality splitting followed by a DNF normalisation, for
many benchmarks the increase in complexity caused by this blow-up is over-
shadowed by the decrease in complexity of the CAD-related computations
this process induces.

– Redlog/Rlqe is able to solve a number of high-dimension, high-degree bench-
marks that QEPCAD-B and Redlog/Rlcad are not.

– Redlog/Rlqe is able to solve a number of benchmarks significantly faster
than the calc-0 strategy, Redlog/Rlcad, and QEPCAD-B.

– For the benchmarks QEPCAD-B is able to solve directly, using QEPCAD-B
directly tends to be much faster than using the calc-0 strategy.

Overall, the final refinement, calc-2, substantially improves upon the strat-
egy calc-0 on benchmarks P6, P8, P10, P11, P12, P14, P16, P19 and P20, often
by many orders of magnitude. On benchmarks P0, P1, P2, P3, P4, calculemus-2
is slower than calc-0 by roughly a factor of two. Strategies calc-1 and calc-2
are roughly equal for most benchmarks, except for P1 and P19 where calc-2 is
slightly (∼= 10-20%) slower, and P10 and P14 where calc-2 is substantially (∼=
2-25x) faster.

6 Conclusion

We have demonstrated the practical value of heuristic proof strategies within
the context of our RAHD and Z3 tools. We have illustrated that not only is a
strategy-language based approach practical in the context of high-performance
solvers, it is also desirable. A key take-away message is the following: In difficult
(i.e., infeasible or undecidable) theorem proving domains, the situation with
heuristic proof strategies is rarely “one size fits all.” Instead, given a class of
problems to solve, it is often the case that one heuristic combination of reasoning
engines is far more suited to the task than another. SMT solver developers cannot
anticipate all classes of problems end-users will wish to analyze. By virtue of
this, heuristic components of high-performance solvers will never be sufficient in
general when they are beyond end-users’ control. Without providing end-users
mechanisms to control and modify the heuristic components of their solvers,
solver developers are inhibiting their chances of success.

Beyond the situation with end-users, let us also make the following anecdotal
remarks as solver developers. By introducing a strategy language foundation into
our solvers, we have found our productivity radically enhanced, especially when
faced with the goal of solving new classes of problems. The strategy language
framework allows us to easily modify and experiment with variations of our
solving heuristics. Before we had such strategy language machinery in place, with
its principled handling of goals, models and proofs, this type of experimentation
with new heuristics was cumbersome and error-prone.

We have proposed a Strategy Challenge to the SMT community: To build
theoretical and practical tools allowing users to exert strategic control over core
heuristic aspects of high-performance SMT solvers. We discussed some of the rich
history of ideas of strategy in the context of mechanized proof, and presented an
SMT-oriented approach for orchestrating reasoning engines, where “big” sym-
bolic reasoning steps are represented as tactics, and these tactics are composed
using combinators known as tacticals. We demonstrated the practical value of
this approach by describing a few examples of how tactics and tacticals have
been successfully used in our RAHD and Z3 tools.

There are several directions for future work. First, we believe that many
other authors of SMT solvers must take up this Strategy Challenge, and much
experimentation must be done — from many different points of view and do-
mains of application — before a standard strategy language for SMT should be
proposed. When the time is right, we believe that the existence of a strategy
standard (extending, for instance, the SMT-LIB standard) and the development
and study of theoretical frameworks for SMT strategies could give rise to much
progress in the practical efficacy of automated reasoning tools.

Second, we would like to understand how one might efficiently exert “small
step” strategic control over reasoning engines. Abstract proof procedures, such
as Abstract DPLL [23], DPLL(T) [23] and cutsat [17], represent a proof pro-
cedure as a set of transition rules. In these cases, a strategy comprises a recipe
for applying these “small” step rules. Actual implementations of these abstract
procedures use carefully chosen efficient data-structures that depend on the pre-
selected strategy. It is not clear to us how to specify a strategy for these abstract
procedures so that an efficient implementation can be automatically generated.
Another topic for future investigation is to explore different variations of the
LCF approach, such as the ones used by the interactive theorem provers Is-
abelle, HOL, Coq and Matita.

References

1. T. S. A. Dolzmann. Redlog User Manual - Edition 2.0. MIP-9905, 1999.

2. W. Ackermann. Solvable cases of the decision problem. Studies in Logic and the
Foundation of Mathematics, 1954.

3. C. Barrett, A. Stump, and C. Tinelli. The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org, 2010.

4. C. W. Brown. QEPCAD-B: A System for Computing with Semi-algebraic Sets via
Cylindrical Algebraic Decomposition. SIGSAM Bull., 38:23–24, March 2004.

5. R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, A. Santuari, and R. Se-
bastiani. To Ackermann-ize or Not to Ackermann-ize? On Efficiently Handling
Uninterpreted Function Symbols in UF(E). In LPAR, pages 557–571, 2006.

6. M. Davis. Eliminating the Irrelevant from Mechanical Proofs. Proc. Symp. Applied
Math., XV:15–30, 1963.

7. M. Davis. The early history of automated deduction. In J. A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, pages 3–15. Elsevier and
MIT Press, 2001.

8. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Commun. ACM, 5:394–397, July 1962.

9. M. Davis and H. Putnam. A computing procedure for quantification theory. J.
ACM, 7:201–215, July 1960.

10. L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In Proc. of TACAS,
number 4963 in LNCS. Springer, 2008.

11. L. M. de Moura and N. Bjørner. Satisfiability modulo theories: introduction and
applications. Commun. ACM, 54(9):69–77, 2011.

12. A. Dolzmann, A. Seidl, and T. Sturm. Efficient Projection Orders for CAD. In
ISSAC ’04: Proceedings of the 2004 international symposium on Symbolic and al-
gebraic computation, pages 111–118. ACM, 2004.

13. B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In
CAV, pages 81–94, 2006.

14. P. C. Gilmore. A Proof Method for Quantification Theory: its Justification and
Realization. IBM J. Res. Dev., 4:28–35, January 1960.

15. M. Gordon. From LCF to HOL: a short history, pages 169–185. MIT Press,
Cambridge, MA, USA, 2000.

16. M. J. C. Gordon and T. F. Melham. Introduction to HOL: a theorem-proving
environment for higher-order logic. Cambridge University Press, 1993.

17. D. Jovanovic and L. de Moura. Cutting to the chase solving linear integer arith-
metic. In CADE, pages 338–353, 2011.

18. F. Kirchner and C. Muñoz. The proof monad. Journal of Logic and Algebraic
Programming, 79(3–5):264–277, 2010.

19. E. L. Lusk. Controlling Redundancy in Large Search Spaces: Argonne-Style Theo-
rem Proving Through the Years. In Proceedings of the International Conference on
Logic Programming and Automated Reasoning, LPAR ’92, pages 96–106, London,
UK, UK, 1992. Springer-Verlag.

20. B. Luttik and E. Visser. Specification of rewriting strategies. In M. P. A. Sellink,
editor, 2nd International Workshop on the Theory and Practice of Algebraic Specifi-
cations (ASF+SDF 1997), Electronic Workshops in Computing, Berlin, November
1997. Springer-Verlag.

21. W. McCune. Prover9 and mace4. http://www.cs.unm.edu/~mccune/prover9/,
2005–2010.

22. R. Milner. Logic for computable functions: description of a machine implementa-
tion. Technical Report STAN-CS-72-288, Stanford University, 1972.

23. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT Mod-
ulo Theories: From an abstract Davis–Putnam–Logemann–Loveland procedure to
DPLL(T). J. ACM, 53(6):937–977, 2006.

24. G. O. Passmore. Combined Decision Procedures for Nonlinear Arithmetics, Real
and Complex. PhD thesis, University of Edinburgh, 2011.

25. G. O. Passmore and P. B. Jackson. Combined Decision Techniques for the Exis-
tential Theory of the Reals. In Proceedings of the 16th Symposium, 8th Interna-
tional Conference. Conference on Intelligent Computer Mathematics, Calculemus
’09/MKM ’09, pages 122–137, Berlin, Heidelberg, 2009. Springer-Verlag.

26. G. O. Passmore and P. B. Jackson. Abstract Partial Cylindrical Algebraic De-
composition I: The Lifting Phase. In S. B. Cooper, A. Dawar, and B. Loewe,
editors, Proceedings of Computability in Europe 2012: Turing Centenary (To ap-
pear). Springer-Verlag, 2012.

27. L. Paulson. Logic and Computation: Interactive Proof with Cambdrige LCF, vol-
ume 2. Cambridge University Press, 1987.

28. L. Paulson. Isabelle: The next 700 theorem provers. In Logic and Computer
Science, pages 361–386. Academic Press, 1990.

29. D. Prawitz. An Improved Proof Procedure. Theoria, 26(2):102–139, 1960.
30. A. Robinson. Short Lecture. Summer Institute for Symbolic Logic, Cornell Uni-

versity, 1957.
31. J. A. Robinson. A machine-oriented logic based on the resolution principle. J.

ACM, 12:23–41, January 1965.
32. H. Wang. Toward mechanical mathematics. IBM J. Res. Dev., 4:2–22, January

1960.
33. V. Weispfenning. Quantifier Elimination for Real Algebra - the Quadratic Case

and Beyond. Appl. Algebra Eng. Commun. Comput., 8(2):85–101, 1997.
34. L. Wos, D. Carson, and G. Robinson. The unit preference strategy in theorem

proving. In Proceedings of the October 27-29, 1964, fall joint computer conference,
part I, AFIPS ’64 (Fall, part I), pages 615–621, New York, NY, USA, 1964. ACM.

35. L. Wos, G. A. Robinson, and D. F. Carson. Efficiency and completeness of the set
of support strategy in theorem proving. J. ACM, 12:536–541, October 1965.

36. H. Zankl and A. Middeldorp. Satisfiability of non-linear (ir)rational arithmetic.
In Proceedings of the 16th International Conference on Logic for Programming
and Automated Reasoning, volume 6355 of Lecture Notes in Artificial Intelligence,
pages 481–500, Dakar, 2010. Springer-Verlag.

Acknowledgements. Grant Passmore was supported during this research by the
UK Engineering and Physical Sciences Research Council [grant numbers EP/I011005/1
and EP/I010335/1].

	The Strategy Challenge in SMT Solving

