

Edinburgh Research Explorer

Computation in Real Closed Infinitesimal and Transcendental
Extensions of the Rationals.

Citation for published version:
de Moura, LM & Passmore, GO 2013, Computation in Real Closed Infinitesimal and Transcendental
Extensions of the Rationals. in MP Bonacina (ed.), Automated Deduction – CADE-24: 24th International
Conference on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings. vol. 7898,
Lecture Notes in Computer Science, Springer Japan, pp. 178-192. DOI: 10.1007/978-3-642-38574-2_12

Digital Object Identifier (DOI):
10.1007/978-3-642-38574-2_12

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Automated Deduction – CADE-24

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 05. Apr. 2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Explorer

https://core.ac.uk/display/28979023?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1007/978-3-642-38574-2_12
https://www.research.ed.ac.uk/portal/en/publications/computation-in-real-closed-infinitesimal-and-transcendental-extensions-of-the-rationals(6875c2b6-d53a-4ec7-b353-550d902756d0).html

Computation in Real Closed Infinitesimal and
Transcendental Extensions of the Rationals

Leonardo de Moura1 and Grant Olney Passmore2

leonardo@microsoft.com, grant.passmore@cl.cam.ac.uk

1 Microsoft Research, Redmond
2 LFCS, Edinburgh and Clare Hall, Cambridge ?

Abstract. Recent applications of decision procedures for nonlinear real
arithmetic (the theory of real closed fields, or RCF) have presented a
need for reasoning not only with polynomials but also with transcenden-
tal constants and infinitesimals. In full generality, the algebraic setting
for this reasoning consists of real closed transcendental and infinitesimal
extensions of the rational numbers. We present a library for computing
over these extensions. This library contains many contributions, includ-
ing a novel combination of Thom’s Lemma and interval arithmetic for
representing roots, and provides all core machinery required for building
RCF decision procedures. We describe the abstract algebraic setting for
computing with such field extensions, present our concrete algorithms
and optimizations, and illustrate the library on a collection of examples.

1 Overview and Related Work

Decision methods for nonlinear real arithmetic are essential to the formal verifi-
cation of cyber-physical systems and formalized mathematics. Classically, these
decision methods operate over the theory of real closed fields (RCF), the first-
order theory of the reals with addition, multiplication and equality and inequality
predicates. RCF is decidable, admits quantifier elimination, and a variety of ma-
ture (though necessarily worst-case hyperexponential) decision procedures exist
for it. Much research has gone into making RCF decision procedures practical,
especially for restricted classes of formulas commonly arising in applications.

In recent years, it has become apparent that the classical approach underlying
most complete RCF methods, the ‘real algebraic number approach,’ is insufficient
for many applications. This approach has its roots in the most influential strand
of RCF decision procedure research, the theory of cylindrical algebraic decom-
position (CAD) [2,3]. In CAD and related techniques, one makes crucial use of
the following observation: Since RCF is a complete theory with 〈R,+, ∗, <, 0, 1〉
as a model, then, when implementing an RCF decision procedure, one is free to
compute over any RCF while still being sure that the resulting computations

? Grant Passmore was supported by the EPSRC [EP/I011005/1 and EP/I010335/1]
and by NSF EXPEDITION CNS-0926181.

are valid over R. This is important from a computational point of view, as R is
uncountable with uncomputable basic operations.

In the classical approach, instead of working over R, one works over the real
algebraic numbers Ralg, the subfield of R consisting of real numbers that are roots
of univariate polynomials with integer coefficients. This structure is a countable
real closed field with computable basic operations, and thus provides a logically
sufficient computational substructure for making RCF decisions.3 Note, though,
that this field contains no transcendental elements such as π or e. Indeed, a real
number is transcendental precisely when it is not algebraic.

On the one hand, this lack of transcendental elements seems logically in-
consequential and even computationally desirable, as transcendentals are unde-
finable over RCF and almost all of them are uncomputable. However, various
new applications have given rise to a need for computing in real closed fields
containing transcendentals. This need is especially apparent when one considers
cyber-physical systems [19,1,8]. In this setting, one needs to reason about ODEs
which govern the continuous dynamics of a mixed discrete-continuous system.
Solving for such trajectories gives rise to arithmetical constraints involving both
the standard RCF operations and the constant e. If these ODEs occur in the
context of aircraft maneuvers with angular positions, then one often needs to
reason also with π. Similar combinations of RCF with transcendental constants
arise in mainstream efforts in formalized mathematics, such as Thomas Hales’s
Flyspeck project, where many inequalities of this form await verification [15].

Finally, in addition to RCFs containing common transcendental constants,
there is also a need for computing in RCFs containing infinitesimals. This stems
from applications as well, albeit indirectly: as RCF is computationally infeasible,
many researchers have focused on developing decision procedures for restricted
but practically useful fragments of the theory. In two of the most useful frag-
ments, the ∃ and ∃∀ fragments, novel decision methods have been developed
which rely on infinitesimals [5,14,7]. Some of these procedures, such as the singly
exponential Grigor’ev-Vorobjnov ∃RCF method, are also of immense theoretical
interest. However, many of them have never been implemented. The lack of a
viable library for computing with real closed fields containing infinitesimals has
been an impediment to this line of research. A robust library providing the com-
putational substructure for reasoning in such real closed fields would remove a
serious obstruction to work on nonlinear real arithmetic, allowing decision pro-
cedure researchers to focus on higher-level concerns, especially on novel decision
methods which can then rely on this foundational library as a black-box.

In this paper, we present a library for computing in real closed fields contain-
ing computable transcendental, infinitesimal and algebraic elements. In particu-
lar, our library supports computing over real closed transcendental and infinites-
imal extensions of the rational numbers. This is realized through the theory of
real closures, a classical technique in real algebraic geometry which allows one
to construct new real closed fields from arbitrary ordered fields.

3 In fact, Ralg is the prime model of RCF, which means Ralg isomorphically embeds
into every real closed field. In this sense, Ralg is the “smallest” real closed field.

Our main contribution is threefold:

1. We show how real closed fields containing computable transcendental, in-
finitesimal and algebraic elements can all be constructed and computed in
using a single uniform method. This includes a novel approach to repre-
senting algebraic elements which combines a classical result in real algebraic
geometry known as Thom’s Lemma with modern interval arithmetic.

2. We develop the abstract algebra in a concrete algorithmic manner, and
present several optimizations we have devised over the naive methods. These
optimizations have been vital to making our library practical.

3. We describe how researchers can immediatly make use of our library, make
it available for download (source included), and give examples designed to
help the decision procedure researcher easily get started in this area.

Related Work. The combination of transcendental constants and infinitesimals
with nonlinear real arithmetic has been explored in many ways.

In the MetiTarski prover for transcendental inequalities [1,8], of which the
second author of this paper is a coauthor, transcendentals are approximated
to a fixed accuracy using families of algebraically-expressible upper and lower
bounds. This approach does not integrate the transcendentals into the RCF field
arithmetic, but rather uses a combination of resolution theorem proving and the
algebraic bounds to reduce the proof of an inequality involving transcendentals
to a sequence of pure RCF decisions (taken over Ralg). This is sufficient for
many applications, especially for classes of engineering problems with non-tight
inequalities, but fails when the bounds are insufficient, especially when equality
reasoning is needed. Modifications to MetiTarski which make use of our library
should allow for much more powerful reasoning with transcendental constants,
especially with regards to proving tight inequalities and identities.

A very different incorporation of transcendental constants has been taken
by the interval constraint propagation (ICP) community, as exemplified by the
tools RealPaver [13], RSolver [20], iSat [10] and dReal [12]. Their methods are
incomplete even for ∃RCF, but are extremely effective in some classes of ap-
plications. Unlike complete RCF decision methods, their foundations are not
based upon real closed field arithmetic, but rather on computing with inter-
val approximations to field values. This arithmetic can be very efficient and is
always sound, but it comes at the cost of the so-called interval dependency prob-
lem. This commonly gives rise to the over-approximation of intervals and is a
source of incompleteness. Our work combines interval approximations with exact
techniques stemming from real algebraic geometry, yielding a library for exact
computations suitable for building complete RCF decision methods.

Major research on reasoning with infinitesimals has been done both in the
ACL2 [11] and Isabelle/HOL [9] proof assistants. These efforts have focused on
a particular class of real closed fields, the Hyperreals, which provide the basis for
the nonstandard analysis (NSA) approach to differential calculus. In NSA, the
Hyperreals are used mainly to justify the consistency of the NSA axioms, espe-
cially the crucial Transfer Axiom, and one does not compute with their elements

in the same way that one does when working over a countable, computable real
closed field like Ralg during RCF decision procedures. In particular, the Hy-
perreals are a wildly uncomputable structure which depend on the choice of a
non-principal ultrafilter over N.4 Thus, though both works involve real closed
fields containing infinitesimals, our goals and approaches are very different.

The closest work to ours is that of Rioboo [21]. In this work, a library for
computation in the real closure of a single infinitesimal extension of an ordered
field was built within the computer algebra system Axiom. Though we share
many goals and some high-level aspects of the approach (in particular, the ex-
plicit use of field towers as in the generic real closure method of Ligatsika, Rioboo
and Roy [17]), our work is very different. First, the Rioboo infinitesimal methods
revolve around a representation of algebraic elements using Puiseux series, a gen-
eralization of power series allowing fractional exponents. We take a completely
different approach, combining Thom’s Lemma with interval arithmetic. Second,
Rioboo’s library does not support extensions involving transcendental constants
such as π and e. Making use of intervals in the root representation is crucial
to the way we treat transcendental constants. Finally, his implementation only
supports the use of a single infinitesimal, though he discusses supporting multi-
ple infinitesimals as future work. Our library supports multiple transcendentals,
infinitesimals and algebraic elements simultaneously.

Finally, let us mention the groundbreaking work of Coste-Roy and its later
refinements which showed how Thom’s Lemma could be used algorithmically
to represent algebraic elements over arbitrary real closed fields, even those con-
taining infinitesimals [6,18,3]. We build our root representation upon this work,
combining their derivative sign condition chains with interval arithmetic tech-
niques, resulting in novel root isolation and sign determination methods.

2 Theoretical Background

An ordered field is a field equipped with a total order ≤ upon its elements s.t.

∀xyz [(x ≤ y ⇒ x+ z ≤ y + z) ∧ (0 ≤ x ∧ 0 ≤ y ⇒ 0 ≤ x ∗ y)].

Both Q and R with their respective orderings are ordered fields. The complexes
cannot be made into an ordered field as neither

√
−1 ≤ 0 nor 0 ≤

√
−1 is

consistent with the ordered field axioms. A field is real closed iff it is an ordered
field with two additional properties: First, positive elements are squares

∀x
(
0 ≤ x⇒ ∃y(x = y2)

)
,

and second, all polynomials of odd degree have a root. This latter property is
expressed using an axiom scheme, with one axiom for each n ∈ N:

∀a0a1 . . . a2n∃z
(
z2n+1 + a2nz

2n + . . .+ a1z + a0 = 0
)
.

4 Note that it is consistent with ZF that no non-principal ultrafilters on N exist.
Thus, to build a Hyperreal field, an uncomputable choice principle is needed. The
wild uncomputability is contributed both from R and the ultrapower construction.

Observe that R and Ralg are real closed but Q is not.
Let K1,K2 be fields s.t.

K1 = 〈K1,+K1
, ∗K1

,−K1
, 0K1

, 1K1
〉 and K2 = 〈K2,+K2

, ∗K2
,−K2

, 0K2
, 1K2
〉

and K1 ⊂ K2. If the function symbols of K1 and K2 agree over all elements of
K1 (i.e., 0K1

= 0K2
, 1K1

= 1K2
, ∀x, y ∈ K1(x +K1

y = x +K2
y), and so on),

then we say that K1 is a subfield of K2, that K2 is an extension field of K1, and
that K2/K1 (pronounced “K2 over K1”) is a field extension.5 When no confusion
should arise, we use K1 ⊂ K2 to indicate that K1 is a subfield of K2.

If K1 ⊂ K2 and S ⊂ K2, then K1(S) denotes the smallest subfield of K2

extending K1 and containing S. If ς ∈ K2 then K1(ς) denotes K1({ς}). We say
that K1(S) is the result of adjoining the elements of S to K1. An extension of
the form K1(ς)/K1 is called simple. If ς is the root of a polynomial in K1[x],
then the extension K1(ς)/K1 is algebraic, and ς is algebraic over K1. Other-
wise, the extension is transcendental, and ς is transcendental over K. We can
iterate the process of taking simple extensions so as to obtain non-simple ones,
i.e., K ⊂ K(ς1) ⊂ (K(ς1))(ς2). We write K(ς1, ς2) for (K(ς1))(ς2). In this case,
K(ς1, ς2)/K(ς1) is simple, but K(ς1, ς2)/K is not. A (finite or infinite) sequence
of extensions K1 ⊂ K2 ⊂ . . . ⊂ Kn ⊂ . . . is called a field tower.

Example 1. Q ⊂ R ⊂ C is a field tower, and from it we can deduce that Q and
R are both subfields of C. However, the extension C/Q is very different than the
extension C/R. In particular, to obtain C from Q one must adjoin uncountably
many elements, while to obtain C from R one need only adjoin

√
−1.

Let us now examine the process of field adjunction. Consider the field Q(
√

2)
resulting from adjoining

√
2 to Q. Since

√
2 is a root of the polynomial x2− 2 ∈

Q[x], the extension Q(
√

2)/Q is algebraic. How can we build this field extension?
Since a field is closed under its arithmetic operations, we know that as

√
2 ∈

Q(
√

2), then, for instance, 1/
√

2, 23/
√

2 + 1/2, and 11/(3 ∗
√

2) all must be in
Q(
√

2) as well. This suggests that we consider elements of Q(
√

2) to be formal
ratios of elements of the polynomial ring Q[

√
2], where

√
2 is taken to be a

symbolic indeterminate subject to the constraint that
√

2 ∗
√

2 = 2. In fact, the
situation is more subtle than this, and we describe it algorithmically in Sec. 3.3.

For transcendental extensions, we also make use of ratios of polynomials. If τ
is transcendental over K, then K(τ) is isomorphic to K(x), where K(x) is the field
of fractions of the polynomial ring K[x], i.e., the field of formal rational func-
tions drawn from {p(x)/q(x) | p(x), q(x) 6= 0 ∈ K[x], gcd(p(x), q(x)) = 1}. This
isomorphism holds because as τ is transcendental, it has no nontrivial algebraic
relationships with the elements of K.

Let us return now to ordered fields. If K is an ordered field, then the subfields
and extension fields of K we are interested in are those which respect K’s ordering
relation, i.e., K1 ⊂ K ⊂ K2 implies ≤K1

⊂ ≤K ⊂ ≤K2
. Any extension or subfield

of an ordered field that we consider in this paper shall be of this form.

5 Note that this field extension notation using “/” is purely formal, and does not imply
a quotient structure or anything along those lines. See Ex. 1 for an example use.

If K is an ordered field, then it is possible to adjoin an infinitesimal element
ε to K by treating K(ε)/K as a transcendental extension whose ordering extends
the ordering of K subject to the following constraint:

ε > 0 ∧ ∀k ∈ K (k > 0 ⇒ ε < k) .

We describe algorithmically the orderings in field extensions in Sec. 3.
Finally, let us turn to real closures. It is a fundamental result in real algebraic

geometry that every ordered field K possesses a unique minimal algebraic real
closed extension. This field is called the real closure of K and is written K̃. For
example, Q̃ = Ralg and R̃ = R. In this work, we are concerned with computing

in real closed fields K̃, where K is obtained from Q by finitely many transcen-
dental and infinitesimal extensions. In passing from K to K̃, a countably infinite
collection of algebraic elements will be adjoined. However, to compute over K̃,
we only need, at any given time, an extension of K by finitely many algebraic
elements. K̃ is obtained “in the limit.”6

To provide general support for nonlinear real arithmetic decision methods,
including those methods requiring transcendentals and infinitesimals, we must
provide all of the basic ordered field operations (arithmetic and ordering) over ar-

bitrary subfields of K̃. The most challenging aspect occurs over proper algebraic
extensions of K, as this requires reasoning about the roots α ∈ K̃ of polynomials
p ∈ K[x]. If K contains no infinitesimal elements, then these roots can always be
isolated using intervals with rational endpoints. However, if K contains infinites-
imal elements, then the situation is considerably more complicated.

3 Implementing Field Extensions

Our package implements towers of extensions beginning with Q. Rationals are
implemented as a pair of multi-precision integers. We support three kinds of
extensions: transcendental, infinitesimal and algebraic. In our library, there is
always a linear order ≺ between fields in a given tower. Consider a tower
Q ⊂ Q(ς1) ⊂ . . . ⊂ Q(ς1, ς2, . . . , ςk). Then, it will hold that Q(ς1, . . . , ςi) ≺
Q(ς1, . . . , ςi+1). Moreover, our field extensions must be constructed in a sequence
s.t. transcendental extensions ≺ infinitesimal extensions ≺ algebraic extensions.

Abstractly, we can view a field extension as a mapping that, given an imple-
mentation for the operations of an ordered field K, “lifts” these operations to
the field extension K(ς). In this Section, we describe how we implement these
operations for each kind of extension. Let us fix some preliminaries.

Let B be the set of binary rationals (also known as dyadic rationals). B con-
sists of rationals of the form a/2k. B does not form a field, but it forms a ring and
is closed under division by 2. The implementation of addition and multiplication
for binary rationals is more efficient than that for rational numbers. Moreover,

6 The situation is similar with packages for rational arithmetic. These packages allow
one to compute over Q by constructing rationals “on demand” as they are needed.
Of course, at any given time, only finitely many rationals have been constructed.

binary rationals can be normalized using just bit-shifting operations, instead
of expensive integer gcd and division. Finally, division can be approximated to
any precision using the same approach used in floating point arithmetic.7 We
say an interval of the form (l, u) is a B∞-interval if l, u ∈ (B ∪ {−∞,∞}) and
0 6∈ (l, u). We produce interval approximations for all elements of our extension
fields. For every non-zero element a, interval(a) is a B∞-interval (l, u) containing
a. Moreover, if a is not constructed using infinitesimals, then l, u ∈ B, and we
then provide a procedure to refine the size of (l, u) to any desired precision. As
the associated interval for a non-zero element never contains zero, the sign of
any element can be read off from its associated interval. This allows us to decide
comparisons between field elements by reducing the comparison of a and b to
the sign of a− b.

3.1 Transcendental Extensions

At the bottom of our field towers, we support computable transcendental reals
such as π and e. For adjoining a transcendental element τ , we require the user
to provide a procedure approximate(τ) s.t. given any i ∈ N, approximate(τ)(i)
returns an open interval (l, u) s.t. τ ∈ (l, u) and l, u ∈ B. Moreover, the ap-
proximation must converge in the following sense: Let width(l, u) = u− l. Then,
for any k there must exist an i s.t. width(approximate(τ)(i)) ≤ 1/2k. In our
prototype, we provide implementations of approximate(π) and approximate(e).

When extending a field K with an irrational number τ , it is the user’s re-
sponsibility to guarantee that τ is indeed transcendental with respect to K. If
this is not the case, then our implementation may not terminate when executing
the sign determination algorithm in K(τ). Note that transcendence is always
relative to the field being extended, e.g., π and

√
π are both transcendental over

Q, but
√
π is not transcendental over Q(π) as it is a root of x2 − π ∈ (Q(π))[x].

As discussed in Sec. 2, we represent the elements of K(τ) as formal rational
functions p(τ)/q(τ), with τ treated as an indeterminate. Since τ is transcendental
over K, it is easy to check that q(τ) is not the zero polynomial by simply verifying
that q(τ) is not identically zero using standard polynomial arithmetic over K[τ].

The field operations for K(τ) are based on polynomial arithmetic build upon
the arithmetic operations of the field arithmetic for K. We use the standard
normal form of rational functions where the polynomial gcd of the numerator
and denominator is one, and the denominator is a monic polynomial. In this
representation, two values are equal iff they have the same normal form. The
polynomial gcd is implemented using the standard Euclidean algorithm based
on the polynomial remainder algorithm because it can be easily implemented for
polynomials in K[x] when K is a computable field.

Example 2. Given 1
2π,

1
π+1 ∈ Q(π), their sum is equal to

1
2π

2+ 1
2π+1

π+1 .

7 Note that we can view binary rationals as arbitrary precision floating point numbers
with negative exponents.

The approximating interval of size 1/2k for a non-zero element a = p(τ)/q(τ)
is computed using interval arithmetic. Our procedure keeps refining the interval
approximations for τ and the coefficients of p(τ) and q(τ) until the resulting
interval for a does not contain zero and has width ≤ 1/2k. It is easy to see that
this procedure always terminates when τ is transcendental over K.

Since the approximating interval does not contain zero, we can use it to infer
the sign of any element of K(τ). Moreover, we can decide whether a < b by
computing the sign of a− b. For efficiency in the actual implementation, we first
try to compare a and b using their approximating intervals. If the intervals do
not overlap, then we can answer the query by simply comparing the lower and
upper bounds of the intervals. Otherwise, we refine the approximating intervals
until they do not overlap or their size is smaller than a user-provided threshold.
If the threshold is reached, then we compute the sign of a− b.

3.2 Infinitesimal Extensions

An infinitesimal extension K(ε)/K adjoins a new infinitesimal to K. Our imple-
mentation supports an arbitrary number of infinitesimals. Each new infinitesimal
is infinitely smaller than any previously added infinitesimal. Note that every in-
finitesimal is also transcendental with respect to K. Because of this, we also use
formal rational functions to represent the elements of K(ε). It then suffices to
present the interval machinery we use to compute the ordering relation.

Note that 1/ε is larger than any element of K. We say 1/ε is an infinite value.
The initial interval approximation for ε is the interval (0, 1/2kε), where kε ∈ N
is a user-specified parameter. Thus, the initial interval approximation for 1/ε
is (2kε ,∞). We say intervals of the form (−∞, u) and (l,∞) are non-refinable.
Only elements constructed using infinitesimals may have non-refinable intervals.

Given a non-zero polynomial p(ε) of the form anε
n + . . . + a1ε + a0 with

a0 6= 0, the approximating interval of width 1/2k for p(ε) is the approximating
interval of width 1/2k for a0. If a0 = 0, we say p(ε) is infinitesimal. Consider p(ε)
infinitesimal and let ai be the first non-zero coefficient. If ai is negative, then
the approximating interval for p(ε) is (−1/2kε , 0), otherwise it is (0, 1/2kε).

Let k ∈ K(ε) s.t. k = (anε
n + . . . + a1ε + a0)/(εm + . . . + b1ε + b0) 6= 0. If

a0 6= 0 and b0 6= 0, then an approximating interval of size 1/2k is computed by
refining the intervals for a0 and b0 until the desired precision is reached. If either
a0 or b0 is non-refineable, then k is also non-refinable. Note that we never have
a0 = 0 and b0 = 0, since in this case the numerator and denominator can be
simplified by dividing them by ε. Thus, if a0 = 0, we must have b0 6= 0, and k
is an infinitesimal value. If b0 = 0, then a0 6= 0, and k is an infinite value. Note
that even when we cannot refine an approximating interval for k, we can still
compute a B∞-interval containing k.

3.3 Algebraic Extensions

At the top of our towers sit algebraic extensions. Recall that an algebraic exten-
sion K(α)/K is obtained by adjoining to K a root α of a polynomial p ∈ K[x].

Given such an extension, we call p the defining polynomial of α. Note that the
algebraic extensions of K that we support are always subfields of K̃. To represent
elements of K(α), we need to be able to compute with roots of p which reside in

the real closure K̃. Thom’s Lemma is a classical result in real algebraic geometry
which guarantees that we can always distinguish the roots of a polynomial over
a real closed field (even those containing infinitesimals) using only the signs of
its derivatives [6]. We base our representation upon this fact, and introduce a
number of enhancements. Due to space limitations, we are forced to only present
the most salient aspects of how we compute in algebraic extensions.8

Sign assignments Given a set of polynomialsQ, a sign assignment S is a mapping
from Q to {−1, 0, 1}. To improve readability, we shall represent S using sets of
atoms. For example, {q1 7→ −1, q2 7→ 0} is represented as {q1 < 0, q2 = 0}. We
identify a root α of a polynomial p using a pair consisting of an open B∞-interval
and a sign assignment for a subset of the derivatives of p. The sign assignment
stores the sign of these derivatives at α. If K does not contain infinitesimal
extensions, then the sign assignments are not necessary for distinguishing roots.
For example,

√
2 can be encoded as (x2 − 2, (1, 2), {}), i.e., as the only root of

x2 − 2 within (1, 2) satisfying the empty sign assignment.

Example 3. Let Q(ε)/Q be an infinitesimal extension. The three roots of the
polynomial ε2x5 − εx3 − εx2 + 1 ∈ (Q(ε))[x] can be encoded as

(ε2x5 − εx3 − εx2 + 1, (−∞, 0), {})
(ε2x5 − εx3 − εx2 + 1, (0,∞), {60ε2x2 − 6ε > 0})
(ε2x5 − εx3 − εx2 + 1, (0,∞), {60ε2x2 − 6ε < 0})

We need a sign assignment to distinguish the two positive roots because they
are bigger than any real number, and cannot be isolated using an interval. In
the example above, the sign of the third derivative was used to distinguish be-
tween these two roots. Recall that Thom’s Lemma guarantees that we can always
distinguish the roots of a polynomial over an RCF using only the signs of its
derivatives. Since the interval contains only two roots that need to be discrimi-
nated, we only need to find one derivative that has a different sign for each root.
We use the third derivative, because it is the lowest degree derivative which dis-
criminates the two roots. For example, the fourth derivative 120ε2x is not used
because it is positive for both roots. Later, we show how the Sign Determination
Algorithm is used to compute the signs of these derivatives. This example also
demonstrates that we often need only a proper subset of the derivatives.

Square-free polynomials We say a polynomial p ∈ K[x] is minimal if p does not
contain a non-trivial factor. A polynomial is square-free if it is does not have
roots with multiplicity greater than 1. Note that given a square-free polynomial
p and an interval (a, b) that contains only one root of p s.t. a and b are not
roots of p, it follows that sign(p(a)) = −sign(p(b)), where sign is a function that

8 Further details shall be in an expanded version. See Sec. 4 for a source code URL.

maps a value into the set {−1, 0, 1}. Given a polynomial p, we define the func-
tion sqf(p) = p/gcd(p, p′), where p′ is the first derivative of p. It is well-known
that sqf(p) is square-free with the same roots as p. WLOG, let us now consider
polynomials of the form anx

n + . . . + a0 s.t. a0 6= 0. In our representation, we
do not require defining polynomials to be minimal because polynomial factoriza-
tion over extension fields is an expensive operation. Instead, we use square-free
polynomials because they are faster to be computed, and more importantly, as
the Intermediate Value Theorem holds over every real closed field, we can refine
the (refinable) interval (a, b) containing a single root α by just computing the
sign of p at the midpoint m: If sign(p(a)) = sign(p(m)), then the new interval
is (m, b). If sign(p(b)) = sign(p(m)), then the new interval is (a,m). In the very
unlikely case when sign(p(m)) = 0, then α is actually the binary rational m.

Polynomial remainder sequences and Sturm-Tarski Let quo(q, p) and rem(q, p)
denote the polynomial quotient and remainder (resp.) of q, p ∈ K[x], i.e., q =
quo(q, p) · p + rem(q, p) s.t. deg(rem(q, p)) < deg(p), where deg(p) is the degree
of p. If p is the defining polynomial for α, then p(α) = 0 and consequently
q(α) = rem(q, p)(α). This allows us to use polynomial remainders to simplify
any q(α). The signed polynomial remainder srem(q, p) is defined as −rem(q, p).
A Sturm polynomial sequence [s1; s2; . . . ; sk] for polynomials p and q is defined
inductively as s1 = p, s2 = q, si = srem(si−2, si−1), where srem(sk−1, sk) = 0.
We use sturm(p, q) to denote the Sturm polynomial sequence for p and q. Given a
sequence S of polynomials in K[x], we use sv(S, a) for the number of sign changes
(ignoring zeroes) in the sequence when each polynomial is evaluated at a. For
example, sv([2+x2 +x3; 2x+3x2; −18+2x; −1], 0) = 1, since there is only one
sign variation in the sequence evaluated at 0. We use pos(q, p, a, b), neg(q, p, a, b)
and zero(q, p, a, b) to denote the number of roots β of p s.t. β ∈ (a, b) and q(β) is
positive, negative and zero respectively. The Sturm-Tarski Theorem states that
given a polynomial sequence S = sturm(p, q · p′), it holds that9

sv(S, a)− sv(S, b) = pos(q, p, a, b)− neg(q, p, a, b).

Following Basu-Pollack-Roy [3], we define a Tarski Query TaQ(q, p; a, b) as

TaQ(q, p; a, b) = sv(sturm(p, q · p′), a)− sv(sturm(p, q · p′), b)

and remark that

TaQ(1, p; a, b) = zero(q, p, a, b) + pos(q, p, a, b) + neg(q, p, a, b),

TaQ(q, p; a, b) = pos(q, p, a, b)− neg(q, p, a, b),

TaQ(q2, p; a, b) = pos(q, p, a, b) + neg(q, p, a, b).

Moreover, TaQ(1, p; a, b) is the number of roots of p in the interval (a, b). If α is
the only root of p in the interval (a, b), then the sign of q(α) can be determined
using TaQ(q, p; a, b).

9 The Sturm-Tarski Theorem is actually for half-open intervals of the form (a, b].
WLOG, we assume that for any root α encoded as (p, (a, b), S), b is not a root of p.
If it is, we encode α as (p/(x− b), (a, b), S) instead.

Sign determination Tarski Queries are also used to implement the Sign Deter-
mination Algorithm [3]. Given a set of polynomials Q = {q1, . . . , qk}, signdet(Q,
p, a, b) returns the feasible sign assignments of Q at the roots of p in the in-
terval (a, b). Actually, it computes more than that: for each sign assignments
S, it returns the number of roots of p in (a, b) that satisfy S. For example,
for Q = {q}, signdet can compute the feasible sign assignments by comput-
ing TaQ(1, p; a, b), TaQ(q, p; a, b) and TaQ(q2, p; a, b) and solving the system of
equations above. For Q = {q1, q2}, in the worst case, we have to compute
TaQ(h, p; a, b) for each h in the set {1, q2, q22 , q1, q1q2, q1q22 , q21 , q21q2, q21q22}. In gen-
eral for a set Q = {q1, . . . , qk}, signdet will, in the worst case, have to compute 3k

Tarski Queries for polynomials of the form
∏
q∈Q,i∈{0,1,2} q

i, and solve a system

of 3k equations. We implement a more efficient signdet of Ben-Or et al. [4].
Now, assume that α is encoded as (p, (a, b), S), and we want to determine the

sign of q(α). We can decide that by computing R = signdet(poly(S)∪{q}, p, a, b),
where poly(S) is the set of polynomials occurring in S. Then,

if S ∪ {q = 0} ∈ R then q(α) = 0,
if S ∪ {q > 0} ∈ R then q(α) > 0,
if S ∪ {q < 0} ∈ R then q(α) < 0.

We know that one and only one of the cases above can be true because p has
only one root in the interval (a, b) satisfying the sign conditions S.

To compute an upper-bound for the positive roots of (
∑n
i=0 aix

i) ∈ K[x], we

use Knuth’s bound 2(max{ k
√

(−an−k/an) | 1 ≤ k ≤ n, an−k < 0}). As the ai
may be neither integer nor rational values, we estimate (−an−k/an) using the
approximating intervals for an−k and an. Let s be the upper bound of the result-
ing interval. If the upper-bound for s is ∞, then so is the sought upper-bound.
Otherwise, we compute the least integer j s.t. s ≤ 2j . The value j can be easily
computed based on the bit-wise log2 operation for integers. Finally, we approx-

imate the kth root as 2
j
k+1. Note that if K does not contain infinitesimals, then

the computed upper-bound is a binary rational of the form 2m. The lower-bound
for a positive root is computed by computing the upper-bound for xnp(1/x). For
negative roots, we compute the bounds for the positive roots of p(−x).

Clean representations We represent elements of K(α) as polynomials q(α). We
define inductively the predicate clean(a). If a ∈ Q, then clean(a) holds if a is an
integer. If a is an element of a transcendental or infinitesimal extension K(ς),
then clean(a) holds if a is of the form p(ς)/1 and for all coefficients c of p(ς),
clean(c) holds. Similarly, if a is an element of an algebraic extension, then clean(a)
holds if a is represented by a polynomial with clean coefficients. When clean(a)
holds, we say a is clean. In our experiments, we observed that minimizing the
use of gcd (especially with non-clean elements) is by far the most important
optimization. Many operations with clean elements produce clean elements, and
consequently do not require expensive normalization operations based on gcd.

Let a and b be clean elements of transcendental or infinitesimal extensions.
Then, a+ b, −a and a · b are also clean. We recall that for algebraic extensions

K(α), an element a is represented as a polynomial q(α), and this polynomial
can be (optionally) simplified to rem(q, p), where p is the defining polynomial
for α. If p is monic with clean coefficients and a is clean before applying the
simplification, it will remain clean after applying it. Unfortunately, this is not the
case for non-monic polynomials. For example, rem(α3 +1, 3α2−1) = 1+(2/3)α.

To minimize the generation of non-clean elements, we generate Sturm se-
quences using polynomial pseudo-remainders. We use pquo(q, p) and prem(q, p)
to denote the polynomial pseudo-quotient and pseudo-remainder of q, p ∈ K[x],
and remark that ldq = pquo(q, p) ·p+prem(q, p), where l is the leading coefficient
of p, and d is the number of iterations used to compute pquo(q, p) and prem(q, p).
The signed pseudo remainder is defined as

sprem(q, p) =

{
prem(q, p), if l < 0 ∧ d is odd
−prem(q, p), otherwise

The main motivation for this is that for any element a, sign(sprem(q, p)(a)) =
sign(srem(q, p)(a)). Because for Tarski Queries only the number of sign alterna-
tions matter, we can use sprem instead of srem when generating Sturm sequences.

Given a polynomial p with clean coefficients, if we disable the algebraic
normalizations using non-monic defining polynomials, and compute Sturm se-
quences using sprem, then all elements in the generated sequence are clean. With
this approach, we observed a dramatic performance improvement (cf. Sec. 4).

Now, let us show how we represent elements of K(α) as polynomials even
when the defining polynomial p for α is not minimal. When p is minimal, given
a non-zero element a represented using a polynomial q(α), we can represent 1/a
using a polynomial h(α). Let r be rem(q, p). As p is minimal, gcd(p, r) = 1. Then,
using the extended gcd algorithm we can compute polynomials h and g such that
g · p+ h · r = 1 Since, p(α) = 0 and r(α) = q(α), we have h(α) · q(α) = 1. If p is
not minimal, the gcd(p, r) may be different from 1, with h the zero polynomial.
To cope with this problem, we simply replace the defining polynomial p for α
with (p/ gcd(p, r)) whenever gcd(p, r) 6= 1.

Root isolation Finally, we summarize all the steps used in our root isolation
procedure for polynomials p ∈ K[x]. First, we make sure that 0 is not a root of
p, p is square-free and has clean coefficients. Then, we estimate the lower and
upper bounds for positive and negative roots. WLOG, we focus on the positive
case. If the upper-bound is ∞, we use the sign determination procedure for dis-
tinguishing the positive roots using the signs of the derivatives of p. If the upper
bound is not ∞, we try to isolate the roots using interval bisection and binary
search. If K does not depend on infinitesimals, the procedure always terminates.
If K depends on infinitesimals, to guarantee termination, we interrupt the bi-
nary search if the size of the interval in a branch is smaller than a user provided
parameter, and switch to the approach based on sign determination. Note that
if p does not depend on infinitesimal values, then more efficient root isolation
methods can be used [23].

4 Examples

In this section, we present a small set of examples using our package. Our library
was implemented as a module in the Z3 theorem prover10, and we provide a C
API and Python bindings.

Introductory examples. We demonstrate the basic capabilities of our package
using the Python bindings. A polynomial is described as a list of coefficients.
MkRoots returns the roots of a polynomial as a list. In the following command
we consider the roots of x2 − 2. In Python, ** is the power operator.

msqrt2, sqrt2 = MkRoots([-2, 0, 1])

print(sqrt2)

>> root(x^2 + -2, (0, +oo), {})

print(1/sqrt2)

>> 1/2*root(x^2 + -2, (0, +oo), {})

print(sqrt2**2 == 2)

>> True

print(sqrt2.decimal(10))

>> 1.4142135623?

print(sqrt2**3 + 1)

>> 2*root(x^2 + -2, (0, +oo), {}) + 1

The procedure MkInfinitesimal creates a new infinitesimal extension, while Pi

and E return π and e respectively. In the following example, we extract the first
(and only) root of the polynomial x3 + ε x2 + (

√
2 + π)x− π.

eps = MkInfinitesimal("eps")

pi = Pi()

r = MkRoots([-pi, sqrt2 + pi, eps, 1])[0]

print(r)

>> root(x^3 + eps*x^2 + (root(x^2 + -2, (0, +oo), {}) + pi)*x +

-1*pi, (0, +oo), {})

print(r.decimal(10))

>> 0.6337173142?

Now, we show basic computations with infinitesimals and transcendentals. First,
we compare 2 + 2π + π2 − 2ε− 2πε+ ε2 < 2 + 2π + π2, and then we compare ε
and 3

√
ε.

print(2 + 2*pi + pi**2 - 2*eps - 2*pi*eps + eps**2 < 2 + 2*pi + pi**2)

>> True

eps3 = MkRoots([-eps, 0, 0, 1])[0]

print(eps3 > eps)

10 The code is available at http://z3.codeplex.com/wikipage?title=CADE24. Exper-
iments were done on an Intel Core i7-2620 2.7Ghz CPU with 8Gb RAM, and the
package was compiled using the GMP multi-precision library.

http://z3.codeplex.com/wikipage?title=CADE24

>> True

print(1/eps > 1000000000000000000000000000)

>> True

The examples above are stored in the file basic.py.

MetiTarski. MetiTarski uses the nlsat [16] nonlinear solver in Z3. Real algebraic
number computations are often a bottleneck for nlsat, and were implemented
using the textbook approach of polynomials with integer coefficients and an
interval with binary rational endpoints. The following example was extracted
from a MetiTarski/Z3 execution trace where nlsat times out after 30 min. In this
example, nlsat assigns the first root of the following polynomial to variable x.

216x15 + 4536x14 + 31752x13 − 520884x12 − 42336x11 − 259308x10+
3046158x9 + 140742x8 + 756756x7 − 5792221x6 − 193914x5 − 931392x4+
3266731x3 + 90972x2 + 402192x+ 592704

Then, it replaces x with the assigned value in the polynomial y3 + x3 + 1, and
timeouts trying to isolate the roots of the result. In our package presented in
this paper, these two operations are performed in 0.05 secs (nlsat.py).

Tower of extensions. In this example, we create a tower of extensions containing
two transcendental (π and e), one infinitesimal (ε), and 5 algebraic extensions.
The algebraic extensions are the first roots of the following 5 polynomials:

r0 := x4 +−2 ε x3 + (ε2 − 4)x2 + 4ε x+ 4− 2ε2 + 4
r1 := (−ε6 + 8ε4 − 20ε2 + 16)r0 − 8ε5 + 32ε3 − 32ε+ (2ε4 − 8ε2 + 8)x2

r2 := x5 + 3x3 + r1 x
2 − 1

r3 := x5 + r1 x
3 + π r2 x

2 − 3
r4 := 8x5 + r3 x

4 + e x2 + x− 7

All roots are isolated in 0.28 secs (tower8.py). However, if we do not use clean
representations (cf. Sec. 3), it takes 31 secs for the 4th polynomial, and times
out after 30 min in the last one (tower8 eager norm.py).

Rioboo examples [21]. All solved in a negligible amount of time (rioboo*.py).

Strzebonski examples [22]. All solved in a negligible amount of time (strz.py).

5 Conclusion

We have presented a library for computing in real closed transcendental and
infinitesimal extensions of the rationals. This provides a computational sub-
structure sufficient for implementing many advanced (and hitherto practically
unexplored) decision methods for nonlinear real arithmetic. We hope that both
the library and the ideas underlying it will prove useful to the community, and
that it may become the foundation of new practically useful decision methods.

References

1. B. Akbarpour and L. C. Paulson. Applications of MetiTarski in the Verification of
Control and Hybrid Systems. In HSCC, volume 5469 of LNCS. Springer, 2009.

2. Dennis S. Arnon, George E. Collins, and Scott McCallum. Cylindrical Algebraic
Decomposition. I. The Basic Algorithm. SIAM J. Comp., 13(4):865–877, 1984.

3. S. Basu, R. Pollack, and M. Roy. Algorithms in Real Algebraic Geometry. Springer,
Secaucus, NJ, USA, 2006.

4. M. Ben-Or, D. Kozen, and J. Reif. The complexity of elementary algebra and
geometry. In STOC. ACM, 1984.

5. J. Canny. Some algebraic and geometric computations in PSPACE. In Twentieth
ACM Symposium on Theory of Computing, STOC. ACM, 1988.

6. M. Coste and M. Roy. Thom’s lemma, the coding of real algebraic numbers and
the computation of the topology of semi-algebraic sets. JSC, 5(1-2), 1988.

7. L. de Moura and G. O. Passmore. Exact nonlinear optimization on demand. In
preparation, 2013.

8. W. Denman, B. Akbarpour, S. Tahar, M.H. Zaki, and L.C. Paulson. Formal veri-
fication of analog designs using MetiTarski. In FMCAD, pages 93 –100, 2009.

9. J. D. Fleuriot and L. C. Paulson. A Combination of Nonstandard Analysis and
Geometry Theorem Proving, with Application to Newton’s Principia. In CADE-15,
LNCS, pages 3–16. Springer, 1998.

10. M. Fränzle, C. Herde, S. Ratschan, T. Schubert, and T. Teige. Efficient Solving of
Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure.
JSAT, 1:209–236, 2007.

11. R. Gamboa and M. Kaufmann. Nonstandard Analysis in ACL2. JAR, 27(4), 2001.
12. S. Gao, J. Avigad, and E. M. Clarke. δ-complete decision procedures for satisfia-

bility over the reals. In IJCAR, LNCS, pages 286–300. Springer, 2012.
13. L. Granvilliers and F. Benhamou. RealPaver: An Interval Solver using Constraint

Satisfaction Techniques. ACM Trans. on Maths. Software, 32:138–156, 2006.
14. D. Y. Grigor’ev and N.N. Vorobjov Jr. Solving systems of polynomial inequalities

in subexponential time. JSC, 5(1-2):37–64, 1988.
15. T. C. Hales, J. Harrison, S. McLaughlin, T. Nipkow, S. Obua, and R. Zumkeller. A

revision of the proof of the Kepler conjecture. Discrete & Computational Geometry,
44(1):1–34, 2010.

16. D. Jovanović and L. de Moura. Solving non-linear arithmetic. In IJCAR, IJCAR,
Berlin, Heidelberg, 2012. Springer.

17. Z. Ligatsikas, R. Rioboo, and M. Roy. Generic computation of the real closure of
an ordered field. Maths. and Comp. in Sim., 42(4-6):541 – 549, 1996.

18. B. Mishra and P. Pedersen. Arithmetic with real algebraic numbers is in NC. In
ISSAC ’90, ISSAC ’90, pages 120–126, New York, NY, USA, 1990. ACM.

19. A. Platzer and E. M. Clarke. Formal verification of curved flight collision avoidance
maneuvers: A case study. In Formal Methods. Springer, 2009.

20. S. Ratschan. Efficient Solving of Quantified Inequality Constraints over the Real
Numbers. ACM Trans. on Comp. Logic, 7(4):723–748, 2006.

21. R. Rioboo. Infinitesimals and real closure. Technical report, Laboratoire
D’Informatique de Paris 6, 2001.

22. A. Strzebonski. Computing in the field of complex algebraic numbers. JSC, 24(6),
1997.

23. Adam Strzeboński and Elias P. Tsigaridas. Univariate real root isolation in multiple
extension fields. In ISSAC’12, pages 343–350, New York, NY, USA, 2012. ACM.

	Computation in Real Closed Infinitesimal and Transcendental Extensions of the Rationals

