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ABSTRACT

Interest in wave energy as a viable renewable energy has increased greatly in the
past couple of decades. To determine the potential that a certain location has to
harvest wave energy, a resource assessment must be performed for that location. As
wave energy converter technologies get closer to market, it is becoming necessary to
undertake more detailed resource assessments in order to determine the optimal
location for deployment as well as the design and operating sea states. This study
shows the level of sophistication that must be included in the verification process
within a wave resource assessment. We describe the methodology in two articles.
The first part shows how doing a complete statistical analysis of the fit of the model
at the location of interest is essential for determining the reliability of the model
data. Part 2 of this study will investigate the systematic trends of the fit of spectral
values. In Part 1, it is shown that spatial analysis, the examination of distributions to
reveal overall trends, and the careful choice of the appropriate statistical model to
describe the fit of the wave model to buoy observations are all critical steps that
must be added to verification processes. Part 2 demonstrates that looking closely at
the fit of spectral values can reveal potentially vital issues for energy extraction.
Better statistical validation gives the predictions of a particular resource assessment
greater credibility or reveals areas where model accuracy must be improved.

1. Introduction

Gunn and Stock-Williams [1] estimate a global wave power resource of 2.11 + 0.05
TW. With the growing interest in this source of energy and the resulting recent
increase in the level of detail required for resource assessments comes the need for
a more thorough understanding within each assessment of the specific wave model
used. The appeal of using wave models to predict resources is very logical; for
example, a model can give a prediction over a much longer time period than buoy or
satellite measurements. Wave models are extensively validated [e.g. 2, 3, 4], but
these validations are often not focused on parameters that are vital for wave energy
extraction. For a resource assessment, before the wave model can be deemed
reliable, a complete statistical analysis of the fit of the wave model at the location of
interest must be completed, and the implications of any errors found must be



thoroughly understood. To verify the fit of the model, output must be compared to
in situ observations from a buoy or satellite.

Large-scale resource assessments have become more comprehensive in the past
couple of years, but overall there is not a large emphasis in these studies on
verification of the model used. Gunn and Stock-Williams [1] provide a comparison of
previous global and national/regional resource assessment studies. One example,
Megrk et al. [5], performs a global resource assessment study, and a global map of
correlation coefficients between model and satellite significant wave height is shown
by way of verification. The global assessment by Ariange and Cheung [6] includes a
slightly more detailed verification process, in which the correlation coefficient, root
mean square error (see section 2.2), and 90% confidence intervals are calculated for
significant wave height measured against altimetry data and for significant wave
height, peak wave period and mean wave period measured against buoy data.

For national or regional studies, the degree of verification increases. For example, in
ESBI’'s Wave Energy Resource Atlas Ireland [7] the verification process involves
calculating coefficients of correlation and determination for significant wave height
and wave period, and correcting the model data to align with buoy data if the values
suggest this is required. In ABPmer’s Atlas of UK Marine Renewable Energy Technical
Report [8] significant wave height and resultant wave power model values were
compared to monthly means and overall distributions of buoy observations. The
authors provide hypotheses on why certain locations had better agreement than
others and observations on seasonality. EquiMar (Equitable Testing and Evaluation
of Marine Energy Extraction Devices) Project Deliverable D2.3 [9] proposes a
standard practice for validation of numerical models, following the example of Ris et
al. [4], which involves calculating bias, root mean square error, scatter index, model
performance index, and operational performance index (see section 2.2).

The main focus of Part 1 of this study is to highlight the benefits of carrying out a
comprehensive statistical analysis for localized resource assessments. There is
limited evidence of this in practice in existing literature. For example, in an
assessment of the wave energy potential in El Hierro by Iglesias and Carballo [10],
there was no verification and only a model was used. In a study of the U.S. Pacific
Northwest by Lenee-Bluhm et al. [11], only buoy measurements were used.

Stopa et al. [12], in an assessment of the wave energy potential in Hawaii, compare
model data to both satellite data and buoy data. Statistics such as bias, normalized
root mean square error, correlation coefficient, and scatter index (see Section 2.2)
are calculated, and time series and quantile-quantile plots are constructed. The fit of
the model at different locations are compared, and a structured pattern of
agreement in the model associated with buoy locations around the islands is
observed. The analysis is, however, limited to significant wave height, and does not
include energy period which is also influential in calculating wave energy potential.

Liberti et al. [13] compare the fit of model calculations to satellite and buoy
measurements for the Mediterranean. Statistics are calculated for significant wave



height, spectral period (To,), and mean wave direction, including bias, root mean
square error, and scatter index. This study does consider periods by examining
spectral period, but analyzing energy period would lead to a more targeted
validation for wave energy.

In a resource assessment for the Cornish coast (UK), van Nieuwkoop et al. [14]
perform the most extensive verification analysis for a local resource assessment at
present. The importance of removing outliers is stressed, relevant statistics are
calculated for significant wave height, energy period and mean direction, and bias is
calculated for different bins of the parameters. It is also openly stated that the
verification led to the conclusion that the model data needs to be handled with care.
In the discussion, a correction of the parameters is shown, and the impact of this on
wave resources and wave extremes is demonstrated. A quadratic correction formula
is used for significant wave height, and a linear one is used for energy period. A
difference in wave power of 7 kW/m is found, and extreme wave heights are shown
to be 10-15% higher than previously predicted.

Inadequate consideration of statistics could cause considerable errors in the
resource assessment. For example, it may result in under- or over- prediction of
theoretical power potential, the amount of power technically recoverable, the
amount of energy coming in as swell vs. wind waves, the extreme waves the devices
must withstand, the direction with the most energy, or the extent of directional
spread, critical for devices in a fixed orientation. It will be demonstrated in this work
that by adding the following steps to the verification process, additional information
is obtained that will affect the conclusions of the resource assessment:

* examining the fit of multiple surrounding model grid points for each buoy to
determine which grid point should be used to calculate the potential wave
resource at a site,

* examining distributions to determine overall trends in the data, and

* choosing the appropriate statistical model to describe the fit of the model to
the in situ measurements. Specifically, it is essential not to assume normality
of error structure and blindly rely on calculations based on linear regressions

The site examined is near the Orkney Islands, Scotland. It is not intended to be a
resource assessment of this site, as there already exist such studies [e.g. 15] and the
time period examined here is relatively short (2 years). It will be shown that if
previous methodologies were used for verification and if the model results were
used as they were given, the theoretical average power per crest would be over-
estimated by 11.91 kW/m over the two year period of the data (an over-estimate by
approximately 40%).

Section 2 will show the methodology and results of the complete statistical analysis.
This includes describing what might be concluded if the verification were to stop at
certain points. Specifically, 2.1 will introduce the data and show the calculations
performed to compare parameters. 2.2 will present the spatial analysis and calculate
basic statistics that existing verifications include. 2.3 will show the deeper analysis



and describe what the tests divulge about the fit of the model. Section 3 will then
summarize the findings of Part 1 and connect the analysis with Part 2.

2. Methodology and Results
2.1 Overview of the wave model and data used

In this section, an example verification will be performed. Comparison of results
from a wave model to in situ observations from a buoy will be made. The wave
system used for this analysis is the ECMWF Cy331 version [16, 17] of WAve Model
(WAM) [18, 19]. WAM is a third generation wave model that has been adopted by
many operational and research centres worldwide. The model solves the spectral
action balance equation without any presumptions on the shape of the wave
spectrum and represents the physics of the evolution of the wave spectrum in
accordance with our current knowledge using the full set of degrees of freedom of a
two-dimensional wave spectrum. The grid resolution can be arbitrary in space and
time. The propagation can be done on a latitudinal — longitudinal or on a Cartesian
grid. WAM is able to run in a deep-water or a shallow-water mode and includes the
effect of wave refraction caused by changes in depth and by ocean currents.

This particular version, developed at the National Kapodistrian University of Athens
(NKUA), incorporates a number of important implementations that increase the
potential capabilities of the wave system. Some of the most important
improvements include the new advection scheme, which takes corner points into
account, and thus provides a more uniform propagation in all directions, using the
new Corner Transport Upstream scheme [20], and the new parameterization of the
shallow water effects. In particular, in shallow water the four-wave interaction is
vanished by the wave induced currents generated by the finite amplitude surface
gravity waves. Thus following the work of Janssen and Onorato [21], a
parameterization of this shallow water effects is introduced and affects both the
evolution of the wave spectra and the determination of the kurtosis of the wave
field.

The wave model has been configured to run in computational domain covering the
North Atlantic between latitudes 20°N and 75°N and longitudes 50°W and 30°E. The
domain extends far beyond the area of interest aiming to capture the important
swell propagation. It is discretized in a considerably high resolution of (0.05 x 0.05
degrees) which has been adopted as suitable for capturing the fine-scale features in
a credible way. The wave spectrum has been discretized in 25 frequencies
(logarithmically spaced from 0.0417 to 0.5476 Hz) and 24 equally spaced directions.
A 75-second time-step was selected so as to satisfy the CFL stability criterion. The
wave model operated was driven by 3-hourly 10m winds provided by the regional
atmospheric modelling system SKIRON [22, 23]. The horizontal resolution of the
SKIRON model is also 0.05 x 0.05 degrees extending from surface up to 50hPa in 45
vertical levels using a 15-sec time-step. The wave model provides outputs for wide
range of wave parameters and components such as wave height (significant and



swell), directions, energy and peak period. The result is full wave spectrum at
preselected grid points.

We extracted information from 12 of the model’s grid points, which were located
near the European Marine Energy Centre (EMEC) wave test site off the coast of the
Island of Mainland in the Orkney Islands, Scotland (see Figure 1). Since the period
parameter used in wave resource assessments is energy period (Te), it is necessary to

approximate this using 7, = I/J_’ .

The buoy is a Datawell Waverider Buoy situated at the EMEC wave test site (58.98°N,
3.39°W). Hourly buoy data was available from 1/1/2006 to 26/12/2007, with 674
records missing (3.8% of total). The missing records were fairly evenly spread over
the time period, and both buoy and model values at these records were registered
as missing so as not to affect the statistical computations. The buoy measures a
directional spectrum 8 times every 30 minutes, and then averages the values to
output one spectrum. Only the first record every hour, representing the first 30
minutes, is used in this study for comparison to the model. For each time record, the
spectral file includes the maximum power spectral density (PSD) and 64 frequencies
(ranging from 0.0225 Hz to 0.585 Hz), along with normalized PSD, mean direction,
and directional spread for each frequency. Parameters calculated from the spectra
are also provided, including significant wave height (Hno), spectral period (Tdw?2),
and mean period (T1). Energy period (Te) is defined as

o (1)
Where my, is the n™ moment of the spectrum. Since T, is not a direct output of the

buoy measurements, it is calculated by combining the equations for spectral period
(2) and mean period (3).

Tdw2 = |71 2)
m

T, =—2 (3)

Inserting equations (2) and (3) into equation (1), Te can be defined as

T, = (Tdw2y' @

01
[24, 25]

Mackay et al. [26] states that spatial and temporal scales must be compared when
evaluating different sources of data. Buoy and model measurements and the derived



guantities correspond to specific points in space. They are not averaged over an
area, indicating that the spatial scales here are compatible. In contrast, the buoy and
model differ temporally. As described above, buoy observations are averages of the
first 30 minutes of the hour, whereas the model calculations are essentially samples
from “on the hour” (+ 75 seconds). It is also important in this study to compare
spectral scales, for both directions and frequencies, which is done in Part 2.

2.2 Basic statistics and spatial analysis

The locations of the buoy and the twelve grid points at which the model is run are

represented in Figure 1.
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Figure 1: Map’of the location of the Waverider Buoy (star) and the 12 grid points (red
dots) at which the wave model was run off the coast of the Orkney Islands, Scotland



To determine the model grid point to which the buoy data will be compared, the
most common procedure is to consider the closest grid points and then select the
most appropriate based on physical restrictions. In this case, we must select
between points 1,2,3,6, and 7. Point 1 should be excluded because it is in a sheltered
area near the boundaries. Points 2 and 3 should also be excluded because they are
boundary points and consequently miss all of the wave action from the eastern
sector.

To confirm these physical notions, very basic statistics are calculated by comparing
the buoy dataset against each model dataset. The fit of the model can be visually
represented by Taylor diagrams (Figures 2 and 3). In a Taylor diagram [28], each grid
point’s correlation coefficient (r), root mean square error (RMSE), and the ratio of
the standard deviations are combined into one point. Appendix A describes how the
statistical parameters are calculated. Appendix B describes how to produce a Taylor
diagram. These calculations are performed at each grid point for both significant
wave height (Hno) and energy period (T).
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Figure 2: Taylor Diagram for Ho, showing grid points 1 and 2 are least correlated
with the buoy data, and all other points are very close together
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Figure 3: Taylor Diagram for T, showing grid point 1 is least correlated with buoy
data, and all other points are very close together

Figures 2 and 3 reinforce what was found by considering the physical constraints of
the location and emphasize the importance of spatial analysis. The closest grid points
to the buoy are 1,2, and 3, but it is shown that points 1 and 2 are much less similar to
the model than points 3-12. Because of what is seen in the Taylor diagrams, as well
as what was seen by looking at physical restrictions of the location, point 6 will be
the focus of the rest of the investigation.

Table 1: Basic statistics calculated to this point for grid point 6

Statistic Hmo (M) Te (s)
r 0.92 0.79
Bias 0.23 1.19
RMSE 0.61 1.71
Sl 0.29 0.20
s(model) 1.48 1.91
s(buoy) 1.31 1.83

The summary statistics for the grid point of interest (Point 6) are shown in Table 1.
Appendix A describes how these statistics are calculated. Some validation studies
stop at this point. If this study were to finish here, it would be concluded that there
is strong correlation between model and buoy Ho values and relatively strong
correlation between model and buoy T, values. Overall, the bias for Hy is
insignificant, although there is a slight tendency to over-estimate the value of Hpo.
Since RMSE is higher than bias, some of the differences between model and buoy
values cancel each other, and there are both over-estimates as well as under-
estimates present. The bias for T is large, so there is an overall tendency of the
model to over-estimate the buoy measurement for T.. The RMSE is also higher than
the bias for T,, again suggesting that there are both under-estimates as well as over-



estimates in the model dataset. The Sl values suggest a narrow scatter for both
parameters, and the standard deviations are relatively similar.

Whilst this summary suggests good agreement, it does not show the whole picture.
All of the statistics are stationary and do not express changes of fit in time.
Consequently, many conclusions are masked.

2.3 Further Analysis of wave parameters

In this section, significant wave height and energy period predictors will be
compared to buoy observations in more detail to assess the reliability and suitability
of the model. The analysis includes time series, error scatter plots, kernel density
distributions, tests for similarity of distributions, cross- and auto-correlation, and
linear and generalized linear models.

Time series are often examined to look for trends, serial dependence, and
stationarity [29]. Qualitatively assessing model fit over a long period of time in this
manner is difficult. Here, results for December 2006 are presented as the
representation of the most volatile month in the entire time history.
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Figure 4: Time series of hourly Hno values from the wave model and the buoy from 1
December 2006 to 31 December 2006
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Figure 5: Time series of hourly T, values from the wave model and the buoy from 1
December 2006 to 31 December 2006

Figure 4 shows that the model Hyo values follow the general patterns of the
corresponding buoy values well, but during the two periods of time where the buoy
values are at their highest, the model over-estimates the H;o by a significant
amount. Figure 5 shows that the model over-estimates the value of T, frequently
and consistently. There is clearly insufficient information to make sensible
conclusions from these plots.

Rather than look at scatter plots of the model parameters vs. buoy parameters [as
seenin 14, 30, 12, 6, 13, 31], here the scatter plot of error (buoy — model values)
against buoy measurements is used. This enables a better understanding of the fit of
the model. Specifically, it reveals problem areas based on parameter value. Figure 6
shows an error scatter plot for Hyo, and Figure 7 shows a similar plot for Te.
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Figure 6: Error scatter plot of H,o, defined as Buoy — Model against Buoy value
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If the model is a good fit the errors are expected to be random and normally
distributed with a mean of zero. Furthermore, the error scatter plots should
demonstrate homoscedasticity. Figure 6 shows a fan-shaped trend—the error
becomes larger as the buoy value increases—leading to the conclusions that the
errors are not normally distributed and that there is a problem among higher values
of Hmo. Figure 7 does not show a clear pattern of increasing or decreasing error with
buoy value, but it does highlight problems with large energy periods (>15 seconds).

Next, distributions of parameters are examined to inspect overall trends in the
datasets. These trends are important because overall bias and differences between
buoy and model parameters will cause large errors in the prediction of available
wave power. Specifically, kernel methods are used in this study to provide a
guantitative analysis of the distributions as a whole. Kernel methods approximate
the probability density function of a distribution by

" (7)
f(x) = AEK(x, X;)

where K is the kernel function. 4 is a constant chosen so that fw f(x)dx =1.1In each

kernel method, K depends on the bandwidth, h. The value for h must be such that
there is a balance between smoothing unimportant peaks and not smoothing
important peaks [32]. The kernel density estimates of buoy and model Hy,g are
shown in Figure 8, and Figure 9 shows the equivalent for Te.
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Figure 8: Kernel density estimates of the probability distribution for Hy, for both the
buoy and model
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Figure 9: Kernel density estimates of the probability distribution for T, for both the
buoy and model

Figure 8 shows that the model and buoy distributions of Hy,g are quite similar. There
is generally a slight tendency to under-predict values less than about 2 meters and a
slight tendency to over-predict values between 2 and 3 meters. Figure 9 suggests
that there is a shift in the data for Te. There is a tendency for the model to under-
predict values less than 10 seconds and over-predict values between 10 and 15
seconds.

Next, 95% confidence intervals based on the t-distribution were constructed for the
buoy means to see if corresponding model means lie within the intervals. Wang [33]
confirms that even when the samples are not normally distributed it is valid to
calculate confidence intervals of the mean with a test statistic which requires
normality. The results of this test for Hyng and T, are shown in Table 2.

Table 2: One sample t-test confidence intervals for the mean of buoy Hyo and Te
kernel density estimator (KDE) values, calculated to see if the respective mean of
model KDE values is within this range

HmO Te
95% Confidence Interval 0.0627 —0.0855 0.0347 - 0.0483
KDE of model mean 0.0783 0.0768
Within 95% CI? YES NO

Table 2 shows that the mean of the model Hy,o kernel density distribution estimates
is within the 95% confidence interval of the mean of the buoy Hy, kernel density
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distribution, whereas the mean of the model T, kernel density distribution estimates
is not within the 95% confidence interval of the mean of the buoy T, kernel density
distribution.

The variances of the kernel density distributions are also compared. Since the
distributions are not normal, the F-test cannot be used, so instead Levene’s test is
employed. Levene’s test provides “a test for homogeneity of variance that is
insensitive to departures from normality” [34]. The test statistic is calculated by

W= n—-m E,ﬂ-;ln.f(fj _2)2
m—1 EQEZ’;I(ZJ/« _z,)f

where

(8)

Z ik =‘yjk =Y;

’

Yikis the k™ observation in thejth of m samples, and y; is the mean of the n;

observations in this sample.

Testing the hypothesis that the variances of model and buoy KDE functions are equal
for Hyo gives a test statistic of W =0.0354 and an associated probability of p =
0.8509. Because 0.8509 > 0.05 there is insufficient evidence at the 5% significance
level to reject the null hypothesis. We therefore cannot conclude that the variances
are different. For T, testing a similar hypothesis that the variances are equal gives a
test statistic of W =0.001 and an associated probability of p = 0.975. Again, because
0.975 > 0.05 there is insufficient evidence at the 5% significant level to reject the null
hypothesis, so we cannot conclude that the variances are different.

This analysis shows that for both H,,g and T the distribution variances are similar but
that for T, the mean of the model predictions is significantly higher than the buoy
mean. These results give confidence that the model is working well for Hpg but is
less reliable for Te.

Considering our findings from above, it is necessary to investigate the possibility that
the bias in T, was due to a time lag using an analysis of cross- and auto-correlation.
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between buoy and model Hy,o time series (bottom)
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Figures 10 and 11 show that there is no time offset in either parameter and that the
auto-correlation in the model is sensible. This rules out the possibility that the bias
in Te is due to a time offset.

Finally, statistical models are constructed and analyzed for both H;,g and T, to fully
describe the fit of the model to the corresponding buoy values. As mentioned
before, the error is not constant for the value of Hng. If a linear model were fitted to
this data, the variance would depend on the buoy value, and consequently the
errors would not be normally distributed. It is necessary to use a generalized linear
model. Error scatter plots must be examined (Figures 6 and 7) before constructing
linear models and relying on statistics from these models. If the errors were
normally distributed, these plots would be random and consistent, and a linear
model would be most appropriate. If the errors are not normally distributed, as seen
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in Figure 6 by the fan-shape of data points, a linear model cannot be used, and a
generalized linear model must be used.

A linear model is represented by
Y=L+ BiX + L%, + 4 frx, +E (9)

where y is the response variable, x3, X2, ..., Xk are the predictor variables, Bo, B1,-.., Bk
are unknown weights, and € is the random error. For a linear model, € has a normal
distribution with an expected value of 0. However, since the error distributions for
Hmo and T, are not normal, it cannot be assumed that the expectation is 0.

A generalized linear model is a model whose errors follow a general distribution of
the exponential type. The model is given by

g(u) = glEW,)]= % (10)

Where x: is a vector of predictor variables and B is a vector of unknown weights.
Every generalized linear mode (GLM) has an error structure, a linear predictor and a
link function [35]. The error structure is the distribution of errors of the response
variable. A linear predictor, 1, is “a linear sum of the effects of one or more
explanatory variables,” [29] and is defined by

n; =ixij/jj (11)

The link function is a function that “connects the linear predictor to the natural
mean of the response variable” [35]. It is defined by

7, =g(u,) (12)
where u;is the i response variable and g is the link function [29].

In this study, it was observed that the variances increase with the value of the
predictor value. Consequently, a gamma distribution of errors and a link function of

gl(a)=a are most appropriate [35].

To compare the GLM to a linear model, the Akaike’s Information Criterion (AIC) is
calculated. It is given by

AIC = -2 xloglikelihood +2(p +1) (13)

where p is the number of parameters in the model. Smaller values of AIC imply a
better fit [29]. The AIC for a linear model and a generalized linear model were
compared for both Hy,g and Te, and the results are shown in Table 3. The results
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show that a GLM with a gamma distribution is more appropriate for Hy,o, whereas a
regular linear model is more appropriate for Te.

Table 3: Akaike’s Information Criterion (AIC) for a linear model (LM) and generalized
linear model with gamma error (GLM) for both Hy,o and T,

HmO Te
LM 28462.82 53350.24
GLM 20769.28 53750.58

To check the goodness of fit of a model, deviance is calculated [35]. The deviance for
a regular linear model is

D)= (v-a)y (14)

where & is the mean of the response variable. For a GLM with gamma error
deviance is

D(ﬁ)=22[—ln(%)+(y_l%] (15)

Myers et al. [35] states that “a good rule of thumb is that lack of fit may be a
problem when deviance/(n-p) exceeds 1.0 by a substantial amount.” Deviance,
degrees of freedom (df), calculated by (n-p), and deviance/df are shown for the two
models of parameters in Table 4. The GLM for Hyg is a good fit. While the
deviance/df for the LM for T, is not substantially more than 1, it is not as good a fit.
This supports previous tests that suggest that the wave model is much better at
predicting Hmo values than T, values. These results also rule out the possibility that
errors in T are due to changing variance.

Table 4: Calculations for deviance, degrees of freedom (df) and Deviance/df for the
GLM for Hpmo and the LM for Te

Deviance df Deviance/df
Hmo 837.6925 16844 0.0497324
Te 23368.86 16855 1.386465

An alternative way to assess the fit of the model is to look at residuals. For a GLM

with gamma errors the residual is defined as 7, = M, whereas for linear modes
H;

riis defined in the usual way.

Residuals are examined to see if there are any systematic trends [29]. In the
statistical programming language R, model checking plots are slightly different for
linear models and for generalized linear models. The plots made to check the GLM
for Hy are shown in Figure 12, and Figure 13 shows the linear model plots for Te.
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The first graph (plot a) shows residuals against predicted values from the model. This
shows that the variance decreases slightly as the value of the predicted value

increases, but overall the fit works well.

The second graph (plot b) is a Normal Q-Q plot. If the errors are normally distributed
then the points will lie on the straight line. For a GLM, it is not expected to stay
precisely on the straight line because it is not based on a normal distribution, but the

points should stay close to it, like they do in this plot.

The third graph (plot c) is a positive-valued version of the first graph [29]. It confirms
that there is no heteroscedasticity, which would show up as a triangular scatter.

The fourth graph (plot d) plots the standardized Pearson residual against the
leverage (a measure of a point’s influence on the model fit) and also shows Cook’s
distance. Cook’s distance “is an attempt to combine leverage and residuals in a
single measure” [29]. The main purpose of plot d is to point out very influential
points. In this case, the model checking plots drew attention to point numbers 1284,

6442, and 6468.
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Figure 12: Model checking plots for the GLM for Ho: a) Residuals against predicted
values from the model; b) Normal Q-Q plot; c) A positive-values version of plot a; d)
Standardized Pearson residual vs. leverage and Cook’s distance
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The plots to check the linear model for T are shown in Figure 13. Plot (a) shows the
residuals against the fitted values. Again, this plot checks for unwanted trends or
tendencies. It appears that the variance decreases with the fitted values, which is
not desirable. This may be because there are extreme outliers so the model tries to
match them, consequently causing the low values to be poorly represented. Plot (b)
again shows the normal Q-Q plot. This shows large deviations from the straight line
at the ends. However, further plots were done using gamma errors and power
errors, but these showed even bigger problems and trends. Plot (c) is a standardized,
positive version of plot a, and again shows a problem in the extreme outliers Plot (d)
shows the standardized residuals against leverage. This model checking draws
attention to point numbers 1284, 2295, and 6445. We note that 1284 is also flagged
for Hy and is worthy of further analysis. It is necessary to look closely at these
flagged points to determine the wave and meteorological conditions corresponding
to these points. Part 2 will do an in-depth analysis. It will be shown that at some
points, such as 1284, the output from the buoy is unreliable at this time record.
Other points reveal systematic problems with the model.
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Figure 13: Model checking plots for the LM for T.: a) Residuals against fitted values
from the model; b) Normal Q-Q plot; c) A positive-values version of plot a; d)
Standardized Pearson residual vs. leverage and Cook’s distance
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3. Discussion and Conclusion

If we were to stop the analysis after the basic statistics were calculated in Section
2.2, the conclusion would have been that overall the fit of the model was adequate.
However, the results from our further analysis showed that

* the Hyo variance is not constant,

* the entire distribution of the model T, is shifted from the corresponding
distribution of the buoy,

* none of the observed differences are due to a timing offset,

* the model does not fit the largest values of Hy or the largest values of T,
well,

* a GLM with gamma error structure is required to fit the model predictions of
Hmo to the buoy data, and calculations based on linear regression will not be
valid, and

* there are problems in the fit of T, that cannot be explained by any sort of
GLM, but the linear model provides a reasonable fit.

Table 5 shows a summary of the methodology used in this study for statistical
analysis of wave parameters. The purpose of Part 1 is to show the importance of
doing a full statistical analysis of the fit of the wave energy model to the buoy
observations.
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Table 5: Methodology for the statistical analysis of the fit of our model (WAM3
CY331) to Waverider buoy measurements

Basic Statistics

Correlation coefficient, r

Bias

Root mean square error, RMSE
Scatter Index, SI

Standard deviation, s

Spatial Analysis
Taylor diagram
Further Statistical Analysis

Time series

Error scatter plots

Kernel density distributions

Tests to compare distributions
Cross-correlation & auto-correlation

Statistical Modelling

Choosing appropriate model
Analyze goodness-of-fit and implications
Akaike’s Information Criterion, AlIC
Deviance
Model checking
Analysis of residuals vs. fitted
Quantile-Quantile, QQ, plots
Positive-valued version of residuals
Finding influential points through leverage and
Cook’s distance

In the statistical analyses done in Section 2.2, it was shown that it is not always best
to use the model grid point that is closest to the buoy to calculate the energy
potential at the site. From the data used, the closest model grid points to the buoy
were the grid points that did not perform as well, probably due to physical
restrictions of the location. None of the localized studies mentioned in the
introduction (Stopa et al., Liberti et al., and van Nieuwkoop et al.) performed any
sort of spatial analysis. Some studies look at model performance locations, such as
Stopa et al., who compare different locations around the Hawaiian Islands to
different buoys. However, it is important for each buoy to look at model results from
several surrounding grid points and identify the best fit.

The overall distributions of the parameters and tests of comparisons for these
distributions were presented in Section 2.3. The Ho distributions are quite similar,
but the T. model distribution seems to be a shifted version of the buoy T,
distribution. None of the localized studies mentioned in the introduction compared
distributions of Ho or any period. Liberti et al. [13] showed a frequency distribution
for direction but not for the other parameters. A constant over-estimation of the
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energy period was observed by examining the distributions. There are multiple
reasons why this might be the case. For example, the wave dissipation issues
especially in nearshore coastal areas have been discussed in [39]. Since energy
period is an important component when assessing the theoretical and technically
recoverable available wave energy at a location, it is important to address this
problem.

It is important to emphasize how influential the error scatter plots were to this
methodology. If regular “model vs. buoy” scatter plots had been employed instead
of these error scatter plots, it may have been concluded that most of the errors
hover around the identity line and that the model performs reasonably. However,
the error plots show heteroscedasticity in the fit of the model Hy,o to buoy Hg and
that the variance was not constant. It was determined that a generalized linear
model with gamma error distribution fits better than a linear model, and because of
this, calculations based on linear regressions, such as the slope of a linear regression
line, would be statistically invalid. For T,, the model checking plots further confirmed
that the predictions of T are unreliable. This will again be discussed further in Part 2.
All three of the localized studies mentioned in the introduction do at least one
scatter plot of model parameters against collocated buoy values. Further, some of
these studies find the slope of the linear regression line on these scatter plots and
make conclusions from that. This is statistically invalid where the error distribution
has not been established to be normal. It is also important to identify the influential
points of a statistical model, such as point number 1284, and to perform a detailed
investigation. Part 2 of this paper discusses the process of such an investigation.

In performing a resource assessment, the most important outcome is the prediction
of power potential for the location. Considering the depth at the buoy, it may be
most appropriate to use an intermediate assumption. However, the standard
procedure within a wave resource assessment is to use a deep water assumption,
and the net wave power per meter crest length (kW/m) can be estimated as

P=049H T, (16)

For this study, over the two years examined the average power based on buoy
measurements was 29.68 kW/m, whereas the average power based on model
calculations was 41.59 kW/m. A less complete investigation would have concluded
that the model proved a good fit despite this difference in the overall power
prediction of 11.91 kW/m. Over-estimating the power is obviously detrimental in
resource assessments because it over-estimates the value of the location, leading to
a very optimistic estimation of levelised cost of energy. In contrast an under-
prediction of wave power could compromise the integrity of the energy converter. It
is necessary to accurately predict high-energy sea states to understand the extreme
cases the wave energy converter must withstand.

Part 2 of this study closely examines the areas of the model which this investigation
revealed to be problematic. It considers the error for different parts of the wave
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spectra in order to determine exactly where the wave model is a poor fit to the
location data.
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Appendix A: Statistical Parameters

The first statistic calculated is the correlation coefficient, r. r’, the coefficient of
determination, is not used because normality of errors and linearity cannot be
assumed [27, 34].When considering the model as an estimator of the buoy, it is
helpful to determine if it is a biased estimator. The average overall difference, or the
bias, is defined by

I
Blas = 20y~ (A1)

where x;is the j™ buoy value, yj is the j™ model value, and n is the number of
observations [34]. A high bias indicates that there is a tendency in the predicted data
to either over- or under-estimate the observed data. Random errors would cancel
out if they were present, but an overall tendency for an error is represented by the
bias.

Root mean square error, RMSE, is widely used in verification sections [35]. In
contrast to bias, RMSE just represents the actual distances between observed and
predicted values, rather than both distance and direction (positive or negative) of
the distance. A low value would indicate that, in general, the collocated observed
and predicted values are close to one another. If distances between corresponding
values were generally large but equally large on either side of observed values, the
bias would be low but RMSE would still be high.

Ris et al. [4] use the scatter index, S/, to “quantify the performance of ocean wave
models” by normalizing the RMSE with respect to the mean of the buoy observations

(¥). Because it is also used in multiple other validation studies [e.g. 14, 36, 12, 13], it
is included here, even though Ris et al. [4] mentions that it appears “to understate
the skill of the model.”

Finally the standard deviations, s, of each dataset are compared [34].
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Appendix B: Taylor Diagrams

For the RMSE, it is necessary to separate “the differences in the patterns from the
differences in the means of the two fields” [22] by separating it into two
components:

E*<E +E” (B.1)
Where
E=y-x (B.2)

Is the difference between the mean of the model dataset and the mean of the buoy
dataset, and

E'= \/%E[(y/ - 5)— (xj - ?_C)]z

J=1 (B-3)

Is the “centred pattern RMS difference” [22]. E’ approaches zero as the model and
buoy become more alike.

A ratio of variances, or sample standard deviations in this case, is also included in the
Taylor diagram. These are represented by s, and s, for the model and buoy,
respectively. The main concept that enables a Taylor diagram to work is the
relationship between these standard deviations, the pattern RMSE, and the
correlation coefficient:

12 2 2
E-=5"+s =25 57

(B.4)

And the law of cosines. These are combined to show the geometric relationship in
Figure B.1.

cos™'r

Sx

Figure B.1: Geometric relationship that enables a Taylor diagram to work
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From this geometric relationship, the Taylor diagram is made by comparing two
fields. One is the reference field, representing the state of the buoy, and the other is
the test field, representing the state of the model. In the Taylor diagram, “the radial
distances from the origin to the points are proportional to the pattern standard
deviations, and the azimuthal positions give the correlation coefficient between the
two fields. The radial lines are labelled by the cosine of the angle made with abscissa,
consistent with Figure B.1. The dashed lines measure the distance from the
reference point and, as a consequence of the relationship shown in Figure B.1,
indicate the [RMSE] (once any overall bias has been removed)” [22].



