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Abstract

The following two decision problems capture the complexity of comparing integers or ratio-
nals that are succinctly represented in product-of-exponentials notation, or equivalently, via
arithmetic circuits using only multiplication & division gates, and integer inputs:

Input instance: four lists of positive integers:

a1, . . . , an ∈ Nn
+; b1, . . . , bn ∈ Nn

+; c1, . . . , cm ∈ Nm
+ ; d1, . . . , dm ∈ Nm

+ ;

where each of the integers is represented in binary.

Problem 1 (equality testing): Decide whether ab11 ab22 . . . abnn = cd1
1 cd2

2 . . . cdm
m .

Problem 2 (inequality testing): Decide whether ab11 ab22 . . . abnn ≥ cd1
1 cd2

2 . . . cdm
m .

Problem 1 is easily decidable in polynomial time using a simple iterative algorithm. Problem
2 is much harder. We observe that the complexity of Problem 2 is intimately connected to deep
conjectures and results in number theory. In particular, if a refined form of the ABC conjecture
formulated by Baker in 1998 holds, or if the older Lang-Waldschmidt conjecture (formulated in
1978) on linear forms in logarithms holds, then Problem 2 is decidable in P-time (in the standard
Turing model of computation). Moreover, it follows from the best available quantitative bounds
on linear forms in logarithms, e.g., by Baker and Wüstholz [4] or Matveev [19], that if m and
n are fixed universal constants then Problem 2 is decidable in P-time (without relying on any
conjectures). This latter fact was observed earlier by Shub ([24]).

We describe one application: P-time maximum probability parsing for arbitrary stochastic
context-free grammars (where ǫ-rules are allowed).

1 Introduction

For many computations involving large integers, or large/small non-zero rationals, it is convenient
to be able to manipulate and compare the numbers without having to compute a standard binary
representation of them. Indeed, in many settings it is intractable to compute such a binary repre-
sentation. This has motivated compact representations such as classic floating point, but floating
point numbers also suffer a loss of information (precision), which one would like to avoid if possible.

There are a number of succinct representations one could consider for such a purpose. One ap-
proach is to represent integers via arithmetic circuits (straight-line programs), with gates {+,−, ∗},
and with integer inputs (represented in binary). However, the problem of deciding whether an in-
teger represented via an arithmetic circuit is ≥ another such integer, referred to as PosSLP [1],
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captures all of polynomial time in the unit-cost arithmetic RAM model of computation. The best
complexity upper bounds we know for PosSLP in the standard Turing model of computation is the
4th level of the counting hierarchy, PPPPPPP

, as established by Allender, Bürgisser, Kjeldgaard-
Pedersen, and Miltersen in [1]. PosSLP subsumes other hard problems whose complexity is open,
like the well-known square-root-sum problem ([11]), and it appears highly unlikely that one could
show that PosSLP is even in NP. On the other hand, as noted in [1], the problem of testing equality
of integers represented by two such arithmetic circuits, EquSLP, is P-time equivalent to polyno-
mial identity testing, and can be decided in coRP. However, it remains open whether EquSLP is in
NP and showing this would already imply hard circuit lower bounds ([13]), so it is likely to be diffi-
cult. On the other hand, there are no hardness results known for PosSLP with respect to standard
complexity classes, beyond P -hardness. In particular, PosSLP is not known to be NP-hard.

Note that if the arithmetic in the computation is confined to only linear operations {+,−} on
registers, and multiplication by constants in the input, then the encoding length of the numbers
is linear in the number of arithmetic operations, so we can represent all the numbers exactly, and
P-time in the Turing model can simulate polynomial time unit-cost linear arithmetic computation.

Now consider another natural restricted class of arithmetic circuits, which turn out to be useful
in a number of settings: arithmetic circuits containing only gates {∗, /}. An essentially equivalent
representation is the following: For a list of rational numbers a = 〈a1, . . . , an〉, and a list of integers
b = 〈b1, . . . , bn〉, both of dimension n, we use ab as a shorthand notation for: ab11 ab22 . . . abnn . We shall
refer to this succinct representation of integers and rationals as product of exponentials (PoE)
representation. PoE representation is easily seen to be equivalent to representation via arithmetic
circuits with integer inputs given in binary and with multiplication and division gates {∗, /}. The
following is shown in the appendix.

Proposition 1.1. There is a simple P-time translation from a given number represented in PoE to
the same number represented as an arithmetic circuit over {∗, /} with integer inputs (represented
in binary). Likewise, there is a simple P-time translation in the other direction.

Consider the problem of deciding whether one rational number, ab, given in PoE representation,
is greater than (or, respectively, equal to) another rational number cd, given in PoE. We remark
that, again, the inequality testing problem basically captures the power of polynomial time in the
unit-cost arithmetic RAM model of computation, where the only arithmetic operations permitted
are {∗, /}.

Input instance: four lists of positive integers:
a1, . . . , an ∈ Nn

+; b1, . . . , bn ∈ Nn
+; c1, . . . , cm ∈ Nm

+ ; d1, . . . , dm ∈ Nm
+ ;

where each of the integers is represented, as usual, in binary.

Problem 1 (equality testing): Decide whether or not ab = cd.

Problem 2 (inequality testing): Decide whether or not ab ≥ cd.

Note that, by rearrangement, these problems are equivalent to the versions allowing bases ai and
cj to be rationals (encoded in binary), and allowing bi and dj to be any integers (in binary).

Let us note that PoE representation is in fact already widely used in practice. Specifically,
because iterated multiplication may make numbers very small or very large, practitioners often
explicitly recommend using a logarithmic transformation to represent numbers such as ab11 . . . abnn
by:

b1 log(a1) + b2 log(a2) + . . .+ bn log(an)

2



This allows multiplications and divisions to be carried out by using only addition on the co-
efficients of the log representations. Note that such “log representations” are basically equivalent
to PoE, as long as the logarithms are only interpreted symbolically. (Of course, one still needs to
be able to compare such sums of logs, and we will return to this shortly.) One setting where log
transformation is recommended in practice is for the analysis of Hidden Markov Models (HMMs)
using the Viterbi algorithm, and for probabilistic parsing. For example, the book Durbin et. al.
[9] (section 3.6) says:

On modern floating point processors we will run into numerical problems when multi-
plying many probabilities in the Viterbi, forward, or backward algorithms. For DNA
for instance, we might want to model genomic sequences of 100 000 bases or more.
Assuming that the product of one emission and one transition probability is 0.1, the
probability of the Viterbi path would then be on the order of 10−100000. Most computers
would behave badly with such numbers........ For the Viterbi algorithm we should always
use the logarithm of all probabilities. Since the log of a product is the sum of the logs, all
the products are turned into sums......... It is more efficient to take the log of all of the
model parameters before running the Viterbi algorithm, to avoid calling the logarithm
function repeatedly during the dynamic programming iterations. ([9], pages 78-79.)

We justify these comments from a complexity-theoretic viewpoint. In fact, we do so in the
more general context of computing a maximum probability parse tree for a given string and given
stochastic context-free grammar (SCFG), which generalizes the Viterbi algorithm for finite-state
HMMs. We will observe that if deep conjectures in number theory hold then Problem 2 can be
solved in polynomial time by employing the PoE (or log) representation, and also that the PoE
representation can be used to obtain P-time algorithms for computing a maximum probability parse
tree for a given string with a given SCFG, and for solving related problems.

We first show Problem 1 is decidable in P-time using an easy iterative algorithm. Problem 2
is much harder. We observe that if the Lang-Waldschmidt conjecture [15] holds, then Problem 2
is decidable in P-time. Likewise, if Baker’s refinement [3] of the ABC conjecture of Masser and
Oesterlè holds, then again it implies Problem 2 is decidable in P-time. The ABC conjecture is
considered one of the central conjectures of modern number theory (see, e.g., [12, 5, 26, 7]).

Furthermore, we observe that the best currently known quantitative bound in Baker’s theory
of linear forms in logarithms, e.g., those due to Baker and Wüstholz [4] or Matveev [18, 19], yield
that when m and n are fixed universal constants, Problem 2 is decidable in polynomial time. We
note that Shub has already observed this fact in [24] (Theorem 6, page 454), namely that for fixed
constants m and n, Problem 2 is decidable in P-time.1 Although Shub stated a correct theorem, and
sketched a proof based on the same ideas, the proof in [24] contains some inaccuracies. In particular,
it mis-states the lower bounds for linear forms in logarithms. In fact, the lower bound quoted in
[24] is false, as we shall explain in a footnote to Proposition 3.7. For this reason, in Proposition
3.7 we provide a proof of this result, first observed by Shub [24], using the best currently available
bounds on linear forms in logarithms ([4, 18, 19]).

It is well known that the ABC conjecture, and related conjectures involving explicit bounds
for linear forms in logarithms, have important applications for effective solvability of various dio-
phantine equations. However, to our knowledge, it has not been observed previously that these

1We thank one of the anonymous referees for bringing Shub’s paper [24] to our attention.
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number-theoretic conjectures are also connected to the polynomial time solvability of basic problems
such as the comparison of succinctly represented numbers.

We give one application to maximum probability parsing for stochastic context-free grammars
(SCFG). Computing the maximum probability (most likely) parse of a given string for a SCFG is
a basic task in statistical natural language processes (NLP) [16]. Until now, it was only known
to be computable in P-time for particular classes of SCFGs, in particular SCFGs in Chomsky
Normal Form, and SCFGs not containing arbitrary ǫ-rules. For general SCFGs, G, the maximum
probability of a parse tree for even a fixed string, w, may be as small as 1/22

|G|
, where |G| is

the encoding size of the SCFG. Thus one cannot express such probabilities in P-time in binary
representation. However, the maximum parse tree probabilities can be expressed concisely in PoE,
and if we can check inequalities on such encodings of rational numbers efficiently, then we can
compute the maximum parse tree probability in P-time.

Specifically, we show that if Baker’s refined ABC conjecture holds, or if the Lang-Waldschmidt
conjecture holds, then given an arbitrary SCFG G, and given an arbitrary string w ∈ Σ∗, there is a
polynomial-time algorithm that: (1) computes a (succinct representation of) a maximum probability
parse tree for the string w and also computes (a succinct representation of) the exact maximum
parse probability pmax

G,w ; and (2) given also a rational probability q given in binary (or in PoE),
decides whether the maximum parse probability of w, pmax

G,w , satisfies pmax
G,w ≥ q; (3) given also

another string w′ ∈ Σ∗, decides whether pmax
G,w ≥ pmax

G,w′ . Furthermore, when the SCFG has a fixed
constant number, m, of distinct probabilities labeling its rules, all of the above problems (1) – (3)
are in P-time (in the Turing model), without assuming any number theoretic conjectures. Finally,
we show that essentially the same algorithm can be used to approximate the maximum parsing
probability and compute (a succinct representation of) an ǫ-optimal parse tree for a string w and
a SCFG G in time polynomial in the size of G,w and log(1/ǫ), without assuming any conjectures.

2 Deciding equality of succinct integers in P-time

We now give a simple iterative P-time algorithm for Problem 1 (equality testing). The algorithm
is in Figure 1. It simply repeatedly computes gi,j = GCD(ai, cj) for pairs ai and cj , and if gi,j > 1,
then it does the appropriate adjustments on the succinct representations. It terminates when
gi,j = 1 for all i, j. The two remaining numbers are 1 if and only if the original numbers were equal.

In more detail, at the start of the iterative algorithm, we initialize four lists of positive integers:
a := 〈a1, . . . , an〉, b := 〈b1, . . . , bn〉 , c := 〈c1, . . . , cm〉, and d := 〈d1, . . . , dm〉. We can assume wlog
that lists a and c do no contain the number 1. For a list g, we use |g| to denote its length. So,
initially, |a| = |b| = n and |c| = |d| = m. Every iteration of the algorithm will maintain the
following invariant: |a| = |b| and |c| = |d|. For a list g, we let [g] = {1, . . . , |g|}. For a list g, and
for i ∈ [g] we use gi to denote the i’th element of the list g. Given two lists of integers, g and f ,

where |g| = |f | = r, we use gf to denote gf11 . . . gfrr .

Proposition 2.1. The algorithm in Figure 1 decides Problem 1, and runs in polynomial time.2

Proof. For the correctness of the algorithm, we first observe that the following invariant is main-
tained: the equality

ab = cd (1)

2It is worth noting that a more careful implementation of this simple algorithm, based on existing “factor refine-
ment” procedures ([2, 8]), can be used to solve Problem 1 very efficiently.

4



Input: 4 lists a, b, c, d, of positive integers, a & c not containing 1, |a| = |b|, & |c| = |d|.

Task: Decide whether or not ab = cd.

while there is some i ∈ [a] and j ∈ [c] such that GCD(ai, cj) > 1 do
Let i ∈ [a] and j ∈ [c] be such that gi,j = GCD(ai, cj) > 1;
Let ai ← ai/gi,j ; Let cj ← cj/gi,j ;
if ai = 1 then

Remove ai from list a, and remove bi from list b
end if
if cj = 1 then

Remove cj from list c, and remove dj from list d
end if
if bi > dj then

Append integer gi,j to the end of list a;
Append integer bi − dj to the end of list b;

else if bi < dj then
Append integer gi,j to the end of list c;
Append integer dj − bi to the end of list d;

end if
end while
if a and c are both the empty list then

return EQUAL
else

return NOT-EQUAL
end if

Figure 1: Simple P-time algorithm for Problem 1
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holds before an iteration of the while loop if and only if it holds after an iteration of the while loop.
To see why this is the case, suppose that GCD(ai, cj) = gi,j > 1, and suppose that an iteration

of the while loop is conducted using this i and j. Then it is clear that the new lists a, b, c, and d
are obtained by simply factoring gi,j out of ai and cj on the left and right side of equation (1), and

then dividing both sides of the equation (1) by g
dj
i,j or by gbii,j, depending, on whether bi ≥ dj , or

dj ≥ bi, respectively. Note that when bi = dj , dividing both sides by gbii,j eliminates this power of
gi,j from both sides, so we do not need to include a power of gi,j on either side. Since factoring out
gi,j and dividing both sides of the equation by a positive value are reversible, we conclude that the
invariant is maintained.

Let us now argue that if the algorithm halts, i.e., if the while loop terminates, then the output
is correct. Indeed, if the while loop terminates this means for every pair of numbers ai and cj in
the lists a and c we have GCD(ai, cj) = 1. Thus we also have GCD(ab, cd) = 1. But in that case if
either ab 6= 1 or cd 6= 1, then ab 6= cd. Thus if the while loop halts the algorithm correctly returns
“EQUAL” or “NOT-EQUAL” depending on whether or not ab = cd for the original input lists.

The only thing left to establish is that the algorithm always halts and runs in polynomial time.
For a list of positive integers a, not containing the number 1, let us call another list a′ of positive

integers a factored subform of a, if there is a mapping φ : [a′] → [a] that maps indices r ∈ [a′] to
indices φ(r) ∈ [a], such that for all i ∈ [a]

(
∏

r∈φ−1(i)

a′r) | ai

In other words, the product of all entries of a′ that map to the entry ai of a should divide ai.
We shall call a′ a non-trivial factored subform of a if the list a′ does not contain any entries

equal to 1 either, and furthermore no permutation of the list a′ is identical to the list a.
Next, let us observe that after each iteration of the While loop, the positive integer lists a and

c must each be non-trivial factored subforms of the respective positive integer lists a and c prior to
that iteration of the while loop. Thus, by induction on the number of iterations, after any number
of iterations of the while loop we must have a and c consisting of non-trivial factored subforms of
the original input lists a and c of positive integers.

But the while loop must therefore terminate, because by the fundamental theorem of arithmetic
(unique prime factorization) there can not exist an unbounded sequence of lists of positive integers

a0, a1, a2, a3, . . .

such that each one does not contain the number 1, and such that for all i ∈ N ai+1 is a non-trivial
factored subform of ai.

Furthermore, for the same reason, the while loop must terminate after a number of iterations
that is polynomial in the encoding size of the original lists a and c. Namely, the number of iterations
can not be greater than the number of prime factors of the integers in the lists a and c.

Furthermore, the encoding size of the lists a b, c, and d, always remains polynomial in the
encoding size of the original input lists. This is so, firstly, because a and c always remain factored
subforms of the original lists, respectively, and furthermore because the maximum value of the
positive integers in lists b and d (which are always the same size as their corresponding lists a and
c), is never more than their maximum value in the original lists b and d, respectively.

It is then clear that each iteration can be carried out in time polynomial in the encoding size
of the original lists, because each iteration of the while loop, when the current lists given by a, b,
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c, and d, requires at most |a| ∗ |c| computations of GCDs on pairs of integers that are no bigger
than the maximum integer in the original lists, and as already established at any iteration the lists
themselves are only polynomially bigger than the original lists.

3 Deciding inequalities between succinct integers

We now consider the much harder Problem 2 (inequality testing). We first recall a deep theo-
rem due to Baker and Wüstholz on explicit quantitative bounds on linear forms in logarithms.3

Let a1, . . . , an be positive integers, none of which are equal to 0 or to 1, let b1, . . . , bn be ar-
bitrary integers not all equal to 0. Let e be the base of the natural logarithm, and define
B := max{|b1|, |b2|, . . . , |bn|, e}. Let h′(ai) = max{log ai, 1}, where log denotes the natural log-
arithm. Let

Λ(a, b) := log(ab) = b1 log a1 + b2 log a2 + . . .+ bn log an

For any list a of positive integers, and list b of integers, both of length n, let

G(a, b) := e−C(n)h′(a1)h′(a2)...h′(an) logB

where C(n) := 18(n + 1)!nn+132n+2 log(2n).

Theorem 3.1 ((Baker-Wüstholz, 1993 [4])). For any list a of positive integers and any list b of
non-zero integers4, where both lists have the same length n, if Λ(a, b) 6= 0, then

|Λ(a, b)| ≥ G(a, b).

A lower bound similar to Baker-Wüstholz’s was obtained by Waldschmidt [25]. A somewhat
improved bound was obtained more recently by Matveev [18, 19], who showed |Λ(a, b)| ≥ H(a, b),
where H(a, b) := e−C′(n)h′(a1)h′(a2)...h′(an) logB and C ′(n) := 2.9(2e)2n+6(n+2)9/2. (See Nesterenko’s
presentation [21].) The improved bound by Matveev does not have any stronger consequences for
our complexity theoretic purposes, beyond that of Theorem 3.1.

These results constitute the current state of the art: they are the best known lower bounds
for (homogeneous) linear forms in logarithms of rational numbers (and for more general numbers).
Next we state an older conjecture of Lang and Waldschmidt, which would significantly strengthen
both Theorem 3.1 and Matveev’s improved bound:

3The general theorem regards logarithms of algebraic numbers. We will state it in the special case of logarithms
of standard integers, which suffices for our purposes.

4 Although this will be obvious to experts, let us explain why this theorem is indeed a specialization (to positive
integer ai’s) of Baker-Wüstholz’s. The Theorem in [4] allows ai’s to be algebraic numbers, and log ai is defined
to be any determination of the log. Clearly, when ai is a rational positive integer, log ai is uniquely determined.
Furthermore, if d is the degree of the field extension Q(a1, . . . , an) over Q, then in [4], the “height” function h′(ai)
is defined instead to be h′(ai) = max{h(ai), (1/d)| log ai|, 1/d}, where h(ai) is the absolute logarithmic Weil height
of ai, which we will discuss next. First note that in the setting of positive integers, ai, clearly d = 1, and thus
h′(ai) = max{h(ai), log ai, 1}. Now, one way to define the absolute logarithmic Weil height h(ai) (see [23]) is this: let
p(x) ∈ Z[x] be the minimal polynomial for the algebraic number ai, suppose p(x) has degree d, let f0 be the leading
coefficient of p(x), and let α1, . . . , αd be the complex roots of d (with repetition). Then

h(ai) = log((|f0|

d∏

i=1

max(1, |αi|))
1/d)

Now, in the simple case where ai is a positive integer, we see immediately that its minimal polynomial is p(x) ≡ x−ai,
and thus that h(ai) = log ai. Thus, for positive integers ai, indeed h′(ai) = max{log ai, 1}, as given.
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Conjecture 3.2 (Lang-Waldschmidt, 1978 (cf. [15, 26])). For every ǫ > 0, there is a C(ǫ) > 0,
such that for any list of positive integers a and any list of non-zero integers b, where both lists a
and b are of length n, if Λ(a, b) 6= 0, then:

|Λ(a, b)| ≥
C(ǫ)nB

(|b1| . . . |bn||a1| . . . |an|)1+ǫ
(2)

We next recall a central conjecture in modern number theory, namely the ABC conjecture (due
to Masser and Oesterlè), and a more recent refinement of the ABC conjecture, given by Baker. See,
e.g., [5, 12], for background on the conjecture. For any integer m, let N(m) := (

∏
p|m p), denote

the product of all distinct prime numbers p that divide m (i.e., without repetition of any prime p).

Conjecture 3.3 (ABC conjecture [17, 22]). For every ǫ > 0, there is a K(ǫ) > 0, such that for
any positive integers a, b, c, such that a+ b = c, and such that a, b, c are relatively prime (i.e., such
that GCD(a, b) = 1), we have:

c ≤ K(ǫ)N(abc)1+ǫ.

For any positive integer m, let ω(m) denote the number of distinct prime numbers that divide
m. In [3], Baker put forward several refinements of the ABC conjecture which make the “constants”
more explicit. Among them was the following:

Conjecture 3.4 (Baker’s refinement of the ABC conjecture [3]). There are absolute constants,
K,K ′ > 0, such that for any integers a, b, c that are relatively prime, and such that a+ b+ c = 0,
for any ǫ > 0, we have5:

max(|a|, |b|, |c|) ≤ K ′ǫ−Kω(ab)N(abc)1+ǫ.

Baker shows in [3] that Conjecture 3.4 implies the following (slightly weakened) variant of the
Lang-Waldschmidt conjecture:

Consequence of Conjecture 3.4 (see [3]): There is some absolute constant K ′′ such that for
any list of positive integers a and any list of non-zero integers b, where both lists a and b are of
length n, if Λ(a, b) 6= 0, then

|Λ(a, b)| ≥ e−K ′′(log a1+log a2+...+log an)(log maxi |bi|) (3)

In fact, Baker further shows in [3] that a more general (p-adic) version of the bound (3) implies
the ABC conjecture. Thus, as noted in [12], the ABC conjecture and such improved quantitative
bounds on linear forms in logarithms are intimately related questions. It is perhaps worth mention-
ing that in [6] Baker expresses doubt about the stronger Lang-Waldschmidt Conjecture. However,
he then states a conjecture implying bound (3), which is strong enough for our purposes, and he
notes that it originates from his refined ABC conjecture in [3].

Let us now explore the intimate connection between Problem 2, Theorems 3.1, and Conjectures
3.2, 3.3, and 3.4. Suppose we want to decide whether ab ≥ cd. Clearly, we can first check for
equality (in P-time). If equality does not hold, then our goal is to decide ab > cd, knowing ab 6= cd.
Equivalently, our goal is to decide whether ab/cd > 1, given that ab/cd 6= 1. Equivalently, we want
to decide whether log(abc−d) > 0, given that log(abc−d) 6= 0.

5It is not obvious that Conjecture 3.4 is a refinement of (i.e., implies) the standard ABC Conjecture 3.3, but as
pointed out in [3] this is the case, the key reason being that for integers n > 1, ω(n) ∈ O(log(n)/ log(log(n))). Indeed,

a little calculation shows that Conjecture 3.4 implies the ABC conjecture with K(ǫ) ∈ 22
O(1/ǫ)

.
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So, Problem 2 is P-time equivalent to the following problem: given positive integers a =
〈a1, . . . , an〉, and integers b = 〈b1, . . . , bn〉, both encoded in binary, decide whether Λ(a, b) > 0,
with the promise that Λ(a, b) 6= 0.

We can compute an approximation of the logarithmic form Λ(a, b), to within any given desired
additive error, ǫ > 0, in time polynomial in the encoding size of a and b, and in log(1/ǫ). To see
this, we first observe the well known fact that logarithms of integers can be approximated in P-time
(in the standard Turing model). This is of course classic. Nevertheless we provide a proof, both
for completeness and because most treatments of the numerical computation of logarithms only
consider arithmetic complexity, rather than complexity in the Turing model. Recall we use log(x)
to denote the natural logarithm of x, and use log2(x) to denote the log base 2.

Proposition 3.5. There is an algorithm that, given a positive integer a, encoded in binary, and
given a positive integer j, encoded in unary, computes a rational value va, such that

| log(a)− va| < 2−j

The algorithm runs in time polynomial in j and log2(a) (in the Turing model).

Proposition 3.5 is proved in the appendix. We can use it to easily prove:

Proposition 3.6. Given as input positive integers a = 〈a1, . . . , an〉 and integers b = 〈b1, . . . , bn〉,
both encoded in binary, and given a positive integer j (given in unary), there is an algorithm that
runs in P-time (i.e., in time polynomial in j and in the encoding size of lists a and b) and outputs
rational value va,b, such that |Λ(a, b) − va,b| <

1
2j
.

Proof. Given a = 〈a1, . . . , an〉, and given b = 〈b1, . . . , bn〉, for each i = 1, . . . , n we will first compute
an approximation vai of log(ai) such that

| log(ai)− vai | <
1

2j+log2(|bi|)+log2(n)

By Proposition 3.5 we can compute such a va in time polynomial in the encoding size of the
input, a and b, and in j.

Then we let va,b :=
∑n

i=1 bivai . Finally we observe that this yields:

| log(Λ(a, b)) − va,b| = |
n∑

i=1

(bi log(ai))− bivai |

≤
n∑

i=1

|bi|| log(ai)− vai |

≤
n∑

i=1

|bi|2
− log |bi|2−j−log2(n)

=

n∑

i=1

2−j/n = 2−j

Thus the rational number va,b, which can be computed in time polynomial in j, and in the
encoding size of a and b, is the desired additive approximation of Λ(a, b).
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Proposition 3.7.

1. If the ABC conjecture, as refined by Baker (Conjecture 3.4), holds, or if the Lang-Waldschmidt
conjecture (Conjecture 3.2) holds, then Problem 2 is decidable in P-time.

2. (cf. Shub [24], Theorem 6) When m and n are fixed constants, Problem 2 is (unconditionally)
decidable in P-time.6

Proof. To prove both (1.) and (2.) we simply compute a sufficiently good additive approximation
to Λ(a, b), using Proposition 3.6, and we then apply the ABC conjecture (Conjecture 3.4) and its
consequence (3) or the Lang-Waldschmidt Conjecture (Conjecture 3.2). Likewise, to obtain (2.),
after approximating Λ(a, b) we apply the Baker-Wüstholz Theorem (Theorem 3.1).

In more detail, we start by proving (2.): we are given lists a and b of length n and lists c
and d of length m, with m and n fixed constants. Let A := max{maxi ai,maxj cj}. Let B :=
max{|b1|, . . . , |bn|, |d1|, . . . , |dm|, e}. First we check in P-time if ab = cd. If this is the case, then we
are done. So assume that ab 6= cd. If abc−d 6= 1, i.e., log(abc−d) 6= 0, then by Theorem 3.1 we have

| log(abc−d)| ≥ 2−K(
∏n

i=1 log(ai))(
∏m

j=1 log(cj)) logB ≥ 2−K(logA)m+n logB (4)

for some fixed constant K (that depends on n and m). But by Proposition 3.6, when m and n are
fixed constants, we can compute in time polynomial in the encoding size of a, b, c and d, a rational
value va,b,c,d such that

| log(abc−d)− va,b,c,d| < 2−K(logA)m+n logB . (5)

Now suppose va,b,c,d ≥ 0. Then if log(abc−d) ≤ 0, we would have | log(abc−d) − va,b,c,d| = va,b,c,d +

| log(abc−d)| ≥ 2−K(logA)m+n logB, the last inequality following by (4). However, this contradicts the
inequality (5) just given. Thus if va,b,c,d ≥ 0, then it follows that log(abc−d) > 0, i.e., that ab > cd.

Similarly, suppose va,b,c,d < 0. Then if log(abc−d) ≥ 0, we would have | log(abc−d) − va,b,c,d| =

|va,b,c,d|+ | log(a
bc−d)| ≥ 2−K(logA)m+n logB , by inequality (4). However, again, this contradicts (5).

Thus if va,b,c,d < 0 then log(abc−d) < 0, i.e., ab < cd.

To prove (1.), e.g., in the case where we use the consequences of Baker’s refined ABC conjecture
(Conjecture 3.4, and in particular the bound (3)), exactly the same argument goes through if we
instead compute an approximation va,b,c,d such that

| log(abc−d)− va,b,c,d| < 2−K ′′′((
∑n

i=1 log(ai))+(
∑m

j=1 log(cj)))(logB)

6As mentioned in the introduction, Shub (Theorem 6 in [24], page 454) already observed part (2.). Shub sketched
a proof based on precisely the same ideas as ours, but the sketched proof in [24] mis-states the known lower bounds
on linear forms in logarithms. In fact, the lower bound quoted in [24] is provably false, and violates Dirichlet’s ap-
proximation theorem. Namely, [24] states that for any positive integers a1, . . . , am, and non-zero integers n1, . . . , nm,
if
∑m

i=1 ni log(ai) 6= 0, then |
∑m

i=1 ni log(ai)| > J(ā) > 0, where J(ā) = 2−K·m·(log(maxi ai))
m·log log(maxi ai), for some

fixed constant K. Note that this stated lower bound J(ā) depends only on ā = (a1, . . . , am), and is independent of
the coefficients ni. However, this is false already for linear forms in two logarithms. Consider, e.g., log(3) and log(5),
and let α := log(3)/ log(5). By Dirichlet’s approximation theorem, for any real number α, and for all ǫ > 0, there
is a rational number p/q, such that |α − p/q| < ǫ/q, and thus that |q log(3) − p log(5)| < ǫ · log(5). Thus note that
we can choose ǫ = ǫ′/ log(5) > 0, for an arbitrary ǫ′ > 0. Thus, for all ǫ′ > 0, there exist integers q and p such that
|q log(3)− p log(5)| < ǫ′. This contradicts the lower bound on linear forms in logarithms quoted by Shub in [24]. For
this reason, we provide a proof here, using the best currently known lower bounds.
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which again, we know we can do in time polynomial in the encoding size of a, b, c, and d. Sim-
ilarly, exactly the same argument goes through for proving (1.) based on the Lang-Waldschmidt
conjecture.

4 Maximum probability parsing for SCFGs

We now describe an application to the problem of computing a maximum probability parse tree for
a given string on a given arbitrary stochastic context-free grammar (SCFG). For particular classes
of grammars (e.g., those in Chomsky Normal Form) there are well known dynamic programming
algorithms for this (based on the CKY parsing algorithm), which generalize the well-known Viterbi
algorithm for HMMs [16]. For arbitrary SCFGs with ǫ-rules, the problem is more involved, and
there do not exist good complexity bounds in the literature.

Definitions and Background for SCFGs. An SCFG G = (V,Σ, R, S, p) consists of a finite set
V of nonterminals, a start nonterminal S ∈ V , a finite set Σ of alphabet (terminal) symbols, and a
finite list of rules, R ⊂ V ×(V ∪Σ)∗, where each rule r ∈ R is a pair (A, γ), which we usually denote
by A→ γ, where A ∈ V and γ ∈ (V ∪Σ)∗. Finally p : R→ R+ maps each rule r ∈ R to a positive
probability, p(r) > 0. For computational purposes we assume as usual that the rule probabilities
are rational numbers, given as the ratios of two integers written in binary. We often denote a rule

r = (A→ γ) together with its probability by writing A
p(r)
−→ γ. Note that we allow γ ∈ (V ∪Σ)∗ to

possibly be the empty string, denoted by ǫ. A rule of the form A→ǫ is called an ǫ-rule. For a rule
r = (A → γ), we let left(r) := A and right(r) := γ. We let RA = {r ∈ R | left(r) = A}. For
A ∈ V , let p(A) =

∑
r∈RA

p(r). A SCFG must satisfy that ∀A ∈ V , p(A) ≤ 1. An SCFG is called
proper if ∀A ∈ V, p(A) = 1.

For a SCFG, G, strings α, β ∈ (V ∪ Σ)∗, and π = r1 . . . rk ∈ R∗, we write α
π
⇒ β if the

leftmost derivation starting from α, and applying the sequence π of rules, derives β. We define the
probability p(α

π
⇒ β) of the derivation to be p(α

π
⇒ β) =

∏k
i=1 p(rk) if α

π
⇒ β, and let p(α

π
⇒ β) = 0

otherwise. If A
π
⇒ w for A ∈ V and w ∈ Σ∗, we say that π is a complete derivation from A and its

yield is y(π) = w. There is a natural one-to-one correspondence between the complete (leftmost)
derivations of w starting at A and the parse trees of w rooted at A, and this correspondence
preserves probabilities. Recall that a parse tree is a rooted, ordered finite tree, where every leaf v is
labeled with a symbol l(v) ∈ Σ∪{ǫ}, every internal (non-leaf) node v is labeled with a nonterminal
l(v) ∈ V and has an associated rule r(v) ∈ Rl(v) whose right-hand side is the concatenation of the
labels of the children of v. The yield of the parse tree is the concatenation of the labels of the
leaves. The probability of the parse tree is the product of the probabilities of the rules associated
with its internal nodes.

For a non-terminal A and a string w, the maximum parse tree probability for w, starting at
A, is defined to be pmax

A,w = maxπ∈R∗ p(A
π
⇒ w). The total probability of generating w starting

at A is defined by pA,w =
∑

π∈R∗ p(A
π
⇒ w). Given an SCFG, G = (V,Σ, R, S, p), and given a

string w ∈ Σ∗, the goal of maximum probability parsing is to compute pmax
S,w and also to compute (a

representation of) a maximum probability parse tree, i.e., argmaxπ∈R∗ p(S
π
⇒ w). In the following

we will also use pmax
G,w to denote the maximum probability pmax

S,w of a parse tree for w from the start
nonterminal S of G.

For general SCFGs, G, that have ǫ-rules, the maximum probability parse tree of a string w (even
just the string w = ǫ) may have exponential size in the size of the grammar, and the corresponding
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maximum probability may need an exponential number of bits when written as the ratio of two
integers. The probability can be specified more compactly in PoE notation. For any SCFG G
and string w, polynomial size (in |G| and |w|) always suffices to represent the maximum parsing
probability in PoE notation: the bases of the expression are (a subset of) the given rule probabilities
of G and the exponents are the number of occurrences of the rules in the optimal parse tree; the
numbers of occurrences are at most exponential and thus can be written in a polynomial number
of bits.

The optimal parse tree can be specified more compactly using a DAG representation that
identifies isomorphic subtrees. Formally, a parse DAG is a rooted, ordered DAG D (i.e. the DAG
has a single source, and the children of every node are ordered), where every sink (leaf) node is
labeled with a symbol l(v) ∈ Σ ∪ {ǫ}, every other (non-sink) node v is labeled with a nonterminal
l(v) ∈ V and has an associated rule r(v) ∈ Rl(v) whose right-hand side is the concatenation of
the labels of the children of v. For every node v we can define inductively in a bottom-up order
the yield and probability of the subDAG D[v] rooted at v: If v is a leaf then the yield is l(v)
and the probability is 1. If v is an internal node, then the yield of D[v] is the concatenation of
the yields of the children of v, and the probability of D[v] is the product of the probability of the
rule r(v) and the probabilities of the subDAGs rooted at the children of v. The parse DAG D
corresponds to a parse tree T obtained by replicating nodes so that every node other than the root
has a unique parent; the yield and probability of the DAG are equal to the yield and probability
of the corresponding tree. As we shall see, for every SCFG G and string w in the language L(G)
of G (i.e., that has non-zero probability), there is a maximum probability parse DAG for w of size
polynomial in |G| and |w|.7 Our goal is to construct such a maximum probability parse DAG.

We will say that an SCFG, G = (V,Σ, R, S, p) is in Simple Normal Form (SNF) if every non-
terminal A ∈ V belongs to one of the following three types:

1. type L: every rule r ∈ RA, has the form A
p(r)
−−→ B, for some B ∈ V .

2. type Q: there is a single rule in RA: A
1
−→ BC, for some B,C ∈ V .

3. type T: there is a single rule in RA: either A
1
−→ ǫ, or A

1
−→ a for some a ∈ Σ.

An SCFG is said to be in Chomsky Normal Form (CNF) if it satisfies the following conditions:

• The grammar does not contain any ǫ-rule except possibly for a rule S
p
→ ǫ associated with

the start nonterminal S; if it does contain such a rule, then S does not appear on the right
hand side of any rule in the grammar.

• Every rule, other than S
p
→ ǫ, is either of the form A

p
→ BC, or of the form A

p
→ a where A,

B, and C are nonterminals in V and a ∈ Σ is a terminal symbol.

We shall show below that every SCFG can be converted efficiently in P-time, to an equivalent
SCFG that is in SNF form, where the equivalence also entails a probability-preserving bijection
between parse trees of strings in the two grammars.

Unlike SNF form, conversion of even an ordinary context-free grammar to CNF form does not
in general preserve a bijection between parse trees of the original grammar and those of the CNF

7The succinctness of the DAG representation is essential only for derivations of ǫ from nonterminals. In particular,
for every SCFG G and w ∈ L(G), there is a maximum probability parse DAG for w, of size polynomial in |G| and
|w|, which consists of a tree, some of whose leaves are replaced by DAGs with yield ǫ.
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grammar. This is so even when we ignore the additional issue of needing to preserve the probability
of corresponding (e.g., maximum probability) parse trees for a given string, in the setting of SCFGs.

Furthermore, as shown in [10], it is not possible in general to convert an arbitrary SCFG to
one in CNF form which preserves even just the probabilities of generating every terminal string,
without having to introduce irrational rule probabilities even when all rule probabilities of the
original SCFG were rational. See [10] for a considerably involved P-time algorithm that converts
an SCFG to an approximately equivalent CNF form SCFG. Here “approximately equivalent” only
refers to preservation of the probability of generating strings up to a given length, and not to
preservation of a correspondence between parse trees (which is not doable in general), and thus
such a conversion is not suitable when our goal is to compute, e.g., a maximum probability parse
tree for a given string on a given SCFG.

Lemma 4.1. (Lemma B.5 of [10]) Any SCFG, G = (V,Σ, S,R, p), with rational rule probabilities,
can be converted in linear time to a SCFG, G′ = (V ′,Σ, S,R′, p′), in SNF form, such that V ⊆ V ′,
such that G′ has the same set of rational values as rule probabilities (possibly with some additional
rules having probability 1), and such that for every nonterminal A ∈ V and string w ∈ Σ∗, there
is a probability preserving bijection between parse trees of w rooted at A in G and parse trees of w
rooted at A in G′. Moreover, given a parse tree for w rooted at A in G we can easily recover the
corresponding parse tree in G′, and vice versa.

The proof is directly analogous to related proofs in [10], and simply involves adding new auxiliary
nonterminals and new auxiliary rules, each having probability 1, to suitably “abbreviate” the
sequences of symbols, γ, that appear on the right hand side (RHS) of rules A

p
→ γ, whenever

|γ| ≥ 3. We do this repeatedly until for all such RHSs, γ, we have |γ| ≤ 2. To obtain the normal
form, we may then also need to introduce nonterminals that generate a single terminal symbol with
probability 1. The resulting SCFG is guaranteed to be at most polynomially larger (in fact, only
linearly larger) if we are careful.

We give an efficient algorithm operating in the unit-cost arithmetic RAM model with only multi-
plication ({∗}) operations and comparisons permitted, for computing the maximum likelihood parse
tree of a given string.

Theorem 4.2. Given any SCFG, G, in SNF form, with rational rule probabilities,8 given a string
w ∈ Σ∗, there is an algorithm that computes the maximum parse tree probability pmax

G,w , and if
pmax
G,w > 0, then it also computes a succinct DAG representation of a maximum probability parse

tree, tmax
w , for w.

The algorithm runs in polynomial time in the unit-cost arithmetic RAM model of computation
with only multiplication operations (and comparisons) allowed. And thus, it is P-time Turing
reducible to Problem 2: inequality comparison of integers in succinct PoE representation.

Proof. Given the SCFG, G, we first compute, for every non-terminal A, the maximum probability
pmax
A,ǫ of any finite parse tree that starts at nonterminal A and generates the empty string ǫ.

We do this using a variant of Dijkstra’s shortest path algorithm, due to Knuth [14], which works
not on finite graphs but on weighted context-free grammars, for generating a parse tree with smallest
sum total weight (as well as other classes of weight functions). See the survey on probabilistic
parsing by Nederhof and Satta [20] (their Figure 5) where they nicely describe Knuth’s algorithm

8We can even allow irrational rule probabilities, since for this we assume a unit-cost RAM model of computation.
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applied to the specific problem of computing, for any given SCFG, the maximum probability of
any finite parse tree. We follow Nederhof and Satta’s description ([20]).

Given the original SCFG, G, and given a nonterminal A, if we are interested in computing pmax
A,ǫ ,

we first remove from G all rules of the form B → γ, for any nonterminal B, and string γ where γ
contains at least one terminal symbol σ ∈ Σ in it, because such rules can’t possibly help us generate
the empty string ǫ.

Let us call the resulting SCFG after these removals G′.9

Every finite parse tree of the remaining SCFG, G′, must generate the empty string, because no
other terminal symbols are left. Moreover, there is a one-to-one probability preserving correspon-
dence between parse trees of G generating ǫ and parse trees of G′, starting at any nonterminal A
in the two SCFGs, respectively.

Therefore, computing pmax
A,ǫ is equivalent to computing the maximum probability of any finite

parse tree starting at A in G′. Let us denote this probability by pAG′,max.
Knuth’s variant of Dijkstra’s algorithm is described in Figure 2 which is taken from [20] (their

Figure 5).10 It computes pBG′,max for every nonterminal B of a given SCFG G′, until it has computed

pAG′,max, or else discovered that pAG′,max = 0. It does so by iteratively finding a non-terminal B for

which pBG′,max has not yet been computed, and such that, among all such nonterminals, B gives rise
to the maximum product probability of a rule B → γ times the maximum parse tree probabilities
pB

′

G′,max for all nonterminal occurrences B′ in γ.
It is not difficult to check that this algorithm works correctly, for the same reason that Dijkstra’s

algorithm works correctly. It computes pAG′,max = pmax
A,ǫ and furthermore also computes a DAG

representation (straight-line program representation), of a maximum probability parse tree tAG,max,ǫ

starting at A, for every nonterminal A of both G′ and G. (Note that this algorithm does not
require the SCFG G to be in SNF form. We will exploit SNF form only later, in the final dynamic
programming step of the algorithm.)

Note, furthermore, that the algorithm requires at most a polynomial number of arithmetic
operations, specifically, it requires multiplications only (and this fact will be important for us later),
as well as comparison operations (for allowing us to take the maximum over a finite set of values).

Thus, the algorithm clearly runs in polynomial time in the unit-cost arithmetic RAM model of

9Some non-terminals Ai in G′ may now not have a set of rules Ri associated with them whose probabilities
sum to 1, because we have removed some rules. This causes no problem in our computations: we are interested in
probabilities of parse trees that don’t involve the removed rules, and these remain the same as in G.

10 We note, for clarity, that “Dijkstra’s algorithm” is usually viewed as a single-source shortest path algorithm on a
edge-weighted directed graph, i.e., an algorithm that finds a path from a given source s to targets t which minimizes
the sum of the non-negative edge weights along the path. And Knuth’s variant can also be viewed as computing the
minimum sum total weight of all rules in a finite parse tree starting from a given non-terminal. However, a well-known
and straight-forward transformation shows that Dijkstra’s algorithm (and Knuth’s algorithm) can also be used to
compute a maximum probability path from a source s to a target t (respectively, a maximum probability parse tree
starting at a given non-terminal). Namely, maximizing the product of probabilities labeling edges along a path from
s to t is equivalent to minimizing the length of a path from s to t, when every edge having probability p > 0 in the
original graph is assigned the non-negative weight − log p in the transformed graph. And the same transformation
also works for Knuth’s variant of Dijkstra’s algorithm for weighted CFGs, given in Figure 2. For establishing the
polynomial running time of these algorithm in the unit-cost (exact) arithmetic model of computation, it is convenient
to view Knuth’s (and Dijkstra’s) algorithm in their multiplicative form, because this avoids the need to consider
approximations of − log p, for given rational rule probabilities p. However, when we operate in the standard Turing
model of computation, as in the proof of Corollary 4.4 for approximating in P-time the maximum probability of a parse
tree, we indeed use the log-transformed (minimization) variants of these same algorithms, by first approximating the
non-negative edge weights − log p.

14



D := Σ ∪ {ǫ};
Initialize: pAG′,max := 0, for every nonterminal A;
Define paG′,max := 1 for all a ∈ D.
while (F := {B | B 6∈ D ∧ ∃r = (B → X1 . . . Xm) where X1, . . . ,Xm ∈ D} 6= ∅) do

for all B ∈ F do
q(B) := max{r=(B→X1...Xk)|X1,...,Xk∈D} p(r)p

X1
G′,max . . . p

Xk
G′,max

m(B) := argmax{r=(B→X1...Xk)|X1,...,Xk∈D} p(r)p
X1
G′,max . . . p

Xk
G′,max.

end for
Let C := argmaxC∈F q(C);
pCG′,max := q(C);
D := D ∪ {C};
tCG′,max := m(C);

(where m(C) only describes the root rule of tree tCG′,max, and tCG′,max can thus be
viewed as being encoded succinctly as a straight-line program, i.e., a DAG.)

end while
For every nonterminal A: output pAG′,max, and if pAG′,max > 0 then also output tAG′,max;

Figure 2: Knuth’s variant of Dijkstra’s algorithm, for computing a globally maximum probability
parse tree starting from every nonterminal A (see Nederhof & Satta [20]).

computation.
However, note that the probabilities pmax

A,ǫ can clearly be extremely small positive numbers in

the worst case (as small as 1/22
|G|

), and thus we can not encode them in standard binary notation
in polynomial size. However, since only multiplications are being used over a set of input rule
probabilities, p(r), we can encode these probabilities succinctly in PoE, by specifying (in binary)
the non-negative integer power of each p(r). We can compute these numbers with the same number
of arithmetic operations over PoE notation, as long as we can compare PoE numbers efficiently.

Having computed pmax
A,ǫ for every nonterminal A of G, we next want to use these quantities to

compute pmax
A,w for an arbitrary string w ∈ Σ∗.

In the next step, we will use another application of Dijkstra’s algorithm, this time on a finite
graph, to compute, for every pair of nonterminals A,B, the maximum probability, pAmax,B, that
a derivation of G starting at nonterminal A eventually yields the single nonterminal symbol B
as its yield. We do this as follows: construct an edge-labeled directed graph, H = (V,E), with
edges labeled by probabilities, with the nonterminals V of G as its nodes, and such that, for each

rule A
p
→ B, we have the corresponding edge (A, p,B) ∈ E. For each rule A

p(r)
→ BC such that

pmax
C,ǫ > 0, we place the edge (A, p′, B) ∈ E, where p′ = p(r) ∗ pmax

C,ǫ . Similarly if pmax
B,ǫ > 0, then we

put (A, p′, C) ∈ E where p′ = p(r) ∗ pmax
B,ǫ . For every pair of nodes A,B, if there are multiple edges

(A, p,B) and (A, p′, B) in E, we only keep one edge with the maximum probability.
We then run Dijkstra’s algorithm from every node A to compute the maximum probability

path from A to every other node B in H, and we let pAmax,B denote the product of the probabilities
along that path. Note that in this case again, Dijkstra’s algorithm only requires polynomially
many multiplication operations (no additions) and comparisons, and thus runs in P-time in the
unit-cost RAM model of computation, whatever the encoding of the probabilities labeling H is.
While running Dijkstra’s algorithm we can also retain the maximum probability paths themselves,
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Initialization:
for all nonterminals A ∈ V and i ∈ {1, . . . , n} do

qAmax,i,1 := max
r=(A

p(r)
→ wi)

p(r);

end for
for all nonterminals A ∈ V , and i ∈ {1, . . . , n} do

pAmax,i,1 := maxB∈V pAmax,B · q
B
max,i,1;

end for
Main Loop:
for j := 2, . . . , n do

for all nonterminals A ∈ V and i ∈ {1, . . . , n} do
if (i+ j − 1 ≤ n) then

qAmax,i,j = max{m∈{1,...,j−1} & rule r=(A→BC)} p(r) · p
B
max,i,m · p

C
max,i+m,j−m

end if
end for
for all nonterminals A ∈ V and i ∈ {1, . . . , n} do

if (i+ j − 1 ≤ n) then
pAmax,i,j = maxB∈V pAmax,B · q

B
max,i,j

end if
end for

end for

Figure 3: Dynamic program for computing maximum probability parse of given string.

and combine them with the already computed maximum probability parse trees tBmax,ǫ encountered
along the path, in order to compute a DAG representation of a maximum probability parse tree
tmax
A,B in G with root A and with “yield” B. The following claim is not difficult to prove:

Claim: This algorithm correctly computes the maximum probability pAmax,B of a parse tree in G
with root A and yield B, and also computes a succinct DAG representation tmax

A,B of such a parse
tree.

We are finally ready to iteratively compute the probabilities pmax
A,w for an arbitrary string w ∈ Σ+.

Let w = w1 . . . wn be the given string, with wi ∈ Σ. For i ∈ {1, . . . , n}, and j ∈ {1, . . . , n−i+1}, let
us define pAmax,i,j to be the maximum probability of any parse tree rooted in A which generates the

string wi . . . wi+j−1. We shall now see how to compute these pAmax,i,j’s via dynamic programming.

Recall that we are assuming that G is in SNF form. For j = 1, let qAmax,i,1 := max
r=(A

p(r)
→ wi)

p(r).

In other words, qAmax,i,1 is simply the maximum probability of any rule associated with A that

immediately generates the terminal symbol wi. By default, if there is no such rule then qAmax,i,1 := 0.

For j > 1, let qAmax,i,j denote the maximum probability of a parse tree rooted in A which generates
the string wi . . . wi+j−1, and furthermore where the rule used at the root of the parse tree is of the
form A→ BC, where the yield of both the children B and C are not ǫ.

Figure 3 describes a dynamic programming algorithm for computing both pAmax,i,j’s and qAmax,i,j’s
for all i and j, based on mutual recurrence relations. The algorithm assumes that for all nonter-
minals A and B the values pAmax,ǫ and pAmax,B have already been computed, as described in the
previous steps.

It is not difficult to show that the algorithm is correct. Note that pAmax,1,n = pAmax,w, and thus
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the algorithm computes the maximum probability of a parse tree for a string w.
Note furthermore that the algorithm runs in polynomially many steps, only requiring unit-cost

multiplication operations and comparison operations. Furthermore, we can easily augment the
algorithm so that, in addition to just computing pAmax,w it also computes a DAG (a straight-line

program) representation of a maximum probability parse tree tAmax,w for w rooted at A, while still
requiring only polynomially many operations in total. This completes the proof.

It is worth mentioning that one could alternatively use Knuth’s algorithm in a slightly different
way in order to compute the maximum probability pmax

G,w of a parse tree for a string w, in polynomial
time in the unit-cost model. Namely, we can view the string w, where |w| = n as being described by
the obvious “linear” deterministic finite automaton, Dw, with n+1 states, start state s0, and final
state sn, such that Dw accepts just the single string w, i.e., L(Dw) = {w}. Then, given the SCFG,
G, which we can assume wlog is already in SNF form, and given the DFA, Dw, we can use a standard
“product/intersection” construction (see, e.g., [20]) to form a new weighted CFG, G′, which has
size polynomial in G and Dw. The non-terminals of G′ are given by triples of the form (s,A, s′),
where s and s′ are states of Dw, and A is a nonterminal of G. The rules of G′ are formed as follows:
for every rule A

p
→ BC in G, we add the following rules to G′: (s,A, s′)

p
→ (s,B, s′′)(s′′, C, s′), for

every state s′′ of Dw. For every rule of the form A
p
→ B, we add the rule (s,A, s′)

p
→ (s,B, s′).

For every rule of the form A
p
→ a for some terminal symbol a, we add the rule (s,A, s′)

p
→ a to

G′ if and only if there is a transition (s, a, s′) in Dw. We also need to be careful with handling

ǫ-rules. If A
p
→ ǫ is a rule of G, then we make (s,A, s)

p
→ ǫ a rule of G′ for every state s of Dw.

This standard product construction has the property that, for every non-terminal A of G, there
is a easily computable weight-preserving (i.e., probability-preserving) one-to-one correspondence
between the finite parse trees of G rooted at A which generate the string w, and all the finite
parse trees of G′ rooted at (s0, A, sn). Thus, in order to compute pmax

G,w , we can alternatively apply
Knuth’s algorithm directly to G′ in order to compute the maximum probability of any finite parse
tree rooted at (s0, A, sn).

Corollary 4.3. Given any SCFG, G, with rational rule probabilities, and given a string, w ∈ Σ∗,
where Σ is the terminal alphabet of G:

A. If either the Lang-Waldschmidt Conjecture, Conjecture 3.2, or Baker’s version of the ABC
conjecture, Conjecture 3.4, hold,

B. or else, if the number of distinct probabilities labeling the rules of G is bounded by a fixed
constant, c,

then the following all hold:

1. There is a P-time algorithm, in the standard Turing model of computation, for computing
the exact probability pmax

G,w in succinct product of exponentials notation (PoE), and there is a
P-time algorithm for computing, if pmax

G,w > 0, a maximum probability parse tree tmax
w where

tmax
w is represented succinctly as a DAG (straight-line program).

2. Given, additionally, a rational probability q ∈ (0, 1], encoded in binary11, there is a P-time
algorithm in the standard Turing model of computation that decides whether pmax

G,w ≥ q.

11If we are assuming (A.), then q can even be given in PoE. If we are instead assuming (B.), then q can also be
given in PoE by ab, but with a = 〈a1, . . . , ak〉, where k ≤ c′, for some fixed constant c′.
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3. Likewise, given additionally another string w′ ∈ Σ∗, there is a P-time algorithm (in the Turing
model), that decides whether pmax

G,w ≥ pmax
G,w′.

Proof. The claims follow easily from the proof of Theorem 4.2. Specifically, recall that the unit-
cost RAM algorithms in the proof of Theorem 4.2 only involve multiplication of rational numbers
starting with base numbers that are rule probabilities of the given SCFG G, as well as taking the
maximum over such numbers (which we can carry out by comparisons). We can therefore maintain
all the computed numbers in PoE format, and based on the postulated conditions it follows from
Proposition 3.7 that we can carry out all the necessary comparisons in P-time, yielding a P-time
algorithm overall which computes the relevant probabilities in PoE notation, and which can compare
two such probabilities.

Furthermore, without any conjectures, essentially the same algorithm can be used to approxi-
mate the maximum parsing probability of a string:

Corollary 4.4. Given any SCFG, G, with rational rule probabilities, given a string, w ∈ Σ∗, where
Σ is the terminal alphabet of G, and given rational ǫ > 0, there is an algorithm (in the standard
Turing model) that runs in time polynomial in |G|, |w| and log(1/ǫ), which determines whether
w ∈ L(G) and if so, computes a value v such that | log2(p

max
G,w)− v| ≤ ǫ and the DAG representation

of a parse tree of w that has probability ≥ (1− ǫ)pmax
G,w .

Proof. We will use essentially the same algorithm as in the proof of Theorem 4.2, but we will instead
use the log-transformed (shortest path) variants of Dijkstra’s and Knuth’s algorithms (see footnote
10), by first approximating the weights − log p corresponding to rule probabilities p, to sufficient
precision. We will show that approximating the weights − log p to within additive error 2−k, where
k is polynomial in |G|, |w| and log(1/ǫ), will suffice to allow the algorithm to approximate pmax

G,w to
within the desired additive error ǫ > 0.

Assume, wlog, that we first put the SCFG in SNF form. Let n be the number of nonterminals
of the SNF grammar. Let us first estimate the size of the PoE expressions for the probabilities that
are computed by the algorithm of Theorem 4.2. It is easy to show that the maximum probability
pmax
A,ǫ of derivation of ǫ from a nonterminal A is given by a PoE expression whose bases are rule

probabilities and where the sum of the exponents is less than 2n. This can be shown by an easy
induction on the iterations of Knuth’s algorithm in Fig. 2, where the inductive claim is that the
sum of the exponents for a nonterminal that is added to D in the ith iteration is at most 2i − 1.

Then we construct a directed graph H and use Dijkstra’s algorithm to compute probabilities
pmax
A,B . The edges of H have probabilities of the form p(r) · pmax

C,ǫ , and the optimal path between any
two nodes is simple, thus it has length at most n − 1. Therefore, each probability pmax

A,B in PoE
notation has sum of exponents at most (n− 1) · 2n.

If we consider then the algorithm of Fig. 3, it is easy to show by induction on j that a probability
pAmax,i,j in PoE notation has sum of exponents at most (2j − 1)((n − 1)2n + 1). Thus, the PoE
expression for the final probabilities, as well as all the probabilities during the computation, have
sum of exponents less than 2n22n. Or in other words, the logarithms of the computed probabilities
are (positive) linear combinations of the logarithms of the rule probabilities where the sum of the
coefficients is less than 2n22n.

Our algorithm for the approximate computation of the maximum parsing probability starts
by computing approximately the logarithms of the rule probabilities to a precision of k = ⌈2n +
log(1/ǫ)⌉ bits, i.e. within additive error 2−k < ǫ/22n < ǫ/(4n22n). Then we apply the Algorithm
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of Theorem 4.2 using the log-transformed (additive) versions of Knuth’s and Dijkstra’s algorithms,
and doing all the computations (exactly) in logarithms, by using the approximated values for the
logarithms, − log p, of the rule probabilities p. Note that every computed quantity is then a linear
combination of the (approximated) logarithms of rule probabilities.

We now observe that the cumulative additive error that can be introduced into the final result,
because of the initial approximation to the logarithms of the rule probabilities, is at most 4n22n ·
2−k < ǫ. The reason why this holds is the following:

Consider a solution S, i.e., a succinctly represented parse tree (respresented as a DAG). Let
v(S) denote the logarithm of the value of this solution. In other words, v(S) denotes the log of the
PoE expression giving the product of all rule probabilities used in S. Thus, v(S) can be written as∑

r nr log p(r), where the sum is over all rules r. Recall that p(r) denotes the probability of rule r.
Assume that for all the logarithms of rule proabilities, log p(r), we have computed an approx-

imation, a(r), such that |(log p(r)) − a(r)| < 2−k. Let v′(S) denote the approximate log value of
the solution S, i.e., v′(S) =

∑
r nr · a(r).

Let S∗ denote the solution (parse tree) that is computed by the algorithm that uses the ap-
proximated values log p(r). Let Sopt denote the optimal solution (which would be computed if we
instead had used exact arithmetic and comparisons on PoE numbers).

First, note that v′(S∗) ≥ v′(Sopt), because the approximation algorithm is guaranteed to output
the optimal (maximum value) solution S∗ with respect the approximated logarithms a(p(r)) of the
rule probabilities p(r).

Next, note that both v(S∗) and v(Sopt) are positive linear combinations of the actual logs of rule
probabilities, with their coefficients summing to at most m = 2n22n. So v′(S∗) differs from v(S∗)
by at most 2−km, and likewise v′(Sopt) differs from v(Sopt) by at most 2−km. Therefore, since we
already argued that v′(S∗) ≥ v′(Sopt), it must be the case that v(S∗) ≥ v(Sopt)− (2× 2−km). Note
that we have chosen k such that 2× 2−km = 2−k4n22n < ǫ. This completes the proof.

The algorithm computes at the same time the DAG representation of a parse tree T , whose
probability satisfies log2(p(T )) ≥ log2 p

max
G,w − ǫ. Thus, p(T ) ≥ pmax

G,w/2
ǫ ≥ (1− ǫ)pmax

G,w .
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A Appendix

A.1 Proof of Proposition 1.1

Proposition 1.1. There is a simple P-time translation from a given number represented in PoE to
the same number represented as an arithmetic circuit over {∗, /} with integer inputs (represented
in binary). Likewise, there is a simple P-time translation in the other direction.

Proof. Given a number in PoE, observe first that, for integers ai and bi, we can use Horner’s rule to
represent abii by an arithmetic circuit which takes ai as an input, and performs repeated squaring

and multiplication by ai to obtain a circuit evaluating to abii whose depth and number of gates
is bounded by log2(bi). We can then obviously compute a linear size circuit yielding the product
ab =

∏
i a

bi
i .

In the other direction, given an arithmetic circuit C over {∗, /}, with positive integer inputs
a1, . . . , an, we show by induction on the depth of the circuit that the numbers computed by a gate at
depth d can be translated to a PoE ab, where the base numbers are the ai’s and where the exponents
bi have absolute value at most 2d, and can thus be computed in linear time, given C as input. The
claim is obvious in the base case, for input gates of the circuit C, which are the ai’s. Inductively,
assume that for some gate gi = gj ⊙ gk we already have PoE representations for gj and gk, given
by ab(j) and ab(k) respectively, where ⊙ ∈ {∗, /}. Assume that d = max{depth(gi), depth(gk)}. By
induction we can assume each component of the lists (vectors) b(j) and b(k) is at most 2d.

Now if ⊙ ≡ ” ∗ ”, then clearly the value computed by gate gi can be represented by ab(i), where
b(i) = b(j) + b(k) denotes component-wise addition of the two vectors of integers b(j) and b(k).
Likewise, if ⊙ ≡ ”/”, then clearly gi can be represented by ab(i) where b(i) = b(j) − b(k). In both
cases, for every component m ∈ {1, . . . , n}, we have |b(i)m| ≤ 2d+1, since we at most double the
absolute value by adding or subtracting two numbers with absolute value ≤ 2d. Since gi has depth
d+ 1, we are done.

A.2 Proof of Proposition 3.5

Recall we use log(x) to denote the natural logarithm of x, and use log2(x) to denote the log base 2.

Proposition 3.5. There is an algorithm that, given a positive integer a, encoded in binary, and
given a positive integer j, encoded in unary, computes a rational value va, such that

| log(a)− va| < 2−j

The algorithm runs in time polynomial in j and log2(a) (in the Turing model).

Proof. Recall the standard power series for the natural logarithm of x+ 1, which holds for any x
in the range −1 < x < 1:

log(x+ 1) = x− x2/2 + x3/3− x4/4 + . . . =

∞∑

i=1

(−1)i+1x
i

i
(6)

Consider any positive integer a. We can assume a > 1, wlog, because otherwise log(1) = 0. By
examining the binary encoding of a, we can easily determine a positive integer m > 0, such that
2m ≤ a < 2m+1. Note that
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log(a) = log(a/2m+1) + log(2) ∗ (m+ 1)

Thus, to compute log(a) “to within sufficient accuracy”, it suffices to compute both log(a/2m+1)
and log(2), “to within sufficient accuracy”. But note that since a ≥ 2m, we have that 1/2 ≤
a/2m+1 < 1. Letting y := (a/2m+1 − 1), since −1/2 ≤ y < 0, we have y + 1 = a/2m+1 is in the
convergent region of the series (6), so that:

log(a/2m+1) =
∞∑

i=1

(−1)i+1 y
i

i

Now, note that since −1/2 < y < 0, we have |
∑∞

i=k+1(−1)
i+1 yi

i | <
∑∞

i=k+1(1/2)
i ≤ (1/2k).

Thus, to compute an approximant v′ for log(a/2m+1) such that | log(a/2m+1)− v′| < (1/2k), all we

have to do is to compute the first k + 1 terms of the series
∑∞

i=1(−1)
i+1 yi

i . This we can easily do
in time polynomial in k and in the encoding size of a, by just carrying out the arithmetic. (The
encoding size of the numbers calculated this way will not get more than polynomially large in the
encoding size of a and k: roughly each term has encoding size at most k ∗ size(a), so the encoding
size of the sum is at most log2(k) ∗ k ∗ size(a).)

Next, we need to compute an approximation of log(2). To do this, we use a well-known al-
ternative series derivable from (6): we have log(2) = − log(1/2) = − log(1 + −(1/2)) =

∑∞
i=1

1
i2i

.

Again, we have
∑∞

i=k+1
1
i2i
≤ 1/2k. Thus, we can compute an approximant v′′ of log(2), such that

|v′′ − log(2)| < 2−j , by just computing the first j + 1 terms of the series
∑∞

i=1
1
i2i

.
We would like to combine a suitable approximation v′ of log(a/2m+1) and a suitable approxi-

mation v′′ of log(2) to get an approximation of log(a) = log(a/2m+1) + log(2)(m + 1), to within a
desired additive error 2−j in time polynomial in the encoding size of a and in j.

We only need to observe that if | log(a/2m+1)−v′| ≤ 2−(j+1) and | log(2)−v′′| < 2−(j+1)/(m+1),
and if we let va := (v′ − v′′(m+ 1)), then

| log(a)− va| = |(log(a/2m+1) + log(2)(m + 1))− (v′ + v′′(m+ 1))|

= |(log(a/2m+1)− v′) + (m+ 1)(log(2)− v′′)|

≤ |(log(a/2m+1)− v′)|+ (m+ 1)| log(2)− v′′|

≤ 2−(j+1) + 2−(j+1) = 2−j

Thus, given positive integer a in binary, we can compute a 2−j-approximation, va, of log(a) in
time polynomial in the encoding size of a and in j, in the Turing model of computation.
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