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DYNAMICS AND BIFURCATION ANALYSIS OF THE
HEAT-SHOCK RESPONSE IN EUKARYOTIC CELLS

Dimitrios I. Gerogiorgis
Department of Chemical Engineering, Massachusetts Institute of Technology, MA 02139, USA

Abstract

The heat-shock response mechanism in eukaryotic cells is one of the most important survival features of 
living organisms and comprises a genetic network coordinating the cellular response to protein damage. 
The importance and function of the heat-shock transcription factor-1 (HSF-1), which is central to the
heat-shock response mechanism, has been studied extensively, as documented in numerous publications. 
Detailed network representations and dynamic mathematical models have been derived and tested in 
order to analyze quantitatively all species and their concentrations in the heat-shock response cycle. 
Furthermore, parameter estimation and sensitivity analysis have provided additional insight regarding the 
relative importance of a large number of kinetic parameters within the respective expression networks. 
This paper focuses on analyzing the importance of an uncertain, temperature-dependent parameter (βm,k). 
A bifurcation analysis is conducted in order to identify and analyze multiple steady states of the system.
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Introduction

The heat-shock response mechanism in eukaryotic cells 
(Lindquist, 1986) is an adaptation and survival reaction 
against the proteotoxicity resulting from the appearance of 
many classes of non-native (misfolded, damaged) proteins. 
The accumulation of such non-native protein species can 
result in the dangerous generation of protein aggregates. 
To handle this build-up of abnormal proteins, cells employ 
a complicated machinery of molecular chaperones: these 
species facilitate the refolding or degradation of misfolded 
polypeptides, prevent protein aggregation and play a role 
in formation of aggresome, a centrosome-associated body 
to which small cytoplasmic aggregates are transported. 
Protein folding and toxic aggregates have been studied in 
the domain of neurochemistry and molecular neurobiology 
(even though mathematical modeling is very cumbersome), 
and they are increasingly recognized as responsible for the 
progression of serious neurodegenerative diseases, which 
have a severe impact on progressively larger populations. 
These include Alzheimer’s, Parkinson’s and Huntington’s 
diseases, and Amyotrophic Lateral Sclerosis; all are quite   
common (Meriin & Sherman, 2005; Szilágyi et al., 2007).

Heat-shock proteins (HSPs) are vital regulatory elements 
which act as molecular chaperones: upon sensing stress 
signals (elevated temperatures, toxic molecules, oxidants, 
heavy metals), cells resort to transient molecular chaperone 
overexpression, to meet the stress demand by high levels. 
Thus, they ensure protein quality control and homeostasis. 
Chaperones recognize exposed hydrophobic patches on 
unfolded polypeptides and sequester them until they reach 
their native conformation by proper refolding, or escort  
proteosomes to degradation (Muchowski & Wacker, 2005). 
They also have documented effects, via hitherto unknown 
mechanisms, in tumour cell apoptosis (Creagh et al., 2000). 
The conceptual biomolecular model of Morimoto (1993) 
and his experimental studies (Kline & Morimoto, 1997) 
identified the key elementary steps of heat-shock response. 
Rieger et al. (2005) provided the first mathematical model 
of HSF regulation with predictive capability, establishing 
systematically the most sensitive steps of the mechanism. 
Rigorous investigation of multiple system steady states and 
possible bifurcation effects have not been pursued so far, 
and this is the main objective of the present research study.



Literature Review

Morimoto proposed the HSF regulation model (1993). 
In unstressed cells, HSF is maintained in a monomeric, 
non-DNA binding form via its interactions with hsp70 (1). 
Upon heat shock, HSF undergoes rapid homotrimerization 
(2), binding to a heat-shock DNA element (HSE) (3), and  
phosphorylation (4). Transcriptional activation due to heat 
shock genes leads to hsp70 overexpression and formation 
of an HSF-hsp70 complex (5). Finally, HSF dissociates 
from DNA, converted to non-DNA-binding monomers (6). 

Figure 1. The model of HSF regulation (Morimoto, 1993).

Rieger et al. (2005) presented a detailed model of HSP 
expression and regulation: the heat shock (ΔT) switches a 
stress-dependent kinase from its inactive (S) to active form 
(S*), and the latter is deactivated by dephosphorylation (2). 
The transcription factor (HSF) binds to the DNA site (3), 
where it is bound by S* (4) and phosphorylated to its active 
form (5); that induces transcription (6) and translation (7). 
HSP binds to the active form, repressing transcription (8). 
This latter inactive form is also subject to binding (9) and 
dephosphorylation (10) by deactivating phosphatase (I). 
HSP also binds HSF on HSE before phosphorylation (11), 
but also sequesters HSF in solution, off DNA sites (12-13). 
The mRNA is assumed to be stabilized by S* (14); also, 
mRNA and HSP are subject to first-order decay (15–16). 
A larger model has also appeared lately (Petre et al., 2008).

Figure 2. The detailed kinetic model (Rieger et al., 2005).

Mathematical Modeling

The key biomolecular species and the corresponding 
concentration variables of the model are listed in Table 1.

Table 1: Key model species and concentration variables.

Species                   Desciption                                          Variable

HSF Free HSF1 (x1)

HSE Free promoter site on the DNA (x2)

HSF:HSE Inactive HSF1 bound to promoter site (x3)

S*:HSF:HSE Active kinase bound to HSF on DNA site (x4)

P:HSF:HSE Phosphorylated HSF1 on the DNA site (x5)

HSP:P:HSF:HSE HSP bound to phosph. HSF1 on DNA site (x6)

I:HSP:P:HSF:HSE Phosphatase on phosph. complex on DNA site (x7)

HSP:HSF:HSE HSP bound to unphosph. HSF1 on DNA site (x8)

HSP:HSF    HSP bound to HSF off the DNA site (x9)

mRNA Chaperone mRNA (x10)

HSP Free, unbound heat-shock protein (x11)

S* Free, unbound active stress kinase (x12)

I Free, unbound stress phosphatase (x13)

S Free, unbound inactive stress kinase     (algebraic)

P Free phosphate (assumed in excess)          (–)

The model includes 13 ordinary differential equations 
and 27 parameters, which are presented in Tables 2 and 3.

Table 2: The complete dynamic model (Rieger et al., 2005).
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Table 3: Dimensionless parameters and numerical values.

Symbol    Value     Step (Fig. 2)  Symbol    Value     Step (Fig. 2)

βm,k  varies      bif. parameter             

Γm,k 5.0∙10-2                 (1)  

βm,p 1.0∙103                 (2)  

Γm,p 5.0∙10-2                        (2)  

κ1 9.8∙105                        (3)    

κ2 3.0∙103                        (4)    

κ3 5.9∙105                        (8)    

κ4 3.0∙103                        (9)     

κ5 3.0∙106                     (11)  

κ6 5.9∙106                     (12) 

κ7 4.0∙104                     (13) 

κS 3.0∙102                        (5)    

κtr 1.2∙101                        (6)    

κta 1.2∙101                        (7)    

κI 6.0∙101               (10)  

Γ1 3.0∙10-3                 (3)    

Γ2 5.0∙101                 (4)    

Γ3 5.0∙10-3                        (8) 

Γ4 5.0∙100                        (9)    

Γ5 1.0∙10-3                     (11)  

Γ6 5.0∙10-4                     (12) 

Γ7 7.5∙10-2                     (13) 

ΓS 2.0∙10-1               (14)  

κd,p 3.0∙10-3          (15-16) 

ρE 1.0∙102        (scaling)  

ρS 1.0∙104        (scaling)  

ρI 1.0∙100        (scaling)  

τ Dimensionless time, t/τ*

Dynamic Simulation

Dynamic simulation via the ODE model (Table 2) 
clearly illustrates the critical effect of parameter βm,k  on the 
concentration of free hsp70 as well as on system stability 
(x5/pink-x11/red are indicators of transcriptional activation). 
Figures 3 and 4 illustrate clearly different xi responses for 
βm,k values corresponding to 37 and 41 °C, respectively. 
The initial condition (IC) vector that has been used in both 
dynamic simulations is: xIC = [1 1 0 0 0 0 0 0 0 0 0 1 1]T .

Figure 3. Dynamic simulation of a bounded x11 response.

Figure 4. Dynamic simulation of a divergent x11 response.

Phase Plane Analysis

Phase plane analysis of the heat-shock dynamic model 
provides visual insight for understanding its intricacies. 
This nonlinear ODE model exhibits multiple steady states, 
which have not been discussed or documented previously. 
A trivial steady state is: x0

ss = [0 0 0 0 0 0 0 0 0 0 0 ρ*
12 0]T. 

Besides the finite equilibrium points, the 21 bilinear terms  
(7 distinct bilinearities xixj, each occurring 3 times therein) 
produce equilibrium sets, some observable by inspection. 
Only variables x1, x2, x13 occur exclusively in bilinear terms 
(coupled to x6, x9, x11) and thus affect equilibria indirectly. 
One obvious set is xI

ss = [p1 0 0 0 0 0 0 0 0 0 0 ρ*
12 p13]

T ; 
another such set is xII

ss = [0 p2 0 0 0 0 0 0 0 0 0 ρ*
12 p13]

T 

(ρ*
12 = 2.8571∙10-7 is a distinct root, pi+ are parameters). 

Figure 5 shows the convergence of x12 to ρ*
12 for x5,0+.

Figure 5. Phase plot: convergence in x5 -x12 subspace.

Trivial sets do not portray realistic intracellular action, but 
show that the stationary nonlinear algebraic system ( 0x )
may admit an infinite number of solutions, as prescribed by 
a generalized Bézout Theorem (Allgower & Georg, 1990). 
A biologically relevant system mode and its equilibrium 
set are discovered by continuously varying parameter βm,k , 
with x*

IC = [p* p* .. p*]T (p*= 0.05), as presented in Figure 6.

Figure 6. Phase plot: βm,k variation in x5-x10-x11 subspace. 



Bifurcation Analysis

Our research goal is to perform a bifurcation analysis 
on the heat-shock dynamic model in order to understand 
the hitherto unexplored effect of βm,k on system responses 
for a multitude of biologically relevant equilibrium points. 
Figure 6 reveals a notable mode in the x5-x10-x11 subspace: 
considering computations initiated from x*

IC = [p* p* .. p*]T, 
low-βm,k trajectories reach a maximum and converge back 
close to the x5-x10 plane, but high-βm,k trajectories attain 
high x10 and extreme x11 equilibrium values, despite scaling. 

As βm,k is temperature-dependent and corresponds to 
the equilibrium constant of S activation (Fig. 2, steps 1-2), 
its value spans 7 orders of magnitude (Rieger et al., 2005), 
from βm,k (T=37 °C) = 6.0∙10-3 to βm,k (T=43 °C) = 1.0∙104.
A critical value (β*

m,k) triggering transition (Seydel, 1994) 
may signify the onset of irreversible biological damage 
(recovery is observed experimentally for limited exposure).
Special bifurcation analysis software (MATCONT® v. 2.4.2) 
has been employed here to explore the important subspace 
elements vs. βm,k and determine β*

m,k (Dhooge et al., 2003).

         βm,k

Figure 7. Bifurcation diagram: x5, x11 steady states vs. βm,k.

An exponential correlation has been used to model the 
nonlinear dependence of βm,k on temperature, and estimate 
the temperature corresponding to the critical value (β*

m,k). 
Table 4 shows the nonlinear fit and critical point obtained.

Table 4: Parameter βm,k value as a function of temperature.

  T (°C) 37 39.21 41 42 43

 T (K) 310.15 312.36 314.15 315.15 316.15

βm,k 6.0∙10-3 9.2∙10+1 1.0∙10+2 8.2∙10+2 1.0∙10+4

(Vm,k / Vm,p) 6.0∙10-6 9.2∙10-2 1.0∙10-1 8.2∙10-1 1.0∙10+1

Nonlinear Fit
 

,0( ) e rT T
mk mkT   

  βmk,0    =     0.274048
  α         =    -2.487
  Tr      = 314.704

Conclusions

The present paper examines the nonlinear dynamics of  
the heat-shock response in eukaryotic cells and performs a 
bifurcation analysis with respect to a key parameter (βm,k), 
based on a nonlinear ODE model with many bilinear terms 
(which, albeit seemingly innocuous, has infinite equilibria). 
Certain steady states and nonlinear dynamics are explored; 
others can be found via homotopy continuation methods.
The critical value β*

m,k = 9.2∙10+1  induces a transition from 
proportional to saturated, extreme free HSP (x11) response; 
β†

m,k = 1.0∙10-1 maximizes HSP transcription rate (x5). 
Future goals include the explicit simultaneous integration 
of the system model and all (13∙27=351) sensitivity ODEs 
to explore possible bifurcations due to other parameters, as 
well as the study of model-based robust control realizations 
(Khammash & El-Samad, 2004; El-Samad et al., 2005).
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