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Abstract

We present a novel technique for figure-ground segmen-
tation, where the goal is to separate all foreground objects
in a test image from the background. We decompose the test
image and all images in a supervised training set into over-
lapping windows likely to cover foreground objects. The key
idea is to transfer segmentation masks from training win-
dows that are visually similar to windows in the test image.
These transferred masks are then used to derive the unary
potentials of a binary, pairwise energy function defined over
the pixels of the test image, which is minimized with stan-
dard graph-cuts. This results in a fully automatic segmenta-
tion scheme, as opposed to interactive techniques based on
similar energy functions. Using windows as support regions
for transfer efficiently exploits the training data, as the test
image does not need to be globally similar to a training im-
age for the method to work. This enables to compose novel
scenes using local parts of training images. Our approach
obtains very competitive results on three datasets (PAS-
CAL VOC 2010 segmentation challenge, Weizmann horses,
Graz-02).

1. Introduction
Figure-ground segmentation is a fundamental operation

in computer vision.
The task is to produce a binary segmentation of the

image, separating foreground objects from their back-
ground [35]. A good figure-ground segmentation is a valu-
able input for many higher-level tasks. For example, object
recognition techniques [4, 40] benefit from segmentation as
they can compute shape descriptors. Human pose estima-
tion techniques are often based on human silhouettes [20].

Figure-ground segmentation has recently been addressed
successfully by interactive segmentation works [6, 26, 28,
35]. Typically these works require the user to manually
guide the algorithm by giving an indication of the loca-
tion of objects in the image (often in the form of a rect-
angle around each object [6, 26, 35]). The segmentation
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Figure 1. An example showing important parts of our pipeline.
Windows (W1 and W2) are extracted from the test image X . Seg-
mentation is transferred for windows using nearest neighbors, re-
sulting in soft masks (M1 and M2). The final segmentation is
based on an energy minimization that takes cues from the merged
mask M . See sec. 2 for details.

process is often casted as minimization of a binary, pair-
wise energy function where variables are pixels. The unary
potentials estimate the likelihood for a pixel to be fore-
gound [6, 9, 35, 43], according to appearance models, which
are typically derived from the user input.

In this paper we propose a novel approach for figure-
ground segmentation which is based on minimizing an en-
ergy function of the same form as interactive segmentation
works. However, our approach is fully automatic and re-
quires no user input. The key idea is to transfer segmenta-
tion masks from a supervised training set to the test image.
The transferred segmentation masks are then used to derive
the unary potentials of the energy function of the test im-
age. Importantly, the transfer process is not based on the
global similarity between the test image and the training
images (as done in [34] or in other areas such as inpaint-
ing [18] or image tagging [17]). Instead we first extract
candidate windows likely to contain foreground objects [2]
and then transfer masks from training windows that are vi-
sually similar to windows in the test image. The intuition is
that visually similar windows often have similar segmenta-
tion masks. As these windows exhibit less variability than
whole images and are often centered on objects, they form
much better support regions for segmentation transfer. Af-
terwards, the energy minimization stage combines the local
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evidence of all windows into a coherent global segmenta-
tion of the whole test image.

In an extensive experimental evaluation on the PAS-
CAL VOC 2010 segmentation challenge [13], the Weiz-
mann Horses dataset [7], and the Graz-02 dataset [31]
we show that (i) our segmentation transfer scheme out-
performs GrabCut [35] initialized from a fixed box in the
image center; (ii) transferring based on windows is better
than based on the whole image; (iii) each component of
the model contributes considerably to segmentation perfor-
mance; (iv) we achieve results competitive with state-of-
the-art approaches [1, 5, 11, 16, 28, 31] and in particular we
outperfom the very recent technique of [34].

1.1. Related Work

Object segmentation. Single-class, fully supervised seg-
mentation techniques aim at separating instances of an
object class from their background (e.g. horses, faces,
cars [5, 7, 21]). They are supervised in that the training set
shows images of other instances of the class along with their
binary segmentations. There are also multi-class fully su-
pervised segmentation methods, which assign a label from
a predefined set of classes to each pixel (e.g. cow, bird,
car [25, 38]). Our work is related to both strands, as we aim
at a binary segmentation separating all object classes from
all kinds of background. However, we do not distinguish
between different object classes, our techniques is class-
agnostic. It does not learn explicit models for each class,
but instead directly transfers segmentation masks of indi-
vidual training instances based purely on visual similarity.

Interactive segmentation [6, 37] has been thoroughly re-
searched since the very popular GrabCut work [35]. Most of
these approaches minimize a binary pairwise energy func-
tion whose unary potentials are determined by appearance
models estimated based on user input on the test image. Our
approach builds on their energy formulation, but is fully au-
tomatic. The user input is replaced by our novel segmenta-
tion transfer mechanism.

More distantly related are works on weakly supervised
segmentation, where the training images are annotated by
the labels of the classes they contain, but pixel-level labels
are not given [3, 42, 45].

Candidate object windows. As spatial support for our
segmentation transfer operations, we use a set of candidate
windows likely to contain objects, detected by the technique
of [2]. However, there are also some other methods to ob-
tain such candidates [11, 12, 41] and we believe they could
form a valid alternative.

Annotation transfer by nearest neighbors. The core op-
eration of our method is to transfer segmentation masks
from windows in training images to visually similar win-
dows in the test image. This is related to previous works that

transfer annotations between images based on their global
similarity, [17, 18, 29, 34, 36] as done in inpainting [18],
image tagging [17], and scene parsing [29]. Malisiewicz
et al. [30] proposes to employ per-exemplar SVMs to find
neighbors for transfer, instead of simply measuring appear-
ance similarity. Their idea could be incorporated in our
pipeline as well. The previous work most related to ours
is [34], which also transfers segmentation masks, but be-
tween images rather than windows. As we argue in sec. 4,
(object) windows offer better spatial support for segmenta-
tion transfer.

2. Overview

We give here an overview (fig. 2) of our novel ap-
proach to figure-ground segmentation. The task is to la-
bel each pixel in a test image X as either foreground or
background. The training data consists of images annotated
with foreground-background masks. We first detect win-
dows {Wk} likely to contain foreground objects on all train-
ing images as well as on the test image using [2]. For each
Wk in X , we then transfer segmentation masks from the
training windows with the most similar appearance (nearest
neighbors in appearance space, fig. 3 ‘window neighbors’).
The key intuition is that visually similar windows often have
similar segmentation masks. The last stage integrates the
information transferred via individual candidate windows.
Since the candidate windows are overlapping, they can now
combine their local evidence into a coherent global segmen-
tation of X . For this we apply a single global graph-cut
segmentation to the entire image, with unary potentials tai-
lored to each individual pixel, as derived from the candidate
windows containing it (fig. 3 ‘M ’). In this fashion, while
the segmentation transfer operation is based on individual
candidate windows, the final segmentation integrates infor-
mation from all of them (fig. 3 ‘output’).

In sec. 3, we introduce the segmentation energy model
we use for the test image X . Sec. 4 explains how we find
similar training windows to windows in X . Sec. 5 details
how we transfer the segmentation masks from these appear-
ance neighbors to form the unary potentials of the segmen-
tation energy model for the test image. We conclude with
an experimental evaluation in sec. 6.

3. Segmentation model

We cast the task of segmenting a test image X as a pixel
labelling problem. Each pixel xi ∈ X = {x1, x2, . . . , xN}
should be labelled as either foreground ci = 1 or back-
ground ci = 0. Hence, a labelling C = {c1, c2, . . . , cN}
represents a segmentation of X . An energy function is de-
fined over pixels and their labels, and the optimal labeling is
found by minimizing the energy over all possible labelings.
This general approach is very popular in the segmentation



...

...window
neighbors

test im
age

min E

segmentation
model

...

training
images

training
windows

windows in
test image

location

appearance

segmentation

M

M C*

k

Figure 2. Overview of our approach. Windows from the training images with similar appearance to windows in the test image transfer
their segmentation masks. These are then used to derive location and appearance unary potentials in the segmentation model of the test
image. The final segmentation is obtained by minimizing the energy via graph-cuts.

community [7, 9, 19, 35, 39, 43]. We adopt the following
class of energy functions

E(C) = U(C) + V (C)
U(C) =

∑
i ui(ri)

V (C) =
∑
ij∈E vij(ci, cj)

(1)

where i indexes over the pixels in the image; ui and vij are
unary and pairwise potentials; and E is the set of edges con-
necting pixels in a 8-neighborhood grid. The segmentation
of X is defined as the optimal labeling

C∗ = argmin
C

E(C) (2)

The global optimum for this class of energy functions can
be found efficiently using graph-cuts [9, 10, 23] as long as
the pairwise potentials are submodular (as in our case).

For the pairwise potential, we define

vij(ci, cj) = γd−1(i, j)[ci 6= cj ]e
−β|xi−xj |2 (3)

As in [6, 9, 35, 38, 43] this potential encourages smooth-
ness by penalizing neighboring pixels taking different la-
bels. The penalty depends on the color contrast between
the pixels, being smaller in regions of high contrast (image
edges).

The unary potentials is the novel element in this paper,
as it carries the segmentation transfer information

ui(ci) = − logA(xi|ci)− logLi(ci) (4)

This potential evaluates how likely a pixel xi is to take la-
bel ci, according to an appearance model A and a location
model L. The appearance model A computes the proba-
blity of pixel xi being foreground (ci = 1), or background
(ci = 0). The appearance model parameters need to be es-
timated beforehand in some fashion. This estimation is cru-
cial to good perfomance. In interactive segmentation works
[6, 35, 44] this is achieved by manually drawing, e.g., a

rectangle around the object of interest, and then estimating
A from the pixels inside vs outside the rectangle. In other
works, an initial guess for the segmentation of the object is
manually designed and hardwired into the system (e.g. for
persons in [15]). In this paper instead, we propose a generic
and robust approach that estimates appearance models by
transferring segmentations from training images (sec. 5.2).

The location model Li computes the probablility of pixel
xi to be foreground based on its location in the image. We
derive a location model tailored to each individual pixel xi
by combining the segmentations transferred through all can-
didate windows containing it (sec. 5.1).

In summary, A and L are the novel elements in our
approach. They carry information from our segmentation
transfer scheme into the segmentation model of the test im-
age.

4. Finding similar windows
In this section we explain how we retrieve training win-

dow similar to windows in the test image. The main intu-
ition of our work is that similar windows often have similar
similar segmentation masks. Therefore, we rely on nearest
neighbors in the appearance space to transfer segmentation
masks.

Image-level neighbors. Our idea is related to previous
works that transfer annotations between images based on
their global similarity [17, 18, 29, 36]. For our purpose
however, the quality of these image-level neighbors is not
good enough. For many test images, the most visually sim-
ilar training images have very different figure-ground seg-
mentations. See fig. 3 and 4 for an illustration. This hap-
pens because there is too much variability at the level of the
whole image. In fig 3, the nearest neighbor training images
show road scenes but the foreground objects do not match
the motorbikes in the test image. In fig 4, the nearest neigh-
bor training images do contain a sheep-on-grass. For the
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Figure 3. An example of the full pipeline. Three windows (W1, W2, and W3) are highlighted in the test image X (out of 100, the centers
of the others are displayed as dots). To the right of X we show the three extracted windows along with their nearest neighbors Ni in the
training set. For W1, the neighbors are a good match for segmentation transfer, even though the window does not cover the motorbike
perfectly. This results in an accurate transfer mask M1. W2 on the other hand is not on an object. Its neighbors correctly transfer an almost
void mask M2. W3 is tightly centered on an object and gets very good neighbors. On the rightmost column, the Mk from all windows are
integrated into a soft mask M for the whole image, which is used to derive the unary potentials of the segmentation model and ultimately
the final segmentation output (below). On the leftmost column we show the nearest neighbors of X at the level of the whole image. They
are loosely related to X , being street scenes, but do not offer similar segmentation masks.

idea of segmentation transfer to work, we need much better
neighbors, with truly similar pixelwise segmentations.

Window-level neighbors. To overcome the limitations of
image-level nearest neighbors, we work instead at the win-
dow level. First we detect windows likely to contain an ob-
ject using the ‘objectness’ technique of [2]. It tends to re-
turn more windows covering an object with a well-defined
boundary in space, such as cows and cars, rather than amor-
phous background elements, such as grass and sky. In our
experiments, sampling only 100 windows per image already
covers most foreground objects (fig. 3 and 4). We extract
these windows for all training images and for the test image.
Because many such windows are centered on a foreground
object, they exhibit far less variability than whole images.
This leads to retrieving much better neighbors, whose seg-
mentation masks match better the test image, and therefore
are more suitable for transfer. Fig. 3 shows two motorbikes
in the test image. The nearest neighbor windows accurately
depict similar vehicles in similar poses, resulting in well
matching foreground masks. Fig. 4 shows two sheeps in the
test image. The nearest neighbors of the windows contain
well matching foreground masks.

Given a new test image, we compare each test window
Wk to all training windows Wl. The set Nk containing the
segmentation masks of the top 100 training windows most
similar to Wk is passed on to the next processing stage.

5. Segmentation transfer

In this section we explain how we use the segmentation
masks of the training windows retrieved in the previous sec-
tion to derive the unary potentials of the segmentation en-
ergy for the test image (eq (4)).

5.1. Location model Li
We want the location model Li to convey a sense of the

likely segmentation of a pixel based only on its location
within the image, so that Li(ci = 1) gives the probabil-
ity of pixel at location i to be foreground. We construct the
Li for each pixel i from the segmentation masks transferred
via all windows containing it.

Soft masks for windows. Following sec. 4, for each test
window Wk we have a set Nk containing the segmentation
masks of neighbors from the training set. We now compute
a soft segmentation mask Mk for each Wk as the pixelwise
mean of the masks in Nk. For this, all masks in Nk are
resized to the size of Wk in both their width and height di-
mensions. In this aligned space, a pixel value in Mk cor-
responds to the probability for it to be foreground in Nk
(fig. 3, Mk).

Soft mask for the test image. We now integrate the Mk

for all windows into a single soft segmentation mask M
for the test image X . For each window we place its soft
mask Mk at the image location defined by Wk. The soft
mask M of the test image is the pixelwise mean of these
placed masks. A pixel value in M is the probability for it
to be foreground, according to all transferred segmentations
(fig. 3, M ). Therefore, we define the location model as

Li(ci = 1) = M(i)
Li(ci = 0) = 1−M(i)

(5)

Integration effects. As discussed in sec. 4, the quality
of the neighbors improves when retrieving them based on
windows rather than the whole image. Furthermore, here
we integrate the soft foreground masks of the individual
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Figure 4. A second example of the full pipeline. See caption of fig. 3.

windows, which leads to even more robust results. The
key observation is that we extract many overlapping win-
dows (100 per image). A certain window might not have
good neighbors in the training set, leading to an inaccurate
or even completely incorrect mask transfer Mk. However,
other windows overlapping with it will probably have good
neighbors. The integration step above will diminish the ef-
fect of the inaccurate Mk. A second interesting effect hap-
pens for windows not covering a foreground object, e.g. a
patch of road/grass/sky (fig. 3, W2). This does not pose a
problem to our approach, as the training images are decom-
posed in the same type of windows [2] (sec. 4). Therefore, a
background window will probably have appearance neigh-
bors on backgrounds in the training images, which results
in correctly transferring a ‘void’ segmentation mask (fig. 3,
M2). In a summary, our approach is fully symmetric over
foreground and background windows.

5.2. Appearance model A

The second part of the unary potential in eq. (4) is the
appearance model A. The form of our appearance model
is similar to the one in [35]. It consists of two gaussian
mixture models (GMM), one for the foreground A1, one
for the background A0

A(xi|ci = 1) = A1(xi)
A(xi|ci = 0) = A0(xi)

(6)

Each GMM has 5 components. Each component is a
full-covariance gaussian over the RGB color space. A pixel
xi ∈ X is represented as a vector with 3 components.

Parameter estimation. The crucial issue is how to set the
parameters of A. Obviosuly, they should be adapted to the
test image X , to capture the appearance of its particular
foreground objects and background materials. In interactive
segmentation [6, 35, 44] the user is asked to draw a rectan-
gle around the foreground object. The appearance model
can then be estimated from the pixels inside vs outside it.
In this work instead we estimate the appearance models au-
tomatically, based on the segmentation transfer idea. We

start from the soft segmentation mask M of X , constructed
in sec. 5.1. Then we threshold M at a value ta which we
learn so to optimize the score on the training data. Finally,
A0 is estimated using all pixels i with M(i) < ta and A0

using all pixels with M(i) >= ta.

Effect of appearance model. As discussed in sec. 5.1, the
location model gives a rough estimation of the foreground
location. However, the location model acts only on individ-
ual pixels, so starting from imperfect segmentation trans-
fers, optimizing eq. (2) will not improve the segmentation
substantially. Instead, the appearance model is estimated
from information over larger image region, and can trans-
fer it across distant parts of the image. In the top example
of fig. 5, the appearance model can learn that white is def-
initely a foreground color in this image, and then alter the
unary potential of other pixels toward foreground, even if
the transferred segmentation mask M suggests it should be
background.

6. Experiments
6.1. Datasets.

We present experiments on three datasets: the PAS-
CAL VOC 2010 segmentation challenge [13], Weizmann
horses [7], and Graz-02 [31, 33].

PASCAL VOC 2010 (segmentation challenge). This is
one of the most challenging datasets for segmentation and
it contains real-world consumer images from Flickr. Many
images have multiple foreground objects appearing at a
variety of scales and locations. The dataset is annotated
with pixelwise segmentations of 20 different object classes.
However, for our figure-ground segmentation task, we fuse
them all into foreground. The public part of the dataset
amounts to 1928 images, split evenly into training and vali-
dation parts. As suggested [11, 13], we use the training part
as the training set, and test on the validation part.

Weizmann horses. This popular dataset contains 328 im-
ages of horses in various poses and backgrounds [5, 7, 8,
22, 24, 28]. It is easier than PASCAL VOC as most horses



are rather large and centered in the image. However, it of-
fers a complementary experimental setup, as there is only
one object class. The dataset is annotated with ground-truth
segmentation masks for all images. We follow the evalua-
tion protocol of [5] and split the data into 2/3 for training
and 1/3 for testing.

Graz-02. This dataset contains three subsets for the
classes bike, car, and person. The objects appear at a va-
riety of image locations and in various poses, which makes
the dataset very challenging. The annotation is provided as
a binary segmentation mask for each image. Each subset is
annotated with one class only, but an image often contains
more than one instance of the class. We follow the protocol
in sec. 4.1 of [31], where for each class there are 150 images
for training and 150 images for testing.

6.2. Implementation details.

In all experiments we compute GIST [32] inside each
window to describe its appearance and we compare GIST
descriptors with the L2 distance (sec. 4). Our segmentation
transfer method (sec. 4 and 5) yields the two unary poten-
tials A,L of the energy (1). For the pairwise potentials, we
set γ = 50, as suggested in [6]. β is set to the mean squared
distances of the pixel colors in the test image (see [35], eq.
5). We then apply the iterative optimization scheme of [35],
which alternates between estimating the segmentationC us-
ing graph-cut (2), and updating the appearance models A
based on C. As shown in [35], this improves performance
over keeping the appearance models fixed to the initializa-
tion. During the iterations, the location potential L remains
fixed.

6.3. Results.

PASCAL VOC 2010. We measure performance with the
intersection-over-union (IoU) score [13]: O(S,G) = S∩G

S∪G ,
where S is the set of foreground pixels produced by the al-
gorithm, and G is the ground-truth set of foreground pixels.
This score penalizes both over- and under-segmentation and
is scale invariant. It ranges from 0 (worst) to 1 (best). We
report the average IoU over all test images (tab. 1).

As a baseline, we compare to plain grabcut [35] applied
to a full test image. As initializiation area to estimate the ap-
pearance models, we use a box in the middle of the image,
occupying 50% of its area (first row). This baseline per-
forms modestly at 30% IoU, as the initialization is usually
not aligned with the objects in the image.

As a second baseline we transfer the segmentation masks
of the 5 most similar training images to the test image, ac-
cording to the GIST [32] descriptor compute globally on
the whole image. The 5 masks are averaged and thresh-
olded to produce the final segmentation. We use a thresh-
old of 0.5. This baseline reaches 27% IoU (second row).
In contrast, our segmentation transfer based on objectness

windows [2] already gets to 40% IoU (fifth row, obtained by
directly thresholding the soft mask M produced in sec. 5.1,
the threshold is set so as to maximize performance on the
training set). This demonstrates our claim that segmenta-
tion transfer is substantially more effective when supported
by windows than by the whole image. Moreover, we also
tried switching off segmentation transfer while keeping the
candidate windows. In this case we use a solid block of
pure foreground as Mk. The resulting soft mask M is
thresholded the same way as before. This performs at 35%
IoU (fourth row), which demonstrates the benefits of trans-
ferring a segmentation mask from visually similar training
windows, which is tailored to the local image content of the
test image. It also shows that, while objectness windows are
a valuable platform on which we build our approach, they
do not solve the problem on their own.

In our complete framework, we use the transferred seg-
mentation to derive the appearance and location unary po-
tentials of the segmentation model of the test image (see
sec. 5.1 and sec. 5.2). The segmentation model with the
appearance potential A alone improves direct thresholding
by 4% to an IoU of 44% (second-last row). Our full seg-
mentation model, including also the location potential L,
improves further by another 4%, reaching a final result of
48% IoU (last row). Compared to standard GrabCut with a
default image-center initializiation (first row), this is a sub-
stantially better results, which validates our segmentation
transfer technique as a useful way to automatically set the
unary potentials of GrabCut.

We also compare to [11], which generates multiple seg-
ments intended to cover objects. It also ranks the returned
segments, so that segments deemed more likely to cover
objects are ranked higher. We use their publicly available
code 1, which already contains a model trained for the VOC
2010 dataset. We apply it to the test set and compute the IoU
scores when using the union of the top K ranked segments
as foreground prediction. We evaluate the performance for
all K ∈ {1, . . . , 100} and report the best result in tab. 1.
Our method delivers considerably higher IoU, although the
comparison is only indicative as the goal of [11] is not to
produce a single figure-ground segmentation for an image,
but a pool of plausible ones.

Finally, we also compare to the very recent, state-of-the-
art approach of [34], as it reports results in exactly our set-
ting. As the table shows, our method achieves 2% better
IoU, confirming its high performance.

Weizmann Horses. We quantify performance as pixel-
wise accuracy, as suggested in [5]. It measures the percent-
age of pixels classified correctly into foreground or back-
ground. In tab. 2 we compare to the recent, state-of-the-art
work of [5]. Our pixewise accuracy is essentially the same,

1http://sminchisescu.ins.uni-bonn.de/code/cpmc/



model IoU (%)
GrabCut 50% image center 30
Global image neighbor transfer 27
CPMC [11] (best K) 34
Rosenfeld [34] 46
windows (solid box) 35
windows (segmentation transfer) 40
segmentation model (appearance only) 44
segmentation model (appearance+location) 48

Table 1. Results on the PASCAL VOC 10 dataset. The last row
corresponds to our full method. See main text for discussion.

model pixelwise accuracy (%)
our method 94.7
Bertelli et al. [5] 94.6
Levin & Weiss [28] 95.5
Cosegmentation [22] 80.1

Table 2. Results on the Weizmann Horses dataset.

although we do not employ a separate sliding-window horse
detector [14], making our method simpler and more unified.
As a reference we also include the performance of [28].
While their score is slightly higher, their method relies on
ground-truth bounding-boxes on the horses in the test im-
ages. Our method instead is fully automatic. Finally, we
also report the score of an unsupervised segmentation work
[22] based on cosegmentation (i.e. they do not require train-
ing images with segmented horses). These results place fa-
vorably our approach in the context of the state-of-the-art.

Graz-02. Following [31], we evaluate performance based
on pixelwise precision/recall (PR). Since [31] outputs a soft
segmentation mask, they compute precision/recall for vary-
ing thresholds and then report the equal error rate (EER). In-
stead, our method outputs a binary segmentation, so we di-
rectly compute its PR. From PR, we compute the F-measure
as F = 2pr/(p + r). In tab. 3 we compare to other recent
works. While we outperform [1, 16, 31], the results of [27]
are very impressive on this dataset.

7. Conclusion

We have presented a novel technique for figure-ground
segmentation based on the idea of transferring segmenta-
tion masks from windows in the training images that are vi-
sually similar to windows in the test image. The transferred
masks are used to derive the location and appearance unary
potentials of a segmentation energy defined over the whole
test image. The scheme is fully automatic, class-agnostic
and dynamically adapts to the content of novel test images.
The experiments demonstrate the high performance of our
approach on challenging datasets.

model car people bike average
Marszalek & Schmid [31] 53.8 44.1 61.8 53.2
Fulkerson et al. [16] 54.7 51.4 66.4 57.5
Aldavert et al. [1] 62.9 58.6 71.9 64.5
Lempitsky et al. [27] 83.7 84.9 82.5 83.7
our method 74.8 66.4 63.2 68.1

Table 3. Results on the Graz-02 dataset. We report the F-measure
(%) for each class and the average over classes.

References
[1] D. Aldavert, A. Ramisa, R. Lopez de Mantaras, and

R. Toledo. Fast and robust object segmentation with integral
linear classifiers. In CVPR, 2010.

[2] B. Alexe, T. Deselaers, and V. Ferrari. What is an object? In
CVPR, 2010.

[3] H. Arora, N. Loeff, D. Forsyth, and N. Ahuja. Unsupervised
segmentation of objects using efficient learning. In CVPR,
2007.

[4] S. Belongie, J. Malik, and J. Puzicha. Matching with shape
contexts. IEEE Trans. on PAMI, 24(4):509–522, 2002.

[5] L. Bertelli, T. Yu, D. Vu, and S. Gokturk. Kernelized struc-
tural svm learning for supervised object segmentation. In
CVPR, 2011.

[6] A. Blake, C. Rother, M. Brown, P. Perez, and P. Torr. Inter-
active image segmentation using an adaptive gmmrf model.
In ECCV, 2004.

[7] E. Borenstein, E. Sharon, and S. Ullman. Combining top-
down and bottom-up segmentation. In CVPR, 2004.

[8] E. Borenstein and S. Ullman. Learning to segment. In ECCV,
2004.

[9] Y. Boykov and M. P. Jolly. Interactive graph cuts for optimal
boundary and region segmentation of objects in N-D images.
In ICCV, 2001.

[10] Y. Boykov and V. Kolmogorov. An experimental comparison
of min-cut/max-flow algorithms for energy minimization in
vision. IEEE Trans. on PAMI, 26(9):1124–1137, 2004.

[11] J. Carreira and C. Sminchisescu. Constrained parametric min
cuts for automatic object segmentation. In CVPR, 2010.

[12] I. Endres and D. Hoiem. Category independent object pro-
posals. In ECCV, 2010.

[13] M. Everingham et al. The PASCAL Visual Object Classes
Challenge 2010 Results, 2010.

[14] P. Felzenszwalb, D. McAllester, and D. Ramanan. A dis-
criminatively trained, multiscale, deformable part model. In
CVPR, 2008.

[15] V. Ferrari, M. Marin, and A. Zisserman. Progressive search
space reduction for human pose estimation. In CVPR, 2008.

[16] B. Fulkerson, A. Vedaldi, and S. Soatto. Localizing objects
with smart dictionaries. In ECCV, 2008.

[17] M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid.
TagProp: discriminative metric learning in nearest neighbor
models for image auto-annotation. In ICCV, 2009.

[18] J. Hays and A. Efros. Scene completion using millions of
photographs. In SIGGRAPH, 2007.

[19] I. Jermyn and H. Ishikawa. Globally optimal regions and
boundaries as minimum ratio weight cycles. IEEE Trans. on
PAMI, 23(10):1075–1088, 2001.



Figure 5. Example results from the PASCAL VOC 10 dataset.
Left: input image. Middle: mask M (sec. 5). Right: final segmen-
tation output by our method (sec. 3). Note how M localizes ob-
jects well, even when they are not centered in the image. The last
example (sofa) contains objects in the top half (picture frames).
The windows generated by [2] also cover these picture frames.
However, since they are not annotated as foreground in the PAS-
CAL VOC training data, they are not reflected in M .

[20] H. Jiang. Human pose estimation using consistent max-
covering. In ICCV, 2009.

[21] N. Jojic, A. Perina, M. Cristani, V. Murino, and B. Frey. Stel
component analysis: Modeling spatial correlations in image
class structure. In CVPR, 2009.

[22] A. Joulin, F. Bach, and J. Ponce. Discriminative clustering
for image cosegmentation. In CVPR, 2010.

[23] V. Kolmogorov and R. Zabin. What energy functions can
be minimized via graph cuts? IEEE Trans. on PAMI,
26(2):147–159, 2004.

[24] M. P. Kumar, P. H. S. Torr, and A. Zisserman. OBJ CUT. In
CVPR, 2005.

[25] L. Ladicky, C. Russel, P. Kohli, and P. Torr. Graph cut based
inference with co-occurrence statistics. In ECCV, 2010.

[26] V. Lempitsky, P. Kohli, C. Rother, and T. Sharp. Image seg-
mentation with a bounding box prior. In ICCV, 2009.

[27] V. Lempitsky, A. Vedaldi, and A. Zisserman. A pylon model
for semantic segmentation. In NIPS, 2011.

[28] A. Levin and Y. Weiss. Learning to combine bottom-up and
top-down segmentation. In ECCV, 2006.

[29] C. Liu, J. Yuen, and A. Torralba. Nonparametric scene pars-
ing: Label transfer via dense scene alignment. In CVPR,
2009.

[30] T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of
exemplar-svms for object detection and beyond. In ICCV,
2011.

[31] M. Marszalek and C. Schmid. Accurate object localization
with shape masks. In CVPR, 2007.

[32] A. Oliva and A. Torralba. Modeling the shape of the scene:
a holistic representation of the spatial envelope. IJCV,
42(3):145–175, 2001.

[33] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer. Generic
object recognition with boosting. In IEEE Trans. on PAMI,
pages 416–431, 2006.

[34] A. Rosenfeld and D. Weinshall. Extracting foreground
masks towards object recognition. In ICCV, 2011.

[35] C. Rother, V. Kolmogorov, and A. Blake. Grabcut: Inter-
active foreground extraction using iterated graph cuts. In
SIGGRAPH, 2004.

[36] B. Russel, A. Torralba, C. Liu, and R. Fergus. Object recog-
nition by scene alignment. In NIPS, 2007.

[37] T. Schoenemann and D. Cremers. Introducing curvature into
globally optimal image segmentation: Minimum ratio cycles
on product graphs. In ICCV, 2007.

[38] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-
Boost: Joint appearance, shape and context modeling for
multi-class object recognition and segmentation. In ECCV,
2006.

[39] A. Sinop and L. Grady. A seeded image segmentation frame-
work unifying graph cuts and random walker which yields a
new algorithm. In ICCV, 2007.

[40] Z. Tu, X. Chen, A. Yuille, and S. Zhu. Image parsing:
Unifying segmentation, detection, and recognition. IJCV,
63(2):113–140, 2005.

[41] K. Van de Sande, U. J.R.R., T. Gevers, and A. Smeulders.
Segmentation as selective search for object recognition. In
ICCV, 2011.

[42] J. Verbeek and B. Triggs. Region classification with Markov
field aspect models. In CVPR, 2007.

[43] S. Vicente, V. Kolmogorov, and C. Rother. Graph cut based
image segmentation with connectivity priors. In CVPR,
2008.

[44] J. Wang and M. Cohen. An iterative optimization approach
for unified image segmentation and matting. In ICCV, 2005.

[45] J. Winn and N. Jojic. LOCUS: learning object classes with
unsupervised segmentation. In ICCV, 2005.


