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Abstract Learning a new object class from cluttered

training images is very challenging when the location

of object instances is unknown, i.e. in a weakly su-

pervised setting. Many previous works require objects

covering a large portion of the images. We present a

novel approach that can cope with extensive clutter

as well as large scale and appearance variations be-

tween object instances. To make this possible we ex-

ploit generic knowledge learned beforehand from images

of other classes for which location annotation is avail-

able. Generic knowledge facilitates learning any new

class from weakly supervised images, because it reduces

the uncertainty in the location of its object instances.

We propose a conditional random field that starts from

generic knowledge and then progressively adapts to the

new class. Our approach simultaneously localizes object

instances while learning an appearance model specific

for the class. We demonstrate this on several datasets,

including the very challenging Pascal VOC 2007. Fur-

thermore, our method allows training any state-of-the-

art object detector in a weakly supervised fashion, al-

though it would normally require object location anno-

tations.

Keywords object detection, weakly supervised

learning, transfer learning, conditional random fields

1 Introduction

In weakly supervised learning (WSL) we are given a set

of images, each containing one or more instances of an
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e.g. [Felzenszwalb et al, 2010]

Fig. 1 Learning scenario. Starting from weakly supervised
images of a new class, we localize its object instances while learn-

ing an appearance model of the class. In order to support learn-
ing this new class, we use Generic Knowledge learned beforehand

from other classes. Our method can be used to produce bounding-

boxes for training any fully supervised object detector.

unknown object class. In contrast to the fully super-

vised scenario, the location of objects is not given. The

task is to learn a model for this object class, which can
then be used to determine whether a test image con-

tains the class and possibly even to localize it (typically

up to a bounding-box). In this case, the learned model

is asked to do more than what the training examples

teach.

WSL has become a major topic in recent years to

reduce the manual labeling effort to learn object classes

[Bagon et al, 2010, Chum and Zisserman, 2007, Cran-

dall and Huttenlocher, 2006, Galleguillos et al, 2008,

Kim and Torralba, 2009, Nguyen et al, 2009]. In the

traditional paradigm, each new class is learned from

scratch without any knowledge other than what was

engineered into the system. In this paper, we explore a

scenario where generic knowledge about object classes

is first learned during a meta-training stage when im-

ages of many different classes are provided along with

the location of objects. This generic knowledge is then

used to support the learning of a new class without lo-

cation annotation (figure 1). Generic knowledge makes

WSL easier as it rests on a stronger basis.
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We propose a conditional random field (CRF) to

simultaneously localize object instances and learn an

appearance model for the new class. The CRF aims to

select one window per image containing an instance of

the new object class. We alternate between localizing

the objects in the training images and learning class-

specific models that are then incorporated into the next

iteration. Initially the CRF employs generic knowledge

to guide the selection process as it reduces the location

uncertainty. Over the iterations the CRF progressively

adapts to the new class, learning more and more about

its appearance and shape. This strategy enables our

method to learn from very cluttered images containing

objects with large variations in appearance and scale,

such as the Pascal VOC 2007 [Everingham et al, 2007]

(fig. 8, 9).

The main contribution of this paper is a novel method

to jointly localize and learn a new class from WS data.

Therefore, in sec. 6 we directly evaluate the perfor-

mance of our method by measuring how well it local-

izes instances of a new class in WS training images. We

compare to various baselines and three existing meth-

ods [Chum and Zisserman, 2007, Kim and Torralba,

2009, Russell et al, 2006]. Moreover, we also demon-

strate an application of our method: we train the fully

supervised model of [Felzenszwalb et al, 2010] from ob-

jects localized by our method, evaluate it on a test

set, and compare its performance to the original model

trained from ground-truth bounding-boxes. These ex-

periments show that our method enables training good

object detectors from weakly supervised datasets, even

when they consist of highly challenging images.

1.1 Related Work.

Weakly supervised learning of object classes. We focus

here on WSL methods to learn object classes (i.e. re-

quiring no object locations). Many approaches are based

on a bag-of-word model for the entire image [Dorkó and

Schmid, 2005, Zhang et al, 2007]. Although they have

demonstrated impressive classification performance [Ev-

eringham et al, 2007], they are usually unable to localize

objects.

There are several WSL methods that achieve local-

ization. In table 1 we summarize the main character-

istics of many popular approaches. Two major fami-

lies are part-based models [Crandall and Huttenlocher,

2006, Fergus et al, 2003], and segmentation-based mod-

els [Alexe et al, 2010a, Arora et al, 2007, Cao and

Li, 2007, Galleguillos et al, 2008, Russell et al, 2006,

Todorovic and Ahuja, 2006, Winn and Jojic, 2005a],

and a wide variety of other techniques have been pro-

posed [Bagon et al, 2010, Chum and Zisserman, 2007,

Lee and Grauman, 2009a, Nguyen et al, 2009]. However,

most methods have been demonstrated on datasets such

as Caltech4 [Arora et al, 2007, Crandall and Hut-

tenlocher, 2006, Fergus et al, 2003, Galleguillos et al,

2008, Lee and Grauman, 2009a, Nguyen et al, 2009,

Winn and Jojic, 2005a], Weizmann horses [Borenstein

and Ullman, 2004, Cao and Li, 2007, Winn and Jojic,

2005a], or CMU Faces [Nguyen et al, 2009]. The ob-

jects in such datasets are rather centered and occupy a

large portion of the image, there is little scale/viewpoint

variation, and limited background clutter. This is due

to the difficulty of spotting the recurring object pattern

in challenging imaging conditions.

The field has made significant progress in recent

years, as several methods have tried to go beyond and

experiment on more challenging datasets, such as ETHZ

Shape Classes [Bagon et al, 2010, Lee and Grauman,

2009a], PASCAL VOC 06 [Chum and Zisserman, 2007,

Kim and Torralba, 2009], and LabelMe [Russell et al,

2006]. However, often the authors reduce the difficulty

of the dataset by manually providing information about

the scale of the target objects [Bagon et al, 2010, Lee

and Grauman, 2009a], their location [Lee and Grau-

man, 2009a], or select easier subsets of images with

dominant objects [Chum and Zisserman, 2007]. Blaschko

et al [2010] report experiments on the cat class from

PASCAL VOC 07 in a semi-supervised setting, where

their method is given the location of some of the tar-

get objects. Russell et al [2006] automatically segment

out regions similar across many images from the diffi-

cult LabelMe dataset [Russel and Torralba, 2008], but

reports that it is very hard to find small objects such

as cars in it. [Chum and Zisserman, 2007] is especially

related to our approach as it also finds one window per

image. It iteratively refines windows initialized from the

most discriminative local features. This fails when the

objects occupy only a modest portion of the images

and for classes such as horses, for which local texture

features have little discriminative power. Kim and Tor-

ralba [2009] cluster windows of similar appearance us-

ing link analysis techniques. We quantitatively compare

to [Chum and Zisserman, 2007, Russell et al, 2006] in

sec. 6, and to [Kim and Torralba, 2009] in sec. 6.3.

As summarized in table 1, methods are evaluated

with a variety of different measures. In this work we

are particularly interested in evaluating the ability of

a method to localize objects. Several previous works

evaluate their method indirectly, as the performance of

the learned model on a separate set of test images. In

several cases, test time performance is evaluated only

as whole image classification [Fergus et al, 2003], while

other works evaluate localization [Bagon et al, 2010].

Conversely, some works evaluate how well their method
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localizes objects in the training images, but do not try

the learned model on novel test images, e.g. [Arora et al,

2007, Winn and Jojic, 2005a]. In this paper, we eval-

uate localization both directly on the training images,

as well as on novel test images (by training the model

of [Felzenszwalb et al, 2010] from the output of our

method). Moreover, to the best of our knowledge, we

are the first to demonstrate weakly supervised learning

of object categories on the very challenging Pascal07

dataset.

Transfer learning in computer vision. Our use of generic

knowledge is related to previous work on transfer learn-

ing [Raina et al, 2007, Thrun, 1996] in computer vision,

where learning the new class (target) is helped by la-

beled examples of other related classes (sources) [De-

selaers et al, 2010, Fei-Fei et al, 2004, Lampert et al,

2009a, Lando and Edelman, 1995, Quattoni et al, 2008,

Rohrbach et al, 2010, Stark et al, 2009, Tommasi and

Caputo, 2009, Tommasi et al, 2010, Torresani et al,

2010].

Transfer learning for visual recognition is a rela-

tively new trend, but it is gaining increasing attention.

One of the earliest works, [Lando and Edelman, 1995]

learns a new face from just one view, supported by im-

ages of other faces. [Fei-Fei et al, 2003] learn priors on

parameters of a part-based classifier from a set of mixed

classes, and then incorporate these priors when learn-

ing a new class using a Bayesian approach. These pri-

ors are a form of generic knowledge. They help biasing

the parameters of the model of the target class. Instead

our generic knowledge is designed to help localizing ob-

jects of the target class in their training images. Fei-

Fei et al [2004] extends [Fei-Fei et al, 2003] to sequen-

tially update a part-based classifier trained on source

classes to fit the target class. Stark et al [2009] trans-

fer shape knowledge from one manually selected source

class to the target class. Tommasi and Caputo [2009]

use the parameters of the SVM for one source class as

a prior for the target class. Their follow-up work [Tom-

masi et al, 2010] transfers from multiple source classes

automatically selected by minimizing a leave-one-out

error on the training set of the target class. Lampert

et al [2009a] transfer knowledge from 40 animal classes

through an intermediate attribute layer. The lists of

which attributes belong to which class are manually

defined. Rohrbach et al [2010] improve by automati-

cally compiling these lists through text mining on the

Internet (e.g. counting the number of occurrences of an

attribute-noun pair such as ‘striped tiger’). They also

present a model where the amount of transfer is guided

by the semantic similarity between the names of the

source and target classes.

Fig. 2 The localization model is a fully connected CRF where
each training image is a node. The state space of a node is the

set of windows in the image. The unary potential measures how

likely a window is to contain an object of any class. The pairwise
potential measures how likely two windows are to contain objects

of the same, but unknown, class.

Most previous work on transfer learning in CV learn

models for classifying an entire image as containing the

target class or not. Our method instead learns models

capable of localizing objects up to a bounding-box. This

is a harder task [Everingham et al, 2010], especially

when bounding-boxes are not available for training. To

achieve this, we transfer a substantially different kind

of knowledge, which reduces the location uncertainty

of the target class in its training images. Automatically

localizing instances of the new class in training images

is the central objective of our work. Moreover, previ-

ous works aim at reducing the number of images neces-

sary to learn the target class, improving generalization

from a few examples. Here instead, we reduce the de-

gree of supervision from object bounding-boxes to im-

age labels. Finally, the above works transfer knowledge

from source classes related to the target class, whereas

our generic knowledge provides a broad basis on top of

which it is easier to learn any new class.

Mulitple-instance learning. Our method is also related

to multiple-instance learning [Andrews et al, 2002, Chen

et al, 2006, Viola et al, 2005], if we represent an image

as a bag and the windows therein as instances. We have

shown in [Deselaers and Ferrari, 2010] how a generaliza-

tion of the CRF proposed here can be used for multiple-

instance learning in general problems. Note however,

that in this paper we are not interested in bag classifi-

cation but in automatically selecting a positive instance

in each positive bag (which gives the localization of the

object class).
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Table 1 Overview of methods for weakly supervised learning of object classes. For each paper we give the type of approach,
the datasets used for evaluation, the information given at training time, what is evaluated on training and test data, whether the

approach handles objects at different scales at training time, and mention main limitations.

Legend

Approach: Parts: part-based, Topic: topic models, Gen: other generative model, Exemplar: exemplar model, Clust: clustering,

LA: link analysis, StructSVM: structural SVM, CRF: conditional random field, MIL: multiple instance learning, TM: template
matching, Seg: segmentation-based, Shape: contour descriptors, BoVW: bag of visual words, SS: self-similarity features.

Datasets: C4: Caltech4, C101: Caltech101, C101∗: a subset of C101 with 4-28 classes. GB: Graz bicycles, W: Weizmann Horses,

WH: Weizmann Horses cropped to heads, MSRC: Microsoft Research Cambridge segmentation database, L: LabelMe subset, CMU:
CMU faces, ETHZ: ETHZ Shape Classes, TUD: TU Darmstadt motorbikes and cows, UIUC: UIUC cars, INRIA: INRIA person

detection dataset, X: private dataset, P6: PASCAL VOC 06, P7: PASCAL VOC 07, P6-DO: A subset of P6 with 6 classes (car,

bicycle, bus, motorbike, cow, sheep). About 20 images per class manually selected. Most of them with large dominant objects. P7-cat:
only the cat class from P7.

Training information: CVP: images contain objects of the target class in roughly the same viewpoint; C: images contain objects

of the target class. Scale: the size of the target objects is given to the algorithm; BB: images cropped around the bounding-box of
the target object, to a fixed region relative to the object size; Unlabeled: unlabeled images with multiple categories (object discovery

setting); Semi: object locations given for some images. MT: external meta-training data from other classes given.

Evaluate on (training/test images): Purity: how well the learner clusters training images into object classes (discovery setting

only); Segm: pixelwise accuracy of foreground/background segmentation; CorLoc: percentage of correctly localized objects up to
a BB (sec. 6.2); BBHR: Bounding-box Hit Rate, measuring the percentage of local features labeled as the object that fall into

the ground-truth BB. It does not measure localization of whole objects; Classif: object present/absent classification on test images;

Det: detection accuracy on test images (captures both whole-image classification and localization up to a BB); FD: weighted ratio
of features on objects and background; no: no evaluation reported. Overall, only methods tagged with Segm, CorLoc, BBHR, Det

evaluate localization in some form. Only methods tagged with CorLoc, Det evaluate localization of whole objects.

Scale changes: no: the method is described as not supporting multiple scales. yes: the method is described as supporting multiple
scales and the evaluation gives evidence for it. If neither yes nor no: the evaluation does not show scale changes, but the method could

potentially support them.

Work Approach Datasets Training Evaluate on Scale

information train img. test img. changes

Fergus et al [2003] Parts C4 CVP no Classif

Fei-Fei et al [2003] Parts C4 CVP+ MT no Classif

Borenstein and Ullman [2004] Seg WH, C4 CVP Segm no no

Fei-Fei et al [2004] Parts C101 CVP+ MT no Classif

Winn and Jojic [2005a] Seg+Gen C4, W CVP Segm no

Russell et al [2006] Seg+Topic C4, MSRC, L Unlabeled Segm no yes

Todorovic and Ahuja [2006] Seg C4, UIUC CVP no Det

Fritz and Schiele [2006] Parts TUD, UIUC CVP no Det

Crandall and Huttenlocher [2006] Parts C4, GB CVP+ Scale no Classif

Grauman and Darrell [2006] Shape+Clust C4 Unlabeled Purity Classif

Arora et al [2007] Seg+CRF C4 CVP no Classif+

Segm

Chum and Zisserman [2007] Exemplar P6-DO CVP no Det

Cao and Li [2007] Seg+Topic W, C4, C101∗ Unlabeled for C4,

CVP for W

Segm,

Classif

no

Galleguillos et al [2008] Seg+MIL C4 CVP no Classif

Lee and Grauman [2009b] Clust C101∗, MSRC CVP FD no

Lee and Grauman [2009a] Shape+Clust C4, ETHZ, L Unlabeled for C4,

BB for ETHZ

Purity+

BBHR

Det

Nguyen et al [2009] BoVW+MIL C4, CMU, X CVP+ Scale no Classif

Kim and Torralba [2009] Clust+LA P6 C Det no yes

Bagon et al [2010] SS+TM ETHZ, X CVP+ Scale no Det no

Alexe et al [2010a] Seg+CRF W, C4, C101∗ CVP+ MT Segm no

Payet and Todorovic [2010] Shape+Clust ETHZ, W, C101∗ Unlabeled Purity+
BBHR

no yes

Blaschko et al [2010] StructSVM INRIA, P7-cat CVP+ Semi no Det yes

this paper CRF + GK C4, P6, P7 CVP+ MT CorLoc Det yes
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1.2 Plan of the Paper.

Our new CRF model is described in section 2. In sec-

tion 3 we explain how it is used to localize instances of

a new object class in WS training images while learning

a model of the new class. Section 4 details the generic

knowledge that is incorporated into the process and

how it is obtained. Section 5 describes the image cues

we use and in sections 6-7 we experimentally evaluate

the method.

2 The CRF model for localizing a new class

The goal of this paper is to simultaneously localize ob-

jects of a new target class in a set of training images

and learn an appearance model of the class. As we make

no assumption about object locations, scales, or over-

all shape (aspect-ratio), any image window can poten-

tially contain an object of the target class. We select

one window per image by optimizing the energy of a

conditional random field (CRF) defined globally over

all training images (eq. (2)). Ideally the energy is mini-

mal when all selected windows contain an object of the

same class.

Initially the CRF is driven by class-generic knowl-

edge (GK) that is learned beforehand from meta-training

data (section 4). GK guides the initial selection of win-

dows on the training images of the target class (local-

ization stage, section 3.1). Next, we use the selected

windows to learn appearance and shape models spe-

cific to the target class, and incorporate them as new
terms in the CRF (learning stage, section 3.2). In the

next iteration we optimize the updated CRF to refine

the selection of windows. Alternating the localization

and learning stages progressively transforms the CRF

from a class-generic object localizer into one specialized

to the target class. The two stages help each other, as

better localization leads to more accurate class-specific

models, which in turn sharpens localization. This com-

bination allows for WSL on highly cluttered images

with strong scale and appearance variations (section 6).

2.1 Configuration of windows L

The set of training images I = (I1, . . . , IN ) is repre-

sented as a fully connected CRF (figure 2). Each im-

age In is a node which can take on a state from a dis-

crete set corresponding to all image windows. The pos-

terior probability for a configuration of windows L =

(l1, . . . , lN ) can be written as

p(L|I, Θ) ∝ exp (−E(L|I, Θ)) (1)

with E(L|I, Θ) =
∑
n

ρnΦ(ln|In, Θ) (2)

+
∑
n,m

ρnρmΨ(ln, lm|In, Im, Θ) (3)

where each ln is a window in image In. More precisely,

ln is an index into a list of candidate windows for image

In (section 4.1); Θ are the parameters of the CRF; ρn
is the confidence for image In, weighting its impact on

the overall energy (section 3.2.3). Φ(ln|In, Θ) is a unary

potential which describes the cost to select a window

ln in an image In (section 2.2). Ψ(ln, lm|In, Im, Θ) is

a pairwise potential which assigns a cost to selecting

window ln in image In and window lm in image Im
(section 2.3).

For reference, we give an overview over the notation

used for the model components in table 2.

2.2 The unary potential Φ

The unary Φ(ln|In, Θ) measures how likely an image

window ln is to contain an object of the target class

Φ(ln; In) = αΩΩ(ln|In, θΩ) (4)

+ αΠΠ(ln|θΠ) +
∑
f

αΥf
Υf (ln|In, θΥf

)

It is a linear combination of:

– Ω: the likelihood that ln contains an object of any

class, rather than background [Alexe et al, 2010b]

(section 4.1);

– Π: a model of the overall shape of the windows,

specific to the target class (section 3.2.2);

– Υf : appearance models, one for each cue f , spe-

cific to the target class (section 3.2.1). In our ex-

periments we consider four appearance cues: GIST,

color histograms, bag of words, and HOG (section 5).

The scalars α weight the terms.

Note how Π,Υ carry knowledge specific to the tar-

get class. They are initially unknown and set to uniform

values. They are learned after the first localization stage

and then used in all subsequent iterations (section 3.2.1,

3.2.2).

2.3 The Pairwise Potential Ψ

The pairwise potential Ψ(ln, lm|In, Im, Θ) measures the

dissimilarity between two windows, assessing how likely
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Fig. 3 The pairwise potential. Two images with candidate windows (yellow). Appearance descriptors are extracted for each

window (arrows). The pairwise potential Ψ is computed for every pair of windows between the two images, as a linear combination of

appearance dissimilarity cues Γf and the aspect-ratio dissimilarity Λ.

they are to contain objects of the same class (figure 3)

Ψ(ln, lm|In, Im, Θ) = αΛΛ(ln, lm|θΛ) (5)

+
∑
f

αΓf
Γf (ln, lm|In, Im)

It is a linear combination of

– Λ: a prior on the shape dissimilarity between two

windows ln, lm. It depends only on the states ln, lm,

not on the image content (section 4.2);

– Γf : a potential measuring the appearance dissimi-

larity between ln and lm according to multiple cues

f . It depends on the image content (section 4.3).

The scalars α weight the terms. Figure 3 illustrates the

computation of the pairwise potential for every pair of

windows between two images.

2.4 The parameters θΩ , θΛ

The parameters θΩ , θΛ of the individual terms and the

weights α carry generic knowledge and are learned from

the meta-training data (section 4). The class-specific

models Π,Υ and the image confidences ρn carry class-

specific knowledge and are initially unknown. During

the first localization stage we set them to uniform. They

are progressively adapted to the target class over the

following iterations during the learning stage (section 3.2).

Note that our model connects nodes (windows) be-

tween images, rather than elements within an image

as is typically done for CRFs in other computer vi-

sion domains (e.g. pixels in segmentation [Rother et al,

2004], body parts in human pose estimation [Ramanan,

2006]).

3 Localization and Learning

When given a set of images I of a target class the goal is

to localize its object instances and learn a model of the

Table 2 Notation used throughout the paper.

Symbol Meaning Description

L configuration of windows (l1, . . . , lN ) 2.1

I set of training images (I1, . . . , IN ) 2.1
In one image 2.1

ln on window/state in image In 2.1

Θ parameters of CRF model 2.1
ρn confidence for image In 3.2.3

Φ(ln|In, Θ) unary potential of CRF 2.2

Ψ(ln, lm|In, Im, Θ) pairwise potential of CRF 2.3
α weights for terms in the model 2.2, 2.3

Ω(ln|In, θΩ) objectness term 4.1

Π(ln|θΠ) class-specific shape model 3.2.2
Υf (ln|In, θΥf

) class-specific appearance model 3.2.1

Λ(ln, lm|θΛ) shape dissimilarity between two windows 4.2

Γf (ln, lm|In, Im) appearance dissimilarity 4.3

input: images showing objects 
of unknown target class

Localize objects by 
minimzing global energy (2)

Sec. 3.1

Use selected windows
to adapt CRF model

Sec 3.2

stop if
converged

Generic knowledge learned 
on meta-training images

Sec. 4

Fig. 4 Localization and learning. The localization and learn-
ing stages are alternated. Localization: one window is selected

among the candidates for each image (sec. 3.1); Learning: the
CRF model is adapted to the target class. (sec. 3.2). These two
steps are alternated until convergence, i.e. the selected windows

remain the same between two iterations.

class. Initially our CRF is driven by generic knowledge,

which was learned beforehand in the meta-training stage

(section 4). This drives the first localization stage (sec-

tion 3.1) that attempts to select windows covering in-

stances of the target class. Next, these windows are used

to learn knowledge specific to the target class, which is

then incorporated into the CRF (section 3.2). The lo-

calization and learning stages are alternated, optimiz-
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ing one while keeping the other fixed, thus progressively

adapting the CRF to the target class (figure 4).

The localization and learning stages help each other,

as better localizations lead to better class-specific mod-

els, which in turn sharpen localization. Similar EM-

like optimization schemes [Felzenszwalb et al, 2010] are

commonly used to learn in the presence of latent vari-

ables (in our case L∗).

3.1 Localization.

Localizing objects corresponds to finding the configu-

ration L∗ that minimizes the global energy (2):

L∗ = arg min
L
{E(L|I, Θ)} (6)

The selected windows L∗ are the most likely to con-

tain instances of the same object class (according to

the model).

Optimizing this energy exactly is impractically ex-

pensive (complexity O(W |I|), with W the average num-

ber of windows in an image). Exact inference is in-

efficient because the CRF is fully connected, has ar-

bitrary non-submodular pairwise potentials, and the

nodes have huge state spaces (potentially all windows

in the images).

Therefore we use the objectness measure of [Alexe

et al, 2010b] as a location prior. We randomly sample

100 windows per image proportionally to their prob-

ability of containing an object and use only these as

states (section 4.1). We now approximate the global

optimum of the model in this reduced state space using

the tree-reweighted message passing algorithm TRW-

S [Kolmogorov, 2006a]. This has complexity O(kW |I|),
with k a small number of iterations (typically k < 10).

TRW-S also returns a lower bound on the energy. When

this coincides with the returned solution, we know it

found the global optimum of the model in the reduced

state space. In our experiments, TRW-S finds it in 93%

of the cases, and in the others the lower bound is only

0.06% smaller on average than the returned energy.

Thus we know that the computed configurations L∗ are

very close to the global optimum.

3.2 Learning.

Based on the selected windows L∗, we adapt several

components of the CRF to the target class:

– the class-specific appearance models Υf (section 3.2.1),

– the class-specific shape model Π (section 3.2.2),

– the image confidences ρn (section 3.2.3), and

– the weights α of the cues (section 3.2.4, 3.2.5).

During this stage the CRF is progressively adapted

from generic to class-specific. This adaptation involves

an additional negative image set N , which does not

contain any object of the target class.

3.2.1 Class-specific appearance models Υf

Any model trainable from annotated object windows

could be used here (e.g. [Dalal and Triggs, 2005, Felzen-

szwalb et al, 2010, Lampert et al, 2009b]). We train a

separate SVM θΥf
for each appearance cue f . Since usu-

ally not all selected windows L∗ contain an object of the

target class, these SVMs are iteratively trained [Gaidon

et al, 2009]. First, the SVM θΥf
is trained to separate

all windows L∗ from windows randomly sampled from

N . Then, this SVM is used to score every selected win-

dow l∗n ∈ L∗. The top scored κ% windows are then used

to retrain θΥf
. In our experiments we use κ = 50 and

repeat this procedure 10 times. As explained in [Gaidon

et al, 2009] this iterative procedure brings the benefit

of cleaning up the training set, by ranking low windows

not belonging to the target class.

After training the SVMs, we set the energy Υf (ln|In, θΥf
)

of a candidate window ln in eq. (4) to the signed dis-

tance between the SVM hyperplane and the appearance

descriptor lfn(In) of ln:

Υf (ln|In, θΥf
) = βΥf

+ θΥf
lfn(In) (7)

where βΥf
is the bias term of the SVM. The SVM is

trained such that the selected windows are class “-1”,

and the negative windows are class “+1” aiming for the

SVM to give a low energy to windows that are classified
as “selected”.

3.2.2 Class-specific shape model Π

The class-specific shape model Π(ln|θΠ) models the

aspect-ratio of the target class as an univariate Gaus-

sian with parameters θΠ = {µΠ , σΠ}

p(ln|ΘΠ) =
1√

2Πσ2
Π

exp

(
|µΠ − lΠn |2

σ2
Π

)
(8)

where lΠn is the aspect-ratio of window ln (i.e. width

divided by height). We learn µΠ , σΠ to fit the distri-

bution of the aspect-ratios of the selected windows L∗,

according to the maximum-likelihood criterion.

After learning this Gaussian, we set the energyΠ(ln|ΘΠ)

of a candidate window ln in eq. (4) to

Π(ln|ΘΠ) =− log(p(ln|ΘΠ) (9)
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3.2.3 Image confidences ρn

The image confidences ρn emphasize images where the

model is confident of having localized an object of the

target class (eq. 2). We set ρn proportional to the neg-

ative energy of a selected window l∗n according to the

class-specific appearance model

ρn ∝ −
∑
f

(
αΥf

Υf (l∗n|In, θΥ )
)

(10)

The class-specific appearance model has a high confi-

dence on images where the object is localized accurately

and can be easily recognized (i.e. it has a large nega-

tive distance from the SVM hyperplane, eq. (7)). Such

images receive a high confidence. Conversely, it gives a

low confidence (i.e. high energy) to images where the

object is either not well localized or is difficult to rec-

ognize (e.g. poor illumination conditions), such images

receive a low confidence. This reduces the impact of

particularly difficult images and makes the model more

robust to incorrect selections in L∗. The image confi-

dences ρn are linearly scaled so that the image with

the highest confidence has ρ = 2.0, and the image with

the lowest confidence has ρ = 0.5. Note how the confi-

dences implicitly adapt every term in the CRF toward

the target class.

3.2.4 Unary appearance cue weights αΥf

Not all classes can be discriminated equally well using

the same cues (e.g. motorbikes can be recognized well

using texture patches, sheep using color, mugs using

shape-gradient features). Here we adapt to the target

class the weights αΥf
of the class-specific appearance

models Υf .

To determine the discriminative power of the indi-

vidual appearance models Υf , we train a linear SVM w

on the space of vectors of appearance scores [Υf (ln|In, θΥf
)].

As in our experiments we use 4 appearance cues, these

vectors are of length 4 (section 5). As positive train-

ing data we use the κ% of the selected windows L∗

which have the highest score according to the unary

models Υf (i.e. the highest confidence of covering an

object the target class). As negative training data we

randomly sample windows from N . The trained SVM

hyperplane w gives higher weights to cues that are par-

ticularly suited to discriminate windows of the target

class from other windows.

After learning the hyperplane w, we update the weights

αΥf
to αΥf

← 1
2 (αΥf

+w(f)), where w(f) is the weight

of cue f .

3.2.5 Pairwise appearance cue weights αΓf

We proceed analogously to section 3.2.4. To determine

the importance of the pairwise appearance cues, we

train a linear SVM on vectors of pairwise appearance

similarities [Γf (ln, lm|In, Im)]. As positive training data

we use the appearance similarities between all pairs

of the top κ% selected windows. As negative training

data we use (a) appearance similarities between pairs

of one positive window and one negative window (sam-

pled from N ), (b) appearance similarities between all

pairs of negative windows.

After training the SVM, the weights αΓf
are up-

dated in the same manner as in section 3.2.4.

3.2.6 Other terms

The objectnessΩ, the shape dissimilarity Λ, and the ap-

pearance dissimilarity Γf terms are not explicitly adapted

to the target class. However, their impact on the overall

energy (eq. (2)) is adapted through the weights αΥf
, αΓf

,

and the image confidences ρn.

3.3 Discussion

3.3.1 Convergence

Our overall algorithm is defined by two decoupled op-

timization problems: localization and learning. The al-

gorithm terminates when two consecutive localization

steps return the same selection of windows. In our ex-

periments this always happened within 10 iterations.

3.3.2 Optimality of the localization phase

The localization optimization problem is not solved glob-

ally optimally because minimizing the energy of our

fully connected CRF is impractical [Kolmogorov, 2006b].

However, as described in section 3.1, the approximation

we obtain with TRW-S is very close to the global opti-

mum.

3.3.3 Optimality of the learning phase

The class-specific parameters are trained optimally ac-

cording to their respective training criteria:

parameters of the class-specific appearance models: the

class-specific appearance models are SVMs and thus

their training problem is convex.

class-specific shape model: the class-specific shape model

is a single Gaussian, which is easily trained accord-

ing the the maximum likelihood criterion.
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3.3.4 Runtime

Running the entire method on a set of 100 images takes

about 10h hours using our unoptimized, single-threaded

Matlab implementation. Most of the time is spent in

feature extraction (total: 7.5h; per image: 4 sec for ob-

jectness; 10 sec for GIST, 80 sec for CHIST, 180 sec

for SURF, 5 sec for HOG). After feature extraction,

computing the pairwise potentials takes a total of 2h.

Finally, one iteration of localization and learning takes

about 1 min (<2 seconds for localization; about one

minute for the learning step).

4 Generic Knowledge: initializing Θ

Initially the model parameters Θ carry only generic

knowledge. They are learned in a meta-training stage to

maximize the localization performance on a set of meta-

training images M. These contain objects of known

classes annotated with bounding-boxes.

4.1 Objectness Ω

We use the objectness measureΩ(l|I, θΩ) of [Alexe et al,

2010b], which quantifies how likely it is for a window l to

contain an object of any class. Objectness is trained to

distinguish windows containing an object with a well-

defined boundary and center, such as cows and tele-

phones, from amorphous background windows, such as

grass and road. Objectness combines several image cues

measuring distinctive characteristics of objects, such as

appearing different from their surroundings, having a

closed boundary, and sometimes being unique within

the image. The ideal behavior of the objectness mea-

sure is shown in figure 5.

We use objectness as a location prior in our CRF,

by evaluating it for all windows in an image I and then

sampling 100 windows according to their objectness

probability. These form the set of states for node I (i.e.

the candidate windows the CRF can choose from). The

objectness probability forms the unary term Ω(l|I, θΩ).

This procedure brings two advantages. First, it greatly

reduces the computational complexity of minimizing (2),

which is quadratic in the number of states (there are

' 108 windows in an image [Lampert et al, 2009b]).

Second, the sampled windows and their scoresΩ attract

the CRF toward selecting objects rather than back-

ground windows. This is crucial in a WSL setup, as

typically the background contains frequently recurring

appearance patterns with low variability between im-

ages. Importantly, this variability is ofter smaller than

that among the actual object instances, antagonizing

Fig. 6 Pairwise shape dissimilarity model Λ:

p(ln
c
= lm|AD(ln, lm))) (vertical axis) as a function of AD(ln, lm)

(horizontal axis). At the leftmost point AD(ln, lm) = 0, i.e. ln
and lm have the same aspect-ratio.

the learner. Therefore, our use of objectness steers the

CRF away from trivial solutions, e.g. where all selected

windows cover a piece of sky in airplane training im-

ages [Nguyen et al, 2009], or a piece of road in motor-

bikes images. In section 6 we evaluate objectness quan-

titatively.

We note that as an alternative to the objectness

measure of [Alexe et al, 2010b], we could also have used

the related methods of [Endres and Hoiem, 2010] or

[Carreira et al, 2010].

4.2 Pairwise shape dissimilarity Λ

θΛ is learned as the Bayesian posterior Λ(ln, lm|θΛ) =

− log p(ln
c
= lm|AD(ln, lm)) from many window pairs con-

taining the same (ln
c
= lm) and different classes. The

function AD(ln, lm) measures the aspect-ratio dissimi-

larity between windows ln and lm as

AD(ln, lm) =

∣∣∣∣log

(
wn/hn
wm/hm

)∣∣∣∣ (11)

where wn, wm are the widths and hn, hm the heights

of windows ln, lm. We use a 60-bin histogram θΛ to

represent this distribution. In practice this learns that

instances of the same class have similar aspect-ratios

(fig. 6).

4.3 Pairwise appearance dissimilarity Γf

The pairwise appearance dissimilarity Γf (ln, lm|In, Im)

assesses whether two windows ln and lm contain an

object of the same class, regardless of the class. This

is different from a distance measure assessing whether

two images contain an object of the same known class,

which is often addressed using distance learning meth-

ods [Babenko et al, 2009, Frome et al, 2007, Malisiewicz

and Efros, 2008, Weinberger et al, 2005]. Another re-

lated, but also different task, is to decide whether two
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Fig. 5 Ideal behavior of the objectness measure. The objectness score for a window should be highest when fitting an object

tightly (green), lower when covering objects partially (blue), and lowest when containing only background (red).

images show the same object instance [Nowak and Ju-

rie, 2007].

We evaluated several distance learning methods [Nowak

and Jurie, 2007, Weinberger et al, 2005] on the meta-

training data and found that none of them outper-

formed a simple sum of squared distances (SSD) be-

tween appearance descriptors.

Our pairwise appearance dissimilarity Γf between

two windows ln, lm in images In, Im is computed as the

SSD between their appearance descriptors lfn(In), lfm(Im):

Γf (ln, lm|In, Im) = ||lfn(In)− lfm(Im)||2 (12)

4.4 Weights α

The overall goal of the methods in this section is to find

weights α between the various terms of our CRF so as to

maximize the number of meta-training images in which

an object of the target class is localized correctly by

our technique (section 3). Following the spirit of the

other GK components (sections 4.1–4.3), these weights

are chosen jointly over all meta-training classes. Hence,

these weights are in a good ballpark that tends to per-

form well in general, i.e. also on novel target classes.

We determine the weights in a two-step scheme.
Step 1: weights for localization terms (section 4.4.1).

We determine the weights αΩ , αΛ, αΓf
so that the win-

dows L∗ returned by the localization stage (section 3.1)

best cover the meta-training bounding-boxes M (ac-

cording to the criterion of section 6.2). We achieve this

using a constraint-generation algorithm inspired by struc-

tured output SVMs [Tsochantaridis et al, 2005]. These

weights are determined using only the localization stage,

as they contain no class-specific knowledge.
Step 2: weights for class-specific terms (section 4.4.2).

The remaining weights αΠ , αΥf
cannot be directly learned

in the constraint generation framework because the class-

specific terms Π,Υf are adapted in every iteration (po-

tentially depending on the weights). Instead, we first

fix αΩ , αΛ, αΓf
in step 1, and then determine αΠ , αΥf

using grid-search to maximize localization performance

onM after the localization and learning iterations (sec-

tion 3).

Note how it would be possible to determine all weights

using a grid-search procedure [Deselaers et al, 2010],

but the constraint generation algorithm in step 1 is

more elegant and computationally much more efficient.

However, it typically does not lead to better results

than a grid-search with a sufficiently fine grid.

4.4.1 Constraint Generation

The goal is to find weights α = (αΩ , αΛ, αΓf
) so that

the configuration of windows with the lowest energy (2)

correctly localizes one object in each meta-training im-

age. Note how the total number of possible configura-

tions L grows exponentially with the number of images,

and how there may be many configurations localizing

one object correctly in every image (though most will

not).

Formally, we search for α so that

– there exists one configuration L̂ that correctly lo-

calizes an object in every image

– the energy of L̂ is lower than the energy of any con-

figuration that does not

When these two criteria are met, the lowest energy con-

figuration of the global energy function (2) maximizes

localization performance. This will result in the optimal

behavior of the localization stage (section 3.1).

We learn α according to a max-margin criterion

following the constraint-generation approach used to

train structured output SVMs [Tsochantaridis et al,

2005], analogously to other work on learning the pa-

rameters of a CRF [Deselaers and Ferrari, 2010, Fin-

ley and Joachims, 2008, Szummer et al, 2008]. More

precisely, we learn α by solving a generalized support

vector training problem:

min
α,ξ

1

2
||α||2 + C

K∑
k=1

ξk (13)

s.t. E(L|Ik, Θα)− E(L̂k|Ik, Θα) ≥ ∆(L̂k, L)− ξk,

∀k, ∀L 6= L̂k

ξk ≥ 0, α ≥ 0
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Ik is the set of meta-training images for class k and L̂k
is the configuration composed of ground-truth windows,

each guaranteed to cover an instance of the class. This

configuration achieves optimal localization performance

and therefore it should have the lowest energy. C > 0

is a constant controlling the trade-off between training

error minimization and margin maximization. In our

experiments we set C = 0.1. Each ξk is a slack variable

for class k. Θα are the parameters of the CRF according

to the weight vector α.

The loss function ∆(L̂, L) =
∑
n

(
1− ∩(l̂n,ln)

∪(l̂n,ln)

)
pe-

nalizes deviations from L̂ (∩(l̂n,ln)
∪(l̂n,ln)

∈ [0, 1] denotes the

intersection-over-union overlap between two windows).

This loss function continuously gives smaller penalties

to windows ln which overlap more with the ground-

truth l̂n. It better reflects the quality of localization

and yields a smoother learning problem than a hard

0/1 loss giving 1 to all ln 6= l̂n.

Note how solving (13) leads to a single weight vector

α optimized over all meta-training classes combined.

Therefore, α is a form of generic knowledge.

In this formulation, every possible configuration L

yields a constraint, so the number of constraints is ex-

ponential in the number of images. Therefore, it is in-

feasible to consider all constraints explicitly while solv-

ing (13). The constraint generation technique [Tsochan-

taridis et al, 2005] only considers a small subset of con-

straints explicitly. Starting with an empty set of con-

straints, it iteratively adds the constraint which is most

violated by the current setting of α.

First, note how each constraint correspond to ex-

actly one configuration of windows. The configuration

L∗, which violates the constraints the most is that one

which has a lower energy than the desired configuration

L̂ and a high loss ∆(L̂, L).

It can be found by solving a subproblem of the same

form as (6), but incorporating the loss ∆(L̂, L) as an

additional term into E (eq. (2)). Note how ∆(L̂, L) is

a sum over the images in each meta-training class, and

how each term in ∆ depends only on the state of a single

node in the CRF. Therefore, ∆ can be incorporated into

E as an additional unary term, leading to the following

subproblem

L∗ = arg min
L
{E(L|I, Θ)−∆(L̂, L)} (14)

Note that finding the most violating constraint L∗

potentially has to be performed very often and there-

fore it must be found efficiently. As (14) has the same

form as (6), it can be efficiently solved to a very good

approximation using TRW-S (section 3.1). Then, the

most-violating configuration L∗ is added to the set of

active constraints, and then an updated weight vector α

is found by minimizing (13) over the active constraints.

This procedure is iterated until L̂ (the best possi-

ble configuration) is the minimum energy configuration.

When this is achieved, all constraints are fulfilled and

the procedure terminates.

In general, constraint generation is guaranteed to

converge when the subproblem of finding L∗ can be

solved optimally [Tsochantaridis et al, 2005]. Although

we solve it approximately here, in all our experiments

the constraint generation algorithm terminated in 20 to

50 iterations.

4.4.2 Grid Search

While keeping the weights αΩ , αΛ, αΓf
fixed, we now

determine the best possible αΠ , αΥf
. As in section 4.4.1,

we aim at finding a generic set of weights maximiz-

ing the average localization performance jointly over all

meta-training classes. To this end, we evaluate all com-

binations of weights αΠ , αΥf
on a 5D grid (1 dimension

for αΠ , 4 dimensions for αΥf
). We retain the combina-

tion of weights (αΠ , αΥ1
, αΥ2

, αΥ3
, αΥ4

) that, on average

over all meta-training classes, leads to the best local-

ization result after running our full method (section 3).

4.5 Other parameters

We briefly mention here how we set the remaining com-

ponents of Θ from the meta-training data M.

Kernel of the SVMs Υf . We evaluated linear and inter-

section kernels for the class-specific appearance models

Υf and found the latter to perform better. We set the

regularization parameter C = 1.0 in our experiments.

Percentage κ of images. With the weights α and the

SVM kernels fixed, we determine the percentage κ of

selected windows to use for the iterative training in

section 3.2.1. We set κ to maximize localization per-

formance on M after our full method.

Class-specific parameters. The remaining parameters of

the CRF are specific to the target class and are not

learned from meta-training data, i.e. the class-specific

appearance models Υf , the class-specific shape model

Π, and the image confidences ρn. They are initially un-

known and set uniformly.
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5 Appearance Cues

We extract four appearance descriptors f from each

candidate window and use them to calculate the ap-

pearance similarities Γf and the class-specific appear-

ance scores Υf .

GIST [Oliva and Torralba, 2001] is based on local his-

tograms of gradient orientations. It captures the rough

spatial arrangement of image gradients, and has been

shown to work well for describing the overall appear-

ance of a scene. Here instead, we extract GIST from

each candidate window. In our experiments we use GIST

with the default parameters.

Color Histograms (CH) provide complementary infor-

mation to gradients. We describe a window with a single

10x20x20 histogram in the LAB color space.

Bag of Visual Words (BOW) are de-facto standard for

many object recognition tasks [Chum and Zisserman,

2007, Dorkó and Schmid, 2005, Lampert et al, 2009b,

Zhang et al, 2007]. We use SURF descriptors [Bay et al,

2008, Lampert et al, 2009b] and quantize them into

2000 words using k-means. A window is described by a

BOW of SURF descriptors extracted at three different

scales on a 32× 32 grid.

Histograms of Oriented Gradients (HOG) also are an

established descriptor for object class recognition [Dalal

and Triggs, 2005, Felzenszwalb et al, 2010]. We extract

HOGs on a 32× 32 grid.

6 Experiments: WS localization and learning

We evaluate the central ability of our method: localizing

objects in weakly supervised training images. We exper-

iment on datasets of varying difficulty. Table 3 gives an

overview of the datasets used for the experiments.

6.1 Datasets

Caltech4 [Fergus et al, 2003]. We use 100 random im-

ages for each of the four classes in this popular dataset

(airplanes, cars, faces, motorbikes). The images con-

tain large, centered objects, and there is limited scale

variation and background clutter. As negative images,

for each class we use the images from the three other

classes.

As meta-training dataM we use 1040 train+val im-

ages from 6 Pascal07 classes (bicycle, boat, bus, cow,

sheep, train) with bounding-box annotations.M is used

Table 3 Overview of the datasets. The left half of the table

gives the total number of images in the training sets of the target

classes used to evaluate localization in weakly supervised images,
the number of target classes, and of class/viewpoint combinations

(remember that each class/viewpoint combination is input to our

method separately). The right half of the table gives the same
information about the meta-training sets used to learn the generic

knowledge (i.e. the initial parameters of the CRF, sec. 4).

training sets meta-training sets

Dataset images cls sets images cls sets

Caltech4 400 4 4 1040 6 34

Pascal06-6x2 779 6 12 1249 5 17

Pascal06-all 2184 10 33 1249 5 17
Pascal07-6x2 463 6 12 1255 6 24

Pascal07-all 2047 14 45 1255 6 24

to learn the parameters for initializing our CRF (sec-

tion 4). This is done only once. The same parameters

are then reused in all experiments on Caltech4.

Pascal06-6x2 [Everingham et al, 2006]. We evaluate

our method on a subset of the Pascal06 dataset con-

taining all images 1 from 6 classes (bicycle, car, cow,

horse, motorbike, sheep) of the Pascal06 train+val

dataset from the left and right viewpoint. For each class

we use all images containing at least one object not

marked as difficult or truncated in the ground-truth.

This holds also for all other Pascal datasets below.

Each of the 12 class/viewpoint combinations con-

tains between 31 and 132 images. As negative set N
we use 2000 random images taken from train+val not

containing any instance of the target class.

As meta-training data M we use 1249 train+val

images from 5 Pascal07 classes (bird, boat, bottle,

chair, train) with between 1 and 4 viewpoints each.

Pascal06-all [Everingham et al, 2006]. For complete-

ness, we evaluate our method on the entire Pascal06

train+val dataset consisting of 10 classes (bicycle, bus,

car, cat, cow, dog, horse, motorbike, person, sheep) with

all viewpoints that have more than 20 images (leading

to a total of 2184 images). The negative set N is chosen

analogously to the negative set for the Pascal06-6x2

datasets. Further, we re-use the meta-trained parame-

ters from the experiments on Pascal06-6x2. Note that

there is no overlap between the meta-training classes

and the training classes.

1 This differs from the setting in the previous version of this

work [Deselaers et al, 2010], where we used a smaller subset of
images selected by [Chum and Zisserman, 2007], which are con-

siderably easier as most of them contain a large dominant object.
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Pascal07-6x2 [Everingham et al, 2007]. For the de-

tailed evaluation of the components of our method be-

low, we use all images from 6 classes (aeroplane, bi-

cycle, boat, bus, horse, and motorbike) of the Pascal

VOC 2007 train+val dataset from the left and right

viewpoint each. Each of the 12 class/viewpoint combi-

nations contains between 21 and 50 images for a total

of 463 images. As negative set N we use 2000 random

images taken from Pascal07 train+val not containing

any instance of the target class. This dataset is very

challenging, as objects vary greatly in location, scale,

and appearance. Moreover, there is significant variation

within a viewpoint (figure 8, 9). We report in detail on

these classes because they represent compact objects

on which fully supervised methods perform reasonably

well [Everingham et al, 2007] (as opposed to classes such

as ‘potted plant’ where even fully supervised methods

fail). As meta-training data M we use 1255 train+val

images from 6 other Pascal07 classes (bird, car, cat,

cow, dog, sheep).

Pascal07-all [Everingham et al, 2007]. Further, we

also report results for all class/viewpoint combinations

in Pascal07 with more than 20 images (our method,

as well as the competitors and baselines to which we

compare, fails when given fewer images) leading to a

total of 2047 images. We use the same meta-training

data as for Pascal07-6x2. In total, the Pascal07-all

set contains 45 class/viewpoint combinations, covering

all 14 classes not used for meta-training.

Further, we re-use the meta-trained parameters from

the experiments on Pascal07-6x2. Note that there is

no overlap between the meta-training classes and the

training classes.

6.2 Evaluation

We directly evaluate the ability of our method to local-

ize objects in a set of training images I only known to

contain a target class (section 6). This direct evaluation

reveals how well a method solves the auto-localization

problem intrinsic to WSL, and it measures the qual-

ity of the input to training off-the-shelf fully supervised

object detectors from the output of WSL (sec. 7). More-

over, there are applications where the localization per-

formance on an input set of weakly supervised images

directly matters (e.g. co-segmentation or when anno-

tating images downloaded from image search engines

on the web). Finally, we note how our direct evaluation

is analog to the standard evaluation protocol in the re-

lated fields of co-segmentation, unsupervised segmenta-

tion and object discovery, where no later test stage on

Fig. 7 Evaluation measure CorLoc. The red window over-

laps < 0.5 with the yellow ground-truth window. The green win-
dows overlap ≥ 0.5 with the corresponding ground-truth win-

dows. Therefore, over these three images, CorLoc is 66%. Note

how selecting any of the two motorbikes in the right image leads
to the same CorLoc.

new images is performed (see table 1, rows with a “no”

in column “evaluate on test data”).

Table 4 shows results for two baselines, two compet-

ing methods [Chum and Zisserman, 2007, Russell et al,

2006] and for several variants of our method.

We report as CorLoc the percentage of images in

which a method correctly localizes an object of the tar-

get class according to the Pascal-criterion (window

intersection-over-union > 0.5, fig. 7). No location of any

object in I is given to any method beforehand. The

detailed analysis in the next four paragraphs focuses

on the Caltech4, Pascal06-6x2, and Pascal07-6x2

datasets. Then we discuss results on the Pascal06-all

and Pascal07-all dataset, and finally the last para-

graph evaluates the quality of the candidate windows

proposed by the objectness measure.

Baselines. The ‘image center’ baseline simply picks a

window in the image center by chopping 10% off the

width/height from the image borders. This is useful

to assess the difficulty of a dataset. The ‘ESS’ base-

line is based on bag-of-visual-words. We extract SURF
features [Bay et al, 2008] from all images of a dataset,

cluster them into 2000 words using k-means, and weight

each word by the log of the relative frequency of occur-

rence in positive vs. negative images of a class (as done

by [Chum and Zisserman, 2007, Dorkó and Schmid,

2005, Lampert et al, 2009b]). Hence, these feature weights

are class-specific. For localization, we use Efficient Sub-

window Search (ESS) [Lampert et al, 2009b] to find the

window with the highest sum of weights in an image2.

The image center baseline confirms our impressions

about the difficulty of the datasets. It reaches about

66% CorLoc on Caltech4, 44% on Pascal06-6x2, but

fails on Pascal07-6x2. The trend is confirmed by ESS.

Competitors. We compare to the method of [Russell

et al, 2006] using their implementation3. This method

2 Baseline suggested by C. Lampert in personal communica-
tion.

3 http://www.di.ens.fr/~russell/projects/mult_seg_

discovery/index.html
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Table 5 Class-wise CorLoc for setup (g) in table 4

Pascal06-6x2

class left right

bicycle 85 68

car 77 67
cow 73 70

horse 44 46

motorbike 42 67
sheep 67 57

Pascal07-6x2

class left right

aeroplane 58 59

bicycle 46 40
boat 9 16

bus 38 74

horse 58 52
motorbike 67 76

does not directly return one window per image. It de-

termines a number of topics roughly corresponding to

object classes. A topic consists of a group of super-

pixels in each training image. For each topic, we put

a bounding-box around its superpixels in every image,

and then evaluate its CorLoc performance. We report

the performance of the topic with the highest CorLoc.

We evaluated different numbers of topics and found 30

to perform best on the average. This method achieves

a rather low CorLoc on the challenging Pascal07-6x2,

but does better on the easier Pascal06-6x2 and Cal-

tech4 datasets (41% CorLoc).

As a second competitor we reimplemented the method

of [Chum and Zisserman, 2007], which directly returns

one window per image. It works well on Caltech4 and

on Pascal06-6x2, where it finds about half the objects.

On the much harder Pascal07-6x2 it performs consid-

erably worse since its initialization stage often does not

lock onto objects4. Overall, this method performs bet-

ter than [Russell et al, 2006] on all datasets.

Localization Only (a)-(d). Here we evaluate our method

after the localization stage (section 3.1), without run-
ning the learning stage (section 3.2). In order to in-

vestigate the impact of generic knowledge, we perform

experiments with several stripped-down versions of our

CRF model. Setup (a)-(c) use only GIST descriptors in

the pairwise dissimilarity score Γf . Setup (a) uses 100

random candidate windows with uniform scores in Ω.

Setup (b) uses 100 candidate windows sampled from

the objectness measure, but with uniform scores in Ω.

Setup (c) uses 100 candidate windows sampled from

the objectness measure, with their objectness score in

Ω (sec. 4.1). While setup (a) is not able to localize

any object, (b) already performs quite well, and adding

the objectness score (c) gives an additional improve-

ment. This shows that objectness is a powerful source

of generic knowledge, which greatly helps localizing ob-

jects in weakly supervised images.

4 Unfortunately, we could not obtain the source code from

Chum and Zisserman [2007]. We asked them to process our Pas-
cal07-6x2 training sets and they confirmed that their method

performs poorly on them.

By adding the remaining appearance cues Γf in

setup (d), the results improve further (sec. 5). At this

point, using only the localization stage, our method al-

ready outperforms all baselines and competitors. It lo-

calizes about two thirds of the objects in Caltech4,

more than half in Pascal06-6x2, and 37% in Pas-

cal07-6x2.

Localization and Learning (e)-(g). Here we run our full

method, iteratively alternating localization and learn-

ing. In setup (e), we build on setup (c) using only GIST

descriptors and adapt all parameters of our model to

the target class (sec. 3.2). This setup obtains a signifi-

cant improvement over (c) on all datasets and even out-

performs the localization-only multiple-cue setup (d) on

the easier datasets.

In setups (f) and (g), we build on setup (d) using

all appearances cues both for the pairwise dissimilar-

ity Γf and for the class-specific appearance models Υf .

In setup (f) we learn only appearance models Υf and

shape models Πf specific to the target class (sec. 3.2.1,

3.2.2). This already leads to a clear improvement on

all datasets demonstrating that our procedure properly

acquires new knowledge specific to the target class. In

setup (g) all parameters of the CRF are are adapted

to the target class (sec. 3.2) which brings an additional

improvement. Interestingly, on the Pascal07 datasets

the learning stage helps localization by a larger amount

when using all appearance cues. This is because mul-

tiple descriptors are particularly beneficial in harder

imaging conditions, and because our learning stage au-

tomatically re-weights the appearance cues, specializing

their combination to each target class (sec. 4.4).

The full method (g) substantially outperforms all

competitors/baselines on all datasets. It reaches about

150% the CorLoc of the second best method [Chum and

Zisserman, 2007] on Pascal07-6x2. Overall, it finds

most objects in Caltech4, about two thirds in Pas-

cal06-6x2, and half in Pascal07-6x2 (fig. 8, 9).

As table 4 shows, each variant improves over the

previous one, showing that (i) the generic knowledge

elements we incorporate are important for a successful

initial localization (setups (a)-(c)); and (ii) the learning

stage successfully adapts the model to the target class

(setups (e),(g)).

Table 5 shows the CorLoc for setup (g) per class/viewpoint

combination for both Pascal06-6x2 and Pascal07-

6x2. The occasional performance differences between

the left and right viewpoints of the same class are due

to the different number of available images and the av-

erage size of the objects. For example, in Pascal06-

6x2 motorbike-left has 31 images with motorbikes of
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Table 4 Results. The first block reports results for the baselines and the second for the competitors [Chum and Zisserman, 2007,
Russell et al, 2006]. Rows (a)-(d): results for our method using only the localization stage. Rows (e)-(g): results for our full method

using the localization and learning stages. All results are given in CorLoc. Column (Color) shows the colors used for visualization in

figs. 8, 9. Class-wise results for setup (g) are given in table 5.

Pascal06 Pascal07
Method Caltech4 6×2 all 6×2 all Color

image center 66 44 36 25 16
ESS 43 24 21 27 14

[Russell et al, 2006] (30 topics) 41 28 27 22 14
[Chum and Zisserman, 2007] 55 45 34 33 19

this paper – localization only
(a) random windows 0 0 0 0 0

(b) objectness windows with uniform score 73 50 35 30 17

(c) objectness windows and score 75 55 41 37 23
(d) all pairwise cues 63 58 45 37 23

this paper – localization and learning
(e) single cue (GIST), full adaptation 83 64 46 40 24

(f) all cues, learning only Υf , Π 78 62 48 45 26

(g) all cues, full adaption 81 64 49 50 28

179x205 pixels on average, whereas motorbike-right has

52 images with 435x370 pixels on average.

To further demonstrate the genericness of our GK,

we perform an additional experiment on Pascal06-

6x2 analog to setup (g), but this time using the GK

learned from the meta-training set originally used for

Pascal07-6x2 (see section 6.1). Remarkably, the CorLoc

on Pascal06-6x2 varies by less than 1% when chang-

ing between the two meta-training sets, which demon-

strates the GK we propose is truly generic across classes.

As additional evidence in this direction, we refer to

the experiment in page 10 of [Alexe et al, 2012], which

shows that the performance of objectness does not change

even when trained from very different image sets.

PASCAL-all datasets. For completeness, table 4 also

reports results on the Pascal06-all and Pascal07-all

datasets, which contain 33 and 45 class/viewpoint com-

binations respectively, including many for which even

fully supervised methods fail (e.g. ‘potted plant’). Com-

paring Pascal06-6x2 and Pascal06-all, CorLoc drops

by about a third. On Pascal07-6x2 and Pascal07-all,

CorLoc drops by about about half for all methods, sug-

gesting that WS learning on all Pascal07 classes is

beyond what is currently possible. However, it is in-

teresting to notice how the relative performance of our

method (setup (g)) compared to the competitors [Chum

and Zisserman, 2007, Russell et al, 2006] remains close

to what is observed on Pascal07-6x2.

Objectness. We also evaluate the 100 windows per im-

age sampled from Ω (table 6). The hit-rate is the per-

centage of objects of the target class covered by one of

sampled window (up to intersection-over-union ≥ 0.5).

Table 6 Evaluation of the objectness measure. The pre-

cision and hit-rate of the windows sampled from the objectness
measure for the target classes.

Dataset precision [%] hit-rate [%]

Caltech 4 32 100

Pascal 06 6x2 26 89
Pascal 06 all 21 80

Pascal 07 6x2 19 85

Pascal 07 all 13 71

It gives an upper-bound on the CorLoc that can be

achieved by our method. As the table shows, most tar-

get objects are covered. The precision is the percentage

of sampled windows covering an object of the target

class. It gives the ratio between correct and incorrect

windows that enter the CRF model. This ratio is much

higher than when considering all image windows.

The hit-rates and precisions over the different datasets

also confirm their perceived difficulty. On Caltech4

all objects are covered and about 1 in 3 windows is

on an object. On Pascal07-6x2 only about 1 in 5 win-

dows covers an object. However, the hit-rate is still high

showing that objectness is a suitable focus of attention

measure for weakly supervised learning, even in highly

challenging imaging conditions.

6.3 Comparison to [Kim and Torralba, 2009]

We evaluate our method on Pascal06 also in the ex-

perimental setup of [Kim and Torralba, 2009, fig. 5]:

for every class we run our method (g) on all images

showing an object of this class and then evaluate object

detection accuracy on the test images. Performance is
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airplane bicycle boat bus horse motorbike

ESS [Lampert et al, 2009b]
[Russell et al, 2006]

[Chum and Zisserman, 2007]
our method (g)

Fig. 8 Qualitative comparison to baselines and competitors. Example objects localized by different methods in their weakly

supervised training images (i.e. only object presence is given for training, no locations). Top row: the ESS baseline [Lampert et al,

2009b] and the method [Russell et al, 2006] . Bottom row: the method [Chum and Zisserman, 2007] and our method in setup (g)
. Our method localizes object visibly better than both baselines and competitors, especially in cluttered images with small objects.

airplane bicycle boat bus horse motorbike

Fig. 9 Example results comparing our method in setup (d) to setup (g) . If only is visible, both setups return the same window.

The learning stage in setup (g) leads to more correctly localized objects.

measured by mean Average Precision over all 10 classes

(for details of this setup we refer to [Kim and Torralba,

2009]). Note how no Pascal06 class appears in our

meta-training set (which are 5 other classes from Pas-

cal07). In this setup our method brings a mAP of 0.24,

which compares favorably to the 0.21 of [Kim and Tor-

ralba, 2009] 5.

5 derived from the PR plots in their paper (fig. 5).

7 Experiments: object detection in new test

images

Our method enables training a fully-supervised object

detector from weakly supervised data, although this

would normally require object location annotations. To

demonstrate this point, we train the fully supervised ob-

ject detector of [Felzenszwalb et al, 2010]6 from objects

localized using our setup (g), and compare its perfor-

6 The source code is available at http://people.cs.uchicago.
edu/~pff/latent/
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Table 7 Detection results on test images. mAP values for
training the object detector by [Felzenszwalb et al, 2010] on the

output of setup (g) (WSL) and on the ground-truth bounding

boxes (GT). The third column reports the ratio of the two val-
ues, which shows how well the weakly supervised setup performs

relative to the fully supervised one.

Dataset WSL GT WSL
GT

[%]

Caltech 4 0.32 0.36 87%

Pascal06-6x2 0.28 0.36 78%
Pascal07-6x2 0.21 0.33 65%

Table 8 Class-wise AP for the experiments in table 7 in percent

AP. The difference between the fully and the weakly supervised

system is given in parentheses.

Pascal06-6x2

class left right

bicycle 51 (-6) 63 (0)
car 29 (-1) 29 (0)

cow 18 (2) 13 (-3)

horse 10 (-35) 0 (-42)
motorbike 31 (-24) 39 (-1)

sheep 22 (7) 29 (8)

Pascal07-6x2

class left right

aeroplane 5 (-18) 18 (-14)
bicycle 49 (-10) 62 (-2)

boat 0 (-0) 0 (-1)

bus 0 (-21) 16 (4)
horse 29 (-16) 14 (-25)

motorbike 48 (-7) 16 (-26)

mance to the original model trained from ground-truth

bounding-boxes. In all experiments we use one compo-

nent and six parts per class. As negative training im-

ages for a class we use the training images of the other

classes.

We perform this experiment for Caltech4, Pas-

cal06-6x2, and Pascal07-6x2. The detection perfor-

mance for each class/viewpoint is measured by the av-

erage precision (AP). For the Pascal06-6x2 and Pas-

cal07-6x2 tasks the performance is measured on their

full tests sets (2686 and 4952 images respectively). These

test sets are entirely disjoint from their respective train+val

sets used for training and meta-training. For Caltech4,

we form a test set by choosing 100 random images from

each class (excluding images used for training). We then

evaluate each model on the whole 400-image test set.

As usual in a test stage, no information is given about

the test images, also not whether they contain an object

of the class being evaluated.

Table 7 reports the mean AP values (mAP) over

all class/viewpoint combinations in each dataset. On

the easy Caltech4, the performance of the weakly-

supervised method is close to that of the fully super-

vised model. Even on the more challenging Pascal06-

6x2 the WSL model still obtains almost 80% of the

mAP of the fully supervised model, while on the very

hard Pascal07-6x2 it yields about two thirds of its

performance.

These results demonstrate that it is possible to train

a functional fully supervised object detector from weakly

supervised images from the output of our method. We

consider this a very encouraging result, given that we

are not aware of previous methods demonstrated ca-

pable of localizing objects on the Pascal07 test set

when trained in a weakly supervised setting. Fig. 10 vi-

sually compares two models trained from the output of

our method to the corresponding models trained from

ground-truth bounding-boxes.

Table 8 reports AP for each class/viewpoint com-

bination separately. Interestingly, larger differences be-

tween the fully and weakly supervised setups occur when

the weakly supervised method performs worse in local-

izing objects in their training images. For example, on

Pascal06 horses-left, horses-right, and motorbike-left,

which are the three class-viewpoint combinations with

the lowest CorLoc on the training data (table 5). This

correlation emphasizes the value of directly evaluating

localization accuracy on the weakly supervised training

images (sec. 6.2).

To further demonstrate that performance at test

time strongly depends on the quality of object local-

ization at training time (CorLoc), we repeated this ex-

periment when using the approach of [Chum and Zis-

serman, 2007] instead of ours to select windows in the

WS training images. On Pascal06-6x2 this achieves

an AP of 0.12 and on Pascal07-6x2 0.11, compared to

our 0.28 and 0.21 respectively.

8 Conclusion

We presented a technique for localizing objects of an

unknown class and learning an appearance model of

the class from weakly supervised training images. The

proposed model starts from generic knowledge and pro-

gressively adapts more and more to the new class. This

allows it to learn from highly cluttered images with

strong scale and appearance variations between object

instances. We also demonstrated how to use our method

to train a fully supervised object detector from weakly

supervised data.

Throughout the paper we used the wording ‘generic

knowledge’ to convey the meaning of applying to most

object classes, as opposed to being specific to one class [Ev-

eringham et al, 2010, Felzenszwalb et al, 2010, Fergus

et al, 2003]. However, GK is not an accurate nor com-

plete representation of any particular class. For exam-

ple, it could not be used on its own to reliably detect

objects of a particular class. Instead, GK provides a

broad basis about objects in general, which we have

demonstrated in this paper to help learning new object

classes.

In future work we plan to extend our method in var-

ious directions. First, we plan to learn separate models

for different viewpoints of an object class from a single
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bicycle-right

bus-left

Fig. 10 Models [Felzenszwalb et al, 2010] trained on Pascal07-6x2 from the output of our method (left) and from ground-truth

bounding-boxes (right). Note how similar the models are.

mixed training set. This could be achieved by extending

the state-space of each node of the CRF to the cartesian

product of the set of candidate windows and the set of

viewpoints. Second, computational efficiency could be

improved by decimating the fully connected CRF to a

N -order Markov chain, or by removing edges between

images of very different appearance. Third, we plan to

exploit hierarchical dependencies between classes from

large-scale datasets such as ImageNet. In this fashion a

new class will not only benefit from generic knowledge,

but also from more specific knowledge from semanti-

cally related classes. Ultimately, we hope to formulate

a unified transfer learning framework where multiple

sources of knowledge at many levels of generality are

automatically selected and combined to help learning a

new class in the most effective manner.
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