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Appearance Sharing for Collective Human Pose
Estimation

Marcin Eichner1, Vittorio Ferrari2
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Abstract. While human pose estimation (HPE) techniques usually process each
test image independently, in real applications images come in collections con-
taining interdependent images. Often several images have similar backgrounds or
show persons wearing similar clothing (foreground). We present a novel human
pose estimation technique to exploit these dependencies by sharing appearance
models between images. Our technique automatically determines which images
in the collection should share appearance. We extend the state-of-the art HPE
model of Yang and Ramanan to include our novel appearance sharing cues and
demonstrate on the highly challenging Leeds Sports Poses dataset that they lead
to better results than traditional single-image pose estimation.

1 Introduction

2D articulated human pose estimation (HPE) in still images is a very challenging prob-
lem that has received considerable attention in recent years [1–10]. Thanks to the progress
in those works, HPE methods can now be applied with some success on uncontrolled
still images, without any prior knowledge about poses, the appearance of persons or
backgrounds. However, the problem is far from solved. Highly cluttered backgrounds,
large scale changes and strong scale variations can cause the failure of even the most
recent state-of-the-art methods [10, 9].

A trait common to essentially all approaches [1–10] is to estimate pose indepen-
dently on each image. We believe that this makes the problem harder than its needs
to be. In real applications the test images come in collections, not one at a time. The
user typically runs a pose estimator on a collection and only later inspects the results or
inputs them to subsequent stages of a larger system. Importantly, usually there are de-
pendencies between the images in a collection. Often some of them show people against
a common background, while others show persons wearing very similar clothing (fore-
ground). This happens a lot in sports photography, where both the background (football
pitch, gym hall, water pool, tennis court) as well as the foreground recur (different play-
ers in the same football team, or even the same athlete in different poses or viewpoints,
fig. 1). Images with either foreground or background in common are frequent also in:
a) video surveillance (images taken in front of the same background); b) in movies (an
actor wearing the same clothes throughout an episode); c) holiday photo collections,
where the same person appears in many pictures, often wearing the same clothes and/or
repeatedly visiting the same location (e.g. beach, pool, hotel room). Even in pure re-
search papers with no concrete application, the proposed methods are evaluated on en-
tire test sets [1, 2, 4, 7–9] which feature the dependencies mentioned above. One of the
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most challenging modern datasets [11], the Leeds Sports Poses (LSP) dataset [7]1 con-
tains numerous images of soccer, baseball, tennis or indoor sports sharing backgrounds
or persons wearing very similar outfits (fig. 1a).

In this paper, we propose a novel technique to exploit these phenomena by perform-
ing human pose estimation while sharing appearance between images. Our method
automatically discovers clusters of images with common foreground or background in
the collection and thus determines between which images to share appearance (fig. 1a).
We robustly estimate color appearance models suitable for all images in a cluster and in-
corporate them into a state-of-the-art HPE model [10]. Inference on the extended model
effectively performs pose estimation jointly over all images in the cluster, guided by the
shared appearance models.

Our paper is organized as follows. The next section gives an overview of our ap-
proach (sec. 2), followed by a summary of the base HPE model [10] we build on (sec. 3).
In sec 4 we present our technique for automatically estimating shared appearance mod-
els, and explain how to incorporate them into [10] in sec. 5. We present an extensive
experimental evaluation in sec. 6, which demonstrates that our approach for sharing
appearance models over images improves performance over [10] run independently on
each image.

Related works. Articulated human pose estimation in still images is very challenging
due to high variability in person appearance and pose, as well as the presence of back-
ground clutter, illumination and self-occlusions. Recent works have addressed these
issues with advanced appearance models [1, 4, 3, 12, 7, 5, 10], complex pose priors [7,
5] or non-tree dependencies between body parts [8, 13] or hierarchical models [14].
While the above works build on variants of the Pictorial Structure (PS) model [15], there
are also other techniques, e.g. bottom-up body assembling from segmentations [16] or
pose estimation by foreground max-covering [17]. A trait common to essentially all
approaches is to estimate pose independently on each image. In this paper instead we
tackle HPE by exploiting multiple images sharing a common appearance.

The importance of good appearance models is reflected by their evolution. Early
works employed simple box filters on background subtracted silhouettes [15]. Later,
generic appearance models based on image gradients were developed, including gener-
ative edge masks [1], discriminatively trained shape-context templates [3], or linear [12]
and non-linear [7] HOG templates [18]. In addition to generic templates based on gra-
dients, a few works also employ color appearance models specific to a particular image,
like in the iterative image parsing work of [1]. Later [4] extended this idea to transfer
color models between body parts of a person, which was also adopted by [6]. In this
paper we also propose appearance models based on color, but they are estimated over
multiple images, following our main spirit of sharing appearance between images.

HPE approaches dedicated to video [19, 20, 2, 21] often employ multi-image models
optimizing pose jointly over consecutive video frames. Usually, they exploit pose [2,
21] or appearance [19, 20] consistency over time. In this paper we tackle a different
problem. A still image collection lacks temporal continuity and contains many different
persons.

1 http://www.comp.leeds.ac.uk/mat4saj/lsp.html



Appearance Sharing for Collective Human Pose Estimation 3

(a) (b) (c) (d) (e)

Fig. 1. Approach overview. (a) random samples from the LSP dataset with example cluster as-
signments (solid boxes for background, dashed for foreground; colors depict cluster ids); (b) an
automatically discovered foreground cluster with initial pose estimate [10] overlaid; the lower
arms in the red circles are incorrectly estimated; (c) two high-weight color bins in the automat-
ically estimated shared foreground model of a lower arm; (d) lower arm foreground likelihood
computed according to this appearance model (heat-map); (e) improved pose estimation result
produced by our extended HPE model which incorporates the shared appearance model; the
lower arms in the red circles are now correctly estimated.

2 Overview of our method

The core idea of our work is to improve HPE by exploiting background and foreground
appearance patterns recurring over several images in a large dataset such as LSP [7]
(fig. 1a). We give here an overview of the processing stages in our pipeline, focusing
on the case of foreground appearance. The pipeline for background appearance is ana-
logue. 1) we run the pose estimator [10] independently for each image (sec. 3). This
pose estimator employs person-generic body part appearance models based on gradi-
ents. 2) we group images into clusters likely to have similar foreground appearance in
terms of color distribution, based on the initial pose estimates (fig. 1b, sec. 4.2). 3) for
each cluster we robustly estimate a color appearance model shared across the cluster
by integrating evidence over all images in it (fig. 1c, sec. 4.2). 4) we use the shared ap-
pearance model to derive per-pixel foreground likelihoods for each image in the cluster
(fig. 1d, sec. 4.3). 5) we extend the HPE model of [10] to incorporate these foreground
likelihoods as additional unary potentials (sec. 5). 6) we run inference on the extended
model to update the pose estimates in all images (fig. 1e).

Our method exploits the fact that clusters are typically mixed, containing some im-
ages with correct and some with wrong pose estimates. Therefore, instead of estimat-
ing pose on each image independently our method attempts HPE jointly over a cluster
of images with similar appearance. Stage 3 robustly recovers the underlying shared
appearance model, minimizing the impact of incorrect pose estimates. The resulting
shared appearance model then helps in stage 6 by guiding the extended HPE towards
better pose estimates.

As shown in extensive experiments, our method automatically exploits recurring
appearance patters in a large dataset to successfully improve the accuracy of human
pose estimation (fig. 1e). Our extended HPE model outperforms the baseline framework
of [10] on one of the largest and most challenging HPE datasets available (LSP, sec. 6).

In the remainder of the paper we present each stage of our pipeline in detail.
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Fig. 2. Mixture of pictorial structures model (MoPS) [10]. (a) Clusters of relative joint posi-
tions for finding body part types in the LSP training set; (b) a path in the model from the head
to the left wrist, along with the HOG appearance templates specialized for each body part and
orientation type; (c) visualization of 4 trees drawn out of an exponential number of trees that
MoPS can generate; (d) HOG appearance visualization for the trees in (c).

3 Base model [10] (MoPS)2

Many human pose estimators build on the pictorial structure model (PS) [1–4, 6–9].
A PS [15] is a conditional random field where nodes explicitly correspond to body
parts (e.g. head, torso, left lower arm). The state space of a node is the set of possible
(x, y, θ) positions a part can take in the image. The recent work of [10] introduces a
novel representation: a mixture of pictorial structures (MoPS) (fig. 2), where each node
represents a body part in a particular orientation. Nodes are now roughly corresponding
to joints (e.g. elbow, knee) and midpoints of limbs. Hence, a part is represented as a
mixture of axis-aligned templates, one per orientation.

The state space of a node is now only its (x, y) location. However, orientation is im-
plicitly captured by different mixture components. These are estimated from the train-
ing data by clustering the relative position between neighboring parts, typically into
5-6 components per part (fig. 2a). This representation is highly flexible and enables to
model foreshortening, an effect often responsible for failures of classic PS

Following the notation of [10], we write I for an image, pi for the (x, y) location
of part i and ti for its mixture component, where i ∈ {1, ...K}, pi ∈ {1, ...L}, and
ti ∈ {1, ...T}3. Here, ti is the type of part i, which implicitly models its orientation.
The energy of a body part configuration (p, t) is

S(I, p, t) =
∑
i

wtii Φ(I, pi) +
∑
ij∈E

w
ti,tj
ij Ψ(pi − pj) + S(t)

S(t) =
∑
i

btii +
∑
ij∈E

b
ti,tj
ij

(1)

where E is the set of edges connecting body parts in the kinematic tree. Φ(I, pi) is a a
feature extracted from image I at pi, so wtii Φ(I, pi) is the image likelihood for part i to

2 http://phoenix.ics.uci.edu/software/pose/
3 We omit the subscript to indicate the set spanned by it (e.g. t = {t1, ...tK})
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be at location pi with type ti. Ψ(pi − pj) = [dx2, dx, dy2, dy] is the relative location
of parts i and j, so wti,tjij Ψ(pi − pj) evaluates a spatial prior defined over locations
according to a spring-like deformation model for types ti, tj ; S(t) is a co-occurrence
model that favors assigning certain types to certain parts (btii ) and certain combinations
of types of pairs of parts (bti,tjij ). It is a spatial prior defined over types (orientations).

The model components and their parameters reflect the idea of decomposing parts
into types. The appearance model wtii Φ(I, pi) is governed by parameters wtii represent-
ing a HOG template specialized for part i and type ti (fig. 2b). Hence each part has
different templates for different orientations, which helps to capture the multi-modal
appearance of body parts [9, 10]. The work of [10] uses a variant of HOG features [22]
for Φ. The deformation model wti,tjij Ψ(pi− pj) is a switching spring model controlling
the relative placement of two parts. Each spring wti,tjij is tailored to a particular pair of
types ti, tj . This allows fine-grained control over the amount of deformation tolerable
for each pair of part orientations.

Inference. Finding the configuration (p, t) that maximizes (1) can be done efficiently
because E forms a tree and the pairwise potentials are quadratic functions. Using dy-
namic programming and efficient distance transforms [15] exact inference can be per-
formed in complexity O(KLT 2) [10].

Learning. The training set contains positive training images {Iρ, pρ, tρ} labeled by the
ground-truth body part configuration on a person, and negative images Iη containing
no person. Let zρ = (pρ, tρ), with pρ the ground-truth joint locations in Iρ and tρ is
assigned by clustering pρi − p

ρ
j over the training set into part type clusters (fig 2a). Note

how (1) is linear in the model parameters β = (w, b), withw = (wt11 , ...w
tT
K , ...w

ti,tj
ij ...)

and b = (bt11 , b
tT
K , ...b

ti,tj
ij ...). Hence, it can be rewritten as S(I, z) = β · Θ(I, z), with

Θ = (Φ(I, p1), ..., Φ(I, pK), ...Ψ(pi−pj), ..., 1, 1, ...1....). With this reformulation, the
model can be learned with a structured prediction objective function similar to [22]

arg min
β,ξi≥0

1

2
β · β + C

∑
ρ

ξρ + C
∑
η

ξη

s.t. ∀ρ ∈ pos β ·Θ(Iρ, zρ) ≥ 1− ξρ

∀η ∈ neg,∀z β ·Θ(Iη, z) ≤ −1 + ξη

(2)

The constraints state that positive examples (pos) should score at least 1, whereas all
possible configurations z of parts in negative images (neg) should score at most -1.

The quadratic program (2) has an exponential number of constraints but it defines a
convex problem which can be optimized using a dual coordinate-descent solver [10]. In
practice, [10] first trains each body part template independently. These initial templates
then serve as a good initialization for training of the entire model using dual coordinate-
descent of [10].

4 Sharing appearance

We present here our technique for sharing appearance models between images (stages
2, 3 and 4 in sec. 2). We start by finding clusters of images likely to have similar fore-
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(a) (b) (c)

Fig. 3. Sharing background. (a) example background cluster automatically found in the LSP
dataset with initial pose estimates overlaid; (b) two high-weight color bins from the shared back-
ground model hc

bg; (c) background likelihood maps Ibg computed of all images in the cluster
based on hc

bg (visualized as heat maps).

ground or background appearance (sec. 4.1, 4.2). For each cluster we then estimate
appearance models shared by all images in the cluster and derive from them pixel-wise
likelihood maps (sec. 4.3). In section 5 we show how to incorporate these likelihood
maps as additional unary potentials into the HPE model in order to improve pose esti-
mation performance.

While single-image state-of-the-art HPE techniques typically employ gradients as
features [3, 10, 9], our representation is based on color which is better suited to model
the appearance of specific backgrounds or clothes.

4.1 Sharing background

The key idea is to exploit images with common backgrounds to generate an informative
additional cue for constraining human pose estimation. We start by clustering images
according to their background appearance. Next, for every cluster we robustly estimated
a shared background appearance model.

Image clustering. For every imagem in the input set I, we extract color histograms hmbg
from the entire image except the surface occupied by the initial pose estimate (sec. 2).
Even when the initial pose estimate is partially incorrect, the error typically occupies a
small portion of the images, so it has a minor influence on the histogram. We then define

a pairwise similarity matrix between all images in I as Wmn = 1 − χ2(hm
bg ,h

n
bg)

2 . Next,
we cluster I according to W using agglomerative clustering (sec. 4.3). This results in
disjoint clusters Bc ⊂ I, with ∪cBc = I (fig. 3a).

An advantage of agglomerative clustering over other techniques (e.g. k-means, GMM [23])
is that it does not require the number of clusters as input. Instead, it requires a param-
eter controlling cluster compactness (i.e. roughly how dissimilar two points can be and
yet be in the same cluster). This is desirable in our setting as we want clusters of im-
ages with very similar backgrounds, but we do not know how many different types of
background there are in the dataset.
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Estimating a shared model. Given an image cluster Bc, we estimate the shared back-
ground model hcbg by averaging the color histograms hmbg of all images m ∈ Bc in it.
This estimate is robust to incorrect pose estimates in some of the images, as the mod-
erate amount of foreground within their individual histograms is further diminished by
averaging over all images (fig. 3b).

4.2 Sharing foreground

We start by forming image clusters containing persons with similar appearance, i.e.
wearing similar clothes. In a typical cluster, the initial pose estimation worked cor-
rectly on some persons and failed on others (fig. 6). For each body part, the key idea
of our method is to robustly recover its correct color model by finding the one which
occurs most frequently over the cluster. These per-part color models are then used as
additional cues to refine the pose estimate (next section). In this manner, our scheme au-
tomatically exploits images with correct pose estimates to improve other images where
pose estimation failed.

Image clustering. In sec. 4.1 partially incorrect initial pose estimates had little impact,
as a wrong limb covers a small portion of the image. Accordingly, the similarity be-
tween two images in sec. 4.1 simply ignored this issue. Importantly, in this section we
want to find clusters of persons with similar appearance, despite some of them having
partially incorrect pose estimates. To succeed we must design a more robust similarity
measure that explicitly takes into account partially incorrect poses, as limbs are large
relative to the area of a person.

Hence, we define the similarity between images m,n ∈ I as follows: Wmn =∑
i δ
(
1− χ2(hm

i ,h
n
i )

2 > %
)

, where hki is the color histogram of the patch covered by
part i in image k, % is a threshold on the similarity of corresponding body parts in the
two images (e.g. the left lower arm in each image), and δ(·) is 1 if the argument is
true and 0 otherwise. This similarity measure counts how many body parts have similar
appearance in the two images. Again we use agglomerative clustering to partition I into
disjoint image clusters Fc (sec. 4.3). As fig. 4a shows, the robust similarity measure
groups together images of persons wearing similar clothing, despite having errors in
the initial pose estimates. These are the right conditions for our approach to make an
improvement. As we will see below, the correct pose estimates in the cluster will help
to fix the incorrect ones.

Estimating shared models. Given an image cluster Fc, for each body part i we want to
estimate its correct color model hci shared by the persons in the cluster. Simply averag-
ing the color histograms hmi of the patches of part i in all images m ∈ Fc would not
produce a good shared color model. The images where the part is incorrectly estimated
would spoil the average (fig. 4a). This is fundamentally different from the background
shared model estimation (sec. 4.1). Instead, we propose here a technique for estimat-
ing the correct color model which is robust to incorrect initial pose estimates in some
images.

We cast the problem as outliers detection. We cluster the patches {hmi }m∈Fc us-
ing agglomerative clustering (fig. 4b). Then we find the dominant patch cluster Dci
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(a)

(b)

(c)

(d)

Fig. 4. Sharing foreground. (a) example foreground cluster automatically found in the LSP
dataset with initial pose estimates overlaid; (b) lower arm (left) and lower leg (right) patches
from the initial pose estimates; areas under blue overlays do not belong to the patches; the mem-
bers of the dominant clusters Dc

lowerarm and Dc
lowerleg are marked red; (c) two high-weight color

bins in the shared foreground model of the lower arm hc
lowerarm (left) and lower leg hc

lowerleg (right),
derived from the patches in the dominant clusters Dc

lowerarm and Dc
lowerarm respectively; (d) fore-

ground likelihood maps Ifg,i for all images in the cluster computed based on hc
i , for i = lower

arm (left) and i = lower leg (right).

(fig. 4b). As the distribution of patch similarities may vary substantially for different
kinds of parts i and image clusters Fc, we use the median similarity of patches over all
pairs of images in Fc as the compactness parameter. The key idea behind this dynamic
parameter setting is that the similarity of patches within the dominant cluster is higher
than the median. Hence, agglomerative clustering will tend to properly form a domi-
nant cluster of highly similar patches, separated from many smaller clusters with other
patches (fig. 4b).

Finally, we compute the shared color model hci of part i as the average of the color
histograms of the patches in the dominant patch cluster Dci (fig. 4c). This procedure
correctly recovers the shared color model although the body part might be incorrectly
localized in some images of Fc. In fact it can work when the part is correctly localized
even in fewer than 50% of the images, as long as the failures do not have consistent
appearance. All it needs is for the correctly localized parts to form a dominant cluster
in color space.

4.3 Technical details

Agglomerative clustering. We find background/foreground clusters using agglomera-
tive clustering based on clique partitioning (CP) [24]. We construct a fully-connected
graph GCP, where each vertex represents an image Im ∈ I and where edges are
weighted according to pairwise similarity matrix W ∈ [0, 1] − τ , where τ controls
the desired similarity. We partition then GCP into disjoint cliques using CP. As CP is
NP-hard we use the fast approximate clique partitioning technique of [25]4.

Unfortunately, no explicit background/foreground cluster membership annotations
are available for the LSP dataset. Therefore, we set the clustering parameters (τbg and
τfg, % respectively) empirically using the LSP training set (see 6), such that visually
appealing clusters are produced.

4 http://www.robots.ox.ac.uk/ vgg/software/UpperBody/
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Likelihood maps. After estimating shared color appearance models, we derive from
them a pixel-wise likelihood map for each image in a cluster. The likelihood map is
derived by assigning to each pixel its probability according to the color model. In a
background cluster Bc, the shared color model hcbg yields the same likelihood map Ibg
for all body parts (fig. 3c). In a foreground cluster Fc, there is a separate shared color
model hci for each part i, which yields a different likelihood map Ifg,i per part (fig. 4d).

5 Extended model (ExMoPS)

In this section we show how to extend the MoPS model [10] to include the likeli-
hood maps Ibg,Ifg,i derived in sec. 4.3 as additional cues to restrict the location of
body parts. For this we redefine the base model (1) to have multiple appearance models
a ∈ {gen, bg, fg}

S(I, p, t) =
∑
a

∑
i

wtia,iΦa(Ia,i, pi) +
∑
ij∈E

w
ti,tj
ij Ψ(pi − pj) + S(t) (3)

gen is the generic HOG appearance model of [10], whereas bg/fg are our foreground /
background color appearance models shared over an image cluster (sec. 4).

In (1) there was one appearance template wtii for each body part and type, where in
our extended model (3) there are multiplewtia,i. Each termwtia,iΦa(Ia,i, pi) is defined by
a kind of template and a feature image Ia,i. In this notation the original appearance term
of [10] is wtigen,iΦgen(Igen,i, pi), based on HOG templates wtigen,i applied to a gradient
image Igen. We define the new appearance terms wtibg,iΦbg(Ibg,i, pi), wtifg,iΦfg(Ifg,i, pi),
where the templates wtibg,i, w

ti
fg,i are weight masks applied to background/foreground

likelihood maps Ibg,i,Ifg,i (fig 5). As mentioned in sec. 4.3, the same background likeli-
hood map is used for all body parts Ibg,i = Ibg, whereas the foreground likelihood map
Ifg,i is part specific.

Inference. Inference in the extended model is analogous to the one for the base model
(sec. 3). As we only introduced additional unary terms, the computation complexity of
inference remains the same.

Learning. Introducing additional appearance terms keeps the model (3) in a form
S(I, z) = β · Θ(I, z), but β = (w, b) now spans over multiple appearance templates
per part and type. This leads to an equivalent learning problem as (2). However, we note
that our shared appearance cues are defined only on images that contain persons (sec. 4).
Therefore, instead of having a negative training set Iη containing no person [10], we
sample negative examples from the positive images Iρ (elsewhere than on the ground-
truth stickmen).

Analogue to [10], we first train all appearance templates independently, and then
use them as initialization to optimize the full model by dual coordinate-descent. This
joint optimization of all parameters of the extended model enables to find an optimal
balance between all terms, including multiple appearance cues and pose priors. More-
over, different appearance cues may be weighted differently for different body parts. If a
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(a) (b)

Fig. 5. Extended MoPS appearance templates. Learned appearance templates for the body
parts along the path from forehead to left wrist. (a) appearance templates from the shared back-
ground model ExMoPS{gen, bg}; (b) appearance templates from the shared foreground model
ExMoPS{gen, bg}. Top rows: generic appearance templates (HOG) defined on image gradients,
one per type (orientation). Bottom rows: shared background (a) or foreground (b) appearance
models defined on our color likelihood maps. Note how the expected outline of a body part is
recognizable in the templates. Also note how the templates for background likelihoods have high
weight in regions around parts rather than on the parts themselves.

cue is not informative for a particular body part, it will get a low weight in the extended
model. Note how this is different than a simpler solution that would keep the HOG tem-
plates wtigen,i as pre-trained in the base model, and then trains the new color templates
wtibg,i, w

ti
fg,i on top of them. Fig. 5 shows ExMoPS models with shared foreground and

background templates learned by by our method.

Missing data. Not all appearance terms may be available for every training image,
e.g. the foreground sharing cue does not make sense on singleton foreground clusters
(sec 4.2). One way out would be to train the model only to a subset of images where all
appearance cues are available. However, this might lead to over-fitting and at test time
it would require applying different models depending on the availability of cues for a
particular test image.

Instead, we propose to replace the likelihood maps for the missing cues with null
maps filled with a uniform value (e.g. 0 in foreground null maps). The learned model is
then able to discard a cue when it is unavailable.

This effectively enables us to train the extended model on the entire dataset despite
the missing appearance cues. At test time we have a single model which benefits from
whatever cues are available for a particular image.

6 Experiments

Dataset. There are several data-sets for evaluating 2D HPE algorithms [1, 2, 4, 7, 9],
some having specific shortcomings: [1] has only a small number of images, while [2, 4]
have only moderate pose variability [8]. Hence, we focus the evaluation of our method
on the LSP dataset [7]. With 2000 images, it is the largest dataset with fully accurate
ground-truth annotations (as opposed to the even larger [9]). It is also considered one of
the hardest datasets in terms of pose variability and background clutter [11]. The official
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model avg t lul rul lll rll lua rua lla rla h

LSP testset - full, person-centric annotations (PC)
[7] 55.1 78.1 64.8 66.7 60.3 57.3 48.3 46.5 34.5 31.2 62.9

MoPS [10] 50.9 82.0 53.5 55.3 50.3 52.9 43.6 38.4 30.7 26.1 75.8
ExMoPS{gen} 54.2 83.5 59.5 61.4 54.1 58.5 45.3 42.7 31.3 28.7 77.1

LSP testset - full, observer-centric annotations (OC)
MoPS [10] 60.8 84.1 69.5 69.4 64.8 66.4 53.1 51.6 37.3 34.5 77.1

ExMoPS{gen} 63.7 84.9 74.0 72.3 67.9 68.6 55.7 55.9 39.9 37.3 80.1
ExMoPS{gen, bg} 1img 63.6 86.2 74.9 73.7 68.5 68.1 55.4 54.9 38.0 36.3 80.1

ExMoPS{gen, bg} 64.3 86.5 75.6 74.1 68.9 69.8 57.5 55.4 38.7 36.0 80.1
ExMoPS{gen, fg} 64.2 85.6 75.2 72.5 68.3 68.0 56.6 56.6 38.4 39.7 80.4

LSP testset - foreground clusters (141 img), OC annotations
ExMoPS{gen} 70.0 91.5 81.6 83.0 75.9 77.3 57.5 63.1 41.8 41.8 86.5

ExMoPS{gen, fg} 72.5 91.5 84.4 81.6 80.9 79.4 58.9 70.2 40.4 47.5 90.1

Table 1. PCP results on the LSP dataset. The avg column reports an average PCP over all the
body parts. The remaining 10 columns show PCP for torso (t), left-right lower-upper leg-arm (lul,
rul, lll, rll, lua, rua, lla, rla) and head (h).

protocol [7] has equal test and train splits of 1000 images each, covering various sport
activities. This dataset is big enough for our approach to discover clusters of images
with common background/foreground appearance.

The annotations in LSP are person-centric (PC), i.e. right/left body parts are marked
according to the viewpoint of the person. The right ankle of a person facing the camera
is left in the image, but it is right in the image if the person faces away from the camera.
As we do not expect MoPS [10] nor any other state-of-the-art HPE model [1–6, 8, 10,
11] to distinguish between these two situations, we convert all annotations to observer-
centric (OC)5. Using OC annotations helps reducing confusion during training, e.g.
resulting in a more accurate pose prior. Note how OC annotations are by far the most
widely used in the 2D HPE community [1–6, 8, 10, 11].

Evaluation Measure. We quantify performance using the PCP measure (Percentage of
Correctly estimated Parts) introduced by [2] and used in many other works [6, 6, 4, 3,
7, 9, 10, 8, 26, 27]. An estimated part is considered correct if both its segment endpoints
lie within 50% of the length of the corresponding ground-truth segment from their an-
notated location6.

We follow the typical evaluation protocol used for datasets containing a single per-
son per image [3, 7, 15, 27, 26] and evaluate only the MAP solution returned by the HPE
model.

5 we normalize the orientation of the body such that the torso is upright, and then we flip
arms/legs according to shoulder/hips annotation points if necessary, so that the left limb is
always on the left side of the normalized torso.

6 [28] noted a discrepancy between PCP measures used across the HPE community, here we
exactly follow the PCP measure used in [3, 7]
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Fig. 6. Qualitative results on the LSP dataset. Rows 1 and 3 show the initial pose estimate by
MoPS, and rows 2 and 4 show the result of our extended models ExMoPS {gen, bg} or ExMoPS
{gen, fg}. Sharing background/foreground appearance models across images help to refine pose
in a variety of situations.

Setup. Following [10], we use a simplified deformation model for MoPS/ExMoPS with
w
ti,tj
ij = wtiij , i.e. the deformation model depends only on the type of the child part only,

not on the parent.
The full body MAP output from MoPS/ExMoPS trained/tested on the LSP dataset

is a 26 part body configuration (joint locations and midpoints along the kinematic struc-
ture except of the head mid-point). As in [10], we convert it to 10 physical parts for PCP
evaluation (torso, left-right lower-upper leg-arm and head; abbreviated from now on as
t, lul, rul, lll, rll, lua, rua, lla, rla, h).

Results. Table 1 reports our results. We start by comparing the base MoPS model [10]
to [7, 9]. These are the two works that have published results on LSP before, and they
employed the original PC annotations. On these annotations, MoPS performs slightly
below [7]. Following [10], MoPS mines negative training examples from negative part
of the INRIA pedestrian dataset [18]. Instead, the extended ExMoPS{gen}, mines nega-
tive training examples from positive training images. It performs better then MoPS [10]
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and it is on par with [7]. The method of [9] achieves higher PCP (62.7) but it is not di-
rectly comparable as it uses a much larger training set in addition to LSP (10000 images,
so 11× more training data). In summary, the baseline model we adopt ExMoPS{gen}
already performs on par with the state-of-the-art [7], even without appearance sharing
between images.

In all following experiments we employ OC annotations, which we believe are more
natural for HPE algorithms relying purely on low-level features [1, 4, 3, 6], as they may
not be able to distinguish between front and back views of a person. On these OC anno-
tations, the reference baseline MoPS reaches 60.8% PCP. For a fully transparent com-
parison, before we investigate the impact of our shared appearance models, we first eval-
uate MoPS when training from the alternative negative set as above (ExMoPS{gen}).
With 63.7%, ExMoPS{gen} achieves higher PCP than MoPS. As both use only the
generic HOG appearance term, the difference is completely due the negative examples
being better suited for evaluation on the LSP testset.

We are now ready to investigate the improvements brought by incorporating our
new shared appearance models. Adding our new background sharing cue yields an im-
provement to 64.3% PCP (ExMoPS{gen, bg}). An interesting experiment is to remove
the sharing element from this cue by enforcing each image to be in its own cluster
(ExMoPS{gen, bg} 1img). This degenerates to a technique analogue to [1], where a
background color model is estimated from a single image, but integrated into MoPS.
The performance of this model drops to the level of ExMoPS{gen}, demonstrating that
the improvement brought by our background sharing is truly due to sharing between
images. It supports our claim that collective HPE by sharing background models im-
prove over independent single-image pose estimation, even when augmented with an
analogue background term. Importantly, our method discovers between which images
to share fully automatically.

We now investigate our new foreground sharing, which we apply to foreground
clusters with 3 or more images, as foreground sharing is undefined on a single image.
These clusters contain 141 of the 1000 test images. On these images, the foreground
sharing model ExMoPS{gen, fg} improves PCP performance by +2.5% over the best
baseline ExMoPS{gen}. We can also evaluate foreground sharing on the entire LSP
dataset, by adding a null cue to images in smaller clusters, as described in 5. This also
improves performance (64.2%) compared to the best baseline (63.7%), which demon-
strates our foreground sharing is a useful new component for HPE. Interestingly, both
our newly proposed foreground and background sharing methods achieve similar PCP
performance (and they are both equally fully automatic).

Finally, we also investigated a method combining both foreground and background
appearance sharing ExMoPS{gen, bg, fg}, its performance however turns out on par
with methods using either of the shared components.

Conclusions. We have presented a novel technique to perform human pose estima-
tion over multiple images by sharing foreground/background appearance models. As
demonstrated on the highly challenging Leeds Sports Pose datasets, our collective pose
estimation via appearance sharing improves performance over the baseline method [10]
applied independently on each image. In future work we plan to share more elements
between images, e.g. texture appearance models.
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