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Abstract

Pairwise discrete energies defined over graphs are ubiq-
uitous in computer vision. Many algorithms have been pro-
posed to minimize such energies, often concentrating on
sparse graph topologies or specialized classes of pairwise
potentials. However, when the graph is fully connected
and the pairwise potentials are arbitrary, the complexity of
even approximate minimization algorithms such as TRW-S
grows quadratically both in the number of nodes and in the
number of states a node can take. Moreover, recent appli-
cations are using more and more computationally expen-
sive pairwise potentials. These factors make it very hard
to employ fully connected models. In this paper we pro-
pose a novel, generic algorithm to approximately minimize
any discrete pairwise energy function. Our method exploits
tractable sub-energies to filter the domain of the function.
The parameters of the filter are learnt from instances of
the same class of energies with good candidate solutions.
Compared to existing methods, it efficiently handles fully
connected graphs, with many states per node, and arbitrary
pairwise potentials, which might be expensive to compute.
We demonstrate experimentally on two applications that our
algorithm is much more efficient than other generic mini-
mization algorithms such as TRW-S, while returning essen-
tially identical solutions.

1. Introduction

Models requiring the minimization of a discrete pairwise
energy defined over a graph are very common in computer
vision. Let G= (V, E) be a graph with nodes V and edges
E . Each node n ∈ V can take a state xn from a finite set Ln

and has an associated unary energy function En : Ln → R.
An edge (n,m) ∈ E connecting nodes n and m has an
associated pairwise energy function En,m : Ln×Lm → R.
ThenL=L1×· · ·×L|V| is the domain of the energy function
defined over the graph. With these definitions, the energy of
a configuration of states x = [x1, · · · , x|V|] ∈ L is

EL(x) =
∑
n∈V

En(xn) +
∑

(n,m)∈E

En,m(xn, xm). (1)

The fundamental task of finding the configuration of states
x∗L = [x∗1, · · · , x∗|V|] ∈ L that minimizes (1) is often re-
ferred to inference, because of the relation to the probabilis-
tic models that typically lead to such energies.

These models have been employed to address many low-
level vision problems, where nodes are pixels and pair-
wise terms act as spatial regularization of the state config-
uration, e.g. denoising [28], binary segmentation [6], se-
mantic segmentation [25, 16] and stereo matching [28, 30].
Recently, higher-level applications of such energies have
emerged, where nodes represent a larger variety of vi-
sual elements: body parts [22, 24], superpixels [21, 31],
image windows [2, 9]. Here, pairwise terms often ex-
press more complex interactions such as kinematic con-
straints [22], semantic consistency [21], or appearance simi-
larity of whole objects [9, 32]. Matching objects across sev-
eral images [2, 9, 32] and human pose estimation [22, 24]
are examples of such recent developments.

A common trend in these state-of-the-art models is that
they are becoming increasingly complex. The number of
nodes, the density of the pairwise terms and the size of
the state spaces increase. At the same time the pairwise
terms are more and more arbitrary and computationally ex-
pensive. As an example, [16] uses fully connected graphs
over all pixels in a image for semantic segmentation, using
linear combination of Gaussians as pairwise potentials. In
weakly supervised object localization, [9] uses fully con-
nected graphs where nodes represent images and their state
spaces have 100 to 1000 candidate windows for the location
of an object. Computing the pairwise terms involves com-
paring high-dimensional appearance descriptors for all pairs
of windows, such as bag-of-SURF, HOG and color his-
tograms. Such pairwise terms are arbitrary in that they have
no particular form. Analog models have been recently pro-
posed for co-detection [2] and co-segmentation [32] where
discrete energy minimization is used to match candidate
windows or segments across images. Densely connected
graphs are also emerging for human pose estimation [27],
while at the same time the pairwise terms relating the body
parts are becoming more expensive, evolving from simple
truncated spatial priors [22] to similarity in appearance de-
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scriptors [24]. This adds to the computational burden al-
ready imposed by the very large state spaces typical for
such models, as they correspond to all possible body part
positions (10k-100k states [22, 24]).

In these settings, generic energy minimization algo-
rithms become impractical, even approximate ones. For
example, the popular TRW-S algorithm [13] poses no re-
strictions on connectivity, number of states, nor form of the
pairwise potential, but its memory and computational com-
plexity grow quadratically in the number of states and lin-
early in the number of edges (i.e. quadratic in the number
of nodes in a fully connected model). The problem can be
alleviated for certain subclasses of models by exploiting the
specific form of their pairwise terms (e.g. submodular [6]
or truncated convex [17], see sec. 2). Other authors exploit
specific graph topologies, such as grids [5] or k-fans [8].

In this paper, we propose a novel generic approximate
minimization algorithm (i.e. with no assumptions on pair-
wise potential, connectivity, nor number of states). Our
method progressively filters node states in an iterative fash-
ion. At each iteration, the filter takes decisions based on
the inference on a tractable subgraph. In addition to sub-
stantially reducing the cost of inference, our scheme makes
further savings by avoiding computing many pairwise po-
tentials. Filtering node states is made possible by automati-
cally specializing to a particular family of problems during
a training stage. This consists in learning filters specific to
this problem class given as input some example instances
along with a low-energy labeling of the nodes (e.g. dif-
ferent input images in semantic segmentation [31, 16, 25],
or different input image sets in weakly supervised localiza-
tion [9, 26, 20]). Importantly, this reference labeling is not
a manually provided ground-truth, but the output of a good
but slow optimization algorithm. Our method then learns
filters to discard as many states as possible without losing
any state in the reference labeling.

In this fashion, our method exploits the fact that the
distribution of unary and pairwise energies will be sim-
ilar on new problem instances, and is very efficient be-
cause it focuses where computational savings are likely to
be obtained. Automatically learning a problem-specific op-
timizer is the key strength of our method, and it is the reason
why it can achieve large speedups over a fixed, non-adaptive
algorithm (e.g. TRW-S).

Through experiments on two challenging applications
(weakly supervised object localization and semantic seg-
mentation), we demonstrate that our minimization algo-
rithm is on average 20× faster than TRW-S [13] while re-
turning essentially identical configurations of states (sec. 4).

2. Related Work

Below, we group discrete pairwise energy minimization
algorithms according to their operating conditions.

Low treewidth graphs. A well-known class of tractable
problems are energies defined over low treewidth graphs,
with potentially many states in the nodes, and an arbitrary
form of the pairwise terms. They can be solved exactly
by message passing algorithms, e.g. Belief Propagation on
trees has complexity O(H2N), with H the (average) num-
ber of states in a node and N the number of nodes [4].
In general, the Junction Tree Algorithm can be applied for
small treewidths, as the complexity is exponential in it.

Specific pairwise potentials. Various optimization algo-
rithms have been proposed for accelerating inference by
exploiting a specific form of pairwise potential. Graph-
cut algorithms perform fast and exact inference in mod-
els with two states and submodular pairwise terms [14],
regardless of their connectivity. Move-making extensions
of Graph-cut such as α/β-swap, α-expansion [6] support
more than two states (often less than 100 [31, 6, 3]). These
methods are approximate and assume that pairwise terms
are semi-metric and metric, respectively. Other forms of
potentials that lends themselves for efficient inference in-
clude truncated convex [17], truncated to a small subset of
state pairs [22], data independent [19], Gaussian [16], or
where distance transforms are applicable [10, 11]. Sapp
et al. [34, 24] propose a filtering cascade adapted to state
spaces that present a coarse-to-fine decomposition.

Partial labelling. With two states and arbitrary pairwise
terms, the roof duality algorithm [12, 23] produces partial
solutions, where some nodes might be left unlabeled.

Generic. Some message passing algorithms can approxi-
mately minimize generic pairwise energies, e.g. Loopy Be-
lief Propagation [4] and tree-reweighted message passing
algorithms [33] such as the popular TRW-S [13]. As the
complexity of these methods is quadratic in the number of
states and linear in the number of edges, they eventually
struggle as the number of nodes increases, the graph be-
comes denser, and as the state space grows. Komodakis [15]
speeds up LP-based algorithms by fixing some nodes to one
of their states, based on a hand-tuned dual-gap criterion.

These generic methods require computing all pairwise
potentials, which for some models might be more expensive
than inference itself [9]. In contrast, our filters are learned
to be optimal for a particular problem class, and avoid un-
necessary pairwise computations.

The meta-algorithm Fusion moves [18] optimally com-
bines two good candidate labellings. This strategy heavily
depends on having an algorithm that produces good, low-
energy candidate labellings. A different algorithm has to be
designed for each problem class.

3. Progressive state filtering
In this section we describe our approach for fast mini-

mization of pairwise energy functions. We start by formally



1. Original expensive
fully connected graph

2. Sample a spanning
tree and compute max-
marginals

3. Filter the graph
based on the max-
marginals

4. Iterate the process:
sample a new spanning
tree

5. Filter the graph until
convergence

Figure 1. Illustration of our progressive filtering on a fully-connected graph with 6 nodes. The color of a node represents its number of
remaining states (darker = more states). The thickness of an edge illustrates the number of remaining pairwise potentials on it. Red edges
denote sampled spanning trees. The red edges account for all the pairwise potentials that are computed by our method. They compound to
only a small fraction of all pairwise potentials in the original graph (especially in fully connected models with many nodes).

defining the problem in sec. 3.1, followed by an overview of
our filtering framework in sec. 3.2, and then we explain the
components of our method in detail: the type of filter func-
tions we learn (sec. 3.3) and how they are learned (sec. 3.5).

3.1. Problem definition

We want to minimize functions of the form

EL(x) =
∑
n∈V

En(xn) +
∑

(n,m)∈E

En,m(xn, xm), (2)

and we are particularly interested in the cases where V is
large, Ln is large for all n ∈ V , where E = V×V and where
En,m(xn, xm) is computationally expensive. In these cases
even just computing all the pairwise potentials can become
impractical, although they are typically needed for generic
message passing algorithms [4, 13, 33].

3.2. Overview of our method

To minimize Eq. (2), our method sparsifies the original
problem so as to contain much fewer pairwise potentials,
while retaining the same optimal configuration. More pre-
cisely, we iteratively filter the state space of a node by dis-
carding states that are very unlikely to belong to the opti-
mal configuration x∗L. This reduces the number of pairwise
terms involving this node. Applying this idea to all nodes
makes the number of pairwise terms drastically smaller,
which has a positive impact both on the memory and the
computational complexity of inference.

Consider the first iteration of filtering. For a node n
and its state space Ln, a filter f (1) is a function that par-
titions Ln in two subsets: the states L(1)

n to keep and the
states Ln \L(1)

n to discard. After filtering, the energy (2)
remains the same, but the configuration space becomes
L(1) = L(1)

1 × · · · × L(1)
|V|. If the filter retains the optimal

configuration of the original graph, i.e. x∗L ∈ L(1), then
the optimal configuration of the filtered graph is the same:
x∗L(1) = x∗L. This leads to a central idea in our work: we

optimize the filter parameters on a small set of ‘training’
instances of a problem class (e.g. different input images in
semantic segmentation) so as to learn to discard as many
states as possible, while preserving states likely to belong
to the optimum of the original model. For this, we use a ref-
erence low-energy configuration obtained from a (slower)
generic inference algorithm [13].

Clearly, filtering is only useful if its cost is much smaller
than the cost of minimizing (2). For this purpose, we pro-
pose filters that are functions of the min-marginals of a node
computed on a spanning tree of the original graph (sec. 3.3).
The key intuition is that such a min-marginal already con-
tains reliable indications about which states are definitely
not part of the optimal configuration of the full model.

After applying the filter f (1), in the second iteration
we repeat the operation on L(1) with a second filter f (2),
leading to the pruned state spaces L(2)

n . This second fil-
ter is based on a new spanning tree. In this fashion, as
the iterations proceed, the method progressively explores
all edges, discovering more and more information. As il-
lustrated in fig. 1 at each iteration the node states spaces
become smaller and consequently the edges become ‘thin-
ner’ (i.e. they contain fewer pairwise terms). Therefore, the
edges evaluated in an iteration cost much less than those
evaluated in a previous iteration. This progressive ‘discard
& explore’ paradigm is the key to the success of our algo-
rithm, as it eventually acquires a full view of the original
energy function, without paying the price of evaluating all
its pairwise potentials.

Our filtering process stops after an iteration where no
state was filtered, then we use a standard generic message
passing algorithm [13] to perform inference on the heavily
thinned model. Typically, at this stage only a few states are
left for each node (e.g. 3-5 in our experiments on semantic
segmentation) making inference extremely rapid and leav-
ing only few pairwise potentials to compute.

In the following sections, we describe our filter functions
(sec. 3.3 and sec. 3.4) and how we learn them (sec. 3.5).



µT (xn)

µT (xm)

p(yn=1|xn)

θ

θ

Figure 2. Illustration of the filtering process for two nodes n and
m. From the min-marginals µT (xn) of the states, we estimate
the probability p(yn = 1|xn) that the state might belong to the
optimum of the full model, and hence should be kept. We learn
the threshold θ such that all states with p(yn=1|xn) ≤ θ can be
discarded (red) while keeping as few states as possible (green).

3.3. Filter functions

At each iteration k of our algorithm, the filter function
f (k) is a binary classifier that decides whether a state of
a node should be kept or discarded. The filter acts on the
current state space L(k)

n of node n and it is a function of the
min-marginal of the node computed on a random spanning
tree T of the original graph. We denote this filter as f (k)T,n

f
(k)
T,n(xn) =

[
σ
(
w(k) ·Φ(k)

T,n(xn)
)
≥ θ(k)

]
, (3)

where σ(u) = (1 + exp(−u))−1 is the logistic function,
Φ

(k)
T,n is a feature mapping of the min-marginal, w(k), θ(k)

are the parameters of the filter, and [a≥b]=1 if a≥b and 0
otherwise. We sample a different tree at each iteration k to
provides new information about the original graph.

In essence, we use logistic regression to estimate the
probability p(k)T (yn = 1|xn) that state xn might belong to
the global optimum of the original graph (yn = 1), and
therefore it should be kept

p
(k)
T (yn = 1|xn) = σ(w(k) ·Φ(k)

T,n(xn)). (4)

The threshold θ(k) represents the probability value be-
low which states can be safely discarded. Note how the
filter parameters w(k), θ(k) are independent of the spanning
tree and the state space of node n. Instead, the feature map-
ping Φ depends on them. This enables to learn filters that
generalize well over different spanning trees and can adapt
to the different sizes of the state spaces of different nodes.

We illustrate the filter functions in fig. 2. The next sub-
section describes the feature mapping Φ, and sec. 3.5 ex-
plains how to learn the filter parameters.

3.4. Filter features

The key element for generalizing the filters over span-
ning trees and nodes is the choice of feature map Φ

(k)
T,n(xn).

A very good basis for this feature map are the min-
marginals computed on the spanning tree T . On a general
graph, the min-marginal of state xn is the minimum energy
that can be obtained over the whole configuration space L
when node n has state xn

µn(xn) = min
x̂∈L,x̂n=xn

EL(x̂). (5)

When restricted to a spanning tree T , the energy and min-
marginals of a graph are simply summed only over the
edges in T

ET (x) =
∑
n∈V

En(xn) +
∑

(n,m)∈T

En,m(xn, xm), (6)

µT,n(xn) = min
x̂∈L,x̂n=xn

ET (x̂). (7)

The reasons for choosing spanning trees over a more
complex subgraph are twofold. First, a spanning tree is
the sparsest substructure that connects all the nodes in a
graph. Hence, it minimizes the number of pairwise terms in
eq. (6) that the algorithm needs to compute. Second, trees
admit very efficient and exact algorithms for min-marginals,
based on message passing. The cost of computing all min-
marginals of all nodes of T is only about the same as finding
the minimum configuration of states on T . This property
has been successfully exploited by previous message pass-
ing algorithms on loopy graphs [13, 33].

Despite observing only part of the information in the
original graph, the min-marginals of a spanning tree already
contain powerful cues for identifying states unlikely to be
part of the optimal configuration of the full graph. Our fea-
ture map Φ

(k)
T,n(xn) is composed of the following elements

1. The difference between the min-marginal of state xn
and the best state: µT,n(xn) − minx̂n µT,n(x̂n). If
a state has a min-marginal much larger than the best
state, then this might indicate it is not a suitable candi-
date. This feature is invariant to shifts in the range of
min-marginal values.

2. The rank of xn in the sorted list µT,n(·) of all states
of node n. If a state has a min-marginal that is among
the highest in the node, it might be an indication that
it can be safely discarded. This feature is invariant to
positive linear transformations of the min-marginals.

3. A differential operator on sorted min-marginals: it
takes the difference between the min-marginal for a
state and the largest preceding value. This provides the
filter with a ‘sudden increase’ detector which might in-
dicate the end of a run of good candidate states. This
is invariant to shifts and robust to small rescalings.

4. A constant value which enables to learn a bias term.

Learning the filter consists in finding the linear combina-
tion w of the min-marginal features and a threshold θ that
best classify the states. We describe how we learn the pa-
rameters in the following subsection.



3.5. Learning filters

Here we explain how to learn the parameters w(k), θ(k)

of a filter f (k) on training instances G of a family of prob-
lems. We run TRW-S [13] on these training graphs to obtain
their optimal configuration of states (or a very good approx-
imation if the global optimum is not achievable). This pro-
vides a reference low-energy positive (yn = 1) state xn for
each node x (i.e. likely to belong to the optimal configura-
tion) and |L(k)

n |−1 negative ones (yn = 0).
A good filter should generalize well over the instances

and over the spanning trees TG that can be sampled on them.
Hence, we learn w(k) to maximize the likelihood of the cor-
rect prediction for all the states of all nodes of all instances,
leading to the following objective

`(w(k)) =
∑
G∈G

∑
T∈TG

∑
n∈G

∑
xn∈L(k)

n

`T (w(k)|xn), (8)

`T (w(k)|xn) = yn log p
(k)
T (yn|xn)

+ λ(1−yn) log p
(k)
T (1−yn|xn).

(9)

However, there are NN−2 trees in TG for a graph G with
N nodes, rendering this objective function intractable. We
resort to sampling a limited number Nt of trees for each
training instance G.

Note how the training set is imbalanced, as there are
many more negative states in the reference labelling than
positives. We correct for this by setting λ to a small value
such that the total weight of all negative terms is the same
as the total weight of positive terms. In addition to compen-
sating class imbalance, λ also expresses the desirable be-
haviour that the loss for misclassifying negatives (i.e. keep-
ing unoptimal states) should be much lower than the loss
for misclassifying positives (i.e. discarding optimal states).
The latter should be absolutely avoided, as discarded states
can never be recovered and therefore cannot be in the final
configuration output by our algorithm.

The maximum likelihood `(w(k)) of the logistic regres-
sion is concave. Therefore, any gradient descent algorithm
will converge to the globally optimum. In practice, we use
limited memory BFGS.

After learning w(k), we set the threshold θ(k) to ensure
that no optimal state is discarded on newly sampled valida-
tion trees

θ(k) = min
G∈G,T∈TG,n∈G,xn∈L(k)

n ,yn=1

p(yn = 1|xn). (10)

We first apply the learning procedure above to the orig-
inal training graphs G to train the first filter f (1). Next,
we apply f (1) on the training graphs themselves (on newly
sampled trees). Here, it is important to sample a new,
unique tree per training graph, as would be the case at test
time. We now use the filtered training graphs to train the
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Figure 3. Distribution of relative positions of superpixels for
(sky,grass), left, and (boat,water), right, in the MSRC-21 training
set. We show where the second label (grass/water) is most likely to
occur relative to the position of the first label (sky/boat, at (0, 0)).

second filter f (2). We repeat this procedure for all itera-
tions. It is important to train a separate filter per iteration,
as the distribution of min-marginal features (sec. 3.4) can
change considerably as the state spaces get smaller and the
fraction of good states grows. Our procedure properly sim-
ulates the test scenario at training time, which leads to good
filters. In particular, the randomized validation trees avoid
overfitting the thresholds θ(k) to the training graphs.

4. Experiments
We evaluate our method on two vision problems involv-

ing large fully-connected models with pairwise potentials
that have arbitrary form and are computationally expensive.
The next two subsections introduce these tasks (weakly su-
pervised object localization, sec. 4.1, and semantic segmen-
tation, sec. 4.2). Section 4.3 reports the results.

4.1. Weakly supervised object localization

Given a set of images I of an unknown object class,
weakly supervised object localization [7, 9, 26, 20] is the
task of localizing instances of the class. This is typically a
preprocessing step before learning an appearance model of
the class (which we do not consider in this paper).

Model. We adopt the model of [9], which aims at find-
ing exactly one bounding-box on an instance of the class in
each image In ∈ I. Each image is a node n in a fully con-
nected graph G and its states represent candidate windows
for the location of the object. There are S= 100 candidate
windows per image sampled according to their ‘objectness’
probability of containing an object of any class [1]. The
objectness probability is also used as a unary potential En.
The pairwise potentials En,m(xn, xm) express the dissim-
ilarity between two windows (xn, xm) in different images
In and Im. The dissimilarity is a linear combination of an
appearance distance (Euclidean on HOG descriptors) and
the difference in aspect-ratios between the windows. As the
appearance descriptor is high-dimensional, the pairwise po-
tentials are expensive to compute (30 minutes on average
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Figure 4. Quantitative evaluation of our energy minimization algorithm on object localization (left) and semantic segmentation (center).
The curves illustrate the trade-off between accurate solutions (low average energy ratio) and computational cost (computed pairwise
terms). For our approach, we vary the number of training trees (Nt=1, 6, 10, 50, 100). For the baseline, we vary the number of kept states
(K = 1. . .S). TRW-S uses all S states. We also report the average time to perform message passing for object localization (right). The
averages are computed over 18 localization problems and 247 semantic segmentation problems.

for an image set from our experiments). Minimizing this
energy will select windows that are likely to contain objects
and form a recurring visual pattern over the input images.

Experimental setup. We follow the setup of [9, 20, 26].
Each input image set is a class-viewpoint combination from
the PASCAL VOC 2007 training dataset (the ground-truth
bounding-boxes are not given to the algorithm). We use
23 class-viewpoint combinations from 8 classes (car, mo-
torbike, person, train, aeroplane, tvmonitor, bus, boat) with
∼3 viewpoints each. An image set contains between 27
and 150 images. We use 5 image sets for training our fil-
ters (bus-left, train-frontal, aeroplane-left, car-frontal and
person-right) and the remaining 18 image sets for testing.

4.2. Semantic segmentation

Semantic segmentation is a common application of en-
ergy minimization algorithms [16, 25, 29, 31]. The task is
to assign a label from a set of known classes to every pixel
in a test image (e.g. car, road, grass, cow).

Model. A node represents a pixel [25] or a superpixel [29,
31] in the test image. Unary potentials are the likelihoods
of the S = 21 different classes according to appearance
classifiers, which are typically trained beforehand from a
set of training images with pixel-level labels [16, 25, 29].
We adopt the model of [31], based on superpixels to offer
good spatial support to extract advanced features [29].

Most existing works use simple grid graphs where each
node is only connected to its neighbors. However, this can
model only short-range interactions such as label smooth-
ness [25, 31] or contextual interactions between adjacent
pixels [21]. The interest of using fully connected graphs
for semantic segmentation has been recently shown by [16].
Connecting distant (super-)pixels allows to model longer-
range interactions. Moreover, our method allows the use of
arbitrary, complex pairwise potentials. This enables to fully
exploit higher-level contextual information.

We propose to exploit the relative position between any
two superpixels in an image to favour or penalize the choice
of labels. The intuition is that superpixels of sky should ap-
pear above superpixels of street, and this should be favoured
even if superpixels of car or building appear in-between
(which cannot be achieved with grid graphs). We adopt a
data-driven model. For each pair (n,m) of superpixels in
a test image, we consider the 2D displacement vector ~pn,m
between their centers. Then, for all superpixel pairs (i, j)
in the training set, we accumulate a score for their ground-
truth labels (xi, xj) that depends on the Euclidean distance
between ~pn,m and ~pi,j . The new pairwise potential says that
the more similar ~pn,m and ~pi,j are, the more likely (n,m)
should have the same labels as (i, j)

En,m(xn, xm) =
∑
(i,j)

g(~pn,m, ~pi,j)[xn 6=xi][xm 6=xj ]. (11)

where g is a Gaussian kernel on the Euclidean distance.
In fig. 3, we show the distribution of displacement vectors
~pi,j in the training data for two label pairs.

In addition to this new term, our pairwise potential also
includes a traditional contrast-sensitive label smoothness
term that encourages nearby, similar-looking superpixels to
take the same label [16, 25, 31]. Building the fully con-
nected graph with these pairwise terms takes about 75 sec-
onds per image on average.

Experimental setup. We use the standard MSRC-21
dataset [25, 31]. It contains 788 images that we divide in
three subsets: (i) 532 images with ground-truth labels used
to learn appearance models (unary terms) and displacement-
based label penalty (pairwise terms); (ii) 9 images without
ground-truth labels to learn our filters for inference; (iii) the
remaining 247 images to test our approach.

4.3. Results

We measure the computational benefits of our progres-
sive state filtering algorithm in three ways: (1) The number
of all pairwise potentials evaluated by our method. This
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Figure 5. Qualitative improvements of semantic segmentations
thanks to long-range contextual interactions between labels in our
fully connected models. We show the original image (far-left) and
its ground-truth labels (center-left), and we compare sparse mod-
els [31] (center-right) to our fully connected models (far-right).

is the dominant computation cost, and therefore gives the
speed-up factor made by our method. The overhead caused
by our method (sampling the tree, computing the min-
marginals and filtering) is indeed negligible (around 1s); (2)
The energy ratio of the best configuration of the graph fil-
tered by our method over the best configuration of the orig-
inal graph. The latter is delivered by TRW-S [13], which is
an excellent1, but much slower generic minimization algo-
rithm used in various computer vision applications [9, 28].
This measures the quality of the solution produced by our
algorithm. The best possible value for this ratio is 1. When
states belonging to the optimal configuration of the original
graph are erroneously discarded by our method, this ratio
increases; (3) The computation time of the message-passing
passing algorithm [13] that we run after filtering, compared
to the time that would be spent on the original graph.

To obtain an insight on the efficiency-vs-quality trade-
off of our approach, we have learnt state filters with various
numbers of random training spanning trees (Nt = 1..100).
Because the threshold θ is set to discard no optimal state
over all training trees (eq. (10)), we expect a greater Nt to
lead to higher quality solutions in return for filtering fewer
states. As a baseline, we consider keeping the K labels for
each node that have the best unaries, and vary the value of
K from 1 to S, the number of states in the original prob-
lem. Figure 4 shows the results. Each point in a plot is the
average over all test graphs (18 test image sets for object
localization, and 247 test images for semantic segmenta-
tion). We observe: (1) For all values of Nt, our algorithm
successfully computes only a small fraction of the pairwise
potentials, thanks to discarding many states of many nodes.

1In addition to returning a solution and its energy, TRW-S also gives
a lower bound on the energy. The global optimum is in-between. The
ratio between the energy of the returned solution and its corresponding
lower bound, averaged over all problem instances is 1.0008 for semantic
segmentation, i.e. the solution by TRW-S is within 0.08% of the global
optimum. For object localization it is within 0.06%. Hence, TRW-S is
delivering solutions very close to the global optimum on these problems.

Figure 6. Qualitative results for localizing trains and aeroplanes.
The green windows show the ground-truth boxes, the blue windows
show the best window among the S = 100 candidates [1]. The
yellow windows are those selected by TRW-S and by our algorithm
(which are identical).

This leads to computing up to 20× fewer pairwise poten-
tials (Nt = 1). Thanks to this, it now takes only a frac-
tion of the original time to compute the potentials for object
localization (on average about 100s vs 1800s) and seman-
tic segmentation (about 3s vs 75s). (2) Discarding states
also has a positive impact on the time required to perform
message passing, with 3× to 4× speed-up on this compo-
nent of the energy minimization procedure. However, on
these problems, this is negligible compared to the cost of
the pairwise potentials. (3) The energy of the best configu-
ration of the filtered graphs are essentially identical to those
of the original graphs. Even for Nt = 1, on average the en-
ergy is less than 0.5% higher. This means that the speedups
brought by our method comes at no loss of accuracy of the
output solution, compared to TRW-S [13]. (4) For object lo-
calization, the baseline with low K leads to solutions with
substantially larger energy than what delivered by TRW-S
(for K=3, +15% on average, and up to +25%). For seman-
tic segmentation, it is reasonably good (+0.4% on average
and up to +7%). On both problems, our approach obtains
lower energy solutions for any given number of pairwise
terms. Moreover, for the baseline, the user would have to
manually set the value for K, which is heavily dependent
on the problem class.

Table 1 reports the pixel-level accuracies obtained for se-
mantic segmentation with our fully connected graphs on the
official test set of MSRC-21, compared to the sparse graphs
of [31]. Although both models use the exact same unaries,
we obtain an improvement on 16 classes out of 21 as well as
on average over all classes. This demonstrates the benefits
of using fully connected models with our long-range spa-
tial context terms (fig. 5). Finally, the table also reports the
results for our fully connected model, but using the slower
TRW-S for inference instead of our method. The results are
essentially identical, which shows that our method not only
delivers solutions with near identical energy, but also near
identical configurations of states. We observed the same be-
havior on the object localization task, where only 0.3% of
the candidate windows selected by our approach differ from
those selected by TRW-S (only 5 different windows over the



Class accuracy building grass tree cow sheep sky aeroplane water face car bicycle flower sign bird book chair road cat dog body boat mean
Sparse graph [31] 23.5 90.4 80.2 84.3 96.4 85.3 97.9 67.0 86.4 93.2 98.1 79.3 71.2 53.6 62.6 59.0 67.8 60.7 50.3 42.5 48.0 71.3

This paper (TRWS) 31.9 91.5 84.5 89.2 91.8 89.7 99.0 68.0 79.5 94.1 98.3 72.6 76.2 55.3 64.9 53.4 74.2 62.7 53.4 54.7 46.3 72.9
This paper (Filters) 31.9 91.5 84.7 89.2 91.8 89.7 99.0 68.0 79.5 94.1 98.3 72.6 76.3 55.3 64.9 53.4 74.2 62.7 53.4 54.7 46.3 72.9

Table 1. Class accuracies on the MSRC-21 test set. We compare the performance of the sparse model of [31] and our fully-connected
model with long-range spatial context interaction, using either TRW-S or our progressive filtering for inference. Using the same unaries,
our model improves on 16 out of the 21 classes. Our fast inference algorithm obtains essentially the same results as the slower TRW-S.

entire experiment involving 1413 images). We show quali-
tative results for object localization in fig. 6.

5. Conclusion
We presented a novel minimization algorithm for dis-

crete pairwise energies that can handle densely connected
graphs, large state spaces, and arbitrary pairwise potentials.
We demonstrated experimentally its high computational ef-
ficiency over baseline filters and the TRW-S algorithm.
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