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Abstract

Undercertaincircumstances,X-linked loci areexpected toexperiencemoreadaptive substitutions thansimilarautosomal loci. To look

for evidence of faster-X evolution, we analyzed the evolutionary rates of coding sequences in two sets of Drosophila species, the

melanogasterandpseudoobscuraclades,usingwhole-genomesequences.Oneof these, thepseudoobscuraclade, containsacentric

fusionbetweentheancestralXchromosomeandtheautosomalarmhomologous to3L inD.melanogaster. Thisoffersanopportunity

to study the same loci in both an X-linked and an autosomal context, and to compare these loci with those that are only X-linked or

only autosomal. We therefore investigated these clades for evidence of faster-X evolution with respect to nonsynonymous substi-

tutions, finding mixed results. Overall, there was consistent evidence for a faster-X effect in the melanogaster clade, but not in the

pseudoobscuraclade,except for thecomparisonbetweenD.pseudoobscuraand itsclose relative,Drosophilapersimilis.Ananalysisof

polymorphism data on a set of genes from D. pseudoobscura that evolve rapidly with respect to their protein sequences revealed no

evidence for a faster-X effect with respect to adaptive protein sequence evolution; their rapid evolution is instead largely attributable

to lower selective constraints. Faster-X evolution in the melanogaster clade was not related to male-biased gene expression; surpris-

ingly, however, female-biased genes showed evidence for faster-X effects, perhaps due to their sexually antagonistic effects in males.

Key words: faster-X effect, Drosophila melanogaster, Drosophila pseudoobscura, positive selection, sex-biased gene expression.

Introduction

Sex chromosomes have many properties that distinguish them

from autosomes, allowing insights into evolutionary processes

through comparisons between them (Meisel and Connallon

2013). When males are the heterogametic sex, for example,

rare variants at loci on the hemizygous X chromosome that

have recessive effects on fitness are exposed to natural selec-

tion, both positive and negative, whereas these effects would

be masked on the autosomes in a randomly mating popula-

tion (Haldane 1924). This unmasking of alleles in males has

several evolutionary consequences. For instance, it may affect

the relative values of neutral diversity on the X chromosome

and the autosomes, due to different effects of selection at

linked sites on the two types of chromosomes, involving

either background selection caused by deleterious mutations

(Aquadro et al. 1994; Charlesworth 2012) or selective sweeps

of positively selected mutations (Betancourt et al. 2004).

Another consequence is that positively selected X-linked

mutations can, under some conditions, be substituted more

rapidly than those on the autosomes. In particular, with a 1:1

sex ratio among breeding individuals and equal variances of

fitness in males and females, when beneficial mutations are

recessive or partially recessive, genes on the X chromosome

will experience a higher rate of substitution than genes with

similar properties on autosomes, unless their fitness effects are

limited to females (Charlesworth et al. 1987). Conversely, the

rate of substitution of recessive or partially recessive deleteri-

ous mutations is expected to be lower for X-linked genes. The

conditions for such faster-X evolution for beneficial mutations

are somewhat more relaxed when the effective sex ratio is

biased toward females, or there is a higher variance of fitness

in males (Vicoso and Charlesworth 2009). Under other circum-

stances, however, faster-X evolution with respect to adaptive

evolution is not expected to occur (Orr and Betancourt 2001),
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especially when adaptation proceeds mainly by fixing formerly

deleterious alleles that were previously segregating at muta-

tion–selection balance.

In view of this diverse set of predictions, it is worth estab-

lishing whether or not, or how often, faster-X evolution

occurs, as its existence suggests that some modes of evolution

are more common than others (Meisel and Connallon 2013).

Tests for adaptive faster-X evolution have been carried out

using data from Drosophila (reviewed in Presgraves 2008),

birds (Mank et al. 2007; Ellegren 2009; Mank, Nam, et al.

2010), and mammals (Khaitovich et al. 2005; Torgerson and

Singh 2006; Kousathanas et al. 2014). The results of these

studies have been mixed, and somewhat taxon specific.

Drosophila protein sequence divergence data show a general

trend toward faster-X effects, with some exceptions

(Presgraves 2008); studies of divergence in gene expression

in Drosophila also show a faster-X effect (Kayserili et al. 2012;

Meisel et al. 2012a). Although divergence data by themselves

cannot distinguish between adaptive and other causes of

rapid divergence, additional studies using polymorphism

data suggest significantly more adaptive evolution of protein

sequences of X-linked genes (Langley et al. 2012; Mackay

et al. 2012; Campos et al. 2014). Similar results were obtained

for mammals (e.g., Torgerson and Singh 2006), with polymor-

phism data from mice providing strong evidence for adaptive

faster-X evolution (Kousathanas et al. 2014). Data from birds,

which have a ZW sex-determination system, also show faster Z

chromosome divergence, but gene expression patterns indi-

cate that this may not be due to adaptive evolution (Mank,

Nam, et al. 2010).

One possible confounding factor in these comparisons is

that the X chromosomes and autosomes may contain loci that

are inherently different in their rates of evolution (Hu et al.

2013); for example, the X chromosome contains a greater

fraction of genes with narrow expression breadth (Meisel

et al. 2012b), and different densities of sex-biased genes (re-

viewed in Vicoso and Charlesworth 2006), both of which may

affect rates of protein sequence evolution. To partly circum-

vent this difficulty, several studies (Counterman and Noor

2004; Thornton et al. 2006; Vicoso et al. 2008) have taken

advantage of an X–autosome fusion in the obscura subgroup

of the genus Drosophila, where the 3L arm of the Drosophila

melanogaster subgroup (Muller element D; (Muller 1940) has

become X-linked in the clade containing Drosophila pseu-

doobscura and its relatives (fig. 1; Ashburner et al. 2005). A

comparison of orthologous genes between the melanogaster

and the pseudoobscura clades thus allows the separation of

chromosome location from gene-specific attributes of chro-

mosomes, when interpreting differences in rates of evolution.

Here, we systematically investigate the melanogaster and

pseudoobscura clades of Drosophila for evidence of higher

X-linked rates of protein sequence divergence, using whole-

genome coding sequence data and incorporating information

about sex-biased expression. Like Counterman et al. (2004),

we use the X–autosome fusion in the pseudoobscura clade to

distinguish X-linkage from other factors affecting locus-speci-

fic rates of evolution. Faster protein sequence divergence

could be due to either higher rates of adaptive evolution or

relaxed purifying selection, but these factors can be teased

apart using information from polymorphism data (Smith and

Eyre-Walker 2002), so that we have combined sequence com-

parisons among species with analyses of polymorphism data.

Overall, we find evidence for faster-X effects at nonsynon-

ymous sites in the melanogaster comparisons. In the pseu-

doobscura clade however, only a comparison of a pair of

very closely related species appears to show faster-X evolution,

possibly reflecting changes in selection pressures around the

time of speciation events.

Materials and Methods

Genome-Wide Coding Sequence Data

We downloaded coding sequences (CDS) of the following

genome sequence releases from FlyBase (www.flybase.org):

D. melanogaster 5.43, Drosophila sechellia 1.3, Drosophila

yakuba 1.3, D. pseudoobscura 2.26, and Drosophila persimilis

1.3. In addition, sequences of 6,110 coding regions from

Drosophila lowei were kindly provided by Noor et al., and

sequences of 10,272 coding regions from Drosophila miranda

by Bachtrog et al. (Zhou and Bachtrog 2012), and is available

under the GenBank accession number AJMI00000000.2.

We obtained a genome sequence from a fourth species,

Drosophila affinis, evolutionarily more distant from D. pseu-

doobscura than D. loweii or D. persimilis, as this comparison

increases the power of tests for a faster-X effect in the obscura

subgroup. Drosophila affinis Nebraska line no. 0141.2

(Drosophila Species Resource Center) was sequenced in col-

laboration with V. Nolte, N. Palmieri, and C. Schlötterer from

the Institute of Population Genetics, Vetmeduni, Vienna,

Austria (Palmieri et al. 2014). Genomic DNA was extracted

from females, and libraries with insert sizes of 310 and

630 bp (including the sequenced ends) were prepared.

These libraries were then sequenced on one lane each of an

Illumina GAIIX to obtain 42,657,732 (for the short insert li-

brary) and 39,630,082 (for the long insert library)101-bp

paired-end reads. The data were then processed using the

standard Illumina pipeline v. 1.7.

To obtain a genome assembly, we first trimmed low quality

sequence (using the trim_fastq.pl script from PoPoolation;

Kofler et al. 2011), then obtained a de novo assembly using

CLC Genomic Workbench version 4.6 (http://www.clcbio.

com/products/clc-genomics-workbench/, last accessed

October 22, 2014), and finally used nucmer (Delcher et al.

2002) with parameters -c 30 –g 1000 –l 15 to scaffold the

assembled contigs against D. pseudoobscura. To annotate this

genome, we masked interspersed repeats on our assembled

D. affinis genome using RepeatMasker 3.2.9 (Smit et al.

Faster-X Effects in Drosophila GBE
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1996); parameters: –q –gff -nolow –norna –species drosoph-

ila, and then annotated protein-coding genes based on the D.

pseudoobscura genome annotation using Exonerate 2.2.0

(Slater and Birney 2005); parameters: -model protein2genome

–bestn 1 –showtargetgff. This annotation was filtered to

remove CDS containing frame shifts or premature stop

codons. The raw reads are available on the EBI Short Read

Archive under the study accession number ERP001460.

Polymorphism Data

We collected polymorphism data from one representative spe-

cies from each group, D. pseudoobscura and D. melanogaster.

The D. pseudoobscura data were collected by sequencing

genes from 12 lines originally collected in July 2005 from

Mesa Verde National Park, Mesa Verde, CO, and kindly pro-

vided by Stephen Schaeffer, as described in Haddrill et al.

(2010). A data set of the orthologous genes was obtained

from the DPGP resequencing project (http://www.dpgp.org/,

last accessed October 22, 2014; Pool et al. 2012) from the

Rwandan sample of 17 D. melanogaster haploid genomes,

filtered for introgression from European populations based

on the recommendations in Pool et al. (2012), as described

in Campos et al. (2014).

We selected three sets of genes for use in the polymor-

phism analysis: 1) Fast-evolving XR genes, which are genes

that are newly X-linked in D. pseudoobscura (i.e., on 3L

in D. melanogaster and on XR in D. pseudoobscura); 2)

fast-evolving autosomal genes, which are genes that are

autosomal in both the D. melanogaster and D. pseudoobscura

lineages; and 3) fast-evolving XR and autosomal

female-biased genes, which are genes that are strongly

female-biased in both lineages, and therefore not expected

to experience faster-X evolution (Charlesworth et al. 1987;

Meisel and Connallon 2013). For both the XR and strictly au-

tosomal data set, we aimed to enrich our set for loci under-

going adaptive evolution, as a previous study suggested that a

faster-X effect was marginally significant for the faster-evolv-

ing genes in the D. pseudoobscura–D. affinis comparison

(Vicoso et al. 2008).

Accordingly, we chose for the polymorphism analyses

genes with high rates of evolution in the D. yakuba lineage

(as estimated by Clark et al. 2007) under the M0 model in

PAML; note that the D. yakuba lineage was not further ana-

lyzed in the polymorphism analysis. We restricted the data set

to those genes with rates of protein evolution corresponding

to the 70–100% quantiles on 3L, that is, with o> 0.096. We

filtered out long and short genes, using only genes falling

within two intermediate quantiles for length in D. melanoga-

ster, between 1,279 and 4,571 bp, as gene length is corre-

lated with the rate of nonsynonymous evolution (Comeron

et al. 1999). We further excluded any genes showing strong

sex-biased gene expression in either D. yakuba or D. pseu-

doobscura, as assessed by Sturgill et al. (2007).

This procedure resulted in a set of 75 XR genes, and 48

strictly autosomal genes, from which we obtained part of the

coding sequence for 54 and 31 genes, respectively. For the

female-biased expression control data set, we restricted the

  

A A 
D D 

  A A D D 

melanogaster lineage 

obscura lineage 

D. yakuba

D. sechellia

D. melanogaster

D. affinis

D. lowei

D. miranda

D. pseudoobscura

D. persimilis

FIG. 1.—Phylogenetic tree and karyotypes of the eight species analyzed.
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list of genes to those that showed significantly female-biased

expression in both D. yakuba and D. pseudoobscura (again as

assessed by Sturgill et al. 2007), and applied the same criteria

for the rate of evolution as above. As this resulted in a candi-

date pool of only 17 XR genes, and 36 autosomal genes, we

did not further restrict this data set by gene length. From these

female-biased genes, we obtained sequence from 6 3L/XR

genes and 17 strictly autosomal genes.

Sequencing Methods

We sequenced the above genes from the 12 D. pseudoobs-

cura Mesa Verde lines using standard polymerase chain reac-

tion (PCR) and Sanger sequencing methods (Haddrill et al.

2010). A complete list of the PCR primers as well as the cycling

conditions used for each gene are available on request. PCR-

amplified products were treated with ExoSAP-IT (USB,

Cleveland, OH) and sequenced from both strands using

BigDye chemistry and a 3730 automated sequencer

(Applied Biosystems, Foster City, CA) at the University of

Edinburgh GenePool sequencing service, with PCR primers

used as sequencing primers. Not all genes were sequenced

from all strains; the average number of strains sequenced per

gene was 11 (see supplementary table S6, Supplementary

Material online). Sequences have been submitted to the

GenBank database under the accession numbers JX409935–

JX411616.

Analyses of Genome-Wide Rates of Protein Sequence
Evolution

For this analysis, we retained only orthologs whose location on

the same Muller element (equivalent to a chromosome arm,

Muller 1940) was conserved between D. melanogaster and D.

pseudoobscura, resulting in a data set of 10,273 protein-cod-

ing sequences. Pairwise in-frame CDS alignments were per-

formed for orthologous-coding sequences within the

melanogaster (D. melanogaster, D. sechellia, and D. yakuba)

and pseudoobscura (D. pseudoobscura, D. lowei, D. affinis,

and D. persimilis) groups using MAFFT (Katoh and Standley

2013). Sequence alignments are posted in DRYAD (http://

datadryad.org/, last accessed October 22, 2014) under

doi:10.5061/dryad.3hh83.

Two sets of pairwise divergence estimates were obtained:

One set (denoted by KA and KS) using the site-counting method

of Comeron (1995) implemented in G-estimator (http://mol-

popgen.org/software/lseqsoftware.html), and the other

(denotedby dN anddS) obtainedusing themaximum-likelihood

method implemented in the PAML program codeml (Yang

2007). As estimates of divergence based on site-counting

and maximum-likelihood methods gave qualitatively equiva-

lent results, only counting estimates are shown here (for a dis-

cussion of the different methods, see Bierne and Eyre-Walker

2003). We then excluded from the analysis genes shorter than

100 amino acids, genes that had KS or dS estimates below 0.01

or above 3 (as recommended in the PAML manual; http://

abacus.gene.ucl.ac.uk/software/, last accessed October 22,

2014), and genes for which KA/KS or dN/dS estimates could

not be calculated (usually due to low synonymous divergence).

The total number of genes analyzed for each pair of species is

shown in supplementary table S1, Supplementary Material

online. We also used PAML to estimate dN, dS, and dN/dS

over the entire phylogeny for genes that occurred in all species,

using the M0 model of codeml to estimate a single dN/dS for

eachgene, separately for theobscuraandmelanogasterclades;

transition–transversion rates were estimated from the data,

and codon frequencies from the nucleotide frequencies. For

the melanogaster group, we used the single unrooted tree to

relate the three species; for the obscura group, we estimated

rates forall 15unrooted trees, taking thevalues fromthemodel

yielding the highest likelihood. This procedure is equivalent to

an exhaustive likelihood search, and has the advantage of es-

timating the phylogeny and the rates under the same model of

sequence evolution.

Fixed inversions between D. pseudoobscura and D. persi-

milis were defined as in Machado et al. (2007), with 2,322 loci

classed as inside an inversion, 801 loci within 2 MB of inversion

breakpoints, and 7,139 outside inverted regions and mapped

to D. pseudoobscura scaffolds based on the information in

Schaeffer et al. (2008).

Gene Expression Data

We extracted the ratio of male to female expression level from

the Sebida database v. 3.0 (Jiang and Machado 2009; www.

sebida.de), with the classification of genes as male, female, or

unbiased taken from this database, expected to yield a 20%

false-positive rate (Gnad and Parsch 2006). For the pseu-

doobscura clade species, genes with an M/F expression ratio

lower than 0.9 or greater than 1.1 were classified as female-

and male-biased, respectively, and genes with an M/F expres-

sion ratio between 0.9 and 1.1 were classified as unbiased.

Values used for the melanogaster group were measured in

D. melanogaster, whereas those used for the obscura group

were measured in D. pseudoobscura.

Statistical Analyses

To compare rates of sequence evolution, we used two-tailed

nonparametric Kruskal–Wallis or Mann–Whitney U tests. For

the Mann–Whitney U tests, multitest corrections were applied

using the false discovery rate method by Benjamini and

Hochberg (1995). All statistical analyses were performed

using R version 2.14.0 or later.

To analyze the polymorphism data sets, we calculated poly-

morphism and divergence summary statistics for all genes

using custom Python scripts. To perform McDonald–

Kreitman tests, we used the method of Welch (2006). To

estimate the distribution of fitness effects of deleterious non-

synonymous mutations and the proportion of sites under

Faster-X Effects in Drosophila GBE
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positive selection, we used the DFE-a method of Eyre-Walker

and Keightley (2009), which uses data on interspecies diver-

gence and the folded site frequency spectra of variants at

synonymous and nonsynonymous sites.

Recombination Rate Bins for D. melanogaster

For the purpose of examining the possible effects of recombi-

nation rates on sequence evolution in the melanogaster clade,

we divided genes up into low, medium, and high recombina-

tion rate categories based on rates from Fiston-Lavier et al.

(2010), according to the criteria described in Campos et al.

(2012).

Results

Faster-X Evolution in the melanogaster Clade

Summary results on nonsynonymous and synonymous diver-

gence between D. melanogaster and its relatives, and for

D. pseudoobscura and its relatives, using a counting measure

of divergence (see Materials and Methods) are shown in

figure 2 (see also supplementary table S1, Supplementary

Material online; results from maximum-likelihood estimates

are shown in supplementary table S2 and fig. S1,

Supplementary Material online). We compared rates of non-

synonymous and synonymous sequence evolution among

three classes of genes: XX genes (X-linked in both the mela-

nogaster and pseudoobscura clades), AA genes (autosomal in

both clades), and AX genes (autosomal in the melanogaster,

but linked to XR in the pseudoobscura clade). To ensure that

any differences among comparisons do not reflect differences

in the sets of genes that were analyzed, we carried out many

of the analyses described below for the orthologous genes

present in all species (the “common” genes in supplementary

table S1, Supplementary Material online), as well as for all

genes that could be analyzed for a given pair (“all genes” in

supplementary table S1, Supplementary Material online), after

the filtering described in Materials and Methods. The general

patterns found for all genes also hold for the common genes

subset, so we focus on results from the larger data set.

In the melanogaster clade, nonsynonymous divergence

was significantly higher for X-linked than for autosomal

genes (XX vs. AA, AX), whereas synonymous divergence

was not significantly different (fig. 2 and supplementary fig.

S1 and tables S1 and S2, Supplementary Material online).

These results are consistent with those for the maximum-like-

lihood estimates using PAML (Yang 2007), except for the

D. yakuba–D. melanogaster comparison, where both dN and

dS for X-linked loci were elevated relative to the autosomes,

yielding an overall nonsignificantly higher value of dN/dS for

the X chromosome compared with the autosomes.

Furthermore, division of the genes into classes based on

their sex-specific levels of expression shows that the faster-X

effect is more marked for sex-biased genes, particularly those

with female-biased expression (see fig. 3 and supplementary

fig. S2 and tables S3 and S4, Supplementary Material online).

The effect of sex-bias on faster-X evolution may be a con-

sequence of its effect on rates of protein evolution (table 1); all

else being equal, a high rate of substitution, particularly of

adaptive substitutions, will yield more power to detect

faster-X evolution. But if positive selection is the basis of

faster-X evolution, the robustness of the faster-X effect for

female-biased genes is surprising, as no faster-X evolution

should occur for genes experiencing selection only in females

(Charlesworth et al. 1987). It could be the case, however, that

sex-biased expression is not an adequate measure of sex-spe-

cific selection. One reason for this might be that the definition

of sex-bias we have used is too liberal and includes too many

genes experiencing selection in both sexes; in fact, the crite-

rion for female-biased expression that we used does not pre-

clude a reasonable level of expression in males. Using more

stringent criteria, however, does not appear to change the

results: Genes with the strongest female-bias in expression

show a faster-X effect roughly equivalent to that of the half

with the weakest female-bias. For the D. melanogaster–D.

yakuba comparison, for example, the half of the female-

biased genes with the strongest bias have median autosomal

KA/KS = 0.0822 versus X-linked KA/KS = 0.100, P = 0.00015,

which is similar to the pattern for the half with the weakest

bias, KA/KS = 0. 077 (A) versus 0.102 (X), P<1.5�10�6; com-

parisons based on dN/dS and on other species pairs in the

melanogaster clade show similar results (results not shown).

If we use a 2-fold expression difference between males and

females as the cutoff for male- and female-biased expression

instead of the cutoffs provided by the Sebida database (see

Materials and Methods), the faster-X effect for female-biased

genes remains significant (median autosomal KA/KS = 0.0965

vs. X-linked KA/KS = 0.123, P = 3.4�10�5). We also checked

for a quantitative weakening of the faster-X effect with the

level of female-bias among female-biased genes, as might be

expected if these genes are merely enriched for those

experiencing selection in females only, but do not exclusively

consist of such genes. We found no evidence of such an effect

(fitting a linear model with X-linkage and sex-bias as factors to

the log-transformed data shows a significant interaction be-

tween these factors, but in the wrong direction; see supple-

mentary table S5, Supplementary Material online).

How, then, can we explain a faster-X effect that occurs

regardless of sex-specific selection? One possibility is a differ-

ence in mutation rate between X and autosomes; if adaptive

evolution is affected by the mutation rate, as is assumed in

models based on the approach of Charlesworth et al. (1987)

that assumes fixation of unique, new mutations, X-linked loci

could evolve faster if they experience a higher mutation

rate (Kirkpatrick and Hall 2004). Assuming that KS re-

flects the mutation rate, the data are not consistent

with this scenario, as KS is usually somewhat lower, not

higher, for X-linked loci (supplementary table S1,
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Supplementary Material online). Furthermore, the faster-X

effect does not appear to be an artifact of lower KS for the

X chromosome in the melanogaster clade, as the higher KA/KS

for X-linked than for autosomal loci appears to be largely due

to their higher KA (supplementary table S1, Supplementary

Material online and fig. 2).

Another possible cause of the faster-X effect is a difference

in the population effective recombination rate between X
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FIG. 2.—Notched boxplots of KA (upper panel), KS (middle panel), and KA/KS (lower panel) for six pairs of species analyzed and the three categories of

genes (AA, XX, and AX). The boundary of the box closest to zero indicates the 25th percentile and that farthest from zero the 75th percentile. The whiskers

indicate 1.5 times the interquartile range. A line within a box marks the median and the notches represent 95% CIs for the medians. A red point marks the

mean and the red lines the 95% CIs for the mean (which are usually too narrow to be visible). Outliers not shown. Stars above the boxplot indicate statistical

significance levels (***P< 0.001, **P< 0.01, *P< 0.05, and ns, not significant). Stars above all three boxplots for a species pair indicate significant

heterogeneity among chromosome types (determined through a Kruskal–Wallis test). For species with heterogeneity among chromosome types, the

significance of pairwise comparisons between A–A, A–X, and X–X loci is shown (determined with a Mann–Whitney U test).

Faster-X Effects in Drosophila GBE

Genome Biol. Evol. 6(10):2968–2982. doi:10.1093/gbe/evu229 Advance Access publication October 15, 2014 2973

 at E
dinburgh U

niversity on D
ecem

ber 2, 2014
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu229/-/DC1
e
since 
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu229/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu229/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu229/-/DC1
http://gbe.oxfordjournals.org/


chromosomes and autosomes: In Drosophila, the lack of re-

combination in males implies a higher rate of recombination

for X-linked genes than for autosomes, for a given rate of

recombination in females, due to the fact that an X chromo-

some spends only one-third of its time in males, whereas an

autosome spends half of its time in males (Langley et al. 1988;

Charlesworth 2012). Thus, an adaptive faster-X effect might

occur due to this higher effective recombination rate, which

may alleviate the effects of Hill–Robertson interference among

sites subject to selection, and thus yield a higher rate of fixa-

tion of adaptive alleles at X-linked loci (Connallon 2007). We

tested for this by looking at regions of the genome for which

X-linked and autosomal loci have roughly equivalent effective

recombination rates as far as population genetic processes are

concerned, following the procedure of Campos et al. (2013).

We again find a faster-X effect for these genes, suggesting

that it is not a simple consequence of the high X chromosome

recombination rate (grouping genes by X- or autosomal
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FIG. 3.—Notched boxplots of KA/KS for the six pairs of species, the three categories of genes, and the three levels of sex bias analyzed. Boxplots, means,

and statistical significance levels are as in figure 2.
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linkage in the melanogaster group, KA/KS comparisons give

P<1.68� 10�6 for all three species pairs; for female-biased

genes, P< 8.09�10�7; for dN/dS comparisons, P<0.030).

A second possibility is that the faster-X effect is not due to

adaptive evolution, but is instead caused by the fixation of

slightly deleterious mutations by genetic drift. This could

occur if the X experiences an even lower effective population

size relative to A than the “null” value of 75% expected with

a 1:1 adult sex ratio and equal variances in reproductive suc-

cess in the two sexes (Mank, Vicoso, et al. 2010). However,

current East African populations of D. melanogaster, which

inhabit the putatively ancestral range of this species, have an

overall Ne for the X that is similar to that for the autosomes

(Andolfatto 2001; Singh et al. 2007; Campos et al. 2013). It is

possible that this does not reflect the long-term situation, but

the fact that codon usage is generally higher on the X than A

in several species of Drosophila is inconsistent with a lower

than expected X/A ratio of Ne (Singh et al. 2005, 2008). In

addition, if there were a faster rate of fixation of deleterious

mutations on the X relative to A, we would expect the effect

to be most extreme for genes in low recombination regions,

due to the greater intensity of Hill–Robertson interference ef-

fects in these regions (Campos et al. 2014).

Division of genes into low, medium, and high recombina-

tion categories, and by sex-biased expression category, shows

that this is not the case. Instead, the faster-X effect appears to

be stronger for the high and medium recombination rate re-

gions than for the low recombination rate regions, as would

be expected under adaptive evolution (fig. 4). The partitioning

by recombination rate also shows that unbiased, female-

biased, and male-biased genes all have similar X:A ratios of

KA/KS. Further, this effect of recombination suggests that the

faster-X effect we observe is not an artifact of lower quality

sequence for the X chromosome (and thus a higher contribu-

tion to KA/KS from sequencing errors), as might occur due to

lower coverage when males (or a mixture of males and

females) are sequenced. Finally, estimates of the extent of

adaptive evolution of nonsynonymous mutations from com-

binations of polymorphism and divergence data suggest very

strongly that the faster-X effect in the melanogaster clade is

due to positive selection (Langley et al. 2012; Mackay et al.

2012; Campos et al. 2014). Campos et al. (2014) also found

no evidence for adaptive evolution of nonsynonymous muta-

tions in the very low recombination regions of autosomes, in

contrast to significant adaptive evolution in the low recombi-

nation X chromosome regions.

Faster-X Evolution in the pseudoobscura Clade

In the pseudoobscura clade, on the other hand, different pair-

wise comparisons produced contrasting results (fig. 2 and sup-

plementary fig. S1 and tables S1 and S2, Supplementary

Material online). The D. pseudoobscura–D. persimilis pair, as

was seen previously (Grath and Parsch 2012), shows evidence

of faster-X evolution, with higher KA/KS for X-linked genes

(pooling A–X genes with the X–X genes, median X-linked

KA/KS = 0.144 vs. median autosomal KA/KS = 0.111, P = 3.87;

for KA the medians were X-linked = 0.00385 vs. autoso-

mal = 0.00300, P = 1.21�10�13). This elevation was seen

for both the ancestral X chromosome (XL) and for the derived

XR chromosome; furthermore, the median KA/KS for XR

(0.131) was substantially higher than that for the equivalent

AX comparisons in the melanogaster clade. It should be noted,

however, that the proportion of filtered genes for this species

pair (see Materials and Methods) was 2 orders of magnitude

higher than for the rest of the clade (14.2% vs. <0.5%),

mainly due to genes with low synonymous divergence

(KS<0.01).

In contrast, the other pairwise comparisons

D. pseudoobscura–D. miranda, D. pseudoobscura–D. lowei,

and D. pseudoobscura–D. affinis showed no evidence of

faster-X evolution. There was no significant difference for

nonsynonymous divergence between AA and XX genes,

whereas AX genes showed significantly lower values than

AA and XX genes. Synonymous divergence was significantly

lower for X-linked genes (XX and AX) for the comparisons of

D. pseudoobscura with D. miranda, D. lowei, and D. affinis. In

the case of D. miranda we ignored the fact that the Muller

element C has become a neo-X chromosome since its split

with D. pseudoobscura (Ashburner et al. 2005), because these

loci were autosomal for at least half of the divergence time for

this species pair, and faster evolution of the loci on the neo-X

Table 1

Spearman Correlation Coefficients (�) between Gene Expression Bias (the Ratio of Male to Female Mean Expression Levels) and KA/KS

All Male Unbiased Female

Dmel–Dsec 0.098 *** 0.181 *** �0.010 ns �0.034 *

Dmel–Dyak 0.146 *** 0.269 *** �0.020 ns �0.039 *

Dpse–Dper 0.147 *** 0.076 ** 0.017 ns 0.036 ns

Dpse–Dmir 0.187 *** 0.167 *** �0.010 ns �0.033 ns

Dpse–Dlow 0.179 *** 0.109 ** 0.013 ns 0.026 ns

Dpse–Daff 0.226 *** 0.229 *** 0.019 ns 0.026 ns

NOTE.—Dmel, Drosophila melanogaster; Dsec, Drosophila sechellia; Dyak, Drosophila yakuba; Dpse, Drosophila pseudoobscura; Dper, Drosophila persimilis; Dmir,
Drosophila miranda; Dlow, Drosophila lowei; Daff, Drosophila affinis; *** P < 0.001, ** P < 0.01, * P < 0.05, and ns, not significant.
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may reflect a short-term response to their new genomic

environment rather than the faster-X effect as usually under-

stood (Bachtrog et al. 2009). Treating these loci as autosomal

is thus conservative. Faster-X evolution of this chromosome

may have contributed to the higher KA/KS that is seen for the

autosomes in the D. pseudoobscura–D. miranda comparison

(supplementary table S1, Supplementary Material online) rel-

ative to the other comparisons, especially as there is evidence

for a higher rate of adaptive protein sequence evolution on

this chromosome in the miranda lineage (Bachtrog et al.

2009).

Comparisons of Rates of Evolution Using a Phylogenetic
Approach

We also used a maximum-likelihood-based approach, which

allows estimation of o= dN/dS along different branches of the

phylogenetic tree connecting all the species (see Materials and

Methods). This allows us to compare rates of nonsynonymous

evolution at the same loci in an X-linked and in an autosomal

context, controlling for locus-specific rates of evolution, for

the subset of the data for which we have gene sequences

for all species. As expected, there appear to be locus-specific

rates of evolution, with a strong correlation between rates of

evolution in the two clades (rS = 0.562, P< 2.2�10�16).

There is also an overall faster-X effect (median autosomal

o= 0.0587, median X-linked o= 0.0673, Wilcoxon rank

sum test with continuity correction P = 0.000029). Overall,

therefore, this analysis confirms the conclusions based on

the pairwise species comparisons.

Polymorphism and Divergence Analyses

We have attempted to use polymorphism and divergence

data to distinguish the contributions of adaptive and slightly

deleterious mutations to nonsynonymous divergence in the

pseudoobscura clade (Fay et al. 2002). We collected polymor-

phism data from a population of D. pseudoobscura, focusing

on genes with high rates of nonsynonymous sequence

evolution, as these are likely to show either the most adaptive

evolution or the highest number of fixations due to slightly

deleterious mutations (to avoid confounding our results, we

chose these genes based on their rates of evolution in the

melanogaster clade, not in the pseudoobscura clade), without

reference to their patterns of sex-biased gene expression

(see Materials and Methods). As a control, we also selected
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FIG. 4.—Mean and 95% bootstrap confidence intervals from 1,000 bootstraps for KA/KS for the three pairs of melanogaster group species, divided

according to sex bias and recombination rate category. Recombination rates are based on recombination maps for D. melanogaster (Fiston-Lavier et al.

2010), with rates for X-linked loci adjusted by 4/3 for to correct for the lack of recombination in males. The set of genes is restricted to those in the range

where recombination rates for the X chromosomes and autosomes overlap, and divided into bins corresponding to low ([1.00–1.4 cM/MB)), medium ([1.4–

1.75)), and high ([1.75–2.1]) recombination rate regions.
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a set of fast-evolving genes with female-biased expression.

We then compared autosomal and XR genes in order to de-

termine whether the latter showed evidence of faster-X

effects.

Table 2 shows summary divergence and polymorphism sta-

tistics for the genes that we studied, using divergence from

D. affinis for the KA and KS estimates (see supplementary table

S6, Supplementary Material online, for results for individual

genes). As might be expected, mean KA and KA/KS for the fast-

evolving genes were high when compared with those for a

D. pseudoobscura polymorphism data set of slow-evolving

genes, where the mean KA values were 1.5% for both X

and A, and the ratios of mean KA to mean KS were 5% and

6%, respectively (Haddrill et al. 2010). In this data set, how-

ever, mean KA and the ratio of mean KA to mean KS were

much higher for the autosomes than for the XR genes in the

unbiased set of genes. This was also observed in the D. mel-

anogaster clade data set, indicating that gene-specific selec-

tive constraints drive this pattern (for further evidence on this

point, see the Discussion). The change from an autosomal

context to an X-linked context has not reversed or decreased

this difference, as we would expect on the hypothesis of

faster-X evolution, consistent with the lack of evidence for

faster-X effects described above.

To estimate the fraction of nonsynonymous differences be-

tween D. pseudoobscura and D. affinis or D. lowei that were

caused by positive selection (a), we used both the

MacDonald–Kreitman test approach implemented in Welch

(2006), and the DFE-a method of Eyre-Walker and Keightley

(2009) (table 3). As a basis for comparison, we also applied

these methods to polymorphism data on the Rwandan pop-

ulation of D. melanogaster from the DPGP (Pool et al. 2012)

with D. yakuba as the outgroup, following the methods of

Campos et al. (2014).

The analyses using the method of Welch (2006) showed no

evidence for a faster rate of adaptive amino acid fixations for

the D. pseudoobscura–D. affinis or D. lowei comparisons on

XR compared with the autosomes, with statistically significant

a values for the autosomes for the fast-evolving genes in both

comparisons, but not for XR. Curiously, female-biased genes

show significant evidence for positive selection in the compar-

ison with D. lowei, with an a value very similar to that for the

autosomes. The results for the same set of genes in D. mela-

nogaster suggest that the fast-evolving genes that are

Table 2

Summary of Polymorphism and Divergence Statistics

nA (%) nS (%) nA/nS (%) KA (%) KS (%) KA/KS (%) Tajima’s D

(Nonsynonymous)

Tajima’s D

(Synonymous)

Unbiased

XR (n = 54) 0.136 1.52 8.88 2.06 22.4 9.18 �0.763 �0.799

(0.0264) (0.158) (1.96) (0.315) (1.33) (1.46) (0.123) (0.183)

A (n = 31) 0.356 2.16 16.5 6.23 28.8 21.6 �0.966 �0.881

(0.0606) (0.267) (3.48) (0.815) (3.32) (2.95) (0.120) (0.106)

Female-biased

X (n = 8) 0.359 1.82 19.8 8.42 27.4 30.8 �0.937 �1.03

(0.220) (0.663) (23.1) (2.24) (8.42) (12.5) (0.269) (0.268)

A (n = 17) 0.197 1.17 16.8 7.55 31.9 26.4 �1.41 �1.07

(0.0552) (0.262) (6.06) (1.32) (0.755) (6.96) (0.0612) (0.117)

NOTE.—Standard errors are in parentheses; these were calculated directly from the individual gene values, except for the ratios �A/�S and KA/KS, which were estimated
using the delta method (Bulmer 1980). Divergence is measured from D. affinis.

Table 3

Estimates of a and oa for the X-Linked and Autosomal Loci Drosophila pseudoobscura and Drosophila melanogaster Polymorphism Data Sets,

Using the DFE-a Method

Group Sites Chromosome a ua

melanogaster 0 and 4-fold X 0.733 (0.536, 0.833) 0.080 (0.050, 0.106)

Synonymous and nonsynonymous X 0.721 (0.539, 0.824) 0.079 (0.052, 0.103)

0 and 4-fold Autosomal 0.417 (0.049, 0.677) 0.099 (0.011, 0.167)

Synonymous and nonsynonymous Autosomal 0.414 (0.086, 0.694) 0.094 (0.020, 0.169)

pseudo obscura 0 and 4-fold XR 0.390 (0.142, 0.731) 0.051 (0.014, 0.104)

Synonymous and nonsynonymous XR 0.328 (0.131, 0.680) 0.036 (0.012, 0.081)

0 and 4-fold Autosomal 0.668 (0.188, 0.880) 0.142 (0.035, 0.238)

Synonymous and nonsynonymous Autosomal 0.624 (0.289, 0.866) 0.125 (0.051, 0.201)
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autosomal in the pseudoobscura clade have a lower a value

than the genes that are on XR in this clade, but the estimates

are too noisy to be interpreted with confidence. The female-

biased genes give results that are broadly similar to those for

the pseudoobscura clade.

Estimating a by the DFE-a method gives slightly different

results for the D. pseudoobscura clade, but in the same direc-

tion as those obtained by the Welch (2006) method. XR-linked

genes show consistently less adaptive evolution than autoso-

mal genes in the unbiased gene expression data set. The oa

estimate gives the rate of adaptive nonsynonymous substitu-

tions relative to synonymous substitutions (Gossmann et al.

2010): These estimates are close to 0 for unbiased XR-linked

genes and around 15% for the unbiased autosomal genes

(table 3).

Discussion

The Existence and Causes of Faster-X Effects

In this study, we have evidence for faster-X evolution at non-

synonymous sites in the melanogaster clade, in agreement

with findings from previous studies (Grath and Parsch 2012;

Hu et al. 2013). Evidence that the faster-X signal reflects a

higher rate of fixation of advantageous mutations on the X

chromosome rather than of slightly deleterious mutations has

come from analyses of genome-wide polymorphism data and

between-species divergence estimates (Mackay et al. 2012;

Campos et al. 2014; this study). Surprisingly, however, we

find a faster-X effect in the melanogaster clade that is as

strong for female-biased genes as for other genes, whereas

the standard theory predicts a lack of a faster-X effect for

genes with female-specific fitness effects (Charlesworth

et al. 1987). Some of this may be due to misclassification of

sex-bias genes: Female-biased genes can be difficult to identify

(Assis et al. 2012), and imperfect dosage compensation may

skew X-linked genes toward female-biased expression regard-

less of their sex-specific fitness effects (Meiklejohn and

Presgraves 2012).

Further, genes that are female-biased in expression may

not experience selection exclusively in females. Many are ex-

pressed in both sexes at some point in development (Perry

et al. 2014), and many are expressed in somatic tissues present

in both males and females (Meisel 2011). Studies of deleteri-

ous mutations indicate that the effects of mutations in sex-

biased genes are often not sex-limited (Connallon and Clark

2011), and our criteria for female-biased expression do not

preclude substantial expression in males. Furthermore, in spite

of the apparent general enrichment of female-biased genes

on the X chromosome (Vicoso and Charlesworth 2006),

X-linked mutations may have particularly strong effects on

males (Mallet et al. 2011).

It is likely that the surprisingly robust faster-X effect seen for

female-biased genes is partly due their selective effects in

males. One way in which an association with female-bias

and faster-X could arise is these genes have a prior history

of selection to minimize negative fitness effects on males,

where they are still expressed. For genes with a pattern of

sexually antagonistic fitness effects, nonsynonymous muta-

tions that reduce the functionality of the protein might be

beneficial to males but harmful to females. If this reduction

is partially recessive, as is plausible, then its beneficial effect in

hemizygous males could outweigh the deleterious effects on

females for mutations on the X chromosome, but not the

autosomes, leading to a faster-X effect (see fig. 6 of Vicoso

and Charlesworth 2009). Consistent with this idea, the faster-

X effect found for gene expression divergence (Meisel et al.

2012a; Kayserili et al. 2012), while generally found for female-

biased genes, is not found for genes primarily expressed in

female reproductive tissues, though this may be partially due

to a lack of power (Meisel et al. 2012a). This effect might be

particularly strong for low recombination regions, where the

female-biased genes, unlike other genes, still show faster-X

effects (fig. 4 of Campos et al. 2014). In these regions, the

effective size of the X appears to be greater than that of the

autosomes, probably because of smaller effects of back-

ground selection (Campos et al. 2014); other things being

equal, a higher X:A ratio of Ne favors adaptive faster-X effects

(Vicoso and Charlesworth 2009). In addition, if the female

faster-X effect is driven by mutations that reduce function, it

may be less mutation limited than other kinds of faster-X evo-

lution, as these mutations are likely to be more common than

other kinds of beneficial mutations. When the supply of ben-

eficial mutations is abundant, a reduced effective population

size due to low recombination rates may have little impact on

the rate of adaptive evolution (Maynard Smith 1968; Orr

2000).

Differences among Different Species Comparisons

The results for the pseudoobscura clade are substantially dif-

ferent; we found no convincing evidence for a faster-X effect,

with the exception of the D. pseudoobscura–D. persimilis

comparison (see also Grath and Parsch 2012). One possible

explanation for these conflicting results is there are fewer

genes analyzed for D. lowei and D. affinis than for the other

species (supplementary table S1, Supplementary Material

online), reducing our power to detect a faster-X effect. As

the numbers of genes involved are still very large and the

confidence intervals for these species are nearly as narrow

as in the other cases, however, this factor does not seem

likely to be important. Furthermore, the numbers of genes

analyzed for D. miranda are comparable to those of the

other species, yet this species also yielded a negative result.

It therefore seems likely that the contrast between the mela-

nogaster clade comparisons and most of the pseudoobscura

clade comparisons is a real one. This result is also consistent

with the lack of evidence for a higher a value for the XR genes,
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compared with the autosomal genes, in the polymorphism-

divergence study (table 3).

These results raise several questions. The first is why there is

no faster-X effect in most of the pseudoobscura clade com-

parisons, in contrast to the melanogaster clade. The answer is

unclear. One possibility is a difference in the X/A ratio of ef-

fective population sizes (Ne) between the two clades. As dis-

cussed by Charlesworth (2012), synonymous diversity values

suggest that this ratio is close to 1 for the chromosomes as a

whole in D. melanogaster, whereas in D. pseudoobscura and

D. miranda it is not significantly different from the null value of

0.75 expected with an equal sex ratio, as would occur if there

are no sex differences in the variance in reproductive success.

Deviations from an X/A Ne of 0.75 in the direction of higher

X-linked Ne as seen in D. melanogaster are expected to result

in faster-X effects for a broader range of dominance param-

eters (Vicoso and Charlesworth 2009; Connallon et al. 2012).

The contrasting X/A ratios are consistent with the consid-

erably higher rates of recombination per base pair in the

D. pseudoobscura group (McGaugh et al. 2012), as argued

in Charlesworth (2012). In D. melanogaster, the lack of re-

combination in males reduces the effective population rate of

recombination on the autosomes relative to the X, so that they

suffer more from the reduction in the rate of adaptive evolu-

tion due to Hill–Robertson effects. This possibility is supported

by the fact that the analysis of Campos et al. (2014) shows

that the a andoa values for the autosomes in D. melanogaster

are both positively correlated with the rate of recombination

experienced by a gene, and approach those for the X chro-

mosome in regions with very high rates of recombination (see

their table 4). In D. pseudoobscura, in contrast, the overall

higher rate of recombination on both X chromosomes and

autosomes is likely to mitigate this X/A difference in the inten-

sity of interference.

There is, however, a problem with postulating that differ-

ences in X/A ratios of Ne as an explanation for the faster-X

effect differences between the clades. It is not clear that the

situation in D. melanogaster is representative of the melano-

gaster group: In Drosophila simulans, the current evidence

suggests that the X/A ratio of silent site diversity in East

African and Madagascan populations is substantially less

than 0.75 (Obbard D, Campos J, personal communication),

perhaps reflecting the fact that D. simulans also has substan-

tially higher rates of recombination than D. melanogaster

(Sturtevant 1929; True et al. 1996). Nonetheless, the rate of

recombination measured in D. melanogaster appears to be

correlated with the X/A ratio of KA/KS even in the

D. sechellia–D. yakuba comparison (fig. 4). If fine-scaled ge-

netic maps, together with genome-wide surveys of polymor-

phism levels, become available for all the species in the

melanogaster clade, it may be possible to rigorously test for

the role of recombination. In the absence of such information,

we cannot exclude the possibility that the difference between

the two clades reflects some biological differences between

them that we have not taken into account. Given the fact that

the faster-X effect is observed even with female-biased genes,

it seems unlikely that this is related to potential differences in

the intensity of sexual selection. A difference between the two

groups in the relative contribution of standing variants versus

new mutations to adaptation is a potential cause: No faster-X

effect is expected when adaptation uses standing variation, at

least with an X/A ratio for Ne of 0.75, as appears to be roughly

true for D. pseudoobscura (Charlesworth et al. 1987; Orr and

Betancourt 2001; Connallon et al. 2012).

The next question is whether the faster-X effect for the

D. pseudoobscura–D. persimilis comparison is genuine, or is

an artifact of their close phylogenetic relatedness. It is well-

known that ancestral shared polymorphism may be misin-

ferred as divergence when closely related species are studied,

and that this can cause biases in inferences concerning the

action of selection. Grath and Parsch (2012) were aware of

this concern, and stated that their divergence estimates were

“likely to be inflated by the presence of ancestral polymor-

phism.” Nevertheless, the authors dismissed the possibility

that their inference of a faster-X effect was affected, as they

claimed that such inflation is expected to be a general pattern

across the genome, and would affect synonymous and

nonsynonymous divergence equally.

We have investigated this possibility in more detail, as de-

scribed at length in the supplementary text, Supplementary

Material online. Briefly, we first confirm that ancestral poly-

morphism is likely to be a major component of neutral diver-

gence between these species, by showing that the divergence

times estimated from sequence data are sufficiently small

(shorter than 4Ne generations [Charlesworth et al. 2005,

eqs. 14 and 15]). To show this, we use KS, corrected for

within species diversity (Haddrill et al. 2010), as an estimate

of 2u times the divergence time, and pS, an estimate of 4Neu.

The ratio of these two quantities thus constitutes a rough

estimate of the time separating the species in units of 2Ne

generations. The divergence time estimates obtained for X-

linked and autosomal loci are 0.88 and 1.80, respectively, well

within the range for which ancestral polymorphisms are ex-

pected to have a large contribution to neutral fixations.

Next, we ask whether the higher KA values for the X-linked

versus autosomal loci can be explained solely by the fixation by

genetic drift of ancestral polymorphisms, which might occur

more rapidly on the X chromosome than the autosomes,

given that its Ne is smaller. In general, the contribution of

ancestral polymorphisms to the expected neutral divergence

between two independently evolving lineages is equal to the

pairwise neutral diversity in the ancestor, p-anc (Charlesworth

et al. 2005). If we assume that nonsynonymous variants are

neutral, and that the current pA values for D. pseudoobscura

represent the ancestral values (this is likely to be conservative,

given the lower diversity values in D. persimilis, as described in

the supplementary text, Supplementary Material online), we

can estimate the expected contribution to the KA values from

Faster-X Effects in Drosophila GBE
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ancestral polymorphisms. In reality, the assumption of neutral-

ity provides an upper limit, as pA values must include a con-

tribution from deleterious mutations, whose fixation is resisted

by selection and hence do not contribute to KA. Using the

highest estimate of pA in table 2, we obtain a maximum con-

tribution of ancestral polymorphism to KA of 0.00136, only

about 10% of the observed KA value for the X-linked loci (with

values for XL and XR combined). Because ancestral polymor-

phism contributes only a tiny amount to X-linked divergence,

it seems impossible to account for the faster-X effect in these

species by fixations of ancestral polymorphisms. The magni-

tude of this discrepancy is so large that it has a very low prob-

ability of arising by chance: Even when not adjusting for the

contribution of within-species polymorphism to KS, the KA

values adjusted for within-species polymorphism still result in

a significantly higher KA/KS for X-linked loci (mean adjusted KA

to unadjusted KS values for X-linked loci is 0.168, compared

with an autosomal value of 0.121; Mann–Whitney U test,

P = 2�10�13).

This analysis ignores, however, the possible effects of on-

going gene flow between the two species, for which there is

statistical support from the use of the IM algorithm (Hey and

Nielsen 2004). To yield an apparent faster-X effect for non-

synonymous mutations, however, there would have to be a

difference among X and A genes in the extent of introgres-

sion, with lower rates of introgression for X genes, for which

there was no evidence in the (admittedly very limited) data set

analyzed by Hey and Nielsen (2004). Furthermore, the theory

of drift, mutation, and selection in subdivided populations

implies that purifying selection against deleterious mutations

leads to lower divergence among populations connected by

migration than for neutral sites (Charlesworth B and

Charlesworth D 2010, p. 355). If a lower rate of introgression

for X-linked genes were the only factor involved, nonsynon-

ymous sites would be less diverged than the more weakly

selected synonymous sites, which is the opposite of what

we observed.

These arguments seem to leave only the possibility that

these patterns are caused by higher rates of fixation of non-

synonymous mutations on the X chromosome arms in either

D. pseudoobscura or D. persimilis. This could be due either to a

higher mutation rate or to a higher rate of adaptive evolution

on the X. Given that KA/KS is significantly elevated in the pse–

per comparison (even using the estimates of KS that are uncor-

rected for within-species polymorphism), the latter seems to

be the only viable explanation. This then raises the question of

why a faster-X effect is detected for pse–per but not for the

other pseudoobscura clade comparisons.

One possibility is that there is increased accumulation of

species-specific differences in divergent chromosomal ar-

rangements, as these are associated with hybrid sterility

(Noor et al. 2000, 2007; McGaugh and Noor 2012). That is,

because these constitute large blocks of loci that cannot

introgress between species, they are free to accumulate

species-specific adaptations. As roughly a third of each arm

of the X is associated with inversion differences between the

species, X-linked loci may be disproportionately affected. But

analyzing loci in noninverted regions separately shows that the

faster-X effect occurs in these regions as well (median KA/KS

values for A–A = 0.106, A–X = 0.138, and X–X = 0.155,

Kruskal–Wallis test P = 6�10�11 and Mann–Whitney U com-

parisons between A–A and A–X P = 0.0001, between A–A

and X–X, P = 1�10�9). Comparisons between X-linked and

autosomal loci inside and near inversions are also consistent

with a faster-X effect, but nonsignificant, which is probably

due to the smaller number of loci in these regions.

The Relationship between Diversity and Rate of Protein
Sequence Evolution

The estimates of synonymous nucleotide site diversity for our

data set of fast-evolving genes appear to be similar to those

for a data set of more highly conserved genes (Haddrill et al.

2010, table 1), as noted above. In contrast, the mean non-

synonymous site diversity values are substantially lower for the

more highly conserved set (conserved gene set pA = 0.00066

for both A and X vs. fast-evolving genes pA = 0.0036 and

0.0014 for A and X, respectively). This suggests that differ-

ences in levels of selective constraint play a major role in caus-

ing the differences between the two sets of genes, with the

fast-evolving genes being under weaker constraints with re-

spect to purifying selection. This in turn implies that the more

rapid protein sequence evolution of these genes mainly re-

flects weaker purifying selection, not more intense positive

selection, consistent with the fact that the a values in

table 3 are not exceptionally large in comparison to those

from other studies of Drosophila species (Sella et al. 2009;

Campos et al. 2014). Further, despite the large differences

in KA between our set of fast-evolving genes and the set of

conserved genes from Haddrill et al. (2010), pS is barely dif-

ferent between the two data sets. There is also no evidence

for a negative correlation between KA and pS for these genes

(supplementary table S7, Supplementary Material online),

contrary to what was found for fast-evolving genes in

D. melanogaster in a previous study (Haddrill et al. 2011).

This is consistent with the interpretation that the difference

in KA is largely due to relaxed selective constraints on the fast-

evolving genes, so that pS is not being reduced by the localized

effects of selective sweeps in genes as appears to be the case

for fast-evolving genes in D. melanogaster (Andolfatto 2007;

Sella et al. 2009; Jensen and Bachtrog 2010; Haddrill et al.

2011). In addition, pA is significantly positively correlated with

KA (supplementary table S7, Supplementary Material online),

as was also found for the more highly conserved D. pseu-

doobscura set of genes (Haddrill et al. 2011); this is also

hard to reconcile with major effects of selective sweeps on

variability within the genes affected.
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Supplementary Material

Supplementary text, figures S1 and S2, and tables S1–S7 are

available at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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Charlesworth B, Bartolomé C, Noël V. 2005. Estimating the incidence of

ancestral polymorphisms. Genet Res. 86:149–157.

Charlesworth B, Charlesworth D. 2010. Elements of evolutionary genetics.

Greenwood Village (CO): Roberts & Company.

Charlesworth B, Coyne JA, Barton NH. 1987. The relative rates of evolu-

tion of sex chromosomes and autosomes. Am Nat. 130:113–146.

Clark AG, et al. 2007. Evolution of genes and genomes on the Drosophila

phylogeny. Nature 450:203–218.

Comeron JM. 1995. A method for estimating the numbers of synonymous

and nonsynonymous substitutions per site. J Mol Evol. 41:1152–1159.

Comeron JM, Kreitman M, Aguade M. 1999. Natural selection on synon-

ymous sites is correlated with gene length and recombination in

Drosophila. Genetics 151:239–249.

Connallon T. 2007. Adaptive protein evolution of X-linked and autosomal

genes in Drosophila: implications for faster-X hypotheses. Mol Biol

Evol. 24:2566–2572.

Connallon T, Clark AG. 2011. Association between sex-biased gene ex-

pression and mutations with sex-specific phenotypic consequences in

Drosophila. Genome Biol Evol. 3:151–155.

Connallon T, Singh ND, Clark AG. 2012. Impact of genetic architecture on

the relative rates of X versus autosomal adaptive substitution. Mol Biol

Evol. 29:1933–1942.

Counterman BA, Noor MA. 2004. Using comparative genomic data to test

for fast-X evolution. Evolution 58:565–660.

Delcher AL, Phillippy A, Carlton J, Salzberg SL. 2002. Fast algorithms for

large-scale genome alignment and comparison. Nucleic Acids Res. 30:

2478–2483.

Ellegren H. 2009. Genomic evidence for a large-Z effect. Proc Biol Sci. 276:

361–366.

Eyre-Walker A, Keightley PD. 2009. Estimating the rate of adaptive mo-

lecular evolution in the presence of slightly deleterious mutations and

population size change. Mol Biol Evol. 26:2097–2108.

Fay JC, Wyckoff GJ, Wu CI. 2002. Testing the neutral theory of molecular

evolution with genomic data from Drosophila. Nature 415:

1024–1026.

Fiston-Lavier AS, Singh ND, Lipatov M, Petrov DA. 2010. Drosophila mel-

anogaster recombination rate calculator. Gene 463:18–20.

Gnad F, Parsch J. 2006. Sebida: a database for the functional and evolu-

tionary analysis of genes with sex-biased expression. Bioinformatics 22:

2577–2579.

Gossmann TI, et al. 2010. Genome wide analyses reveal little evidence for

adaptive evolution in many plant species. Mol Biol Evol. 27:

1822–1832.

Grath S, Parsch J. 2012. Rate of amino acid substitution is influenced by

the degree and conservation of male-biased transcription over 50 myr

of Drosophila evolution. Genome Biol Evol. 4:346–359.

Haddrill PR, Loewe L, Charlesworth B. 2010. Estimating the parameters of

selection on nonsynonymous mutations in Drosophila pseudoobscura

and D. miranda. Genetics 185:1381–1396.

Haddrill PR, Zeng K, Charlesworth B. 2011. Determinants of synonymous

and nonsynonymous variability in three species of Drosophila. Mol Biol

Evol. 28:1731–1743.

Haldane JBS. 1924. A mathematical theory of natural and artificial selec-

tion. Trans Camb Philos Soc. 23:19–41.

Hey J, Nielsen R. 2004. Multilocus methods for estimating population sizes,

migration rates and divergence time, with applications to the diver-

gence of Drosophila pseudoobscura and D. persimilis. Genetics 167:

747–760.

Hu TT, Eisen MB, Thornton KR, Andolfatto P. 2013. A second-generation

assembly of the Drosophila simulans genome provides new in-

sights into patterns of lineage-specific divergence. Genome Res. 23:

89–98.

Jensen JD, Bachtrog D. 2010. Characterizing recurrent positive selection at

fast-evolving genes in Drosophila miranda and Drosophila pseudoobs-

cura. Genome Biol Evol. 2:371–378.

Jiang ZF, Machado CA. 2009. Evolution of sex-dependent gene expression

in three recently diverged species of Drosophila. Genetics 183:

1175–1185.

Faster-X Effects in Drosophila GBE

Genome Biol. Evol. 6(10):2968–2982. doi:10.1093/gbe/evu229 Advance Access publication October 15, 2014 2981

 at E
dinburgh U

niversity on D
ecem

ber 2, 2014
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu229/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu229/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu229/-/DC1
http://gbe.oxfordjournals.org/lookup/suppl/doi:10.1093/gbe/evu229/-/DC1
http://www.gbe.oxfordjournals.org/
http://www.gbe.oxfordjournals.org/
http://gbe.oxfordjournals.org/


Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment soft-

ware version 7: improvements in performance and usability. Mol Biol

Evol. 30:772–780.

Kayserili MA,Gerrard DT, TomancakP,KalinkaAT.2012.An excess of gene

expression divergence on the X chromosome in Drosophila embryos:

implications for the faster-X hypothesis. PLoS Genet. 8:e1003200.

Khaitovich P, et al. 2005. Parallel patterns of evolution in the genomes and

transcriptomes of humans and chimpanzees. Science 309:1850–1854.

Kirkpatrick M, Hall DW. 2004. Male-biased mutation, sex linkage, and the

rate of adaptive evolution. Evolution 58:437–440.

Kofler R, et al. 2011. PoPoolation: a toolbox for population genetic analysis

of next generation sequencing data from pooled individuals. PLoS One

6:e15925.

Kousathanas A, Halligan DL, Keightley PD. 2014. Faster-X adaptive protein

evolution in house mice. Genetics 196:1131–1143.

Langley CH, et al. 2012. Genomic variation in natural populations of

Drosophila melanogaster. Genetics 192:533–598.

Langley CH, Montgomery E, Hudson R, Kaplan N, Charlesworth B. 1988.

On the role of unequal exchange in the containment of transposable

element copy number. Genet Res. 52:223–235.

Machado CA, Haselkorn TS, Noor MA. 2007. Evaluation of the genomic

extent of effects of fixed inversion differences on intraspecific variation

and interspecific gene flow in Drosophila pseudoobscura and D. per-

similis. Genetics 175:1289–1306.

Mackay TF, et al. 2012. The Drosophila melanogaster genetic reference

panel. Nature 482:173–178.

Mallet MA, Bouchard JM, Kimber CM, Chippindale AK. 2011.

Experimental mutation-accumulation on the X chromosome of

Drosophila melanogaster reveals stronger selection on males than fe-

males. BMC Evol Biol. 11:156.

Mank JE, Axelsson E, Ellegren H. 2007. Fast-X on the Z: rapid evolution of

sex-linked genes in birds. Genome Res. 17:618–624.

Mank JE, Nam K, Ellegren H. 2010. Faster-Z evolution is predominantly due

to genetic drift. Mol Biol Evol. 27:661–670.

Mank JE, Vicoso B, Berlin S, Charlesworth B. 2010. Effective population

size and the faster-X effect: empirical results and their interpretation.

Evolution 64:663–674.

Maynard Smith J. 1968. Evolution in sexual and asexual populations. Am

Nat 102:469–473.

McGaugh SE, et al. 2012. Recombination modulates how selection affects

linked sites in Drosophila. PLoS Biol. 10:e1001422.

McGaugh SE, Noor MAF. 2012. Genomic impacts of chromosomal inver-

sions in parapatric Drosophila species. Philos Trans R Soc Lond B Biol

Sci. 367:422–429.

Meiklejohn CD, Presgraves DC. 2012. Little evidence for demasculinization

of the Drosophila X chromosome among genes expressed in the male

germline. Genome Biol Evol. 4:1007–1016.

Meisel RP. 2011. Towards a more nuanced understanding of the relation-

ship between sex-biased gene expression and rates of protein-coding

sequence evolution. Mol Biol Evol. 28:1893–1900.

Meisel RP, Connallon T. 2013. The faster-X effect: integrating theory and

data. Trends Genet. 29:537–544.

Meisel RP, Malone JH, Clark AG. 2012a. Faster-X evolution of gene ex-

pression in Drosophila. PLoS Genet. 8:e1003013.

Meisel RP, Malone JH, Clark AG. 2012b. Disentangling the relationship

between sex-biased gene expression and X-linkage. Genome Res. 22:

1255–1265.

Muller HJ. 1940. Bearing of the Drosophila work on systematics. In:

Julian Huxley, editor. The new systematics, Oxford (United

Kingdom): Oxford University Press. p. 185–268.

Noor MA, Garfield DA, Schaeffer SW, Machado CA. 2007. Divergence

between the Drosophila pseudoobscura and D. persimilis genome se-

quences in relation to chromosomal inversions. Genetics 177:

1417–1428.

Noor MA, Johnson NA, Hey J. 2000. Gene flow between Drosophila

pseudoobscura and D. persimilis. Evolution 54:2174–2175; discussion

2176-2177.

Orr HA. 2000. The rate of adaptation in asexuals. Genetics 155:961–968.

Orr HA, Betancourt AJ. 2001. Haldane’s sieve and adaptation from the

standing genetic variation. Genetics 157:875–884.

Palmieri N, Kosiol C, Schlötterer C. 2014. The life cycle of Drosophila

orphan genes. eLife 3:e01311.

Perry JC, Harrison PW, Mank JE. 2014. The ontogeny and evolution of sex-

biased gene expression in Drosophila melanogaster. Mol Biol Evol. 31:

1206–1219.

Pool JE, et al. 2012. Population genomics of sub-Saharan Drosophila mel-

anogaster: African diversity and non-African admixture. PLoS Genet. 8:

e1003080.

Presgraves DC. 2008. Sex chromosomes and speciation in Drosophila.

Trends Genet. 24:336–343.

Schaeffer SW, et al. 2008. Polytene chromosomal maps of 11 Drosophila

species: the order of genomic scaffolds inferred from genetic and

physical maps. Genetics 179:1601–1655.

Sella G, Petrov DA, Przeworski M, Andolfatto P. 2009. Pervasive natural

selection in the Drosophila genome? PLoS Genet. 5:e1000495.

Singh ND, Davis JC, Petrov DA. 2005. X-linked genes evolve higher codon

bias in Drosophila and Caenorhabditis. Genetics 171:145–155.

Singh ND, Larracuente AM, Clark AG. 2008. Contrasting the efficacy of

selection on the X and autosomes in Drosophila. Mol Biol Evol. 25:

454–467.

Singh ND, Macpherson JM, Jensen JD, Petrov DA. 2007. Similar levels of

X-linked and autosomal nucleotide variation in African and non-African

populations of Drosophila melanogaster. BMC Evol Biol. 7:202.

Slater GSC, Birney E. 2005. Automated generation of heuristics for bio-

logical sequence comparison. BMC Bioinformatics 6:31.

Smit AFA, Hubley R, Green P. 1996. RepeatMasker Open-3.0 [Internet].

[cited 2014 Oct 22]. Available from: http://www.repeatmasker.org.

Smith NG, Eyre-Walker A. 2002. Adaptive protein evolution in Drosophila.

Nature 415:1022–1024.

Sturgill D, Zhang Y, Parisi M, Oliver B. 2007. Demasculinization of X chro-

mosomes in the Drosophila genus. Nature 450:238–241.

Sturtevant AH. 1929. The genetics of Drosophila simulans. Carnegie Inst

Washington Publ. 399:1–62.

Thornton K, Bachtrog D, Andolfatto P. 2006. X chromosomes and auto-

somes evolve at similar rates in Drosophila: no evidence for faster-X

protein evolution. Genome Res. 16:498–504.

Torgerson DG, Singh RS. 2006. Enhanced adaptive evolution of sperm-

expressed genes on the mammalian X chromosome. Heredity (Edinb)

96:39–44.

True JR, Mercer JM, Laurie CC. 1996. Differences in crossover frequency

and distribution among three sibling species of Drosophila. Genetics

142:507–523.

Vicoso B, Charlesworth B. 2006. Evolution on the X chromosome: unusual

patterns and processes. Nat Rev Genet. 7:645–653.

Vicoso B, Charlesworth B. 2009. Effective population size and the faster-X

effect: an extended model. Evolution 63:2413–2426.

Vicoso B, Haddrill PR, Charlesworth B. 2008. A multispecies approach for

comparing sequence evolution of X-linked and autosomal sites in

Drosophila. Genet Res. 90:421–431.

Welch JJ. 2006. Estimating the genomewide rate of adaptive protein evo-

lution in Drosophila. Genetics 173:821–837.

Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. Mol

Biol Evol. 24:1586–1591.

Zhou Q, Bachtrog D. 2012. Sex-specific adaptation drives early sex chro-

mosome evolution in Drosophila. Science 337:341–345.

Associate editor: Judith Mank

Ávila et al. GBE

2982 Genome Biol. Evol. 6(10):2968–2982. doi:10.1093/gbe/evu229 Advance Access publication October 15, 2014

 at E
dinburgh U

niversity on D
ecem

ber 2, 2014
http://gbe.oxfordjournals.org/

D
ow

nloaded from
 

http://www.repeatmasker.org
http://gbe.oxfordjournals.org/

