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FineComb: Measuring Microscopic Latency and
Loss in the Presence of Reordering

Myungjin Lee, Sharon Goldberg, Ramana Rao Kompella, and George Varghese

Abstract—Modern stock trading and cluster applications re-
quire microsecond latencies and almost no losses in data centers.
This paper introduces an algorithm called FineComb that can
obtain fine-grain end-to-end loss and latency measurements
between edge routers in these networks. Such a mechanism
can allow managers to distinguish between latencies and loss
singularities caused by servers and those caused by the network.
Compared to prior work, such as Lossy Difference Aggregator
(LDA), that focused on switch-level latency measurements, the
requirement of end-to-end latency measurements introduces the
challenge of reordering that occurs commonly in IP networks
due to churn. The problem is even more acute in switches across
data center networks that employ multipath routing algorithms
to exploit the inherent path diversity. Without proper care, a loss
estimation algorithm can confound loss and reordering; further,
any attempt to aggregate delay estimates in the presence of
reordering results in severe errors. FineComb deals with these
problems using order-agnostic packet digests and a simple new
idea we call stash recovery. Our evaluation demonstrates that
FineComb is orders of magnitude more accurate than LDA in
loss and delay estimates in the presence of reordering.

Index Terms—Passive measurement, latency, packet loss, re-
ordering, algorithms.

I. INTRODUCTION

Recent trends in data centers have led to requirements for

microsecond latencies. Fundamentally, this is because pro-

grams respond to network messages, not humans. For example,

an automated trading program can buy millions of shares

cheaply with faster access to a low stock price; similarly,

a cluster application can execute 1000s more instructions

if latencies are trimmed by 100 µsecs. Further, all these

applications are deployed in data centers that span a small

geographical area and where links and switches are carefully

chosen to have minimal latencies (e.g., [1]). It is unlikely that

this trend toward low latency networks is going to stop any

time soon; indeed, analysts are already discussing applications

that would require even more stringent latency guarantees in

the order of nanoseconds [2].
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Despite the most careful selection of network components,

there is no easy way for network operators to guarantee

that congestion in switches never causes latencies to increase

beyond acceptable thresholds. For example, in the well-known

“in-cast” problem [3], the effects of barrier-synchronized

workloads overflow switch buffers and lead to packet loss and

high latency. While solutions and workarounds may often exist

for specific problems, operators need to measure latencies on a

continuous basis to detect and fix such problems, for instance,

by re-routing the offending application.

At a minimum, network operators typically need two types

of measurements. First, they need end-to-end 1 measurements

in the network to check if end-to-end latencies and losses

are within satisfactory limits for a given customer that are

often specified in the form of service-level agreements (SLAs).

Second, if a customer experiences bad performance, it is

important to quickly diagnose the root cause of the problem by

obtaining switch-level measurements to localize the offending

switch. While solutions such as LDA [4] have been recently

proposed for measuring switch-level delays, detecting end-to-

end latency spikes with LDA often scales poorly since each

switch needs to be equipped with it. We therefore focus on a

new end-to-end latency measurement solution.

In this paper, we consider passively measuring end-to-end

delays of actual packets that travel between two endpoints.

This approach results in two immediate benefits. First, it does

not interfere with regular traffic. Second, SLA violations apply

to actual packets; so, measuring actual packet latencies will

reflect the SLA violations better than using artificial probes.

Depending on the particular scenario, the two endpoints

between which latency and loss measurements are required

vary. For example, in a market data network [5] (Figure 1(a)),

data feeds from content providers (e.g., stock exchanges) are

often provided to individual brokerages using financial service

providers (FSPs). Here, the FSPs may want to provide a

latency SLA of a few µseconds through their network from

the content provider to the brokerage; hence measurements

between these edges are crucial. In a typical data center net-

work running low-latency applications, clusters of servers are

interconnected with storage servers, tape arrays and other such

infrastructure [6] (Figure 1(b)). In such cases, one could easily

imagine stringent latency requirements between server and

storage cluster, or across two different server rack switches,

within a multi-rooted tree topology (e.g., a fat-tree [7]).

In our end-to-end setting, we need to allow for the presence

1In our context, it means all sub-paths between two measurement endpoints,
not an end-to-end path for a flow.
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Fig. 1. Low end-to-end latency applications.

of packet reordering across all sub-paths between the two

measurement endpoints. While switch vendors typically ensure

that there is no reordering across flows between two interfaces

(otherwise, TCP may not work well), no such guarantee

is provided by an IP network across routers that are not

directly connected. In fact, many commercial data centers

rely on exploiting the path diversity inherently present within

data centers using ECMP (equal cost multipath) where flows

are split across multiple paths. Of course, while ECMP still

ensures packets within a flow are not reordered, reordering

commonly occurs across flows. In addition, churn in the

network (e.g., link failures) can cause temporary routing loops

that may introduce reordering.

Furthermore, while our immediate motivation is end-to-end

reordering that can happen in IP networks, we believe it is

very likely that future switches will allow reordering within

switches for improved load-balancing using techniques like

packet spraying. Standard TCP implementations then interact

poorly with reordering in that they reduce window sizes unduly

by conflating loss and misordering. However, a number of

researchers have been looking at creating reordering-tolerant

TCP such as Multipath-TCP [8], at least for use in data

centers. While these ideas appear radical, packet spraying with

reordering-tolerant TCP at the edges can greatly improve the

utilization and costs of future data center networks. If these

ideas gain currency, as we believe they will, making scalable

latency measurement resilient to reordering will be essential

not just end-to-end, but also within switches.

The state-of-the-art solution LDA [4], which assumes FIFO

packet ordering, will not work well in these environments, as

it can confuse reordered packets with lost ones. To address

this problem, this paper describes an efficient data structure

called FineComb that is robust to reordering, and can be easily

implemented at the edges to spot microscopic delay variations

(in the order of µseconds) and losses (10s per million) with

small amount of state and processing costs. We evaluate

FineComb extensively both analytically, and via simulation on

various delay models and real router traces; our experiments

indicate that compared to LDA, FineComb can achieve 10x

and 200x lower relative errors for latency and loss estimates,

respectively, even under small amounts of reordering.

II. PRELIMINARIES

We describe the basic measurement goals, constraints and

assumptions in our problem setting, and explain a set of

existing solutions that do not work well for our problem.

A. Measurement Goals

Our goal is to measure the aggregate performance across

all sub-paths between two edge routers, say E1 and E2
in Figure 1. We divide time into intervals (a few seconds)

for which we are keen to obtain performance metrics. We

consider three basic measures across all packets: average

latency, variance, and loss rate.

For most of this paper, we assume hardware implementa-

tions to keep up with high line rates; however, we briefly

discuss software implementations. We require that our data

structure scales well in terms of control bandwidth, processing

time, and storage. While storage may possibly be increased in

a software implementation, processing time and control band-

width need to be kept a minimum. Further, as we mentioned

before, the solution should be robust to packet reordering that

may occur in these environments.

B. Assumptions

We make three key assumptions in our work and justify

why they hold well in our setting.

Time synchronization. We assume that the two edge routers

E1 and E2 can be time-synchronized within µseconds, for

example, using GPS clocks that many ISPs have already begun

to deploy. This is a general requirement for any one-way delay

measurement scheme, and in fact is employed by existing edge

monitoring solutions such as Corvil [9].

Packet filtering. Two edge routers (say, E1 and E2) must

precisely identify the set of packets over which the metrics

need to be computed. However, packets that arrive at E1 may

not exit via E2. We assume some simple way to determine

which packets are destined to or from a particular edge router,

for example by prefix matching. One could easily construct a

simple layer-4 packet filter (using IPs and ports) that clearly

specifies the set of packets that travel from E1 to E2.

No header changes. Measuring latencies would be easy,

for instance, if each packet could carry a timestamp that

E1 embeds with its arrival time that would be subsequently

associated with the packet’s arrival time at E2. However, IP

packets have no timestamp field and TCP timestamp options

are restricted to carrying true end-to-end delays where ends

are the actual sockets running on the host machines. Adding

a new field is unlikely to happen as it would require intrusive

changes to many components in the data path of switches.

C. Issues with earlier solutions

In this part, we illustrate the challenges of fine-grain mea-

surements in a setting with persistent reordering by describing

why most relevant earlier solutions do not work well while

placing a primary emphasis on the state-of-the-art solution

LDA. For providing richer background information, we also

briefly summarize other prior solutions in network latency

measurements at the end of this section.



3

1 2 3 B 4 5 6 7 B 8 9 10

1 2 4 B 3 5 6 8 B 7 9 10

Pre-Start Pre-End Post-EndPost-Start

Time

Sender

Receiver

Interval u-1 Interval u Interval u+1

Current Interval

Fig. 2. Four types of reordering that can occur.

Active probes: Injecting active probes (e.g., using ping and

other tools such as [10]–[13]) is insufficient due to the require-

ment for a large number of active probes to measure microsec-

ond latencies (indicated by prior work [4]), interference with

regular data packets, and inability to cover all paths between

the pairs of edge routers. See §V for a quantitative argument.

Storing timestamps locally: An alternative is to allow the

two edge monitors to store packet digests and timestamps

locally, and only to exchange them at the end of a measurement

interval. However, the storage and communication overhead

is extremely high. One could maintain timestamps only for a

small sample of packets; but, as we show in §V-C, this reduces

bandwidth at the cost of accuracy. In a few prior efforts (e.g.,

[14], [15]), researchers proposed simple router extensions for

latency measurements that are similar to this local timestamps

idea; and hence they share similar problems.

LDA: LDA suggests a way of greatly increasing the number

of latency samples using aggregation. LDA assumes a stream

of packets going from a sender Snd (e.g., E1 in Figure 1)

to a receiver Rcv (e.g., E2). LDA starts with the following

simple idea: Suppose Snd and Rcv agree upon an interval of T
packets in the stream over which they want to measure delay.

To do this, Snd marks off intervals by sending a special ‘sync’

control message each time it sends T packets to Rcv. (Note

that Snd could choose to mark the intervals based on time

as well.) All packets ‘bookended’ by a pair of sync messages

belong in a single interval. For convenience, we shall refer to

the first sync message as an interval-start message, and the

next sync message as an interval-end message hereafter.

Snd and Rcv could then compute the average delay by each

locally maintaining a sum of packet timestamps (a timestamp

accumulator) and a count of the number of packets in the

interval (a counter) which together constitute a bucket. The

average delay is then the difference between the timestamp

accumulator at Snd and timestamp accumulator at Rcv,

divided by the number of packets in the counter. However,

packet losses between Snd and Rcv can have the bucket

updated by different sets of packets, thus making latency

estimation impossible. To overcome this issue, LDA keeps an

array of M buckets and uses packet sampling to maximize

useful delay samples. A crucial assumption that makes LDA

work is that the synchronization messages and packets are

delivered in order at the receiver so that the sender and receiver

compute delay estimates over the same set of packets; this

FIFO assumption makes LDA unsuitable for our setting.

Specifically, Figure 2 shows packets arriving out of order

when traversing the network. The ordering of packets that

are both transmitted and received within the interval ‘book-

ends’ does not affect LDA, since the timestamp accumulators

and counters are order-agnostic (addition is commutative).

However, there can be the following type of problematic

reordering, namely packets that start out in one interval at

Snd, drift into an another interval at Rcv. This situation is

problematic since the timestamp accumulators at Snd and Rcv
may be computed based on two different sets of packets, and

this difference can affect the delay estimates significantly.

Why does Per-Path LDA not work ? The obvious fix to

LDA is to extend it to operate on a per-path basis. All we need

then is to average per-path latencies of all the paths between

the sender and receiver. Unfortunately, neither the senders nor

receivers know which path a given flow will take and so,

separation by path is difficult. While we can exploit the fact

that ECMP does not reorder TCP flows, LDA for potentially

millions of separate TCP flows would pose a scaling problem.

One may sample a sufficiently large number of flows to ensure

(with high probability) that at least one flow is sampled per

path. However, the sampled flows may have too few packets

and thus the number of LDA samples can be too small to

provide sufficient accuracy. Increasing the number of samples

will require either more memory (by sampling more flows) or

assuming very skewed distribution of flows (and mechanisms

to capture such flows).

In order to address these shortcomings, we propose a new

data structure called FineComb, that only keeps storage per

destination switch and yet has very high sample efficiency.

Other solutions: Packet Doppler [16] is a passive measure-

ment solution that estimates a delay distribution by observing

how packet arrival distributions change as packets traverse

from one router to the other. However, its granularity is in

the order of milliseconds, not microseconds. In [17], Lee et

al. describe a per-flow switch-level latency measurement ar-

chitecture. In our work, we focus on aggregate measurements,

so our goals are different from theirs.

III. FINECOMB

FineComb is designed to work in the measurement model

outlined in §II-C, in which problematic reordering can occur at

the fringes of a measurement interval. We begin our discussion

of FineComb by further articulating the model.

A. Measurement model

There are four types of problematic reordering (see the

bottom of Figure 2). First, packets sent at the end of interval

u−1 can be routed on a high latency path and hence arrive at

Rcv after the interval-start message. This can pollute interval

u with extra packets; we call such packets post-start packets.

Second, packets from the start of interval u can be routed on a

low latency path and hence arrive at Rcv before the interval-

start message for interval u, so these pre-start packets from

interval u are effectively missing. Similarly, packets reordered

around the end of the interval were referred to as post-end

and pre-end packets. We say ρ = R/T is the reordering rate

for interval u, where R is the total number of problematically

reordered packets (sum of all the four types). Note that Table I

outlines definition of notations used in this paper.

It is crucial to note that R is almost always much smaller

than T even if there is persistent reordering. This is because
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problematic reordering is confined to the reordering that occurs

relative to the interval-start and end messages. Suppose the

interval-start and end packets are routed on one path and the

rest of the packets are sent on the other path. Thus R ≤ 2CL,

where C is the transmission speed and L is the maximum

difference in latencies of paths. For example, if C is 10 Gbps,

L = 100 µsecs and an average packet size is 250 bytes, R
is around 1,000 packets. If an interval is set as short as 200

µsecs, all 1,000 packets in the interval are problematically

reordered. By contrast, T may be as large as 5 million with

1 second interval. Therefore, an interval should be chosen to

ensure R≪ T .

In addition to reordering, packets can also get dropped in the

network, which can cause the Snd and Rcv state to become

inconsistent. We assume at most βT packets from interval u
will be dropped as they traverse the network from Snd to Rcv,

where β is the loss rate for interval u.

Now, if we compare the two streams of packets that belong

to interval u at the Snd and Rcv sides, the difference between

them is at most βT +R packets. If we could somehow correct

for these βT +R bad packets that prevent the Snd and Rcv
from agreeing, we could make use of the simple timestamp

accumulator and counter idea described in §II-C.

B. Key ideas

As in LDA, FineComb keeps an array of M timestamp

accumulators and counters at the sender and receiver; a hash

function computed over packet contents is used to map each

incoming packet to a bucket containing a (timestamp accumu-

lator, counter) pair. If the sender and receiver use the same

hash function, then they will map packets to buckets in an

identical fashion. We say that a bucket is useful, if it contains

the same set of packets at both the sender and receiver, and

thus can be used to compute the delay estimate. Notice that a

bucket is useful as long as none of the βT + R bad packets

hash to that bucket. FineComb corrects for the βT + R bad

packets using the following three ideas.

1) Incremental stream digests: With reordering, we cannot

simply compare counters at sender and receiver and conclude

that a bucket is useful; this follows from the fact that a dropped

packet that hashes into a bucket can be replaced by a (different)

misordered packet from another interval. Even one such event

can throw off the delay estimate considerably. The misordered

packet may have been sent just before the start of interval u but

may hash into the same bucket as a lost packet sent towards

the end of interval u. Thus the induced error can be as large

as the size of a measurement interval (say 1 second).

To detect such cases, we augment the counter in each bucket

with what we call an incremental stream digest (ISD). An ISD

on a stream of packets pkt1, ..., pktt is computed as follows:

H(pkt1)⊙H(pkt2)⊙ ...⊙H(pktt) (1)

where ⊙ is an invertible commutative operation like XOR, H
is a hash function, and H(pktt) means a digest. Our incremen-

tal packet digests are similar to the incremental collision-free

hash functions proposed in cryptography [18]. However, since

we are not operating in an adversarial setting, H can be a

simpler hash function such as BOB [19] or H3 [20].

The ISD has three useful properties. First, two streams

containing different packets will hash to different values with

high probability. Second, because ⊙ is commutative, two

streams containing the same set of packets in different order

still hash to the same value. Thus we can determine if a bucket

is useful by verifying that the ISDs match at the sender and

receiver. Finally, we can easily add or subtract packets from

the ISD by computing the XORs of their digests with the ISD,

which is the basis of stash recovery that we describe next.

2) Stash recovery: A stash is simply a set of the timestamps

and digests of a small number of packets that arrive before and

after the sync messages that delimit an interval. One design

option is to maintain one stash at each of the sender and

receiver in order to detect which packets are reordered around

the boundary of the interval, which negates the necessity of

ISD in the bucket. However, the detection is impossible only

using the sender and receiver stashes because of the possibility

that problematically reordered packets may not be in both

stashes as their delays can become much higher than the

maximum permissible one-way delay due to network churn,

routing loop and misconfiguration. Hence, both the sender and

receiver still need to keep one ISD in each bucket, and only the

receiver keeps a stash. One nice feature of not keeping a stash

at the sender is that if we grow the stash size (especially in

a DRAM implementation of the stash), the control bandwidth

does not grow with stash size: The sender only needs to send

its buckets to the receiver to compute estimates.

As we have seen, this number R is small (say 1,000). Since

these are the most likely packets to have been reordered, stash

recovery simply attempts to add or subtract the digest of each

stashed packet from the corresponding bucket into which that

stashed packet hashes. Note that if the stash were as big as T ,

we would be back to the naive algorithm of storing all local

timsetamps. Thus the fact that R is much smaller than T is

crucial to the efficiency of stash recovery.

To show a concrete example of stash recovery, suppose a

post-start packet P from interval u − 1 is hashed into the

20th bucket in interval u, making it useless. Assuming P is

stored in the stash at the receiver because it arrived shortly

after the interval-start message, stash recovery will look up the

bucket 20, and try to subtract P ’s digest from the ISD at the

receiver. If the resulting ISD matches the ISD of bucket 20 at

the sender, bucket 20 can be made useful again by subtracting

the timestamp of P from the receiver timestamp sum. While

we have lost 1 sample from the bucket, we have saved perhaps

10,000 remaining samples that aggregate into bucket 20 that

would have been lost otherwise. Given memory S, however,

it is not clear whether to allocate more stash (and hence, to

recover from more reordered packets) or to use more buckets

(and hence, to be more resilient to loss); we will investigate

this tradeoff analytically and experimentally.

3) Packet sampling: In many practical situations, the number

of bad packets βT + R is going to be far greater than the

number of buckets, M . Given packets are randomly hashed to

buckets, that means, that all the M buckets could become

useless. Even if somehow, we manage to recover all the

reordered packets in a given interval, the number of lost



5

Financial Service 

Provider Network

Content 

Provider
Brokerage

Filter

124 12 5442

112 8 1242

105 5 1412

142 11 4451

Row 1

2

3

4

Packet 

stream

Timestamp 

Sum

Packet 

Counter

Incremental 

Stream Digest

253 12 5442

232 8 1242

125 5 a212

272 11 4451

Row 1

2

3

4

Packet 

stream

Filter

Post-Start StashPre-Start Stash

Post-End StashPre-End Stash

Unusable because 

GLJHVWV�GRQ¶W�PDWFK�

even though packet 

counts do!

Multiple paths 

Bucket No.

Fig. 3. FineComb. Four stashes cater to the four types of reordered packets.

packets alone βT could be bigger than M . In FineComb, we

sample packets at rate p, so that the expected number of bad

packets that can make buckets useless drops to p(βT + R).
On the one hand, selecting a high value of p will mean

that the number of bad packets, and in turn useless buckets,

will increase. On the other hand, selecting a low value of p
will make each bucket aggregate fewer samples. Determining

the optimal value of p that maximizes the number of useful

samples is a key question that our later analysis will address.

C. Basic FineComb without a stash

We first describe basic FineComb without a stash (as shown

in Figure 3) which uses M buckets, each containing a times-

tamp accumulator, counter and ISD. Each packet is sampled

with probability p, and then distributed to one of the M
buckets by a hash function. The pseudocode outlined illustrates

the steps involved in updating FineComb state at both the

sender and receiver for every sampled packet. Let TS[i] denote

the timestamp accumulator, C[i] the packet counter, D[i] the

ISD for ith bucket, and τ the arrival time of packet pkt.

1: D ← compute hash(pkt) → Digest

2: i← D mod M
3: TS[i]← TS[i] + τ , C[i]← C[i] + 1, D[i]← D[i]⊙D

After sending T packets (or, alternately after a fixed amount

of time), the sender sends its set of buckets to the receiver

in the sync message. When the receiver receives the sync

message, it uses the sender’s buckets along with its local

buckets to compute the average latency and loss as follows:

1) Estimating average latency: The receiver first determines

the set of useful buckets by checking which buckets have

matching ISDs at the sender and receiver. For all these ‘valid’

buckets, the receiver computes the difference between the

receiver’s and sender’s timestamp accumulator, sums them

together and divides it by the sum of all packet counters in

these valid buckets. The steps are outlined below.

1: N ← 0, D ← 0
2: for i=1, M do

3: if Cs[i] = Cr[i] and Ds[i] = Dr[i] then

4: D ← D + (TSr[i]− TSs[i]), N ← N + Cr[i]

5: Average delay = D/N

While LDA matches the packet counters alone, FineComb

does an extra check for a match of the sender and receiver

packet digests, which is the main difference between them.

2) Estimating standard deviation: We compute standard

deviation in a similar fashion using a technique introduced in

[21]. The original technique needs to maintain an additional

counter to which each sampled packet’s timestamp is added

or subtracted with equal probability 1/2. In order not to waste

memory with an extra counter per bucket, we use a trick used

in LDA. Note that we leave readers to refer to Section 3.4 in

[4] for details on the trick. Checking ISDs of buckets is again

required when applying the trick.

3) Loss measurement: Loss measurement becomes difficult in

the presence of reordering. While we will go over the reason in

a minute, for now, suppose that the effects of packet reordering

can be removed somehow. Then, it is easy to see that the

following simple algorithm does the job.

1: N ← 0, L← 0
2: for i=1, M do

3: if Cs[i] ≥ Cr[i] then

4: L← L+ (Cs[i]− Cr[i]), N ← N + Cs[i]

5: loss rate = L/N

Note that the algorithm checks whether a sender counter

is greater than the corresponding receiver counter (line 3)

because the sender-side counter can be smaller than the

receiver-side counter for a particular bucket. Such a situation

can easily happen if a few packets drift from the previous

interval to the current interval (i.e. post-start packets overtaken

by the interval-start message). Thus, these packets are not just

accounted for in the bucket of the sender in the current interval.

Because the LDA operated in a setting where there was

no reordering, it was not designed to exclude the counters

in buckets contaminated by the reordered packets, from loss

estimation. By contrast, FineComb tries to disentangle reorder-

ing from real loss and to achieve higher accuracy using stash

recovery outlined in §III-D. But, checking the condition in

line 3 is still critical because stash recovery can be imperfect.

Further, if a lost packet and a reordered packet that is stored in

the stash are both hashed to the same bin, stash recovery will

fail, because the lost packet has made the bucket ‘useless’.

In more detail, assume that before stash recovery Cs[i] for

some bucket i was less than Cr[i] because of two post-start

packets P1 and P2 that were hashed into bucket i at the

receiver but not at the sender. Suppose further that a third

packet P3 that hashes into bucket i at the sender is lost on

the way to the receiver. Then even if P1 and P2 are in the

stash at the receiver, there is no way for the receiver to correct

bucket i because, by definition, it does not have the digest for

P3 which is lost. Thus, not only is bucket i just useless in

calculating delay, the algorithm also cannot tell apart a loss of

1 packet and a reordering of 2 packets in bucket i (as in the

example) from a loss of 2 and reordering of 3 packets (say).

Thus, the loss estimation algorithm above will ignore bucket

i, and thus lose a data point for loss estimation.

Since we try to measure small losses, this is potentially seri-

ous. However, with careful sizing of the sampling probability

the probability of both a lost packet and a reordered packet

hashing into the same bucket is even smaller.
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Note that while measuring the variance of loss rate can be

of interest, too, it is unclear how to extend FineComb. We

leave this as part of future work.

D. Managing the stash

We now describe the details of how to use a stash. Recall

that the stash stores individual timestamps and digests for the

packets that are most likely to be problematically reordered.

The stash only maintained in the receiver, as described in

§III-B, is broken up into four substashes (pre-start, post-

start, pre-end, post-end stash) of size w, where 4w = W ,

corresponding to the four types of problematic reordering.

Populating the substashes. Even though the receiver does not

know when interval-start message will arrive, the receiver can

still populate the pre-start substash as follows. The receiver

stores the digest and timestamp in a cyclic queue of length w,

such that a new sampled packet causes the oldest packet in

the queue to be evicted if the queue is full. The receiver stops

populating the stash when the interval-start message arrives.

To populate the post-start stash, the receiver keeps a queue

of length w that starts being populated once the interval-start

message is received, and populates it until it is full. The other

two stashes are managed similarly with interval-end message.

Stash recovery. For each useless bucket i, the receiver consid-

ers all the entries (T) of the four substashes (S) that map to that

bucket. The receiver then considers all subsets (Z) of the stash

entries that correspond to this bucket. For each subset of stash

entries, the receiver XORs the digests of the entries with the

bucket’s ISD. If the sender’s and receiver’s ISDs match for this

subset of stash entries, then the receiver can recover that bucket

by subtracting (if the packet is from the post-start stash or pre-

end stash), or adding (otherwise) the timestamps of those stash

entries from/to the bucket’s timestamp accumulator.

1: T← build stash entry set for bucket(i, S)
2: for all Z ⊂ T do

3: Dr ← Dr[i], TSr ← TSr[i], Cr ← Cr[i]
4: for all (D, τ, k) ∈ Z do

5: if k = pre-start or k = post-end then

6: Dr ← Dr⊙D, TSr ← TSr+τ , Cr ← Cr+1
7: else

8: Dr ← Dr⊙D, TSr ← TSr−τ , Cr ← Cr−1

9: if Ds[i] = Dr then

10: Dr[i]← Dr, TSr[i]← TSr, Cr[i]← Cr, return

Stash recovery appears to take exponential time because it

may seem that one has to consider all possible combinations

(2W ) in the worst case when W stash packets hash to a single

bucket. Fortunately, stash recovery is much faster because,

with high probability, only O(W/M) stash packets can hash

together into the same bucket. Thus, the running time of the

decoding algorithm is O(M2W/M ), and since the typically

stash size W < M number of buckets, it follows that stash

recovery time is approximately linear in M .

Thus the algorithms to calculate loss and latency are exactly

as before for basic FineComb except that we preface them

by doing stash recovery to potentially increase the number of

useful buckets. A stash should help improve latency estimates

slightly (by increasing the number of useful buckets), but will

Symbol Meaning

T The number of packets sent per interval

ρ The reordering rate in an interval

R The number of problematically reordered packets in the interval (= ρT )

β The fraction of dropped packets in the interval

G
The number of good packets that are received by the Receiver between
the correct pair of ’Sync’ messages

p The FineComb sampling rate

M The number of buckets in the FineComb

W The number of entries in the stash

S The total storage allocated to the FineComb with stashes (= M +W )

X
A random variable describing the number of useful samples extracted
from FineComb

L
A random variable describing the number of bad packets that are
sampled and not corrected during stash recovery

TABLE I
NOTATIONS.

be much more critical in obtaining reasonable loss estimates

(allowing loss to be distinguished from reordering).

E. Handling unknown loss and reordering rates

If we know the exact reordering rate ρ and loss rate β
a priori, our theoretical results (shown in §IV) allow us to

configure the sampling rate optimally. In practice, however,

we do not know these values a priori and they may change

over time. LDA also faces a similar problem with unknown

loss rate, and hence it maintains multiple banks each tuned to

different loss rates. We can use a similar trick in FineComb as

well, except, we need to consider the operating ranges of two

different parameters β and ρ. We use multiple banks optimized

for the four operating regions: (βmin, ρmin), (βmin, ρmax),

(βmax, ρmin), and (βmax, ρmax) because it can cover varying

loss and reordering rate in a balanced way. Low values of

βmin and ρmin, mean that the sampling rate chosen could be

high, which in turn means the estimates are good. Once the

loss rate or reordering rate becomes high, this bank tuned for

low loss and reordering rates may produce no valid delay or

loss estimates. While we believe other configurations (e.g., 6

banks) would work fine, we have not explored them yet.

In 4-bank FineComb, each uses one fifth of the total storage.

We compute the optimal sampling probabilities and stash size

for each operating region independently and partition resources

statically. Each bank has a different number of buckets from

each other. We then make the number of buckets of all banks

equal using the remaining one fifth of the total storage unused.

For estimating delay, we take the maximum count among

counts from four buckets in the same row (the same index)

across banks and its corresponding timestamp sum, and add

each values with a total count and a total timestamp sum,

respectively. We repeat this step for all rows. This procedure

provides the maximum total number of samples. For loss

estimation, we pick the loss rate of a bank whose estimate

is closest to what it was tuned for. We observe this heuristic

works well in our experiments. Further refinement may be

viable by using estimates from other banks, but we have not

explored it yet.

IV. SETTING PARAMETERS

In the following analysis, our goal is to choose a sampling

rate p and stash size W that will maximize E[X], the expected

number of delay samples that we extract from FineComb. That

is, we would like to maximize the expected number of packets
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that are hashed to useful buckets, so that we can estimate delay

as accurately as possible. The following analysis assumes that

FineComb uses a single sampling rate p, and that the number

of entries in the stash and the number of buckets in FineComb

M is fixed, so that total storage is S = M + W .2 Note

that while we only state the main theorems, results and proof

sketches here, refer to the Appendix for additional proofs.

A. Expected number of useful samples

Since our goal is to maximize E[X], our first step will be

to determine E[X].

Good and bad packets. Let us focus on interval u, and say

a packet sent by the sender in interval u is ‘good’ if it was

received by the receiver within the boundaries of interval u
(see §II-C or Figure 2), otherwise ‘bad’. Recalling that β is

the packet loss rate on the path, T is the number of packets

the sender sends in an interval, the number of good packets

is G ≤ (1 − β)T with equality when R = 0, so that there

are no packets that are problematically reordered. Packets can

become bad due to loss or problematic reordering. The number

of dropped and reordered packets in an interval is βT and

R = ρT respectively.

Conditional expectation of useful samples. Let L be the

number of bad packets that are sampled but not corrected

during the stash recovery. We can prove that the expected

number of useful samples is

E[X|L] = E[Good pkts per bucket]E[No. of useful buckets]

= p
MG · (M − E[K|L]) = pG(1− 1

M )L (2)

where, following [22], we let K be a random variable that

denotes the number of ‘useless’ buckets in the LDA, that

results from the L sampled bad packets hashing to buckets

of the LDA. In [22], they show that K is distributed as

Pr[K = k|L] = M !

(M − k)!

S(L, k)

ML
(3)

where S(L, k) is a Stirling number of the Second Kind.

Using (3), we obtain E[K|L] = M(1− (1− 1
M )L) (proof in

Claim A.1 in the Appendix) so that (2) follows by substitution.

Sampled uncorrected bad packets, L. We have βT dropped

packets and R reordered packets; together, this gives us βT+R
bad packets, that we sample with rate p. We shall assume

that every packet that is stored in the stash is an out-of-order

packet, so the stashes will allow us to correct for exactly

W sampled out-of-order packets. (We make this assumption

because it is hard to predict the distribution of problematically-

reordered packets. Indeed, in practice we expect the stash to

store some packets that arrived correctly in an interval (these

good packets waste space in the stash), as well as some out-

of-order packets. Thus, our analysis will size the stash under

the assumption that the stash does the ‘best it can’ to correct

for reordering.) Thus, the expected number of bad packets that

are sampled and not corrected is

E[L] = βpT +max{0, pR−W} (4)

2We could instead fix the total storage of the system, so that S = 2M+W ,
since the sender has no stashes and thus requires storage M , while the receiver
requires M +W storage.

The distribution of L is evaluated in §A in the Appendix.

Working with the conditional expectation. Because the dis-

tribution of L is quite complicated, (see §B in the Appendix),

in this section, we work with the conditional expectation

E [X|L = E[L]], which is obtained by plugging (4) into (2).

By numerically plotting equations, we observed the results

obtained using E[X|L = E[L]] are quite close to results

obtained from the unconditional distribution E[X].

B. Optimizing stash W for fixed sampling p

First, we would like to optimize the ratio between the bucket

size and the stash size to maximize E[X]. To do this, we plug

(4) into (2) and use the fact that S = M+W . We observe that

there are two regimes for which the stash size W maximizes

E[X|L = E[L]]:

W ≈
{

pR when S ≥ p(R+ βT )
0 otherwise

(5)

In §C in the Appendix, we show that this holds even when we

work with E[X] (rather than just E[X|L = E[L]]).
Notice that (5) suggests that when the total storage S is very

small, i.e. less than the number of bad sampled packets, all the

storage should be dedicated to the buckets of FineComb (i.e.,

W=0). On the other hand, when we have a decent amount of

storage, the analysis shows that we should keep stashes large

enough to correct for the expected number of out-of-order

sampled packets, pR. This makes sense, since a single bad

packet can cause an entire bucket to become useless, so that

about p
MG ‘good’ packets become useless. Hence, it follows

that correcting a single discrepancy in FineComb due to a bad

packet is highly effective, and further that we should dedicate

a large amount of storage to the stash.

C. Optimizing sampling rate p.

No stash. Per (5) we now consider the case where we have

no stash. We can show that the optimal sampling rate is

p∗∗ = min

{

S

R+ βT
, 1

}

(6)

To obtain (6), we use the fact that E[X|W = 0] is easy to

obtain in closed form from (2) by observing that L is a bino-

mial random variable with mean p(βT + R). Approximating

L as a Poisson random variable, and putting M = S, using

(2) we have that

E[X|W = 0] = E[X|L] Pr[L = ℓ]

=

∞
∑

ℓ=0

pG(1− 1
S )

ℓ · e−p(βT+R) p(βT+R)ℓ

ℓ!

= pGe−p(R+βT )/S (7)

The claim follows by taking the derivative of E[X|W = 0]
and setting it equal to zero.

Stash. Now, (5) tells us that when we have a stash, its optimal

size is W ∗ = pR. We can show that when we use this value

for the stash, the optimal sampling rate is approximately

p∗ = min

{

S

2ρ2T

(

2ρ+ β −
√

4ρβ + β2
)

, 1

}

(8)
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where ρ = R/T . We obtained this value by setting W ∗ = pR
and M = S − W ∗ to obtain E[X|L = E[L],W = W ∗]
from (2) and (4). We then find p∗ as the value that maximizes

E[X|L = E[L],W = W ∗] by taking its derivative and setting

it equal to zero. In §D in the Appendix, we show this value

of p∗ also (approximately) maximizes E[X|W = W ∗].

To stash or not to stash. The last issue we need to settle is

whether it is better to use a stash or not. Plugging our two

operating points (p∗∗, W = 0) and (p∗, W = p∗R) into the

equation for E[X], we find (see §D in the Appendix) that

E[X] is maximized when we use a stash.

A note on our approach. This analysis first fixed the sampling

rate p and then optimized stash size W ; then the optimal value

for W was used to solve for the optimal sampling rate p. It

would have been better to jointly optimize E[X] for W and

p; however, the complexity of E[X] made a joint optimization

quite complicated, so we leave this as future work.

V. EVALUATION

In this section, we evaluate the efficacy of FineComb.

Specifically, we seek to answer the following questions: (1)

What is the relative error of FineComb in estimating mean

delay, standard deviation and loss rates under different levels

of reordering and loss rates? (2) How does an optimal configu-

ration of FineComb compare with previous solutions assuming

the same total memory for given loss and reordering rates? (3)

Since loss (β) and reordering (ρ) rates are not known a priori,

we evaluate the efficacy of the multi-bank FineComb that is

tuned towards different β and ρ values. Before we answer

these, we first describe our evaluation methodology.

A. Evaluation methodology

We built a custom simulator in C++ for evaluation. Our

custom simulator is more efficient than, say, ns-2 and allows

us to simulate sending several million packets. Further, ns-2

does not provide any built-in routines that we can leverage as

all we need is to simulate packets sent on a link with specified

delay, loss, and reordering characteristics.

Given our goal is to compare the performance of our

architecture in many different settings, we provide several

configuration parameters such as loss rate β, reordering rate

ρ and measurement interval. Our simulation environment is

deliberately kept similar to the one used by the authors in [4]

so that fair comparison of FineComb with LDA is possible.

Delay model. Ideally, we would use traces at two monitoring

endpoints within a real data center with GPS synchronized

clocks to estimate end-to-end latency; unfortunately, there

exist no such publicly available data center latency traces. Prior

work [4] used the Weibull delay distribution model empirically

verified to mimic the distribution of delays within a backbone

router by Papagiannaki et al. in [23]. The delay for each packet

is drawn from a Weibull distribution, which has cumulative

distribution function P (X ≤ x) = 1− e−(x/λ)k with k and λ
denoting the shape and scale of the graph respectively. While

following shape parameter 0.6 ≤ k ≤ 0.8 recommended in

[23], we choose k = 0.6 in all our simulations. We then adjust

λ to obtain a mean delay of 10 µs. While we mainly rely

on Weibull distribution within our simulations, we use a real

trace collected from an ingress and an egress interface of a

router connected to an OC-3 link (155 Mbps) to evaluate the

multibank scenario (refer to §V-D for more detail). Note that

while FineComb and LDA are agnostic to the distribution of

timestamps, delay distribution does matter when we determine

the relative error provided by these data structures.

Loss model. FineComb and LDA are agnostic to the loss rate

distribution—even if two lost packets are back-to-back, they

are randomly hashed into different buckets anyway. Thus, it

suffices to simulate random packet loss.

Measurement interval. We simulate an interval of 1 second

with a mean delay of 10 µs. (Path latencies in data centers may

range from 10–100 µs, so our setting simulates close to the

finest granularity.) Our results are presented as relative error,

so exact delay average does not matter. We simulate 5 million

packets, with an average packet size of 250 bytes (similar to

[4]), over a 10 Gbps bottleneck capacity with an inter-arrival

time of 0.2 µs—transmission time for 250 bytes at 10 Gbps.

All our simulation results are an average across 10 runs.

Reordering model. An important parameter is the reordering

rate ρ. We could simulate reordering in the same way we

simulate loss; by randomly choosing which packets to reorder.

However, in practice, it is not at all clear that reordering

follows a similar process of loss; in fact, there is no generative

model that we are aware of that we can use in our simulation.

We note once again that reordering within the interval affects

neither LDA nor FineComb; what matters is problematic

reordering at the fringe of an interval (see Figure 2).

To stress LDA and FineComb in terms of problematic

reordering, we simulate the following simple deterministic

model of reordering. In our reordering model, we essentially

specify a 4-tuple, <Rs
pre, Rs

post, R
e
pre, Re

post>, the number

of pre-start, post-start, pre-end and post-end packets defined in

§III-A. Then, for each interval we wish to simulate, we choose

a contiguous set of packets from the end of one interval that

will drift into the next and vice-versa.

Note that the theory in §IV is based on the total number

of reordered packets R = ρT and considers a slightly more

simplistic model than we use in our experimentation. While

clearly, R = Rs
pre + Rs

post + Re
pre + Re

post, the optimal

probability p∗ obtained in (8) is computed assuming all these

different individual reordering components are the same. To

make our provisioning strategy consistent with the theory, we

obtain the total reordered number of packets R as follows:

R = max{Rs
pre, R

s
post, R

e
pre, R

e
post} × 4

We simulate two main types of reordering, called for-

ward and backward, that correspond to <0, x, 0, 0> and <x,
0, 0, 0> configurations for the 4-tuple. In most experiments,

we configure x equal to roughly 10−6T to 10−2T ; equiva-

lently, the reordering rate ρ varies from 4 · 10−6 to 4 · 10−2,

translating to roughly 50 to 50,000 packets. We also simulated

many other configurations (e.g., <x, x, x, x>, <x, x, 0, 0>)

but latency estimation results were mostly similar in all cases;

this follows because sampling probabilities and stash sizes are

all dependent on ρ, which is same for all these configurations.
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(b) Mean delay estimation, β = 0.01
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(c) Loss rate estimation, β = 0.0001

Fig. 4. Expected number of samples obtained by FineComb, and relative error of mean delay and loss estimates in the presence of backward reordering
under Weibull distribution. Error bars represent standard deviations of estimation errors. We show both FineComb and FineComb- for comparison.

Resource configuration. We allocate a total of 1,000 buckets

for FineComb. To simulate cases with and without stash, we

assume stash elements are of the same size as bank elements

(for simplicity). We use 64 bits from a 160-bit SHA-1 hash

function for packet digests. To make things fair, we equalize

the storage at the LDA and the FineComb. The buckets in

the LDA are 2/3 the size of those in FineComb (LDA has

timestamp accumulator and counter but no ISD). Furthermore,

while FineComb is asymmetric (only the receiver maintains

stashes), the LDA is symmetric. Thus, LDA gets 1.5(M +
W/2) buckets at sender and receiver.

B. Assessing FineComb

Expected number of samples. Our first experiment aims to

understand how tight the theoretical bound on the number

of useful samples is, at the optimal sampling probability.

Figure 4(a) shows the expected number of samples according

to the analytical bound given in (2) (curve titled ‘Expected’)

and the empirical number of samples over which delays are

computed. The three different curves in the figure correspond

to three different loss rate settings (10−4, 10−3, 10−2). Clearly,

as the loss rate increases, the number of effective samples

reduces all the way from almost 3 million packets at loss

rate 10−4, to about 40,000 packets at loss rate 10−2. As we

increase the reordering rate, the number of effective samples

also decreases (although not by much for the 0.01 loss rate

curve, since the loss rate overwhelms the reordering rate

significantly). This is expected since more losses render more

buckets useless, which in turn decreases the expected number

of samples. In all cases, we observe that the analytically

expected number of samples matches quite well with what we

found empirically (the curves are virtually indistinguishable);

the difference is of the order of a few hundreds.

Latency estimates. Next, we show the average relative error

of mean delay and loss estimates, as we vary the reordering

rate ρ in Figure 4. We show the results comparing FineComb

and FineComb- (FineComb without the stash) for Weibull

distribution with parameters adjusted to ensure similar mean

latency of 10 µs. While we have simulated many different

levels of loss and types of reordering, for brevity, we mainly

show the latency results for the high loss situation and loss

estimation for the low loss situation. (These are the least

favorable situations for FineComb.) From Figure 4(b), we see

that the relative error for FineComb is less than 1.2% under

different levels of reordering. While we omit the exact figure

of standard deviation estimation for brevity, FineComb and
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Fig. 5. Impact of storage sizes on mean delay estimation. β = 0.01, ρ =
0.04. Error bars represent standard deviations of estimation errors.

FineComb- achieve similar average relative error—less than

9% across all ρ values.

As predicted by our analytical work (see Figure 10 in the

Appendix), FineComb provides about 15-30% more useful

samples than FineComb-. While more samples should lead to

better delay estimates, the improvement in the delay estimate

depends heavily on the specific delay distribution; that is, some

distributions require fewer samples to obtain accurate esti-

mates (e.g., in an extreme case, a uniform distribution requires

only a small number of samples for excellent accuracy).

Loss rate estimates. We clearly see the benefit of the stash

when we consider loss estimation error in Figure 4(c). We

can observe that the estimates of FineComb- are significantly

worse than FineComb, especially at higher reordering rates.

This is explained by the fact that loss rate estimates for

FineComb- include reordered packets; because FineComb-

has no stash, we have no way to prevent these reordered

packets from polluting our loss rate estimator. Having the stash

helps recover most of those reordered packets in FineComb,

thus adding significantly fewer number of false positives in

calculating the loss rate.

Impact of storage sizes. Given 5 million packets in an inter-

val, we vary storage sizes and study their influences on mean

delay estimation. β and ρ are set to 0.01 and 0.04 respectively,

which lets FineComb face the most challenging situation. As

we expected, estimation error reduces from 12% to almost

0.4% as storage size increases (see Figure 5). Considering the

trade-off between storage size and estimation accuracy, we use

1,000 buckets for the rest of the experiments.

C. Comparison with other solutions

We compare FineComb with LDA using simulations. Before

we show these results, however, we go over why other simple

alternatives do not work as well as compared to FineComb.

1) Active probing: Intuitively, active probing methods do

much worse than methods like FineComb in terms of standard

error for a fixed control bandwidth, because each active probe
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(a) Backward reordering
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(b) Forward reordering

Fig. 6. Average relative error of mean delay estimates. β = 0.0001.

provides a single delay sample, while each FineComb bucket

provides thousands of samples. Using a sampling probability

of p = 0.1 (optimal for low loss and small amount of reorder-

ing), FineComb will provide 500,000 delay samples in each

interval. Now the control bandwidth required to send 1,000

buckets to the receiver, is roughly 16,000 bytes (assuming

16 bytes per bucket) while an active probe takes at least 64

bytes (packet headers plus timestamp). To keep the control

bandwidth the same, even if we allowed 16, 000/64 = 250
active probes per second, they would only provide 250 de-

lay samples while FineComb provides 500,000. This 2,000x

increase in sample size translates roughly to
√
2000 = 44x

decrease in standard error. In addition, probe packets perturb

traffic of regular packets, thus distorting true delay in a case of

no probes, and without careful choice of probing techniques,

it is also hard to achieve unbiased estimation [24].

2) Sampled local timestamps: Similarly, consider the other

trivial solution of sampling a small number of packets in each

interval and storing their timestamps.

We compare this trivial solution to FineComb- (note from

§IV that adding the stash only increases the number of good

samples). Combining (7) and (8), we find that when FineComb

has S buckets and no stash, it produces E[XFineComb] =
S G

βT+Re−1 good timestamp samples. Meanwhile, the trivial

solution that samples at rate p obtains p(1−β)T good samples

while storing Ssample = pT items. Setting Ssample = S, we

find that FineComb produces about G
βT+R more good samples

than the trivial solution; note that we expect this ratio to be

much larger than one, since G is the number of ‘good’ packets,

while βT +R is the number of ‘bad’ packets in the interval.

For example, assume that FineComb uses 1,000 buckets and

a stash of the same size. Then the trivial algorithm can afford

to store 2,000 samples. Once again, for the same parameters

as the example above, the trivial algorithm will provide 2,000

samples per second, while FineComb will provide 500,000.

This factor of 250x increase in sample size translates to

roughly a factor of 15x decrease in standard error.

3) LDA for latency estimates: We conduct experiments to

know the relative error of mean delay estimates for four

solutions, namely LDA, LDA+, FineComb and FineComb- for

different reordering rates and reordering models. LDA+ is a

simple refinement of LDA. It effectively ignores the set of

buckets where the sender timestamp sum is larger than the

receiver timestamp sum, which results in a negative delay

contributed by that bucket. For this set of experiments, we

choose the optimal stash size configurations and sampling

probabilities (for LDA, as recommended in [4]) for all so-

lutions.
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(a) Low loss, β = 0.0001
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(b) Microscopic loss, 5-100 lost packets

Fig. 7. Relative error of FineComb at detecting low to microscopic losses.

Figure 6 shows that, beyond small levels of reordering,

LDA consistently performs worst, with relative error as high

as 100% (ρ = 0.0005) to 400% (ρ = 0.004). This follows

from the fact that LDA cannot deal with reordered packets. If

a reordered packet and a lost packet hash into the same LDA

bucket, the LDA will assume that bucket is useful and include

it in the latency estimation. However, that bucket will contain

timestamps relating to two different sets of packets, and error

induced can be as large as the measurement interval (e.g., 1s).

The fact that LDA+ can ignore buckets of contributing

negative delays clearly helps solve most of the problems in

the backward reordering case (where extra packets drift out of

the interval), as reflected in the better relative error for LDA+

in Figure 6(a). In fact, in cases where LDA+ was optimized

for higher loss rate (e.g., at β = 0.001), we observed better

accuracy than FineComb, that can be explained by the fact

that the total number of buckets allocated to LDA is about

1.5 times higher than those allocated to FineComb, resulting

in slightly better sampling rate, and consequently, in more

samples. However, LDA+ is merely a patch, and does not work

in the forward reordering case, since we cannot easily detect

(using a simple elimination scheme as before) and eliminate

buckets that are anomalous. This is because although the

packet sets in the sender and receiver buckets do not match due

to problematic reordering and loss, the counts in the buckets

can be the same and the value obtained from the subtraction

of timestamp sums is still positive. Thus in Figure 6(b), we

see that LDA+ has the same accuracy level as LDA. Note that

in Figure 6 both LDA and LDA+ have no useful bucket and

in turn obtain no latency estimate when ρ ≥ 0.016.

In all cases, we observe that both FineComb and FineComb-

perform consistently better than LDA even under high loss and

reordering rates. The relative error is mostly around 0.1% and

never more than 1% in all the cases considered. For standard

deviation estimates, we observed a similar phenomenon, i.e.,

the accuracy of FineComb is orders of magnitude higher than

LDA’s. The same set of reasons for the case of mean delay

estimates explains why standard deviation estimates are also

bad. (Since the curves look exactly the same as those for mean

latency, we omit them.)

4) LDA for loss estimation: In Figure 7(a), we plot the rela-

tive error in estimating loss rate (for β = 0.0001). FineComb’s

estimates are usually within 10-30% error irrespective of the

reordering rates. The estimates of the rest are quite poor, with

more than 100-500% error for LDA. This is expected, since

neither LDA (or LDA+) nor FineComb- have the capability

to correct for reordered packets; only FineComb enjoys that

capability due to the presence of the stash.



11

����

����

����

���

���

���

���

���� ���� ���� ����

�
	

�
�

�
	
�	
��
�
�

�

���
�
�	����
�
�	��������

(a) Mean delay estimation (Weibull, β = 0.01)

����

����

����

���

�� ������ ����� ������ ����� ������ ����� ����������	



�
�

��
�
�
� �
��
�
�

�

���
��������

(b) Mean delay estimation using a real trace
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(c) Loss rate estimation using a real trace

Fig. 8. Average relative error of mean delay and loss estimates of the 4-bank FineComb, with the banks optimized for low and high reordering and loss
rates under backward reordering scenario.

Microscopic losses. While 10-30% error in estimating loss

rates as low as 0.0001 is good, our goal was also to detect

losses as low as 1 in 1 million (10−6). Intuitively, detecting

such low loss rates in the presence of reasonable levels of

reordering (e.g., 500 packets, i.e., ρ = 10−4) is possible

only with extremely high sampling rates (close to 1) and

with a stash large enough to recover most of the reordered

packets. (Our formulae predict these configurations as well.)

To explore this case further, we simulate low loss conditions

(with 5, 10, 50, and 100 packets lost in the interval) and

configure stash and sampling optimally just as before. The 5

packet situation is equivalent to β = 10−6. In Figure 7(b),

we see that, even though the relative error of FineComb’s

loss estimates becomes progressively worse as reordering

increases, the estimates are well within 10% for reordering

rates up to 10−4, i.e., 5 packets lost is reported as either 4

or 6 packets lost—we believe most managers would find such

accuracy for microscopic losses to be perfectly adequate. By

contrast, LDA’s accuracy for the same range is around 2,000%

(not shown in the figure), which can cause false alarms.

D. Handling unknown loss and reordering rates

We have already shown that it is easy to tune FineComb if

the manager knows the loss and reordering rate. However, it

is important to have a solution that works across a large range

of loss rates and reordering rates using multi-bank FineComb.

We use Weibull distribution and a real trace to compare

the efficacy of 4-bank FineComb with a two-bank LDA under

unknown loss and reordering rates. First, for Weibull delay

distribution, average latency is set to 10 µs and β is set to 0.01.

Second, the trace collected by the authors in [12] contains

about 2.4 million packets with real timestamps and true delays

over about 150 second interval which experienced queuing

delay, packet loss, and so on in a router. The average loss rate

of the trace is about 0.24%, but each measurement interval

containing 0.2 million packets has different packet loss rates;

minimum, median and maximum loss rates are 0%, 0.06% and

0.96%, respectively. There is no packet reordering in the trace.

Hence, we simulate reordering rates from 0.0004 to 0.04.

For 4-bank FineComb, we optimize the individual banks for

the four pair-wise combinations of βmin = 0.0001, ρmin =
0.0004, βmax = 0.01, and ρmax = 0.04. Two-bank LDA is

optimized for βmin = 0.0001 and βmax = 0.01.

Figure 8(a) shows the relative error of the mean delay esti-

mates of FineComb compared to that of LDA. FineComb-OPT,

shown for reference, is FineComb configured with the theo-

retically best sampling rate and stash size based on the given

loss and reordering rates. The results for other loss rates and

for the forward reordering case, follow a similar trend shown

in the figure that FineComb-OPT works best, FineComb next

and LDA worst (and hence, omitted). As shown in the figure,

the estimates of LDA become quickly unusable with small

increases in reordering rates (at around 0.0002). Further, we

can clearly see that, while 4-bank FineComb appears to have

slightly worse relative error than the FineComb-OPT, on the

whole, FineComb achieves a relative error of less than 1%

under almost all conditions. Standard deviation estimation also

shows a similar trend with mean estimation, so we omit the

exact graph for brevity. As a summary, FineComb has at

least two orders of magnitude less errors than LDA when

ρ ≥ 0.0008, and about 11-13% relative errors are obtained

by FineComb across all reordering rates.

In Figure 8(b), we observe the similar pattern shown in Fig-

ure 8(a). However, compared to the results of Figure 8(a), the

degree of inaccuracy of LDA is lower. This may be because of

two reasons. First, there are four measurement intervals which

have no packet loss. For those intervals, latency estimates were

quite accurate because two-bank LDA could absorb the impact

of reordered packets considered as lost packets. Second, true

average latencies are quite high, ranging from a few to tens

of milliseconds. Thus, denominator in relative error is also

high and the relative error is small. Nevertheless, compared to

FineComb, at least an order of magnitude higher relative error

is observed when ρ ≥ 0.0024. Again, FineComb achieves a

relative error of less than 1% under all conditions. Similarly,

for standard deviation estimation, LDA showed an order of

magnitude higher relative error than FineComb.

In Figure 8(c), we show the relative error of the loss rate

estimation. FineComb’s relative error is less than 20% up to

the reordering rate of 0.016. Beyond that rate, the relative error

of FineComb is comparatively worse at around 55%, but LDA

is completely unusable across almost all the rates.

VI. IMPLEMENTATION

Implementing FineComb would still be feasible although a

high speed SRAM is required to keep up with high line rates

and the total memory required in an endpoint is proportional

to the number of its associated endpoints. For instance, a

data center network architected as a fat-tree topology with

48-port switches can host 27,648 servers. For end-to-end

measurements between edge switches, an edge switch needs

to maintain 1,152 FineComb data structures, each of which

has total 2,000 buckets and stash entries altogether (we have

to consider bi-directions; thus, half of the buckets are used for
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a sender (one direction) and the other half for a receiver (the

other direction)). Assuming a bucket (and a stash entry, too)

takes 16 bytes, 36 MB of SRAM would be required. While this

constraint sounds prohibitive for deployment of FineComb, we

only need four 9 MB of SRAMs; one costs around US $100

and its footprint is 15mm×13mm [25].

Stash recovery operations are easier to do in software using

say an on-board processor. In the analysis, we argued that

stash recovery times are O(M2W/M ). We did measurements

to verify that the apparent exponential is not an issue, and

that there are no large constants hiding behind the order

notation. The table below shows stash recovery times for

different stash sizes, assuming a fixed total storage S of 2,000

(across sender and receiver). For example, when the stash

(maintained at receiver) W is 838, M is 581 (equal across

sender and receiver), resulting in 2W/M being less than 4.

The implementation was done using a 2.33GHz single core

Intel processor with running Linux.

Stash size 20 120 200 462 703 838
Time (ms) 1 4 6 10 10 14

As we expect, stash recovery time increases as stash size

increases. However, even for a ratio of stash to buckets of 1.44,

recovery takes no more than 14 ms. Note that it is not required

that the processor be on-board. While packet processing needs

to be done on board, functions such as stash recovery can be

implemented in software on the PC. Implementing FineComb

on boards (based on FPGAs costing a few thousand dollars)

is significantly cheaper compared to existing diagnosis boxes

proposed for data centers such as those supplied by Corvil.

The high-end Corvil boxes costs UK£90,000 for a 2×10 Gbps

box [9]. The high cost is a barrier for most data centers, which

explains why Corvil has mostly marketed to a niche market

(financial traders) where money is no object.

VII. CONCLUSIONS

Measurement tools are badly needed to determine fine-grain

latencies and losses that can affect application SLAs in data

centers environments. Existing scalable approaches such as

LDA designed for switch-level measurements work poorly for

end-to-end measurements in the presence of packet reorder-

ing which actually happens in IP networks. We described

FineComb, a simple yet scalable data structure that can detect

microsecond latency violations and microscopic losses (as

small as few packets in a million) while still being resilient to

reordering. FineComb uses two new ideas—the addition of an

incremental stream digest to detect mismatches in packet sets,

and a simple stash to correct reordering. Stashes are especially

powerful to measure microscopic losses accurately. While

FineComb is useful for end-to-end measurements in the short-

term, we believe that the future will see the rise of reordering

tolerant transport protocols in the data center together with

packet-by-packet load balancing within and across routers. In

such cases, reordering becomes a fact of life and solutions

such as FineComb will become essential to measure fine-grain

delays and losses even within routers.

APPENDIX

This appendix serves as a companion to §IV. We start with

a simple claim:

Claim A.1: If K is as in (3), then E[K|L] = M(1− (1−
1
M )L).

Proof: Our proof uses the following identities of the

Stirling number of the second kind:

S(L, k) · k = S(L+ 1, k)− S(L, k − 1) (9)

L
∑

k=0

M !
(M−k)!S(L, k) = ML (10)

S(L,L) = 1, S(L, 0) = 0 (11)

And now we begin:

E[K|L] =
L
∑

k=1

k M !
(M−k)!

S(L,k)
ML

= 1
ML

L
∑

k=1

M !
(M−k)! (S(L+ 1, k)− S(L, k − 1)) (12)

where we used (9). Now, using Equations (10-11), we can find

the first term of the sum as

L
∑

k=1

M !
(M−k)!S(L+ 1, k) =

L+1
∑

k=1

M !
(M−k)!S(L+ 1, k)

− M !
(M−L−1)!S(L+ 1, L+ 1)

= ML+1 − M !
(M−L−1)!

and the second term of the sum as

L
∑

k=1

M !
(M−k)!S(L, k − 1) = M

L−1
∑

j=0

(M−1)!
(M−1−j)!S(L, j)

= M((M − 1)L − (M−1)!
(M−L−1)! )

and plugging these back into (12) we get

E[K|L] = 1
ML (M

L+1 −M(M − 1)L) = M(1− (1− 1
M )L)

as required.

A. Distribution of L

We have βT dropped packets, and R reordered packets;

together, this gives us βT + R bad packets, that we sample

with rate p. It is exactly these bad packets that can cause

certain buckets of the FineComb to become useless. If we

assume that the stashes can correct for at most W bad out-of-

ordered sampled packets, the expected number of bad packets

that are sampled is a random variable L = A + B where A
is number of sampled out-of-order packets in the interval that

are not corrected during stash recovery, and B is the number

of sampled dropped packets in the interval. Notice that A and

B are independent random variables, where B is a binomial

random variable B ∼ B(βT, p), and A is distributed as

Pr[A = a] =

{

∑W
i=0

(

R
i

)

pi(1− p)R−i when a = 0
(

R
a+W

)

pa+W (1− p)R−a−W when a ≥ 1

Since L = A+B, we can find the expectation of L as in (4).
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Fig. 9. Expected fraction of useful samples E[X]/pG vs stash size W
when the total storage is S = 160. All the solid (blue) lines assume that the
expected number of sampled out-of-order packets is pR = 100, and each
line has a different value for the expected number of dropped packets pβT as
{20, 40, ..., 120}. The dotted (red) lines assume that the expected number of
sampled dropped packets is βpT = 100, and vary pR as {20, 40...., 120}.
The (green) lines assume that the total number of dropped and out-of-order
sampled packets p(R+ βT ) = S = 160.

B. E[X]: Unconditional expected number of useful samples

We now combine the results of (2), and the distribution of

L from §A to obtain the unconditional distribution of E[X].
Recalling that L = A+B and using the Poisson approximation

for B (since B is just a simple binomial distribution B(βT, p)
with p≪ βT ), we have

E[X|A] =
∞
∑

b=0

E[X|A, b] Pr[B = b]

=

∞
∑

b=0

pG(1− 1
M )A+b · e−pβT (pβT )b

b!

= pGe−βpT/M (1− 1
M )A (13)

We can also use the Poisson approximation for A to obtain

E[X] =

∞
∑

a=0

E[X|a] Pr[A = a]

= pGe−βpT/M (F(W ; pR)

+
e−pR/M

(

1− 1
M

)W
(1− F(W ; (1− 1

M )pR))) (14)

where F(W ;λ) is the cumulative Poisson distribution, that is

F(W ;λ) =
∑W

i=0 e
−λ λi

i! . Since (14) is so complicated, we do

most of our analytic work on E[X|L = E[L]] in (4), and use

numerical methods to work with E[X] in (14).

C. Optimizing W for fixed sampling rate p

In (5) we assumed that sampling rate p and total storage

S is fixed, and found the optimal sizing of stash stage W
that maximizes E[X|L = E[X]] (i.e., the expected number of

useful samples). In this section, we show qualitatively that the

stash sizing in (5) obtained by working with the conditional

expectation E[X|L = E[L]] also applies when we work with

the unconditional expectation E[X] in (14). To do this, we
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Fig. 10. Expected fraction of useful packets E[X]/G vs sampling rate
p when the total storage is S = 160 and the number of dropped packets
is βT = 100. The solid (blue) lines plot equation E[X|W = W ∗]
when the stash is of size W ∗ = E[A] = pR, and for M = S − W ∗

and the dotted (red) lines plot E[X|W = 0]/G when there is no
stash. Each pair of lines has a different value for the expected num-
ber of out-of-order packets R from the logarithmicaly-spaced set R ∈
{100, 178, 316, 560, 1000, 1780, 3160, 5600, 10000}. The vertical lines are
plotted according to (8) and represent the approximate maxima of the solid
(blue) curves.

substitute M = S −W into (14) and plot the resulting E[X]
as a function of W in Figure 9.

From Figure 9 we make a number of qualitative observa-

tions. First, we observe that when there are fewer bad sampled

packets, namely p(R+βT ) ≤ S = 160, the expected fraction

of useful samples is maximized approximately when the stash

has size W slightly larger than pR. That is, we want the stash

to be slightly larger than the expected number of out-of-order

packets. On the other hand, when there are many bad sampled

packets i.e. p(R + βT ) ≥ S = 160, the expected fraction

of useful samples is a monotonically decreasing function;

it follows that maximizing the expected number of useful

samples requires us to allocate all the storage to the buckets,

and set the stash size to W = 0.

D. Optimizing p with Stash W = pR

Using E[X|L = E[L]]. Now, in (5) we found that when we

have a stash, its optimal size is W ∗ = E[A] = pR. We find the

optimal value of p at this optimal value of stash size W = W ∗

by setting M = S −W ∗ in (2) and (4) to obtain

E[X|L = E[L],W = pR] = pG

(

1− 1

S − pR

)βpT

(15)

Now, by taking the derivative and setting it equal to zero, we

find that the maxima of (15) occurs when the sampling rate is

approximately

p∗ ≈ 1

2(ρT )2
((2ρ+ β)TS − (ρ+ β)T

−
√

8(1− S)S(ρT )2 + ((2ρ+ β)TS − (ρ+ β)T )2
)

≈ S

2ρ2T

(

2ρ+ β −
√

4ρβ + β2
)

where the second approximation assumes that S ≫ 1.

Working with E[X]. Now, we show qualitatively that the

stash sizing in (5) obtained by working with the conditional

expectation E[X|L = E[L]] also applies when we work with

the unconditional expectation E[X] in (14). To do this, we
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consider the two cases. For the first case, we assume that there

is no stash (which we showed is optimal when S < p(R+βT ))
and plot (7) as the dotted (red) lines in Figure 10. For the

second case, we assume that the stash is of size W ∗ = pR,

and substitute W = W ∗ and M = S−W ∗ into (14) and plot

the resulting as the solid (blue) lines in Figure 10. We can

make a number of observation from Figure 10:

• Stash is better than no stash. From Figure 10 we can

right away observe that for a fixed value for R, βT , and S,

the expected number of useful samples is higher when we use

a stash of size W ∗ than when we have no stash (since the

maxima of the solid (blue) curves are higher than the maxima

of the dotted (red) curves).

• Our approximation for p∗ is good. Furthermore, Figure 10

shows that our approximation for the optimal sampling rate p∗

in (8) is quite good (since the vertical lines indeed coincide

with the maxima of the solid (blue) curves). These qualitative

results support our analysis using E[X|L = E[L]].

Recommendations. We would like to operate the data struc-

ture at the maxima of the solid (blue) curves from Figure 10.

Thus, we suggest using a sampling rate of p∗ per (8), and

stash of size W ∗ = p∗R.
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