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ABSTRACT

This paper studies the problem of querying graphs within
bounded resources. Given a query Q, a graph G and a small
ratio α, it aims to answer Q in G by accessing only a frac-
tion GQ of G of size |GQ| ≤ α|G|. The need for this is
evident when G is big while our available resources are lim-
ited, as indicated by α. We propose resource-bounded query
answering via a dynamic scheme that reduces big G to GQ.
We investigate when we can find the exact answers Q(G)
from GQ, and if GQ cannot accommodate enough informa-
tion, how accurate the approximate answers Q(GQ) are. To
verify the effectiveness of the approach, we study two types
of queries. One consists of pattern queries that have data lo-
cality, such as subgraph isomorphism and strong simulation.
The other is the class of reachability queries, without data
locality. We show that it is hard to get resource-bounded al-
gorithms with 100% accuracy: NP-hard for pattern queries,
and non-existing for reachability when α 6= 1. Despite these,
we develop resource-bounded algorithms for answering these
queries. Using real-life and synthetic data, we experimen-
tally evaluate the performance of the algorithms. We find
that they scale well for both types of queries, and our ap-
proximate answers are accurate, even 100% for small α.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query pro-
cessing

Keywords

bounded resource; graph querying; pattern matching

1. INTRODUCTION
Real-life graphs introduce challenges to query answering.

(1) Such graphs are typically big. For instance, Facebook
has 1 billion nodes and 140 billion links in its social graph1,
and a Web-scale graph is easily of PB size [17]. (2) Queries

1http://newsroom.fb.com/

 
 
 
 
 
 
 
 
 
 

are routinely posed on these graphs, such as graph pattern
queries [20, 33] and reachability queries [36]. Such queries
are expensive. For a graph G = (V,E) and a query Q, it
takes O(|V | + |E|) time when Q is to test whether one node
can reach another in G, O(|Q||V |(|V | + |E|)) time to find
matches of Q in G when Q is a graph pattern and matching
is defined by strong simulation [20], and worse yet, it is NP-
hard even to decide whether there exists a match of Q in
G by subgraph isomorphism. It is often cost-prohibitive to
find exact answers to these queries in big graphs.

Can we still answer such queries Q in a big graph G when
we have limited resources, e.g., time and space? This ques-
tion motivates us to study resource-bounded query answer-
ing. Given a small ratio α ∈ (0, 1) and Q posed on G,
we extract a fraction GQ of G such that |GQ| ≤ α|G|, and
compute approximate answers Q(GQ). Here α is called a
resource ratio and is determined by our available resources.

The idea behind resource-bounded query answering is to
make big data “small”. While we cannot lower the complex-
ity of computing Q(G), we reduce the cost by using small
GQ instead of G, and hence, make it feasible to answer ex-
pensive queries in big graphs. The need for this is evident:
real-life searches require fast response (e.g., in less than 1
second [6]) with e.g., limited memory [18] and energy [15].
Computation of exact answers Q(G) by accessing the entire
G is often beyond reach in these settings. We may have
to settle with approximate answers, which often suffice in,
e.g., updating ads based on trends in social networks [2] and
mining patterns in social graphs [9,16]. Moreover, for graph
pattern matching by subgraph isomorphism, it is often nec-
essary to adopt inexact query answers anyway.

Obviously the smaller the resource ratio α is, the less
space and time it takes to compute Q(GQ); but as a price,
the lower the accuracy of the approximate answers Q(GQ)
is. Nonetheless, we show that even with small α, we can
often find answers with quite good quality, even exact an-
swers (Section 6). Indeed, a typical Facebook Graph Search
query2 can be answered by using nodes that are within 3
hops of a designated node in G, a small fraction of its entire
social graph [34]. This is also the case for a range of person-
alized social search queries [1,8]. However, note that simply
extracting local information alone may not suffice: there
could be more than 109 nodes within 3 hops of a node [1].

Example 1: A fraction of a social network G is shown in
Fig. 1. There are three social groups in G: a hiking group
(HG), a city cycling club (CC), and a separate group of

2https://www.facebook.com/about/graphsearch
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Figure 1: Personalized social search

cycling lovers (CL). A user Michael issues a query: “find me
cycling lovers (CL) who know both my friends in LA cycling
club (CC), and my friends in the hiking group (HG)”. Such
a query is common in, e.g., Facebook Graph Search. It can
be represented as graph pattern Q shown in Fig. 1.
By strong simulation [20], Q(G) returns two matches cln−1

and cln. To find them, there is no need to search the entire
G. It suffices to consider a subgraph GQ of G consisting of
only those nodes within 2 hops of Michael. In fact, a small
GQ with 7 nodes will do here. Resource-bounded query
answering aims to identify such a small subgraph GQ of G
within resource ratio α such that Q(GQ) can still give us
accurate or even exact answers. Note that if the resource
ratio α allows us to visit, say, at most 16 nodes and edges in
GQ, it is nontrivial to identify a sensible GQ from (possibly
thousands of) nodes within 2 hops of Michael.
The query Q is localized: one can find matches locally, by

searching only those nodes within dQ hops of a designated
note Michael, where dQ is decided by Q. Thus to answer Q
we do not have to consider nodes far from Michael.
More challenging are non-localized queries. For example,

Michael also asks whether he can reach a sport star Eric
via social links. This reachability query is non-localized: in
the worst case, every node and edge in G may have to be
visited. We will show that we can still answer such queries
rather accurately without traversing the entire G. ✷

This example shows that resource-bounded query answer-
ing is feasible in practice, and it helps us query big data. To
make practical use of it, however, several questions have to
be answered. Given a ratio α, how can we identify a small
GQ that is within the bound w.r.t. α, and gives us accurate
or approximate answers to Q in G? Can we get accuracy
guarantees in GQ, even 100% accurate? Does this approach
work on both localized queries and non-localized queries?
These questions are challenging even for localized queries.

Contribution. This work is a step towards effective ap-
proaches to answering queries within bounded resources.

(1) We formalize resource-bounded query answering via a
dynamic reduction scheme (Section 3). Given a graph G, a
query Q and a small α ∈ (0, 1), we propose to first reduce
G to GQ such that |GQ| ≤ α|G|, by accessing a bounded
amount of the data in G. We then compute Q(GQ) as ap-
proximate answers to Q in G. We define query answer accu-
racy to evaluate the quality of approximate answers Q(GQ).

As a proof of concept, we study resource-bounded query
answering for both localized and non-localized queries.

(2) We develop resource-bounded algorithms for graph pat-
tern matching in terms of strong simulation and subgraph
isomorphism (Section 4). We show that for these localized
queries, resource-bounded query answering is already non-
trivial. It is NP-hard to decide, given G, Q and α, whether

there exists a subgraph GQ of G such that |GQ| ≤ α|G| and
Q(G) = Q(GQ), i.e., whether it is possible to find exact an-
swers from a small GQ. Despite this, we develop a reduction
strategy that identifies GQ by fetching nodes based on their
dynamically maintained weights, guided by query Q. We
show that our algorithms visit a bounded amount of data in
G, and possess certain accuracy guarantees.

(3) We extend the study to reachability queries (Section 5).
We show that for these non-localized queries, there exist no
algorithms that, given G, nodes s and t in G, and α < 1,
decide whether s reaches t with 100% accuracy by visiting
no more than α|G| nodes. While reachability can be tested
in linear time, it has to visit an unbounded number of nodes
in G or store an index larger than G. To this end, we provide
an algorithm for answering reachability queries based on a
hierarchical landmark index. Using the index, the algorithm
drills-down or rolls-up in the search, visits at most α|G|
nodes or edges, and guarantees 100% true positives.

(4) We experimentally evaluate the effectiveness of the ap-
proach using real-life and synthetic graphs (Section 6). We
find that our algorithms are (a) efficient: they are 5.5, 6.25
and 5.7 times faster than traditional algorithms for strong
simulation, subgraph isomorphism and reachability, respec-
tively, even after they are improved by employing our own
optimization; (b) accurate: they often achieve 100% accu-
racy by accessing only 0.0015% (resp. 0.05%) of graphs G

to answer pattern (resp. reachability) queries; for pattern
queries, they visit 7%-24% of the data in the neighborhood
of a personalized node within |Q| hops; and (c) scalable:
they scale well when G grows; e.g., for α = 0.0015% (i.e.,
15 ∗ 10−6) and |G| = 1 PB, they access only 15GB of data,
reducing G from PB to GB while retaining high accuracy.

We contend that resource-bounded query answering is ca-
pable of finding accurate answers by accessing a small frac-
tion of big graphs, and is promising for evaluating both local-
ized and non-localized queries in real life. This also suggests
how we can strike a balance between the resources needed
and the accuracy of approximate answers computed.

Related work. We categorize the related work as follows.

Indexing and compression. There are typically two ways to
reduce the search space: indexing and compression.

(1) Graph indexing [10, 13, 26, 35] provides precomputed
global information of G to evaluate queries, with additional
storage costs. For instance, given G = (V,E) for reacha-
bility queries, a reachability matrix takes O(|V |2) space to

store [36]. A 2-hop index takes O(|V ||E|
1
2 ) space to store

and O(|E|
1
2 ) time to query. These are not very practical

when G is big. Labeling-based methods for reachability
queries are studied in [35] with reduced index size by prun-
ing landmark and path labeling. In contrast, this work uses
small indices to support dynamic reduction, while striking a
balance between the amount of data accessed (bounded by
a given small ratio) and the accuracy of query results.

(2) Graph compression [4, 14] constructs a summary of G.
To answer Q, however, it often needs decompression, some-
times restoring the entire G [4]. In a similar sense, graph
summarization gives sketches of G [23,32]. Query preserving
compression [12] allows us to process Q without decom-
pression. It compresses G into a graph Gc (5% and 43%
of |G| for reachability and graph simulation, respectively).



For Web-scale graphs of PB size, however, this technique
alone does not suffice. In contrast to compression that uses
the same Gc to answer all queries posed on G, we fetch a
bounded GQ given each query Q with information for an-
swering the particularQ. This said, the technique of [12] can
be seamlessly combined with ours as a preprocessing step.

Distributed systems. Distributed systems, e.g., Pregel [21]
and GraphLab [19], evaluate queries on vertices of a graph
in parallel with multiple processors. In contrast, this work
studies query evaluation with limited resources and a single
processor. This said, the techniques of this work can be
readily adapted to the distributed settings.

Budgeted search. Related is also prior work on finding error-
bounded answers, as early as (weighted) A∗ [25], which was
recently extended as optimistic search [30]. The prior work
focuses on predicating how good a partial answer (as in a
search tree) approximates the optimal solution, but the cost
of finding such answers is not the major concern. Bounded-
cost search was recently proposed [29,31] for planning, with
the cost bounded by a user-specified budget. The quality of
the answer, however, is not a concern [29]. In contrast, we
aim to strike a balance between the cost of finding solutions
and the quality of the answers, via dynamic data reduction.
Budgeted strategies for graph search were studied for e.g.,

subgraph isomorphism [5, 28]. The idea of [5] is to assign
dynamically maintained budgets and costs to nodes dur-
ing the traversal, to find exact answers with minimal search
space. To reduce verification cost, [28] schedules search or-
der based on the frequencies of features in queries and data
graphs. For graph patterns, our dynamic reduction is in a
similar spirit, to greedily select promising nodes that may
contribute to query answers. The difference is that we aim
to process queries within a given (arbitrarily small) ratio α

on the search space. Moreover, we provide methods to assess
promising nodes and to guarantee bounded search space.
Closer to our work is BlinkDB [2] for relational queries. It

adaptively samples data to find approximate query answers.
“Predictable” queries are studied where enough information,
e.g., query logs and trace, is known to enable efficient pre-
computation of samples. In contrast, we study graph pat-
tern queries, where sampling is much harder. This is because
(1) the graph queries are rather “unpredictable” [2] due to
flexible predicates posed on query nodes, and (2) in con-
trast to homogeneous table data, there is no “one-fit-for-all”
schema available for data nodes in a graph. We also do not
assume the existence of abundant query logs and workload
for sampling strategy. Instead, we develop dynamic reduc-
tion techniques to identify and only access promising“areas”
that lead to reasonable approximate answers.

2. PRELIMINARY
In this section we present localized queries and non-

localized queries. We first review several basic notations.

Data graphs. We define a data graph as a node-labeled,
directed graph G = (V,E, L), where (1) V is a finite set of
data nodes; (2) E ⊆ V ×V is a set of edges, in which (v, v′)
denotes an edge from node v to v′; and (3) for each node
v in V , L(v) is the label of v. The label L(v) may indicate
e.g., the content of a page [3] or node attributes [27].
We use two types of subgraphs Gs = (Vs, Es, Ls) of G.
◦ Graph Gs is a subgraph of G if Vs ⊆ V , Es ⊆ E, and

Es (resp. Ls) is the restriction of E (resp. L) on the

nodes in Vs; i.e., for each edge e = (v, v′) ∈ Es, v ∈ Vs

and v′ ∈ Vs; and for each v ∈ Vs, Ls(v) = L(v).
◦ Graph Gs is a subgraph of G induced by Vs if it is

a subgraph of Gs and for all nodes v, v′ ∈ Vs, edge
(v, v′) ∈ Es if and only if (v, v′) ∈ E; i.e., Es includes
all the edge of E that are defined on the nodes in Vs.

We will also use the following notations. (1) The size of
a graph G, denoted as |G|, is the total number of the nodes
and edges of G. We also use |V | to denote the number of
nodes in G; similarly for |E|. (2) The diameter of G is the
length of the longest shortest path between any two nodes
in G. (3) We say that a node v′ is within r hops of v if there
exists a path of at most r edges from v to v′ or from v′ to v.
We denote by Nr(v) the set of all nodes in G within r hops
of v. (4) For a node v and a non-negative integer r, the
r-neighborhood Gr(v) of v is the subgraph of G induced by
Nr(v). (5) We say that v is a parent of v′, or equivalently,
v′ is a child of v, if (v, v′) is an edge in E.

We study two types of graph queries, given as follows.

Graph pattern queries. We study graph patterns for per-
sonalized social search [7,8]. A graph pattern is a graph Q =
(Vp, Ep, fv, up, uo), where (1) Vp and Ep are the set of query
nodes and (directed) edges, respectively; (2) for each node
u, fv(u) specifies a node label; and (3) up and uo represent
the personalized node and output node of Q, respectively.

In a data graph G, the personalized node up has a unique
match vp, with fv(up) = L(vp), often denoting the person
who issues the query Q. The output node uo indicates the
search intent of Q, and the label fv(u) specifies search con-
straints [7]. For instance, for the graph pattern Q over graph
G of Fig. 1, node Michael is its personalized node, and has
a unique match Michael in G. Node CL is the output node,
indicating that the query is to find and return cycling lovers
who satisfy the constraints of the pattern.

We consider two semantics for matching a graph pattern
Q = (Vp, Ep, fv, up, uo) to a data graph G.

Subgraph queries. A match of Q in G via subgraph isomor-

phism is a subgraph G′ of G that is isomorphic to Q, i.e.,
there exists a bijective function h from Vp to the set of nodes
of G′ such that (1) for each node u ∈ Vp, fv(u) = L(v); (2)
(u, u′) is an edge in Q if and only if (h(u), h(u′)) is an edge
in G′; and (3) h(up) = vp, i.e., up matches the unique vp.

The answer to Q in G, denoted by Q(G), is the set of
nodes h(uo) that match the output node uo of Q in G′, for
all matches G′ of Q in G. We refer to Q as a subgraph query.

Simulation queries. For matching by strong simulation [20],
a match of pattern Q in G is defined on the dQ-neighborhood
GdQ(v0) = (VdQ , EdQ , LdQ) of nodes v0 in G, where dQ is
the diameter of Q. In this setting, we say that G matches Q
if there exists a binary relation Rv0 ⊆ Vp × VdQ such that

◦ (up, vp) ∈ Rv0 , i.e., the match of up is fixed to be vp;
◦ for each node u ∈ Vp, there exists a node v ∈ VdQ such

that (u, v) ∈ Rv0 , referred to a match of u; and
◦ for each pair (u, v) ∈ Rv0 , fv(u) = LdQ(v) and further,

(a) for each edge (u, u′) in Ep, there exists an edge
(v, v′) ∈ EdQ , such that (u′, v′) ∈ Rv0 , and

(b) for each edge (u′′, u) in Ep, there exists an edge
(v′′, v) ∈ EdQ , such that (u′′, v′′) ∈ Rv0 .

Conditions (a) and (b) above ensure that the match pre-
serves the children and parent relationships, respectively.



symbols notations
Nr(v) node set within r hops of v
Gr(v) r-neighborhood graph of v

Q (Vp, Ep, fv, up, uo), graph pattern
up (resp. uo) personalized (resp. output) node in Q

vp the unique node in G that matches up

dQ the diameter of Q
l the number of distinct labels in Q

d the diameter of Q as an undirected graph
α resource ratio such that |GQ| ≤ α|G|
η accuracy ratio: accuracy(Q,G,Q(GQ)) ≥ η

f
the max number of nodes in GdQ

(vp) sharing

the same label and a common parent or child

Table 1: Notations: graphs and queries

The match relation R of Q in G is defined as the union
of Rv0 for all nodes v0 in G. For any Q and G, it is known
that there exists a unique, maximum match relation RM via
strong simulation [20]. We define the answer Q(G) to Q in
G to be the set of matches of the output node uo, i.e., Q(G)
= {v | (uo, v) ∈ RM}. We refer to Q as a simulation query.
For instance, for Q and G depicted in Fig. 1, G matches

Q via strong simulation, in which the output node CL has
two matches cln−1 and cln, and Q(G) is the set {cln−1, cln}.

Localized queries. A class of graph queries Q is said to
have data locality, referred to as localized queries, if for any
graph G and any node v in G, one can decide whether v is in
Q(G) locally, by inspecting only those nodes of G that are
within dQ hops of v, where dQ is determined only by |Q|.
Otherwise, the class of queries is called non-localized.
Both subgraph and simulation queries are localized. To

compute Q(G), we only need to visit those nodes within dQ
hops of vp in G, where dQ is the diameter of Q, dQ ≤ |Q|,
and vp is the match of the personalized node up of Q. That
is, we only need to consider the dQ-neighborhood GdQ(vp)
of vp in G. However, GdQ(vp) may be large [1].

Reachability queries. As an example of non-localized
queries, we consider reachability queries. Given G and query
Q as a pair of nodes (vp, vo) in G, it returns true if and only
if vp can reach vo in G, i.e., there is a path from vp to vo.
For instance, Example 1 gives an reachability query, to

test whether Michael can reach Eric via social links.
Reachability queries are non-local: to compute Q(G), we

often have to visit nodes that reach vp or vo with a path of
unbound length, even all the nodes in G in the worst case.

The notations of this paper are summarized in Table 1.

3. RESOURCE-BOUNDED QUERYING
To process a query Q on a big graph G while our resources

are limited, we propose to identify and fetch a fraction GQ

of G within a given bound on its size, and compute approx-
imate answers Q(GQ) with accuracy guarantees.

Accuracy of query answers. We define an accuracy mea-
sure for pattern queries, and then revise it for reachability.

Graph patterns. The exact answer to a pattern Q in G is
a set Q(G) of matches. Suppose that an algorithm A com-
putes a set Y of approximate answers to Q in G. We define
the precision and recall of Y for (Q,G) in the standard way:

precs(Q,G, Y ) =
|Y ∩Q(G)|

|Y |
, recall(Q,G, Y ) =

|Y ∩Q(G)|

|Q(G)|
.

That is, precs is the ratio of the number of correct matches
in Y to the total number of matches in Y , while recall is
the ratio of the number of correct matches in Y to the total
number of matches in Q(G). Based on these, we define the

accuracy of Y for (Q,D) as the usual F -measure:

accuracy(Q,G, Y ) = 2
precs(Q,G, Y ) recall(Q,G, Y )

precs(Q,G, Y ) + recall(Q,G, Y )
.

The larger accuracy(Q,G, Y ) is, the more accurate Y is.
When both Q(G) and Y are ∅, i.e., no match exists, we

treat accuracy(Q,G, Y ) as 1; we consider precs only if Q(G)
is ∅ but Y is not, and recall only if Y is ∅ but Q(G) is not.

Reachability queries. When Q is a reachability query, Q(G)
is a single truth value. Given a set Q of reachability queries,
we denote by Q(G) the set of exact answers for all queries
Q in Q, and by Y the set of truth values computed by
algorithms A for Q ∈ Q. Then we define precs(Q, G,Y),
recall(Q, G,Y) and accuracy(Q, G,Y) in the same way as
above. Here precs(Q, G,Y) is the ratio of the number of
true positives and true negatives to the total number of an-
swers returned by A, which also include false positives and
false negatives; similarly for recall(Q, G,Y).

Resource-bounded query answering. We now present
resource-bounded algorithms. Let α ∈ (0, 1) be a resource
ratio, and L be a class of queries (subgraph or simulation).

Given a graph G and a query Q in L, an algorithm A for
L queries with resource-bound α does the following:

◦ fetches a fraction GQ of G such that |GQ| ≤ α|G|, by
visiting at most α ∗ c ∗ |G| amount of data in G; and

◦ computes Q(GQ) as approximate answers,
where c is a coefficient such that α ∗ c < 1.

We say that A has accuracy guarantee η for L if for all
graphs G and all queries Q ∈ L, accuracy(Q,G,Q(GQ)) ≥ η.

Note that the accuracy ratio η is in the range (0, 1]. When
η = 1, algorithm A finds exact answers for all graphs G and
queries Q i.e., with 100% accuracy.

Similarly such algorithms are defined for reachability.

As illustrated in Fig. 2, algorithm A consists of two steps.

(1) Dynamic reduction. Given a query Q, it reduces a pos-
sibly big G to a small GQ within the bound. In contrast to
graph indexing, compression and summarization that build
the same structure for all queries (see Section 1), dynamic
reduction finds GQ with only information needed for an in-
put query Q, and hence, allows higher accuracy. One can
use any techniques for dynamic reduction, including those
for data synopses such as sampling and sketching, as long
as the process visits a bounded amount of data in G. The
reduction process may use some auxiliary information (e.g.,
indices) collected by offline preprocessing that is conducted
once-for-all, to help us answer all queries posed on G.

(2) Approximate query answering. Algorithm A computes
Q(GQ) by accessing α|G| amount of data rather than the
entire G. When α = 0.0015% and |G| is 1PB, e.g., GQ is of
GB size and accuracy(Q,G,Q(GQ)) is high (see Section 6).

Example 2: Recall Q and G from Fig. 1. Set resource ratio
α = 1.6%, and c = 1. Suppose thatm = 96 and n = 900, i.e.,
there are 1000 nodes within 2 hops of node Michael. Then
a resource-bounded algorithm A is allowed to visit at most
16 nodes and edges in G. Ideally, A visits Michael, cc1, cc3,
cln−1, cln and hgm, and findsGQ to be the subgraph induced
by the nodes (with 14 nodes and edges). If so, A can find
Q(GQ)={cln−1,cln} and accuracy(Q,G,Q(GQ))=100%. ✷

Remarks. The bound α|G| is essential to bounding e.g.,
time, space and energy [6, 15, 18]. Disk-based algorithms
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Figure 2: Resource-bounded query answering
(e.g., [18]) can be used for dynamic reduction with disk reads
for O(α ∗ c ∗ |G|) data, without loading the entire G. Note
that the cost of online query processing involves only fetch-
ing GQ by visiting O(α ∗ c ∗ |G|) data, and does not include
the cost of offline preprocessing for auxiliary structures.

Fundamental problems and complexity. For a class
L of graph queries, the problem of resource-bounded query
answering is to find, given α ∈ (0, 1) and η ∈ (0, 1], an
algorithm with resource bound α and accuracy guarantee η.

This problem is hard. To see this, consider the following
decision problem. The exact resource-bounded querying for
L is to decide, given G and Q ∈ L, whether there exists
a subgraph GQ of G such that |GQ| ≤ α|G| and Q(G) =
Q(GQ). That is, whether there is a bounded GQ at all that
gives 100% accuracy for Q. The result below shows that this
problem is already intractable for localized graph queries.

Theorem 1: The exact resource-bounded querying problem
is NP-hard for (a) simulation queries even when Q is a path
and G is a DAG; and for (a) subgraph queries. ✷

Proof sketch: (a) For simulation, we show that it is NP-
hard by reduction from the set covering problem SCP, which
is NP-complete (cf. [24]). Given an instance of SCP consist-
ing of a finite set X, a family F = {C1, . . . , Cn} of subsets
of X and a positive integer k, we define a path pattern Q of
length 2, a DAG G with elements of X and F as its nodes,
and α as a function of k, |X|, |F |. We show that there is GQ

with |GQ| ≤ α|G| and Q(G) = Q(GQ) by strong simulation
if and only if there exist k subsets in F whose union is X.

(b) For subgraph queries we use reduction from the subgraph
isomorphism problem, which is NP-complete (cf. [24]). ✷

For reachability queries (non-localized), it is even worse.
Here we consider algorithms that traverse a graph by
following edges as usual, without precomputed indices.

Theorem 2: For any α < 1, there exists no algorithm
for answering reachability queries that visits at most an α-
fraction of G and has 100% accuracy guarantee. ✷

Proof sketch: Assume by contradiction that such an al-
gorithm A exists. We construct two graphs G1 and G2 such
that the ⌈ 1

α
⌉-neighborhoods of vp and vo in the two graphs

are isomorphic to each other. To test whether vp reaches vo,
we show that A returns true on both G1 and G2, while it
should be true on G1 and false on G2. ✷

Not all is lost. In Sections 4 and 5, we develop resource-
bounded algorithms for pattern and reachability queries, re-
spectively, which often find 100% accurate answers even for
very small α in real-life graphs (Section 6). That is, resource-
bounded query answering is effective in practice.

4. ANSWERING LOCALIZED QUERIES
We now study resource-bounded algorithms for answering

simulation and subgraph queries. This is nontrivial: Theo-
rem 1 tells us that it is intractable to decide whether there
exists a subgraph GQ within a bound that preserves Q(G).

Despite this, we develop resource-bounded algorithms for
graph pattern queries that still have certain performance
guarantees. The main result of the section is as follows.

Theorem 3: There exist resource-bounded algorithms for
simulation and subgraph queries such that given any resource
ratio α ∈ (0, 1), graph G and query Q,
(a) they find a subgraph GQ of G with |GQ| ≤ α|G|, by

visiting at most dG ∗ α|G| nodes and edges in G, in
O(dG|Q||GQ|) time; and

(b) Q(GQ) has 100% accuracy when α ≥ 2((l∗f)d−1)
(l∗f−1)|G|

. ✷

Here dG is the maximum degree of nodes in GdQ(vp) (cor-
responding to parameter c in resource-bounded query an-
swering), d is the diameter of Q when Q is treated as an
undirected graph, l is the number of distinct labels in Q,
and f is the maximum number of the nodes in GdQ(vp) that
have the same label and a common parent or child.

Theorem 3 tells us that we can effectively find small GQ

by accessing a bounded amount of data in G. Moreover, for
small α, we have 100% accuracy. Indeed, in practice dG, l,
d and f are all quite small: (1) on average dG is around 190
in Facebook [34]; this bound also applies to f ; (2) d and l

are smaller than |Q|, and |Q| is small in personalized social
search [8] and ego network analysis [22]. In our experimental
study using real-life graphs, while |GdQ(vp)| is up to 0.01%
of |G| with dG up to 483, we find that we consistently get
100% accuracy even when α is 0.0015%, which is on average
3% of the theoretical bound given in Theorem 3(b), where
|GQ| is up to 19% of the size |GdQ(vp)| (see Section 6).

We next prove Theorem 3 for simulation queries first
(Section 4.1), and then adapt it to subgraph queries (Sec-
tion 4.2). We focus on dynamic reduction to find GQ; after
that, we simply use existing algorithms for strong simula-
tion [20] and subgraph isomorphism [11] to compute Q(GQ).

4.1 Resource-Bounded Strong Simulation
We start with a resource-bounded algorithm for simula-

tion queries, denoted by RBSim. Given a simulation query
Q, a graph G and a resource ratio α, RBSim finds a subgraph
GQ of GdQ(vp) with |GQ| ≤ α|G|, by visiting a dG ∗ α|G|-
fraction of G. It returns Q(GQ) as approximate answers.

The tricky part of RBSim is its dynamic reduction strat-
egy to induce subgraph GQ. One might want to take GQ as
dQ-neighborhood GdQ(vp) and compute Q(GQ). However,
GdQ(vp) easily exceeds resource bound. Continuing with
Example 2, the 2-neighbor of Michael has 1000 nodes,
exceeding the bound when α = 1.6%. To cope with this,
RBSim performs a controlled traversal of G starting from
the match vp of the personalized node up, and populates
GQ as follows. (a) Its search is guided by Q, and includes in
GQ only candidate matches of query nodes. (b) It maintains
dynamically updated weights for nodes v of G, indicating
how likely v can contribute to Q(G). It only adds to GQ

those nodes with top-ranked weights until GQ reaches the
bound α|G|. (c) It uses a dynamically maintained bound to
control the number of candidate in GQ for each query node
u. This ensures that each u has a fair chance of finding a
match in GQ and avoids bias towards high-degree nodes.

Below we first introduce our node-selection strategy for
GQ. We then give the details of RBSim and its analyses.

Dynamic reduction. To populate GQ, for each node v,
RBSim maintains (a) the degree d(v) of v, i.e., the cardinal-



ity of its 1-neighborhood N1(v) (or simply N(v)), consisting
of the parents and children of v; and (b) a set Sl of pairs
(ℓ, g), where ℓ is a distinct label from N(v), and g is the
number of occurrences of ℓ in N(v). These can be found by a
linear traversal of G in an once-for-all offline preprocessing.

Example 3: Consider graph G of Fig. 1. Let |G| = 1000,
where m = 96 and n = 900. An offline preprocessing step
computes, for node Michael, (a) Sl = {(HG, 96), (CC, 3)},
i.e., there are 96 HG nodes and 3 CC nodes in the neighbors
of Michael, and (b) 99 as its degree. Similarly, for hgm, Sl

= {(Michael, 1), (CL, 3)} and its degree = 4. ✷

For a node v in G and a query node u in Q, to decide
whether to include v in GQ as a candidate match of u, we
consider the weight of v defined in terms of the following.

(1) A Boolean guarded condition C(v, u) indicating whether
v is a candidate match of u. We define C(v, u) = true if and
only if fv(u) = L(v), and for each parent (resp. child) u′ of
u in Q, there exists a parent (resp. child) v′ of v in N(v)
with fv(u

′) = L(v′). We use C(v, u) to filter nodes that are
not matches, and hence reduce the search space. Indeed,
if C(v, u) is false, then v is not a match of u by strong
simulation (Section 2). Using the auxiliary structure Sl

and hashing function, C(v, u) can be evaluated efficiently.

(2) A dynamically maintained cost c(v, u). It is the total
number of nodes u′ of N(u) in Q that do not find v′ of N(v)
in GQ such that C(u′, v′) = true in GQ. Intuitively, c(v, u)
indicates if v is added to GQ, the number of additional nodes
in N(v) that may also be included in GQ so that v can match
u. The larger c(v, u) is, the more costly v is for GQ.

(3) A dynamically maintained value p(v, u), indicating the
probability for v to match u in GQ. It is the total number
of nodes v′ in N(v) that satisfy C(u′, v′) = true, for all u′ ∈
N(u), which are candidates for u′ if added to GQ. Note
that p(v, u) can be extended by incorporating statistics from
query log, such as the “activeness” of a user, user search
interests [7], or topological importance such as centrality.

(4) A dynamically adjusted bound b such that at most
min(b, p(v, u)) nodes in N(v) are visited for a query node
u if v is to be added to GQ. We use b to reduce the chance
of populating GQ with too many nodes from“dense” regions
of G, when, e.g., v has a large number of candidate matches
in N(v). In this way, each v has a more “equal” chance to be
explored. This can be extended by making use of sampling.

Based on these, our node selection strategy is as follows.
Suppose that we are at node v1 and want to pick a node v

in N(v1) to include in GQ as a candidate match of u. We
select v if (a) C(v, u) is true, and (b) the estimated weight
p(v,u)

c(v,u)+1
is the maximum among all those in N(v1). That is,

we favor nodes with high potential and low estimated cost.

Algorithm. We are now ready to give algorithm RBSim,
shown in Fig. 3. Its main driver is simple: it first calls pro-
cedure Search to fetch a subgraph GQ (line 1). It then com-
putes Q(GQ) with the algorithm of [20] (line 2), and returns
the set of the matches of the output node uo in GQ (line 3).

Procedure Search. Given Q, G and α, the procedure identi-
fies a subgraph GQ with |GQ| ≤ α|G|, as shown in Fig. 3. It
starts with an empty GQ (line 1), and initializes a stack S

with the pair (up, vp) of the personalized node and its match
(line 2). It then traverses G starting from vp, and populates

Algorithm RBSim

Input: A query Q, a graph G, a resource ratio α.
Output: Approximate answers Q(GQ).

1. GQ := Search(Q,G, α);
2. Q(G) := Match(Q,GQ);
3. return Q(G);

Procedure Search
Input: Q, G and α.
Output: Subgraph GQ.

1. initialize graph GQ := ∅; b := 2;
2. Stack S.push (up, vp); terminate:=false; changed:= false;
3. while terminate 6= true do
4. pair (u, v) := S.pop();
5. add v to GQ if it is not already in GQ;
6. update terminate; changed:= true if v is new to GQ;
7. if terminate then return GQ;
8. for each unvisited edge (u, u′) or (u′, u) do
9. ranked list Sp := Pick (u′, v,Q,G,GQ, S);
10. for each v′ ∈ Sp do S.push (u′, v′);
11. if changed and S = ∅ then
12. b := b+ 1; S.push (up, vp); changed:= false;
13. if not changed and S = ∅ then terminate := true;
14. return GQ;

Figure 3: Algorithm RBSim

GQ by including new nodes and edges, which are descen-
dants or ancestors of vp in its dQ-neighborhood GdQ(vp)
(lines 3–13). It uses two flags to control the traversal (line 2):
(a) terminate becomes true if either |GQ| = α|G|, or no nodes
within dQ hops of vp can be added to GQ; and (b) changed
is true if for a given selection bound b, there are new nodes
added to GQ, i.e., there are still candidates within dQ hops
of vp. The bound b is initially set 2 (line 1).

More specifically, the traversal is guided by pattern Q. If
a new node v is added to GQ as a candidate for query node
u (line 5, initially vp), we set changed true (line 6). If now
GQ reaches the bound α|G|, then GQ is returned (line 7).
Otherwise, it inspects both children and parents u′ of query
node u (line 8). For each such u′, it calls procedure Pick

(line 9) to select a ranked list Sp of best new candidates v′

for u′, from the neighborhood N(v) of v in G, where |Sp|
is bounded by b. Each pair (u′, v′) is then pushed onto the
stack S, with the best candidate v′ at the top of S (line 10).

If at this stage, stack S is empty (i.e., no new insertions)
but changed is true (i.e., there are still match candidates
that are not yet in GQ), we increase b and start the search
from (up, vp) again to find them (line 12). If S is empty and
changed is false, no more nodes can be added to GQ, and
we set terminate true (line 13). The process proceeds until
terminate becomes true, and then GQ is returned (line 14).

Procedure Pick. Given a node u′ in Q and a node v in G,
Pick (omitted) finds a list Sp of “top-ranked” nodes v′ in
N(v) that are not yet in the stack S. To do this, Pick keeps
a max-heap to store N(v), with the estimated weight as the
sorting key. For nodes v′ in the max-heap that are not added
to GQ yet (indicated by a dynamically maintained Boolean
flag), it first checks whether the guarded condition C(v′, u′)
= true, and then updates c(v′, u′) and p(v′, u′) by checking
the neighborhoods N(v′) in GQ and N(u′) in Q. It returns
Sp with the top-b ones with the maximum weights in the
max-heap that satisfy the guarded condition, where b is the
selection bound. Note that Sp is possibly empty if no new
candidates exist (e.g., all nodes in N(v) are added to GQ).
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Example 4: Consider Q and G of Fig. 1. When α = 1.6%
(and c = 1), procedure Search finds a subgraph GQ of G

(Fig. 4) with size no more than 14, and visits no more than
16 nodes and edges as follows. (1) It first pushes the pair
(Michael, Michael) onto stack S (line 2), and adds Michael

to GQ (line 5). (2) It then checks edge (Michael, CC) in
Q, and invokes procedure Pick to find top 2 candidates
for CC. In this case, Pick returns cc1 and cc3 (to be ex-
plained soon). Hence, Search pushes (CC, cc1) and (CC,
cc3) onto S (line 10), and inserts cc3, the current top of S,
into GQ (line 5). (3) In the same way, it processes query
edge (CC, CL), and then a “backward” edge (HG, CL). It
includes in GQ three new nodes cln, cln−1 and hgm, along
with edges between them. It next traces back to query edge
(Michael, HG). As the parent of hgm is already in GQ, no
new node is added. (4) Moving up the stack S, Search back-
tracks to cln−1 and cc1. As their neighborhoods are all in
GQ, Search finally pops up the first pair (Michael, Michael),
which makes S empty. At this moment GQ already reaches
its size bound 14. Hence, Search sets terminate true, and
returns GQ. RBSim then invokes Match [20] to compute two
matches cln and cln−1 from GQ, for the output node CL in
Q. In the entire process, 16 nodes and edges are visited.
Note that RBSim visits each query edge once (line 8).
We now show how procedure Pick works. When Pick is

invoked by Search for edge (Michael, CC), Pick rules out
the node cc2 since it does not satisfy the guarded condition,
i.e., it has no CL child as required by the query node CC.
For the two remaining nodes cc1 and cc3, it looks up the
auxiliary structure Sl, and finds that (a) both have a cost
1, since query node CC requires a CL child of them to be in
GQ, and its parent Michael already has a candidate Michael

in the current GQ; and (b) p(cc1, CC) = 3, indicating that
there are 3 possible matches in N(cc1), while p(cc3, CC) =
2. Pick returns list Sp = [cc1,cc3] when the bound b = 2.
For edge (HG, CL) in Q, Pick traces back to hgm, a parent

of cln and cln−1. It updates the cost of hgm from 1 to 0, as
it already has a child cln and parent Michael in GQ, while
p(hgm,HG) = 4. Pick finds node hgm from the max-heap.
Note that all the other HG nodes have cost 1, but do not
get into GQ as they have no CL child. ✷

Performance analysis. We now prove Theorem 3 by ana-
lyzing algorithm RBSim. (1) RBSim extracts a subgraph GQ

with |GQ| ≤ α|G|, guaranteed by the termination condition.
(2) For each newly added node v to GQ, procedure Search

inspects at most 1-hop of v in G, by calling Pick. Hence
Search visits at most dG ∗ α|G| nodes or edges, where dG is
the maximum node degree in GdQ(vp). (3) For time com-
plexity, note that Search executes the while loop (lines 3-
13) at most α|G| times. This is because (a) at least one new
node is added to GQ in each loop, and (b) |GQ| ≤ α|G|. For
each node v and query node u′, it checks the guarded condi-

tions in O(dG) time, and maintains the max-heap in log |dG|
time. As there are in total |VQ| query nodes, it takes at most
O(dG|Q||GQ|) time. These verify Theorem 3(a).

We next prove Theorem 3(b) by induction on the diameter
d of Q (when G is treated as an undirected graph). The case
when d = 1 is trivial. When d = 2, RBSim finds GQ, in the
worst case, a two-level “tree” rooted at vp with size at most

1 + 2 ∗ l ∗ f ≤ 2( (l∗f)
2−1

l∗f−1
). Now assume Theorem 3(b) holds

when d = k. That is, RBSim identifies GQ as a k-level, l ∗ f -
ary “tree”, which contains all possible matches for Q in G.
For d = k + 1, RBSim only needs to explore at most l ∗ f

children for each leaf in GQ to include any new matches at

level k+1. The new GQ hence has size at most 2 (l∗f)(k+1)−1
l∗f−1

.

Hence, when α ≥ 2((l∗f)d−1)
(l∗f−1)|G|

, Q(GQ) = Q(G), i.e., RBSim

finds GQ of size α|G| and guarantees 100% accuracy.
Putting these together, Theorem 3 follows.

4.2 Resource-Bounded Subgraph Queries
We now outline a resource-bounded algorithm for sub-

graph queries, denoted by RBSub. It revises RBSim as fol-
lows: (1) we enrich the guarded condition and cost estima-
tion for isomorphism test, and (2) after GQ is found, we use
a subgraph isomorphism algorithm [11] to compute Q(GQ).

More specifically, we use the same termination condition
as in RBSim, but revise the guarded condition C(v, u) for
RBSub as follows: C(v, u) is true if and only if for every query
node u′ ∈ N(u) in Q with degree du′ , there exists a distinct
node v′ ∈ N(v) in G with the same label and degree dv′ ≥
du′ . That is, C(v, u) imposes additional degree constraints
for subgraph isomorphism. Accordingly, (a) for a node v in
G and a node u in Q, RBSub defines estimated costs c(v, u)
and potential p(v, u) by using the revised guarded condition
C(v, u); and (b) procedure Pick in RBSub favors candidates
for query nodes with larger degree and lower costs.

One can verify Theorem 3 for subgraph queries along the
same lines as the proof above for simulation queries.

5. NON-LOCALIZED QUERYING
We next study resource-bounded query answering for

reachability. Despite of Theorem 2, we develop a resource-
bounded algorithm that guarantees 100% true positives.

Theorem 4: There exists a resource-bounded algorithm
such that given any resource ratio α ∈ (0, 1), data graph
G and reachability query Q, it
(a) visits at most α|G| amount of data, by using an index

of size α|G|;
(b) takes O(α|G|) time to approximately answer Q(G);
(c) and it returns true only if Q(G) is true. ✷

The algorithm visits at most α|G| nodes and edges (hence
parameter c = 1). It never returns “false positive”. We find
from our experimental study that the algorithm constantly
achieves 100% accuracy even when α = 0.05%. Moreover,
its precs and recall get higher over larger and denser G.

We give a constructive proof for Theorem 4 by providing
the algorithm. It requires an once-for-all preprocessing that
compress G and constructs a hierarchical indexing.

Preprocessing. An once-for-all preprocessing first reduces
a (possibly cyclic)G to a directed acyclic graph (DAG)GDAG,
by using the compression method of [12]. It is reachability
preserving, i.e., for all reachability queries Q posed on G,
Q(G) = Q(GDAG). The reason for this step is twofold: (a)
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GDAG is much smaller than G while retaining reachability;
and (b) hierarchical indexing (to be given below) is more
effective on DAGs. Below we simply refer to the DAG as G.

Hierarchical indexing. An hierarchical index I is then con-
structed using landmarks [13]. Given a pair of nodes (v1, v2)
in G such that v1 reaches v2, we say that a node v in G is a
landmark for (v1, v2) and covers (v1, v2) if it is on a path from
v1 to v2. We create I of size α|G|, again once for all Q on G.

Query answering. Given a query Q = (vp, vo) and I, we
check whether vp reaches vo by searching I instead of G, to
find whether there is a landmark in I that covers (vp, vo).

Below we focus on hierarchical index (Section 5.1), and
the resource-bounded reachability algorithm (Section 5.2).

5.1 Hierarchical Landmark Index
One might want to find a minimum set Lm of landmarks

and take the subgraph induced by Lm asGQ, such that every
pair of connected nodes inG is covered by a landmark inGQ.
Given a query (vp, vo), we could then test whether v1 reaches
v2 by checking whether there is a landmark in GQ covering
(vp, vo). However, such a GQ may exceed α|G|; moreover,
the problem of finding a minimum Lm is intractable [13].
In light of this, given G and α, we build a hierarchical

landmark index I of size α|G| to cover as many connected
node pairs in G as possible. Below we use a to denote ⌊ 2

α
⌋.

Index structure. The index I is a set of rooted trees (a

forest), consisting of α|G|
2

landmarks of G in total. Each
tree has a depth of at most ⌊loga |G| + 1⌋, i.e., it has at
most ⌊loga |G|+1⌋ levels with all its leaves at level 1. More
specifically, (1) each node in I is a landmark of G, and (2)
there is an edge (v1, v2) in I if and only if either v1 can
reach v2 or v2 can reach v1. Intuitively, I organizes a set
of landmarks into various “levels”: (a) the leaves cover con-
nected node pairs in G, and (b) those at level i > 1 specify
the reachability among the landmarks at the lower levels.

Auxiliary information. We also maintain the following for
reachability checking. (1) For each landmark v in I, we
use v.cs to store its cover size, i.e., how many connected
node pairs in G are covered by v. (2) For each edge (v1, v2)
in I, we define a label v2.e: it is < 1, v1, i + 1 > (resp. <
0, v1, i+1 >) if v1 can reach v2 (resp. v2 can reach v1), where
v1 is at level i+1 and v2 at level i. (3) For each node v that is
in G but not in I, we define a set v.E of triples such that for
each leaf v′ in I, < 1, v′, 1 > (resp. < 0, v′, 1 >) is in v.E if v
can reach v′ (resp. v′ can reach v) by following a path that

contains no landmark in I. Note that |v.E| ≤ α|G|
2

. (4) We
also define v.d (resp. v.r), the degree (resp. the topological
rank) of v inG (recall thatG is a DAG). Here v.r is defined as
follows: (a) v.r = 0 if v has no child in G; (b) otherwise, v.r
= v′.r+1, where v′ is the child of v with the largest rank. (4)
For each landmark v in I, we define its topological range v.R

Procedure RBIndex
Input: A graph G=(V,E,L) and α.
Output: A hierarchical landmark index I.

1. I:=∅;

2. greedily select ⌊α|G|
2

⌋ landmarks from V as LM1;
3. construct landmark graph G1 from LM1 and G;
4. update I with LM1;
5. for l from 2 to ⌊loga |G|⌋+1 do /* a = ⌊ 2

α
⌋ */

6. greedily select ⌊
α|Gl−1|

2
⌋ landmarks LMl from Gl−1;

7. expand I with LMl; /*move nodes in LMl up and add edges*/
8. Encode (LMl, LMl−1, Gl−1);
9. construct landmark graph Gl from LMl and Gl−1;
10. for each v ∈ V \ LM1 do
11. assign labels v.E in terms of the leaves of I;
12. return I;

Figure 6: Procedure RBIndex

= [r1, r2], where r1 (resp. r2) is the smallest (resp. largest)
rank of the landmarks in the subtree rooted at v in I. The
range is simply [v.r, v.r] if v is a leaf in I.

One may verify that I guarantees the following.

Lemma 5: For any nodes v and v′ in G, (1) v can reach v′

if there exist landmarks v1, v2, v3 in I such that v reaches v1,
v2 reaches v′, v1.e =< 1, v3, i > and v2.e =< 0, v3, i >; (2)
for any v4 in I with v4.R = [r1, r2], if r2 ≤ v′.r or r1 ≥ v.r,
then no node in the subtree rooted at v4 covers (v, v′). ✷

Example 5: Consider a DAG G shown in Fig. 5, with |G|
= 128. Let α = 0.25 and c = 1. We show an index I with 16
nodes (each corresponds to a landmark in G) and 15 edges
in Fig. 5. Observe the following. (1) Cover size cl4.cs = 56,
i.e., cl4 covers 56 connected node pairs in G. (2) Edge (cl3,
cc1) in I with the label < 0,cl3,2 > of cc1 indicates that cc1
reaches cl3. (3) The label set of Michael (which is not in I)
is {<0,cc1,1>}, which indiates that Michael can reach cc1 in
I by only accessing the nodes “outside” I. One may further
verify that Michael reaches Eric in G by using I. ✷

Algorithm. We now present an algorithm, denoted by
RBIndex (Fig. 6), that builds a hierarchical index I of size

α|G|. It selects a set LM1 of ⌊α|G|
2

⌋ landmarks of G (line 2),
constructs a landmark graph G1 such that LM1 is its node
set, and there exists an edge (v1, v2) in G1 if and only if v1
can reach v2 in G (line 3). The nodes of LM1 are added to
(initially empty) I as its level-1 nodes (leaves; line 4).

RBIndex then expands I “bottom-up”(lines 5-9). For each
l ∈ [2, ⌊loga |G| + 1⌋], it does the following. (1) It selects a

set LMl of ⌊
α|Gl−1|

2
⌋ landmarks from Gl−1 following a greedy

strategy (to be described later; line 6). (2) It then moves
the landmarks in LMl up one level in I to be its nodes at
level l+1. For each landmark v in LMl, it adds an edge from
v to a node v′ at level l − 1 of I if v can reach v′ or can be
reached from v′ in Gl−1 (line 7). Accordingly, it assigns a
label to v′, and updates the topological range of v (line 8),
by invoking procedure Encode (omitted). We then build the
landmark graph Gl from LMl and Gl−1 (line 9), such that
LMl is the node set of Gl, and Gl has an edge (v1, v2) if and
only if v1 can reach v2 in Gl−1.

The process above repeats until only a single landmark
remains (i.e., at level loga |G|; line 5). RBIndex then assigns
labels to the rest of nodes in G as described earlier (lines 10-
11). After this, it returns the index I (line 12).

Landmark selection. For eachGl, we want to select a set LMl

of
α|Gl−1|

2
landmarks to cover a maximum number of node



Procedure RBReach

Input: A reachability query Q = (vp, vo), and index I of size α|G|.
Output: Approximate answers to Q(G).

1. terminate:= false; answer:=false;
2. active set vp.Active := {v| (1, v, l) ∈ vp.E } ∪ {vp};
3. active set vo.Active := {v| (0, v, l) ∈ vo.E } ∪ {vo};
4. update terminate and answer;
5. if answer = true then return answer;
6. while terminate 6= true do
7. vp.Active := PickLM (vp.Active, I);
8. vo.Active := PickLM (vo.Active, I);
9. update terminate and answer;
10. if answer = true then return answer;
11. if no node can be added to vp.Active and vo.Active then
12. terminate:=true;
13.return answer;

Figure 7: Procedure RBReach

pairs. Unfortunately, this problem is NP-hard [13]. In light
of this, we use a greedy strategy based on the topological
ranks and degrees of landmarks. (1) We select a landmark v

with the maximum vd∗vr
L∗D

, where L and D are the maximum
topological rank and node degree in Gl, respectively. Intu-
itively, the higher v.r and v.d are, the more likely v covers
more connected node pairs. (2) We then remove from Gl

node v and a nodes that connect to v (if they exist), where
a = ⌊ 2

α
⌋, and select the next best node from the updated

Gl. We repeat (1) and (2) until we find
α|Gl−1|

2
landmarks.

Example 6: Given G of Fig. 5 and α = 0.25, RBIndex

builds the index I of Fig. 5 as follows. (1) It first greedily
selects 16 landmarks from G and constructs landmark graph
G1 with them. (2) It then select 4 landmarks cl3, cl4, cl5
and cl6 from G1, as nodes at level 2 or higher in I. Edges
are added from these nodes to those at level 1, e.g., (cl3,
cc1), as well as cover sizes, e.g., cl4.cs = 56. New labels
(resp. topological ranges) are assigned to nodes at level 1
(resp. level 2), e.g., < 0,cl1,2 > (resp. [0, 2] for cl5). It then
builds G2 from these landmarks and G1. Finally, RBIndex
selects cl4, and moves it up one level from level 2 in I as
its third level landmark. It adds edges from cl4 to level-2
landmarks, adjusts labels, cover sizes and ranges. ✷

Analysis. One can verify that I contains at most α|G|
2

landmarks and hence, α|G|-1 nodes and edges as a forest.
It has at most ⌊loga |G|⌋+1 levels, where a = ⌊ 2

α
⌋. For a

graph of size 1PB (1015), when α is 0.2%, I has at most 6
levels. Algorithm RBIndex takes at most O(|G| + (α|G|)2)

time: (a) it takes O(|G|) time to select α|G|
2

landmarks, and

(b) it takes O((α|G|)2) time ito test reachability between
the landmarks and the other nodes in G.

5.2 Resource-Bounded Reachability
We next present a resource-bounded algorithm for check-

ing reachability after the compression of G and the creation
of index I. It is denoted as RBReach and shown in Fig. 7.
Procedure RBReach performs a“bi-directional”search on the
index I, starting from landmarks in vp.E and vo.E . At each
landmark v in I, RBReach checks whether the condition of
Lemma 5(1) is satisfied by the landmarks visited so far, and
returns true if so. Otherwise it either “rolls-up” to its parent
in I, or “drills-down” to its children, to inspect more land-
marks. It returns false if all the landmarks have been visited
but the condition of Lemma 5(1) is still not met.

Drill down or roll up. To decide whether to roll up
or drill down at a landmark v of I, RBReach dynamically
maintains the following. (1) Boolean guarded condition
C(v, vp, vo), indicating whether v can possibly reach vo
via vp. We define C(v, vp, vo) = true if and only if for the
topological range v.R = [r1, r2], r2 > vo.r and r1 < vp.r.
We filter the entire subtree rooted at v if C(v, vp, vo) =
false (see Lemma 5(2)). (2) Cost c(v), defined as the size of
the subtree rooted at v in I, excluding the total size of the
subtrees rooted at its children that are already visited in I.
The larger c(v) is, the more landmarks need to be inspected.
(3) Potential p(v), which is the cover size v.cs subtracted
by the sum of the cover sizes of its children that have been
visited. The higher p(v) is, the more likely that v connects

to vp or vo. We define the weight w(v) of v to be p(v)
c(v)+1

if

C(v, vp, vo) = true, and w(v) = −∞ otherwise. At landmark
v of I, we roll up to its parent v′ if w(v′) is the maximum,
and drill down to a child v′′ if w(v′′) is the largest, if the
edge (v′v) or (v, v′′) is not already visited, respectively.

Algorithm. We now present RBReach. It uses two Boolean
flags to control the search: answer is true if it finds that vp
reaches vo, and terminate is true if all the landmarks in I
have been visited. Initially, both are false (line 1). RBReach
keeps track of the landmarks that vp can reach and those
that can reach vo, in sets vp.Active and vo.Active, respec-
tively, initially extracted from vp.E and vo.E (lines 2 and 3).
To update terminate, it also maintains a set consisting of
landmarks that are already visited (not shown).

After vp.Active and vo.Active are initialized, RBReach

checks whether vp can already be decided to reach vo; if so,
it returns true (lines 3-4). Otherwise, it iteratively expands
vp.Active and vo.Active by including landmarks in I that are
reachable from the nodes in vp.Active (line 7) and that can
reach the nodes in vo.Active (line 8), respectively. This is
done by procedure PickLM (not shown), which rolls up or
drills down I following the strategy described above. When
new landmarks are added, termination and answer are up-
dated accordingly (line 9). We set answer true if there exists
a landmark in both vp.Active and vo.Active, i.e., the condi-
tion of Lemma 5(1) is satisfied. If so, it returns true (line 10).
If the set visited includes all the nodes in I, termination is
set true (lines 11-12), and false is returned (line 13). To effi-
ciently decide whether vp.Active and vo.Active share a node,
RBReach stores a flag with a value “vp” or “vo” at each node
to indicate if it is already in vp.Active or vo.Active. iThis
allows us to check Lemma 5(1) with little extra time.

Example 7: Given the index I of Fig. 5, RBReach checks
whether Michael can reach Eric as follows. (1) It starts
with Michael.Active = {cc1} and Eric.Active = {cc16}. (2)
As termination and answer are false, RBReach calls PickLM,
which rolls up to cl3 from cc1. We add cl3 to Michael.Active.
Similarly, cl6 is added to Eric.Active. (3) PickLM finds that
cl4 has weight w(cl4) =

46
9

= 5.1 (after visiting cl3 and cl6,
the cost c(cl4) is now 16−8 = 8, and its potential is updated
to 56 − 10 = 46, with p(cl3) = 34 − 26 = 8, and p(cl6) =
30−28 = 2). In contrast, w(cl7) =

9
2
= 4.5, and the guarded

condition of cln−1 is false since Eric has a topological rank
2 but the range of cln−1 is [0, 0]. Hence, it decides to roll
up to cl4 from cl3 rather than to drill down. (4) For the
same reason, it rolls up to cl4 from cl6. Now cl6 is in both
Michael.Active and Eric.Active, and true is returned. ✷



Analysis. To show Theorem 4, observe the following. (1)
RBReach visits at most α|G| amount of data. In the worst
case, it visits the entire I. As shown in Section 5.1, |I| ≤
α|G| − 1. (2) It answers Q in O(α|G|) time, since it visits
each edge in I at most twice. Moreover, RBReach only needs
to check the flag of each newly added landmark to test the
condition of Lemma 5(1), as remarked earlier. As the edge

number is no larger than α|G|
2

− 1, the total time is hence in
O(α|G|). (3) RBReach returns true only when there exists a
landmark v in both vp.Active and vo.Active. By Lemma 5(1),
Q(G) is true. Hence, it guarantees 100% true positives.

6. EXPERIMENTAL STUDY
Using real-life and synthetic data, we conducted two sets

of experiments to evaluate the accuracy, efficiency and scal-
ability of our resource-bounded algorithms.

Experimental setting. We used two real-life datasets:
(a) Youtube3, a video sharing network with 1, 609, 969 nodes
(videos) and 4, 509, 826 edges (recommendations); and (b)
Yahoo4, a snapshot of Yahoo Web graph with 3, 000, 022
nodes (Web pages) and 14, 979, 447 edges (links). We also
designed a generator to produce synthetic graphs G =
(V,E, L), controlled by the numbers of nodes |V | and edges
|E|, for L from a set Σ of 15 labels.

Query generator. We generated patterns controlled by the
number |Vp| of query nodes and the number |Ep| of query
edges. For patterns on real-life graphs, their labels were
drawn from those datasets, and for synthetic graphs, they
came from the alphabet Σ. We randomly selected a person-
alized node and an output node for each query. For reacha-
bility tests, we randomly sampled a set of ordered node pairs
from a data graph, each pair representing a query.

Algorithms. We implemented the following, all in Java: (a)
RBSim (Section 4.1); (b) MatchOpt, an optimized version of
the strong simulation algorithm [20], which only checks sub-
graphs within dQ hops of vp for query Q (dQ is the diameter
of Q, and vp is the match of the personalized node of Q); (c)
RBSub (Section 4.2); (d) VF2OPT, the subgraph isomorphism
algorithm of [11] optimized like MatchOpt; (e) RBReach (Sec-
tion 5); (f) BFS that tests reachability by breadth-first
search, and BFSOPT, which compresses a graph first [12] and
then runs BFS on the compressed graph; and (g) the reach-
ability algorithm LM of [13] using landmark vectors. Note
that VF2OPT, MatchOpt and BFS use our optimization.

Evaluation. We tested the impact of graph size |G|, query
(set) size |Q| and resource bound α (with c = 1) on (a) run-
ning time, and (b) accuracy. We adopted the accuracy mea-
sures given in Section 3 for pattern and reachability queries.
All the experiments were run on a machine powered by

an Intel Core(TM) i7-3520M 2.90GHz CPU with 8GB of
memory, using 64 bit Windows 7. Each experiment was run
5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Graph patterns. The first set of experiments
evaluated the accuracy, efficiency and scalability of (a)
RBSim versus MatchOpt; and (b) RBSub versus VF2OPT. We
report the results for simulation and subgraph queries to-
gether, as they were tested in the same setting.

3
http://netsg.cs.sfu.ca/youtubedata/

4
http://webscope.sandbox.yahoo.com/catalog.php?datatype=g

Youtube YahooAlgorithms
1.1 1.6 2.0 1.1 1.6 2.0

RBSim 7% 12% 19% 7% 14% 21%
RBSub 8% 15% 21% 8% 17% 24%

Table 2: The ratio of α|G| to |GdQ(vp)| (α× 10−5)

Varying α. We first evaluated the impact of α using real-life
graphs. Fixing |Q| = (4, 8) (i.e., |Vp| = 4 and Ep| = 8), we
varied α from 0.0011% to 0.002%, in 0.0001% increments.

(1) Efficiency. We report the response time of the four
algorithms in Figures 8(a) and 8(b) on Youtube and Yahoo,
respectively. The results tell us the following: on average,
(a) for simulation, RBSim takes only 24.4% and 18.8% of
the running time of MatchOpt on Youtube and Yahoo, respec-
tively; (b) for subgraph queries, RBSub takes 16.7% and
14.4% of the time of VF2OPT on these two graphs; (c) the
larger α is, the longer RBSim and RBSub take, but only
slightly, since |GQ| = α|G| gets larger when α increases;
and (d) RBSim and RBSub are efficient: they took 2 and 5
seconds on Yahoo, respectively, even when α = 0.002%.

Moreover, our algorithms visit only a small part of the
dQ-neighborhood GdQ(vp) of vp (see Table 2 for examples).
On average, RBSim visits from 7% to 19% of |GdQ(vp)| on
Youtube, and from 8% to 21% on Yahoo, when α ranges from
0.0011% to 0.002%; for RBSub, it is from 7% to 21% on
Youtube and from 8% to 24% on Yahoo. This is why RBSim

and RBSub outperform MatchOpt and VF2OPT, respectively.
These confirm that resource-bounded query answering in-

deed gives us the efficiency we need on real-life graphs.

(2) Accuracy. In the same setting, we report the correspond-
ing accuracy results in Figures 8(c) and 8(d) on Youtube and
Yahoo, respectively. Note that VF2OPT and MatchOpt are al-
ways 100% accurate and hence, are not shown.

We find the following. (a) Both RBSim and RBSub achieve
high accuracy even when α is small. For example, the ac-
curacy of RBSim ranges from 87% to 100% on Youtube, and
89% to 100% on Yahoo. (b) Better still, when α ≥ 0.0015%,
both RBSim and RBSub constantly get 100% accuracy. (c)
When RBSim and RBSub achieve 100% accuracy, |GQ| is
on average only 3% of the space bound induced by the
theoretical minimum α given in Theorem 3(b), and it is
between 17% and 19% of the size of the dQ-neighborhood of
vp, respectively. (d) The larger α is, the higher the accuracy
is, as expected, since GQ can accommodate more informa-
tion when α increases. These justify the effectiveness of
resource-bounded query answering in practice.

Varying |Q|. We also evaluated the impact of |Q|. Fixing α

as 0.01%, we varied |Q| from (4, 8) to (8, 16).

(1) Efficiency. We report the efficiency of the algorithms
on Youtube and Yahoo in Figures 8(e) and 8(f), respec-
tively, which tell us the following. (a) The larger |Q| is,
the longer all these algorithms take. For RBSim, it takes
O(dG|Q||GQ|) time to find GQ = (VGQ

, EGQ
) (Section 4.1),

and O(|Q||VGQ
|(|VGQ

|+ |EGQ
|)) time to find matches in GQ

(Section 1). Hence the larger Q is, the longer it takes; sim-
ilarly for RBSub. Nonetheless, RBSim and RBSub are less
sensitive to |Q| than MatchOpt and VF2OPT. (b) On average,
RBSim and RBSub take 14.9% and 16.9% of running time
of MatchOpt and VF2OPT, respectively. The improvement by
our algorithms becomes more substantial for larger queries.

(2) Accuracy. Figures 8(g) and 8(h) report the accuracy
results: (a) the larger |Q| is, the lower the accuracy is for
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(d) Varying α(× 10−5, Yahoo)

 1

 10

 100

(4,8) (5,10) (6,12) (7,14) (8,16)

T
im

e(
se

co
n
d
)

RBSim
MatchOpt

RBSub
VF2OPT

(e) Varying |Q| (Youtube)

 1

 10

 100

 1000

(4,8) (5,10) (6,12) (7,14) (8,16)

T
im

e(
se

co
n
d
)

RBSim
MatchOpt

RBSub
VF2OPT

(f) Varying |Q| (Yahoo)

 0

 20

 40

 60

 80

 100

(4,8) (5,10) (6,12) (7,14) (8,16)

A
cc

u
ra

cy
(%
)

RBSim
RBSub

(g) Varying |Q| (Youtube)

 0

 20

 40

 60

 80

 100

 120

(4,8) (5,10) (6,12) (7,14) (8,16)

A
cc

u
ra

cy
(%
)

RBSim
RBSub

(h) Varying |Q| (Yahoo)

 0

 10

 20

 30

 40

 50

 60

2 3 4 5 6 7 8 9 10

T
im

e(
se

co
n
d
)

RBSim
MatchOpt

RBSub
VF2OPT

(i) Varying |V | (millions)

 90

 92

 94

 96

 98

 100

2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy
(%
)

RBSim
RBSub

(j) Varying |V | (millions)

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9 10
T

im
e(

m
il

li
se

co
n
d
)

RBReach
BFSOPT

BFS
LM

(k) Varying α (× 10−4, Youtube)

 1

 10

 100

 1000

1 2 3 4 5 6 7 8 9 10

T
im

e(
m

il
li

se
co

n
d
)

RBReach
BFSOPT

BFS
LM

(l) Varying α (× 10−4, Yahoo)

 70

 75

 80

 85

 90

 95

 100

 105

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy
(%
)

RBReach
BFS
LM

(m) Varying α (× 10−4, Youtube)

 65

 70

 75

 80

 85

 90

 95

 100

 105

1 2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy
(%
)

RBReach
BFS
LM

(n) Varying α (× 10−4, Yahoo)

 0.1

 1

 10

 100

 1000

2 3 4 5 6 7 8 9 10

T
im

e(
m

il
li

se
co

n
d
)

RBReach[0.02%]
RBReach[0.01%]

BFSOPT
BFS
LM

(o) Varying |V | (millions)

 50

 60

 70

 80

 90

 100

2 3 4 5 6 7 8 9 10

A
cc

u
ra

cy
(%
)

RBReach[0.02%]
RBReach[0.01%]

BFS
LM

(p) Varying |V | (millions)

Figure 8: Performance evaluation

RBSim and RBSub. This is because bounded resources allow
us to access at most α|G| amount of data regardless of |Q|.
(b) Nonetheless, the accuracy is above 86% for RBSim and
above 80% for RBSub. Moreover, they achieve 100% for Q

as large as (5, 10). In practice, Q is typically small.

Varying |G|: Efficiency and accuracy. Fixing |Q| = (4, 8)

and α = 0.003%, we varied the node number |V | of synthetic
graphs from 2M to 10M, and set |E| = 2|V |. As shown
in Fig. 8(i), (a) on average RBSim takes only 14.6% of the
running time of MatchOpt and RBSub takes 13.8% of the time
of VF2OPT. (b) Both RBSim and RBSub scale well with |G|,
and are much less sensitive to the change of |G|.
As shown in Fig. 8(j), (a) in all cases, the accuracy is above

97% for RBSim and 94% for RBSub, and mostly 100%; and
(b) the larger |V | is, the more accurate the algorithms are,
due to the locality of pattern queries and our search strategy.

Exp-2: Reachability queries. This set of experiment
evaluated the performance of our algorithm RBReach com-
pared to BFS, BFSOPT and LM. We generated a set of 100
reachability queries, and report the average below. Follow-
ing [13], we sampled 4 ∗ log |V | landmarks for LM.

Varying α: Efficiency and accuracy. Varying α from 0.01%
to 0.1%, we report the response time of the algorithms on
Youtube and Yahoo in Figures 8(k) and 8(l), respectively.

The results show the following. (a) RBReach substantially
outperforms BFS and BFSOPT in efficiency. It takes on aver-
age 1.6% and 17.4% of the running time of BFS and BFSOPT,
respectively. (b) When α increases, the running time of
RBReach gets longer, as expected; but it is not very sensitive
to α. (c) RBReach performs better than LM on Youtube.
On Yahoo, LM does better when α > 0.07%. Nonetheless,
as shown in Fig. 8(n), RBReach achieves 100% accuracy on
Yahoo when α ≤ 0.04%, when RBReach is faster than LM.

Moreover, RBReach is accurate. As shown in Figures 8(m)
and 8(n), (a) in all cases, the accuracy is at least 96%, and
is in general higher over denser graph Yahoo. (b) Moreover,
when α ≥ 0.05%, it is constantly 100% accurate! These ver-
ify that resource-bounded query answering is both efficient
and accurate for non-localized reachability queries. The ac-
curacy of LM, on the other hand, is from 69%–74%.

Varying |G|: Efficiency and accuracy. We varied |V | of syn-

thetic G from 2M to 10M (where |E| = 2|V |), and set α as
0.02% and 0.01%. Figure 8(o) tells us that RBReach scales
well with |G|. (a) It is 58.8 and 5.2 times faster than BFS and
BFSOPT, respectively. (b) It outperforms LM when |V | ≤ 5M
for α = 0.02%; and is faster in all cases when α is small
enough (e.g., 0.01%), while the running time of LM is less
sensitive to |G| than RBReach. The accuracy of RBReach is
above 97% (resp. 94%) for α = 0.02% (resp. 0.01%) in all



cases (Fig. 8(p)). It increases with larger G, as the index I
covers slightly more node pairs (with |I| ≤ α|G|). In con-
trast, LM performs worse with larger |V | as the number of
landmarks sampled does not significantly increases.

Summary. We find the following. For patterns, (1) RBSim
and RBSub are efficient: they are 5.5 times and 6.25 times
faster than MatchOpt and VF2OPT, respectively, on real-life
graphs; (2) they are accurate: when α is as small as 0.0015%,
both achieve 100% accuracy; and (3) they scale well with |G|,
without much performance degradation when G grows. The
same holds on reachability queries: (4) RBReach is 62.5 and
5.7 times faster than BFS and BFSOPT on average, respec-
tively, on real-life graphs; while its efficiency is comparable
to that of LM, it is more accurate: 96%-100% vs. 69%-74%;
(5) it gives us mostly exact answers when α ≥ 0.05%; and
(6) it scales well with |G|: when |G| increases, so does its
accuracy, without much penalty in efficiency. Finally, the
tunable performance (controlled by α) of RBReach is more
flexible than LM in balancing resource usage and accuracy.

7. CONCLUSION
We have proposed to query real-life graphs by resource-

bounded query answering. We have studied its associated
fundamental problems. We have also developed resource-
bounded algorithms for answering localized (subgraph, sim-
ulation) and non-localized (reachability) queries. We have
verified analytically and experimentally that these algo-
rithms are able to efficiently find accurate approximate an-
swers, even exact answers, with resource ratio α as small as
0.0015% for pattern queries, and 0.05% for reachability.
The study of resource-bounded query answering is still in

its infancy. One topic is to explore resource-bounded algo-
rithms for graph patterns without a personalized node. An-
other problem is to find, given a resource ratio α, the maxi-
mum accuracy ratio η that such algorithms can guarantee.
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