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Abstract

Genetic variation in the major histocompatibility complex (MHC) affects CD4:CD8 lineage commitment and MHC expression.
However, the contribution of specific genes in this gene-dense region has not yet been resolved. Nor has it been
established whether the same genes regulate MHC expression and T cell selection. Here, we assessed the impact of natural
genetic variation on MHC expression and CD4:CD8 lineage commitment using two genetic models in the rat. First, we
mapped Quantitative Trait Loci (QTLs) associated with variation in MHC class I and II protein expression and the CD4:CD8 T
cell ratio in outbred Heterogeneous Stock rats. We identified 10 QTLs across the genome and found that QTLs for the
individual traits colocalized within a region spanning the MHC. To identify the genes underlying these overlapping QTLs, we
generated a large panel of MHC-recombinant congenic strains, and refined the QTLs to two adjacent intervals of ,0.25 Mb
in the MHC-I and II regions, respectively. An interaction between these intervals affected MHC class I expression as well as
negative selection and lineage commitment of CD8 single-positive (SP) thymocytes. We mapped this effect to the
transporter associated with antigen processing 2 (Tap2) in the MHC-II region and the classical MHC class I gene(s) (RT1-A) in
the MHC-I region. This interaction was revealed by a recombination between RT1-A and Tap2, which occurred in 0.2% of the
rats. Variants of Tap2 have previously been shown to influence the antigenicity of MHC class I molecules by altering the
MHC class I ligandome. Our results show that a restricted peptide repertoire on MHC class I molecules leads to reduced
negative selection of CD8SP cells. To our knowledge, this is the first study showing how a recombination between natural
alleles of genes in the MHC influences lineage commitment of T cells.
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Introduction

Major histocompatibility complex (MHC) genes have been

identified in all vertebrate species [1]. The 3.6 Mb human

leukocyte antigen (HLA) was one of the first MHC to be

sequenced, and revealed a region with extraordinary complexity

[2]. The region contains ,260 genes that are clustered in sub-

regions denoted MHC-I, MHC-II and MHC-III [3]. Genes in the

MHC were early recognized for their extreme sequence diversity

and association with autoimmune and inflammatory conditions

(reviewed in [4]). However, these associations have been difficult

to delineate since nearly 40% of the MHC genes have immune-

related functions [2]. The interpretation of association data is

further complicated by the extensive linkage disequilibrium (LD)

across the region [5]. While the LD structure [6,7] and genetic

variation [3,8] of the HLA in humans is rather well investigated,

similar detailed analysis for the MHC in other species is needed.

The first complete sequence of the rat MHC (RT1) on

chromosome 20 was derived from the Brown Norway (BN) strain

(RT1n) and released in 2004 [9]. The BN genome sequence, which
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is also the rat reference sequence (RefSeq), was published shortly

thereafter [10]. Several inbred rat strains have since then been

resequenced, including the Spontaneously Hypertensive Rat

(SHR, RT1k) [11], and more recently, the DA (RT1av1), F344

(RT1lv1) [12] and a panel of additional strains [13]. The genetic

organization of the MHC is similar in rats and humans, with the

exception of a proximal classical MHC class Ia region (RT1-A)

[14] and a larger number of telomeric, non-classical, class Ib genes

(RT1-CEM) [15] in the rat. MHC class Ib molecules are

structurally similar to class Ia molecules but the corresponding

class Ib genes are less polymorphic, expressed at lower levels and

several are pseudogenes [16,17]. The number of functional class Ia

genes (RT1-A1, RT1-A2, RT1-A3) in the rat varies between one

and three in standard inbred strains [18,19]. These genes are

highly polymorphic and densely expressed on the surface of

virtually all nucleated cells where they engage in presentation of

intracellular antigens to cytotoxic CD8 T cells. The class Ia genes

are surrounded by highly conserved framework genes, which are

found in the MHC of all mammals, as well as several antigen

processing and transportation genes [9]. To this latter group of

genes belong the c-interferon-inducible proteasome subunit beta

type 8 (Psmb8) and Psmb9, and Tap1 and Tap2, which are all

located in the MHC-II region. An additional gene in this group,

Tap binding protein (Tapbp), is located centromeric to the class Ia

genes in the MHC-I region. These genes show limited allelic

variation in humans and mice [20,21]. In the rat, by contrast,

allelic variants of Tap2 fall into two groups, Tap2A and Tap2B,

which encode two functionally distinct allotypic forms of Tap2

[22,23]. Consequently, the two variants of TAP transporters

encoded by Tap1 and Tap2A or Tap2B are denoted TAP-A and

TAP-B, respectively [19]. Analyses of inbred rat strains have

revealed a significant degree of co-evolution between alleles in

Tap2 and the class Ia loci [19] and based on these studies RT1-A

molecules have been classified as either TAP-A or TAP-B linked

[19,24]. Livingstone and colleagues have shown that if linkage is

lost between RT1-Aa (the DA allele of class Ia) and the Tap2A

allele, as in the event of a recombination, the antigenicity of the

class Ia molecule is altered [25]. This phenomenon, known as class-

I modification (cim), has been explained by the peptide selectivity of

the different TAP isoforms [26,27] and more specifically by the

inability of the TAP-B transporter to translocate peptides with C-

terminal arginine residues, which are required for optimal loading

of RT1-Aa molecules [28]. This was followed by studies showing

that cim leads to abnormally slow assembly and reduced

extracellular class I expression of RT1-Aa molecules [22,29]. By

contrast, no such effects have been described for TAP-B-linked

RT1-A molecules when associated with the promiscuous TAP-A

transporter. Within the MHC-II region are four additional antigen

processing genes encoding the a and b subunits of RT1-DM and

RT1-DO. These non-classical class II molecules are responsible

for editing the peptide cargo of the classical class II molecules

before these are translocated to the cell surface to present peptides

to helper CD4 T cells.

Expression of MHC class I and II molecules on antigen

presenting cells is required for T cell selection in the thymus

[30,31] and for the survival of mature T cell subsets in the

periphery [32,33]. The commitment of thymocytes to CD4 or

CD8 lineage is determined mainly by the MHC peptide repertoire

and the antigen specificity of the T cell receptor (TCR). The

variation in CD4 and CD8 T cell numbers is associated with genes

in the MHC in humans [34], mice [35] and rats [36]. However, it

is not known whether the levels of MHC expression and/or

polymorphisms in other genes than the classical MHC class I and

II genes, such as the aforementioned antigen processing genes,

contribute to this variation.

Here, we assessed the impact of the genetic variation on class I

and II expression and T cell selection using two genetic rat models:

the NIH-Heterogenous Stock (HS) and a panel of MHC-

recombinant congenic strains. The NIH-HS is descended from

eight inbred strains through 60 generations of outbreeding [37].

The greater genetic diversity in the HS compared to a

conventional F2 cross allows mapping of more QTLs [38], which

was exploited here to identify genomic regions (QTLs) that

contribute both to MHC expression and the variation in

CD4:CD8 T cell ratio. Recombinant congenic strains (RCS) are

powerful tools to resolve complex QTLs in regions with extensive

LD. In RCS, haplotype blocks that are the result of rare

recombinations can be preserved, which allows investigation of

multiple phenotypes using genetically identical individuals [39,40].

We describe a new panel of rat RCS, in which MHC segments

from four inbred strains have been inserted on the background of

the DA strain.

In the rat HS we identified a region spanning 4.1–9.7 Mb on

chromosome 20 that contributed to both the variation in MHC

expression and CD4:CD8 T cell ratio. Mapping using RCS

identified two intervals, each ,0.25 Mb wide, in the MHC-I and

II region that contributed to the phenotypic variation, suggesting

that the HS QTL might result from two linked QTLs. First, we

showed that the variation in class I expression correlated with

alleles of Tap2, which is in line with previously reported data [25].

Second, we identified a novel type of class-I modification that we

termed inverse cim, which reduced the expression of TAP-B linked

RT1-A molecules if associated with TAP-A. Finally, we showed

that polymorphisms in Tap2 significantly contribute to CD8

lineage commitment, likely by altering the class-I peptide

repertoire on antigen presenting cells in the thymus.

Results

QTLs for CD4:CD8 T cell ratio and MHC expression
overlap within the MHC region

T cell selection and the maintenance of the peripheral T cell

pool rely on the interaction between peptide-MHC complexes and

T cell receptors. The variation in the relative proportion of

Author Summary

Peptides from degraded cytoplasmic proteins are trans-
ported via TAP into the endoplasmic reticulum for loading
onto MHC class I molecules. TAP is encoded by Tap1 and
Tap2, which in rodents are located close to the MHC class I
genes. In the rat, genetic variation in Tap2 gives rise to two
different transporters: a promiscuous A variant (TAP-A) and
a more restrictive B variant (TAP-B). It has been proposed
that the class I molecule in the DA rat (RT1-Aa) has co-
evolved with TAP-A and it has been shown that RT1-Aa

antigenicity is changed when co-expressed with TAP-B. To
study the contribution of different allelic combinations of
RT1-A and Tap2 to the variation in MHC expression and T
cell selection, we generated DA rats with either congenic
or background alleles in the RT1-A and Tap2 loci. We found
increased numbers of mature CD8SP cells in the thymus of
rats which co-expressed RT1-Aa and TAP-B. This increase of
CD8 cells could be explained by reduced negative
selection, but did not correlate with RT1-Aa expression
levels on thymic antigen presenting cells. Thus, our results
identify a crucial role of the TAP and the quality of the
MHC class I repertoire in regulating T cell selection.

Polymorphisms in Tap2 Influence T Cell Selection
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peripheral CD4 and CD8 T cells has been associated with the

MHC [34–36]. In order to investigate if there is a shared genetic

regulation of MHC expression and T cell numbers, we first

identified genome-wide QTLs that controlled the CD4:CD8 T cell

ratio and MHC class I and II expression in the rat NIH-HS [41].

We measured the number of circulating CD4 and CD8 T cells and

extracellular MHC class I and II expression by flow cytometry in

more than 2000 HS rats, of which 1407 were genotyped at 265,551

SNPs. Each HS rat chromosome was reconstructed as a mosaic of

the founder genomes, and QTLs were mapped using two methods

that take the different levels of relatedness existing in the rat HS into

account (see Materials and Methods). We report QTLs detected at a

false discovery rate of 10%, which corresponds to a negative logP

threshold of 4.2 for the three measures studied here.

The mean ratio of circulating CD4 vs. CD8 T cells in the HS

rats was 2.76 (range 1.0–13.8), which is concordant with data

previously obtained in the inbred founder strains [42]. Variation in

this phenotype was explained mainly by QTLs on chromosomes 9

and 20 (Fig. 1). The intervals most significantly associated with this

phenotype were located at 4.20 Mb at the proximal end of

chromosome 9 (2logP = 22.1), and at 4.78 Mb in the MHC

region on chromosome 20 (2logP = 36.5). The effect sizes of these

QTLs were estimated to be 14.4% and 14.6% respectively (upper

bound; Fig. 1C). These QTLs also contributed to variation in

absolute numbers of CD4 and CD8 T cells (data not shown,

genome scans are accessible on the WTCHG website: http://mus.

well.ox.ac.uk/gscandb/rat).

The surface expression of MHC class I was determined on

granulocytes using a widely reactive MHC class I antibody to Ia and

Ib molecules. QTLs for this phenotype were found on chromosome

2 (2logP = 4.27), 10 (2logP = 8.77) and 20 (2logP = 29.5), of which

only the latter coincided with a QTL for CD4:CD8 T cell ratio.

Three regions were associated with MHC class II (RT1-B)

expression on B cells. These were located on chromosome 2 (2

logP = 4.75), 17 (2logP = 13.8) and 20 (2logP = 5.66). The most

significantly associated marker on chromosome 20 was located at

4.87 Mb in the MHC region. Because the median 90% confidence

interval for the position of the QTLs mapped in the rat HS is

4.5 Mb, this QTL overlapped with the QTL identified for

CD4:CD8 T cell ratio on this chromosome.

In summary, using a genome-wide approach, we showed that

CD4:CD8 T cell ratio and MHC expression might be regulated by

a common QTL or a set of closely linked QTLs in the rat MHC

region. However, the majority of identified QTLs for these traits

did not co-localize, suggesting that variation in MHC expression is

not a strong determinant of the CD4:CD8 T cell ratio.

Generation of MHC recombinant congenic strains
We next aimed to isolate the intervals associated with the

phenotypic variation in the MHC, since the mapping in the HS

rats did not distinguish whether a single gene with pleiotropic

action or different MHC genes controlled MHC class I and II

expression and the CD4:CD8 T cell ratio.

We therefore established MHC congenic strains with RT1f,

RT1i, RT1u and RT1h haplotypes on the homozygous DA

(RT1av1) background that showed phenotypic variation in

CD4:CD8 T cell ratio and class I and II expression (Table 1).

We produced a panel of more than 40 RCS with segments in the

MHC-I, -II and -III regions (selected strains are shown in Figure 2).

We identified 70 recombinations within a 2 Mb genomic region

(3.4–5.4 Mb) (Fig. 3) and mapped the recombination breakpoints

using 67 SNP and short-tandem repeat (STR) markers (Table S1

and Table S2) to intervals of 2–270 kb. Three recombination

hotspots were identified near DMb, Btnl2 and Lta (Fig. 3), which

Figure 1. Genetic mapping in heterogeneous stock (HS) rats. (A) Genome scans of the CD4:CD8 ratio (green), and the surface expression of
MHC class I (MHC-I, red) and MHC class II (MHC-II, blue). The vertical axis shows the negative log P value for the 20 autosomes. Note that the left and
right axis show 2log P values for different phenotypes. Q1–Q10 indicate significant QTLs. (B) Close-up for Q8–Q10 on chromosome 20 showing the
approximate location of the MHC region. (C) Position (in megabases, Mb) of peak marker (Pos.), confidence intervals (CI) in Mb, and effect sizes (%) of
the peak markers in the QTLs shown in (A). The RMIP value is a measure of the probability that the loci are correctly identified (max = 1.0).
doi:10.1371/journal.pgen.1004151.g001

Polymorphisms in Tap2 Influence T Cell Selection
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are also located close to recombination hotspots in the human

HLA [6,8,43,44]. We did not identify any recombination events in

the MHC-II region between DMb and Btnl2, despite analyzing

,29,000 meiotic events. Extensive LD was also observed between

Kifc1 and Coll11A2 in the MHC-I region where only a single

recombination near the Kifc1 gene was identified among the

,16,000 analyzed meiotic events. Thus, recombinations in the

RT1 between the MHC-I and -II regions occur relatively

frequently (0.2%), while the recombination activity within each

of these regions is extremely low. The extensive LD between DMb

and Btnl2 as well as between Kifc1 and Coll11A2 therefore gave rise

to two haplotypes that could be isolated as congenic segments in

the RCS panel.

Two linked QTLs in RT1 regulate CD4:CD8 T cell ratio and
MHC expression

The RCS panel allowed the identification of two intervals in

RT1 associated with the variation in CD4:CD8 T cell ratio and

MHC expression (Table 1). The first interval, which we named T

cell selection QTL 1 (Tcs1), was identified within the MHC-I region

(Fig. 2) using DA.1IR85, DA.1HR83 and DA.1UR83 (we refer to

these strains as Tcs1-congenic strains). This QTL, which regulated

class I cell surface expression and the CD4:CD8 T cell ratio, was

determined to 0.282 Mb (min-max: 0.242–0.323 Mb) based on

the average size of the intervals of unknown genotype (congenic

borders) in phenotype-negative DA.1IR86 and DA.1IR84 rats

(Fig. 2). The second QTL, denoted T cell selection QTL 2 (Tcs2), was

mapped to the MHC-II region using the Tcs2-congenic strains

DA.1UR10, DA.1HR10 and DA.1FR9 (Fig. 2). Since DA.1FR61

(Fig. 2) was not yet available at the time of the investigation, we

used DA.1FR10 and DA.1FR8 (both phenotype-negative) to

exclude genes in the MHC-III and RT1-CEM region of DA.1FR9

(Fig. 2). Recombination events in DA.1UR10 within Btnl2

(between intron 5 and 6) and in DA.1HR10 within RT1-DMb

(between intron 2 and 5) constituted the telomeric and centromeric

boundaries of Tcs2, which was determined to 0.206 Mb (min-max:

0.197–0.214 Mb) (Fig. 2). This QTL regulated the cell surface

expression of class I and II as well as the CD4:CD8 T cell ratio.

Tcs1 and Tcs2 together explained all variation in the CD4:CD8

T cell ratio and extracellular MHC expression associated with

RT1 in the RCS. This suggests that these two linked haplotypes

are also responsible for the phenotypic variation mapped to

chromosome 20 in the HS. While Tcs2 alone controlled MHC

class II expression, both QTLs, Tcs1 and Tcs2, controlled cell

surface expression of MHC class I and the variation in CD4:CD8

T cell ratio. The effect of the MHC-II region on MHC class I

expression has previously been ascribed to allelic variants of Tap2

[25]. Since the other genes in Tcs2 are in strong LD with Tap2, we

next compared the genetic variation of these genes in order to

identify their individual contribution.

Genes encoding proteins in the MHC class I and II
pathways show variable degrees of sequence
conservation

Two QTLs, Tcs1 in the MHC-I region and Tcs2 in the MHC-II

region, were associated with the variation in CD4:CD8 T cell ratio

and MHC expression. In order to identify the causative genes in

Tcs1 and Tcs2 associated with these traits, we determined the

genetic variation of genes encoding proteins in the MHC class I

and II pathways (all genes in Tcs2, Tapbp in Tcs1) by direct

sequencing. These analyses of congenic (RT1f,h,i,u), wild-type

(RT1a) and RefSeq (RT1n) haplotypes revealed 367 exonic SNPs

Table 1. CD4:CD8 T cell ratio and extracellular MHC class I and II expression in spleens of congenic and recombinant strains.

RT1a MHC-IIb,d

Strain n A B D CEM CD4:CD8 MHC-Ib,c RT1-B RT1-D

WT DA 10 a a a a 4.160.3 100612 10065.4 10067.4

PS DA.1F 10 f f f f 2.960.2e 8367.0f 6764.9e 9866.6

PS DA.1H 6 h h h h 7.560.4f 9264.3 7464.8e 8863.9f

PS DA.1I 10 i i i a 6.960.4e 6765.4e 9767.2 9765.6

PS DA.1U 7 u u u u 2.460.3e 9266.0 7966.5e 9665.4

RCS DA.1FR9 7 a f f a 2.960.1e 9668.0 5864.3e 101616

RCS DA.1HR10 6 a h h a 3.860.3 7567.0f 7868.5f 8565.3f

RCS DA.1IR7 9 a i i a 4.460.4 10364.7 102613 10069.4

RCS DA.1UR10 7 a u u a 3.060.1e 7963.8f 7062.3e 10768.0

RCS DA.1HR83 5 h a a a 7.160.6f 8566.0g 101611 9867.1

RCS DA.1IR85 5 i a a a 8.260.7f 6861.1f 10460.9 10163.6

RCS DA.1UR83 5 u a a a 3.260.2f 8862.4g 10364.5 10064.1

aRT1 haplotype designations are based on genotyping data (see Methods);
bStrains were compared in separate experiments to DA littermate controls. The mean fluorescent intensity was then normalized to the expression of DA, which was
given an arbitrary value of 100.
cMHC-I (class Ia and Ib; OX18) extracellular expression on WBCs.
dMHC class II expression on B cells.
Significant differences compared to DA:
eP,0.001;
fP,0.01;
gP,0.05.
WT, wildtype; PS, parental strain; RCS, recombinant congenic strain. Shown are mean values 6SD.
doi:10.1371/journal.pgen.1004151.t001

Polymorphisms in Tap2 Influence T Cell Selection
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Figure 2. Physical map of the rat MHC region. The map was constructed according to the NCBI build 3.4 genome assembly. Genes (left) are
depicted according to scale (positions in Mb), except for positions indicated with crotchets. The gross organization of MHC-Ia, II, III and Ib -regions are
adopted from Hurt et al. [9]. Recombinant congenic strains are shown as gray vertical bars with dashed lines representing congenic borders (intervals
of unknown genotype). Markers, short tandem repeats (STRs) and single nucleotide polymorphisms (SNPs), are shown in italic numbers. Numbers
with asterisks at the top and bottom of the figure represent the position of the closest negative (DA) marker. Genes in Tcs1 are red and in Tcs2 blue
(see box for definitions). Inset shows the organization of the human (HLA) and rat (RT1) MHC regions. Non-recombinant congenic strains, which have
fragments spanning the entire MHC region, are not shown. xMHC-II, extended MHC class II region; xMHC-I, extended MHC class I region.
doi:10.1371/journal.pgen.1004151.g002
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(synonymous and nonsynonymous), 15 indels (insertions/deletions)

and 168 amino acid (aa) substitutions in the corresponding

proteins (Table 2).

The genes associated with the MHC class I pathway (Tap1,

Tap2, Psmb8, Psmb9 and Tapbp) showed variable degrees of

sequence conservation (Fig. 4). The most conserved gene was

Tapbp, with only a single nonsynonymous SNP (nsSNP) coding for

R165H in the corresponding protein (alternative allele in the

RT1u haplotype, Table 2). Psmb9 contained one nsSNP in a region

coding for the propeptide while three nsSNPs were found in Psmb8

Table 2. Sequence variants and allele distribution of genes in six rat MHC haplotypes.

Genea Sizeb SNPc deld Allele 1e Allele 2 Allele 3 Allele 4 Allele 5 Allele 6 Subsf Isofg

Btnl2h 1542 4 0 a n u 3 2

RT1-Da 768 7 0 a f i h n u 1 2

RT1-Db2 861 2 3 a f i n u 0 2

RT1-Db1 795 76 9 a f i h n u 35 3

RT1-Ba 768 66 3 a i h n f u 40 4

RT1-Bb 792 72 0 a i h n f u 38 4

RT1-DObi 819 19 0 a i h n f u 7 4

Tap2 2112 61 0 a i h n f u 28 4

Psmb8 831 14 0 a i h n f u 3 3

Tap1 2178 26 0 a f i h n u 10 6

Psmb9 661 5 0 n i f u a h 1 2

RT1-DMb 785 8 0 n i a f h u 1 2

RT1-DMa 783 5 0 a f h n i u 0 1

Tapbp 1563 2 0 a f n h i u 1 2

aAll genes except RT1-DMa and Tapbp are encoded within the Tcs2 locus.
bSize of the coding sequences (cds) in bp.
cTotal number of synonymous and nonsynonymous SNPs in the cds.
dTotal number of insertions/deletions on gene level.
eAllele distribution between MHC haplotypes; DA (RT1a), DA.1F (RT1f), DA.1I (RT1i), DA.1H (RT1h), DA.1U (RT1u). Sequence information for RT1n was obtained from NCBI
GenBank.
fTotal number of amino acid substitutions.
gNumber of alternative isoforms at the protein level.
hBtnl2 was analyzed in only two strains.
ISequence information for RT1-DOb refers to the full-length transcript of this gene (see Fig. S1 for alternative transcript).
doi:10.1371/journal.pgen.1004151.t002

Figure 3. Recombination hotspots and haplotype blocks in the rat MHC. Recombination activity was assessed over 2 Mb (3.4–5.4 Mb). Blue
lines represent cold regions (haplotype blocks) with low recombination activity. Regions with recombinations are depicted as red bars. The width of
the bars, and the table inset (right), represent recombination intervals. Numbers above bars in bold face represent the observed numbers of
recombinations within the interval with the number of analyzed meiotic events shown below. The height of the bars indicate individuals with
recombinations (in %). Blue triangles represent recombination hotspots in humans and are adopted from Cullen et al. [6].
doi:10.1371/journal.pgen.1004151.g003
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(Fig. 4), although not in positions predicted to influence

immunoproteasome assembly or the chymotrypsin-like activity of

the corresponding protein [45]. By contrast, both Tap1 and Tap2

showed extreme sequence diversity. We identified six allelic

variants of Tap1, including unique alleles for the RT1i and RT1h

haplotypes, and four allelic variants of Tap2 (Fig. 4). Three of the

Tap2 alleles have not been sequenced previously: Tap2h, Tap2f and

Tap2i, of which the latter was found to be identical to Tap2a

(Table 2). Our sequence analysis confirms previous categorization

of these alleles using restriction endonucleases [23] as Tap2A (RT1f

and RT1i) and Tap2B (RT1h), respectively. This categorization of

Tap2 alleles is based on nsSNPs coding for the amino acids 217,

218, 262, 265, 266 (asterisked in Fig. 4) in the Tap2 polypeptide,

which determine the peptide specificity of the TAP complex

[46,47].

Variable sequence diversity was also observed for the genes in

the MHC class II pathway (DOb, DMa and DMb). The Tcs1 and

Tcs2 intervals excluded the DMa gene as well as the only nsSNP in

Figure 4. Coding variants in T cell selection QTL 2 (Tcs2). Nonsynonymous- and structural variants in Tcs2 were determined by Sanger
sequencing of DA.1F (f), DA (a), DA.1I (i), DA.1U (u) and DA.1H (h) (see also Table 2). Amino acid substitutions are indicated in standard single letter
codes and insertions/deletions as DEL. Gene annotations are from UniProt; protein domains depicted in DOb are derived from the human homolog.
Letters in boxes depict residues with background allele (DA) with numbers above indicating amino acid positions in the translated cds. On top is a
schematic illustration of the genes in the region according to the 3.4 genome assembly (genes outside the QTL are shown in gray). Annotations used:
TM, transmembrane domain; CD, cytoplasmic domain; CP, connecting peptide; b1, beta 1 domain; b2, beta 2 domain; a1, alpha 1 domain; a2, alpha 2
domain. *Residues associated with class-I modification (cim).
doi:10.1371/journal.pgen.1004151.g004
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DMb (corresponding to aa position 12) (Fig. 4). The DOb gene was

found to be more polymorphic in the rat than previously shown for

mice and humans [48], with a total of seven aa substitutions in the

corresponding protein (Fig. 4). Two transcripts of DOb, which

differed in length by 77 bp due to a deletion in exon 3, were

identified in both congenic strains and DA (Fig. S1 and Fig. S2).

The rat expresses two classical MHC class II loci, RT1-B and

RT1-D. Three MHC class II genes, RT1-Ba, -Bb and -Db1 were

highly polymorphic across the six haplotypes studied here, whereas

RT1-Da was largely conserved with only a single nsSNP (Fig. 4).

The existence of a second putative b-locus of RT1-D has been

suggested [9]. Our data show that this gene, RT1-Db2, is expressed

and that it is monomorphic at the protein level in DA and MHC-

congenic strains (data not shown). We could further show by mass

spectrometry that RT1-Db2 forms an ab-heterodimer with RT1-

Da and confirm at the protein level that RT1-Db2 has a 22

residue extended cytoplasmic tail, which does not exist in RT1-

Db1 (Fig. S3).

Taken together, among the genes in the MHC class I pathway,

only Tap2 had an allele distribution that correlated with the

variation in MHC class I expression (Fig. 4, Table 1). The effect of

different Tap2 alleles on MHC class I expression has previously

been established [25,29], and we therefore suggest Tap2 as the

only causative gene in Tcs2 for this phenotype. In addition, these

data exclude functional polymorphisms in Tapbp as responsible for

the Tcs1 QTL in MHC-I. Hence, the variations in MHC class I

expression and the CD4:CD8 T cell ratio associated with this

QTL are likely to be due to polymorphisms in the RT1-A genes

and/or the number of functional protein-coding RT1-A genes per

MHC-I haplotype.

Expression of class I proteins in Tcs1-congenic rats
The number of RT1-A genes in standard inbred rat strains

varies from one in the RT1lv1 and RT1a haplotypes to three in the

RT1n,o,d,m haplotypes [14,18]. It has therefore been suggested that

the number of RT1-A genes influences the selection of CD8 T cells

[36]. The expression of RT1-A at the protein level has previously

been characterized using allotypic antibodies [18,49–52], while the

phenotypes we mapped in the HS and RCS were determined

using the widely reactive MHC class I antibody OX18, which does

not discriminate between different isoforms of RT1-A. In order to

assess the number of functional protein-coding RT1-A genes in

DA.1IR85 and to confirm the expression of RT1-Aa, A1h and

A2h, and Au as the only class Ia molecules in DA and the Tcs1-

congenic strains, we analyzed trypsin-digested cell lysates of IFN-c
stimulated splenocytes from these strains by mass spectrometry.

The comparison of DA and the Tcs1-congenic strains also allowed

the identification and discrimination of classical Ia and non-

classical Ib proteins, since these strains encode different RT1-A

genes but the same RT1-CEM genes.

We identified between 5 and 17 peptides (Mascot score .20)

per strain that matched rat class Ia and Ib entries in public

databases. In DA, 11 of 17 identified peptides matched the RT1-

Aa molecule described by Rada et al. [53], while four peptides

matched the UniProt entry HA11_RAT (Table 3, Fig. S4).

HA11_RAT is the UniProt entry of the class Ib gene RT1-EC2

(RGD), which was isolated from a DA cDNA library as clone 3.6

[53] and predicted to be the rat homologue of mouse H2-Q10

[54]. All four peptides identified in DA.1UR83 were derived from

a single class Ia molecule (Table 3, Fig. S5), which is consistent

with previous observations that the RT1a and the RT1u

haplotypes express only one class Ia gene each (RT1-Aa and

RT1-Au, respectively) [53,55]. In DA.1IR85 and DA.1HR83, 12

and 13 peptides, respectively, allowed the discrimination of two

different RT1-A isoforms (A1 and A2) in each strain (Table 3, Fig.

S6 and S7). In DA.1HR83 we also identified one peptide unique

to clone 3.6 and two peptides that were shared between all

identified class I molecules (Fig. S7). None of the analyzed samples

contained peptides unique to an A3 isoform, which has been

cloned in rats with haplotype RT1o/d/m [18] and RT1n [14].

Taken together, our results show that DA.1IR85 and

DA.1HR83 express two functional protein-coding RT1-A genes,

A1n/A2n and A1h/A2h, respectively. We did not identify an A3

isoform in DA.1IR85, which is unexpected since the RT1-A

region in DA.1IR85 is supposedly derived from the BN strain

(RT1n) [56]. In DA and DA.1UR83 we only identified one RT1-A

molecule per haplotype, which is in line with previous studies

[53,55].

A novel type of class-I modification influences class I
expression

Having established the number of protein-coding RT1-A genes

in DA.1IR85 and confirmed the protein expression of RT1-Aa,

A1h and A2h, and Au, we continued assessing the impact of TAP-A

and TAP-B on the expression levels of MHC class I molecules in

Tcs1 and Tcs2-congenic strains.

Mapping in the RCS identified two adjacent QTLs for class I

expression, Tcs1 and Tcs2. Tcs2 aligned with the principles of the

classical cim phenomenon [25]. Tcs1, by contrast, was unexpected

since the RT1-A genes in the Tcs1-congenic strains are associated

with Tap2A, which encodes the promiscuous TAP-A transporter.

We therefore hypothesized that this QTL was due to a novel type

of class I modification in which the cell surface expression of TAP-

B-linked RT1-A molecules (RT1-An, RT1-Au and RT1-Ah) was

reduced by the presence of TAP-A. We termed this TAP-A-

mediated class-I modification inverse cim. To test this hypothesis, we

analyzed the intra- and extracellular expression of class I in the

Tcs1-congenic strains (Tap2A), DA (Tap2A) and in two non-

recombinant parental strains, DA.1H and DA.1U (both Tap2B).

The expression of class I was determined using the OX18

antibody that binds both A1 and A2 isoforms [57]. However, since

OX18 in addition recognizes class Ib molecules [58], which may

differ in numbers between the non-recombinant strains and DA,

we also used the class Ia specific antibody F16-4-4 [59]. This

antibody, on the other hand, reacts with a polymorphic

determinant (Fig. S8 and [52]) and was therefore only used to

Table 3. MHC class I proteins expressed in splenocytes from
DA and Tcs1-congenic strains.

F pocketa

Strain UniProt Entry Gene 77 97 116

DA HA12_RAT RT1-Aa D E D

DA HA11_RAT Clone 3.6 S R H

DA.1UR83 Q31256_RAT RT1-Au N V D

DA.1HR83 Q9QYQ2_RAT RT1-A2h S L F

DA.1HR83 Q9QYQ3_RAT RT1-A1h D L Y

DA.1HR83 HA11_RAT Clone 3.6 S R H

DA.1IR85 Q6MGB9_RAT RT1-A1n N R Y

DA.1IR85 Q6MGB8_RAT RT1-A2n D R D

aAmino acids in the F pocket, which discriminate TAP-A- from TAP-B-linked RT1-
A molecules [24].
doi:10.1371/journal.pgen.1004151.t003
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compare the class I expression between strains with the same RT1-

A haplotypes.

We first analyzed the extracellular levels of class I on spleen cells

expressing CD68, a marker of macrophages and dendritic cells in

the rat [60]. Consistent with the leukocyte data shown in Table 1,

CD68+ cells in DA.1HR83 and DA.1HR10 showed reduced

surface levels of class I compared to DA and DA.1H when stained

with OX18 (Fig. 5A) as well as with F16-4-4 (Fig. 5B). The lower

levels of class Ia in DA.1HR83 (RT1-Ah, TAP-A) compared to

DA.1H (RT1-Ah, TAP-B) suggest that RT1-Ah requires TAP-B

for optimal export to the cell surface, which would be consistent

with the inverse cim phenomenon.

The association of RT1-Aa to TAP-B has been shown to cause a

relative retention of class I molecules in the ER [25,29], implying

that the level of class I should be higher intracellularly in

DA.1HR10, and possibly also in DA.1HR83. However, we found

that the intracellular levels of class I in these strains were also

reduced compared to DA and DA.1H (Fig. 5C). These observations

were also confirmed using F16-4-4 in DA.1HR10 (Fig. 5C),

suggesting that both classical and inverse cim reduce the class I

expression on the cell surface as well as inside the cell. DA.1IR85

showed extremely low extracellular levels of class I staining on all

analyzed subsets of leukocytes as well as intracellularly in CD68+
cells (P,0.01; Fig. 5D, E). The intracellular levels of class I in

Figure 5. Regulation of class I expression by classical and inverse cim. (A) CD68+ cells were stained on the cell surface with OX18 (anti-class
Ia and Ib). Histograms show representative samples from DA, DA.1H and DA.1H derived strains with different alleles of RT1-A and Tap2 as stated on
top. Data from all individuals are shown in scatterplot (far right); * significant compared to DA.1H (1H); ** significant compared to DA. (B) CD68+ cells
stained with a class Ia specific antibody (F16-4-4). (C) T cells from animals shown in (A) stained intracellularly with OX18 (scatterplot) and F16-4-4
(histogram). (D–E) Subsets of leukocytes from DA and DA.1IR85 spleen stained extracellularly (D) and intracellularly (E) with OX18. Data are
representative of 6 individuals per group. (F) Surface expression of MHC class I (OX18) on CD68+ cells from DA and DA.1U congenic strains. (G) CD68+
cells (same as in F) stained with F16-4-4. Vertical lines in scatterplots show mean values. Representative results of at least two independent
experiments are shown.
doi:10.1371/journal.pgen.1004151.g005
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lymphocytes (T and B cells), by contrast, did not differ between DA

and DA.1IR85 (Fig. 5E), suggesting that at least one of the two

RT1-A molecules in DA.1IR85 is not efficiently transported to the

cell surface. It is difficult to fully evaluate the TAP restriction of

RT1-An in DA.1IR85 since the parental strain, DA.1I, is itself a

recombinant strain that expresses the Tap2A allele (Fig. 4).

However, the class Ia genes in DA.1IR85, RT1-A1n and RT1-A2n,

are naturally associated with Tap2B in BN, which does not show

reduced class I expression compared to ACI (RT1-Aa) [42]. This

suggests that TAP-A is not an optimal transporter of peptides for

RT1-A1n and/or RT1-A2n and that these molecules in DA.1IR85,

as well as in DA.1I, are affected by the inverse cim.

As expected, the class I expression in DA.1IR7 and DA.1FR9

(RT1-Aa, TAP-A), did not differ from DA (Table 1). Moreover, the

Tap2B allele in DA.1UR10 has previously been shown to encode an

inefficient transporter of peptides for RT1-Aa [61], which explains

the low surface expression of class I in this strain (Fig. 5F,G).

Leukocytes from the parental congenic strain DA.1U showed a

trend towards lower levels of class I on the cell surface compared to

DA (Table 1). This reduction in class I expression was statistically

significant on CD68+ cells in DA.1U as well as in DA.1UR83

(Fig. 5F). Hence, the reduced expression of class I in DA.1UR83,

which did not differ significantly from DA.1U (Fig. 5F,G), cannot be

ascribed to polymorphisms in the Tap2 gene and suggest that the

expression of RT1-Au is regulated at the transcriptional level.

Our data support a novel type of cim in which RT1-Ah and

probably also RT1-An require TAP-B for optimal expression at

the cell surface. However, we also found evidence for a cim-

independent regulation of extracellular class I levels for RT1-Au,

suggesting that regulation also takes place at the gene level.

Weak correlation between transcription and extracellular
expression of class I

The variation in MHC class I protein expression between

DA.1H and DA.1HR83 revealed that RT1-A1h and/or A2h were

reduced in the context of TAP-A. However, whether the

expression of MHC class I proteins in addition was influenced

by a variation in RT1-A gene expression in the Tcs1 congenic

strain was still unclear.

We therefore determined the expression levels in the spleen of

the six protein-coding RT1-A genes shown in Table 3. We

designed allele-specific primers based on published RT1-A

sequences to avoid off-target amplification of RT1-CEM genes

(Fig. 6A). Each target was amplified with 2–4 different primer sets

and the levels of product were averaged on the gene level and

compared to the expression of beta-2-microglobulin (B2M, Fig. 6B)

and to three reference genes (Fig. 6C). We observed the highest

transcript levels for RT1-A1n in DA.1IR85, which was ,5-fold

higher than RT1-A2n in this strain and ,3-fold higher than RT1-

Aa in DA. Hence, the high levels of intracellular MHC class I

proteins in DA.1IR85 T and B cells (Fig. 5E) correlated with a

high expression of RT1-A1n on the gene level. By contrast, such

correlation could not be found for RT1-A2h in DA.1HR83 and

RT1-Au in DA.1UR83, which had comparable expression levels to

RT1-Aa in DA despite their significant reduction in protein

expression (Fig. 5).

We also compared the expression of class Ia and Ib genes in DA

and found ,6-fold higher levels of RT1-Aa compared to clone 3.6

(Fig. 6D), which was the only class Ib gene that was identified at

the protein level (Table 3). Finally, we assessed the impact of Tcs1

on genome-wide transcription by exon-microarray. This showed

that all genes that were differentially expressed between DA and

DA.1IR83 (which has a slightly larger congenic fragment

compared to DA.1IR85) were located within the Tcs1 region

(Fig. S9). Hence, the phenotypic variation associated with Tcs1 is

unlikely to be due to trans-acting factors outside of the QTL.

Taken together, the extracellular expression of class I proteins

correlated poorly with the expression at the gene level. These data

therefore support the conclusion that class I expression on the cell

surface is largely regulated by polymorphisms affecting the peptide

binding pocket of the RT1-A molecules and the TAP transporter.

Regulation of MHC expression by dendritic cells is similar
in the thymus and spleen

The genetic variation in Tap2 influenced the extracellular

expression of class I molecules in the spleen. Next, we determined

the expression of MHC on thymic DCs, which control the egress

of T cells by eliminating self-reactive cells during negative selection

[62].

Comparing the class I expression at the protein level between

thymic DCs (Fig. 7A) and CD68+ cells in the spleen (Fig. 5)

showed that the variation between the strains was similar in both

Figure 6. Transcriptional regulation of MHC class I genes. (A)
Allele-specific primers (Prim.) used for quantitative RT-PCR showed
minimal amplification of other RT1-A alleles and were therefore
considered class Ia-specific (i.e. not cross-reacting to class Ib genes);
PCR products (Prod.) are shown for DA (a), DA.1UR83 (u), DA.1HR83 (h)
and DA.1IR85 (i). (B) Expression in spleen of RT1-A genes in DA and
Tcs1-congenic strains relative to the expression of beta-2-microglobu-
line (B2M). (C) Variation (fold-change) in RT1-A gene expression
between different congenic strains. Data show the mean expression
of 2–4 different primer sets per target gene after normalization to 3
reference genes (Table S3). Significant differences compared to RT1-Aa.
(D) Expression of RT1-Aa (class Ia) and clone 3.6 (class Ib) in spleen from
DA rats. The amplification of a product in DA.1HR83 but not in DA.1H
(1H) indicates that the primers for clone 3.6 are not cross-reacting to the
RT1-Aa gene in DA (adjacent figure).
doi:10.1371/journal.pgen.1004151.g006
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organs. This suggests that cim affects a broad repertoire of cells in

different tissues. Likewise, the variation in class II expression on

DCs in Tcs2-congenic strains was similar in the spleen (Fig. 7B)

and in the thymus (Fig. 7C), as well as between DCs and B cells in

the spleen (Table 1). Thus, we established that the genetic

variation in Tap2 also affects the extracellular class I expression on

antigen presenting cells in the thymus. We next aimed to

determine if Tap2 had a pleiotropic effect and was also responsible

for the variation in CD4:CD8 lineage commitment.

Classical cim affects lineage commitment and negative
selection of CD8 T cells

Classical and inverse cim influenced class I expression on

thymic DCs. We hypothesized that the changes associated with

cim in class I expression and/or in the quality of the peptide

repertoire would affect thymic selection and thereby contribute to

the variation in peripheral CD4 and CD8 T cell numbers.

The different maturation stages of thymocytes are defined by

the expression of various surface markers, which differ between

rats, mice and humans [63,64]. In the rat, double negative (DN)

cells are defined according to the expression of CD45RC and CD2

[65] (see also Figure S10). We first determined the progression

from the DN to the double positive (DP) stage in 6.5 week-old

Tcs1- and Tcs2-congenic rats. We found no variation in the total

number of DN cells (Fig. 8A, shown for Tcs2-congenic strains),

while the frequency of early thymic precursors (CD45RC+, CD2lo)

was reduced in DA.1FR9 compared to all other strains (Fig. 8B,

shown for DA vs. DA.1FR9). Moreover, all strains showed similar

frequencies of immature CD8a single positive (ISP) cells (data not

shown), whereas DA.1UR83 showed a greater proportion of cells

at late DN stage (corresponding to DN4 in the mouse), in which all

cells express TCRb on the cell surface (Fig. 8C, shown for DA vs.

DA.1UR83).

Positive selection takes place in the thymic cortex where DP

cells expressing intermediate levels of TCR interact with MHC

expressing stromal cells. DP cells that express a functional TCRa
chain, which can pair with TCRb and recognize self-MHC, are

positively selected. We determined the total number of DP cells in

the thymus and found lower numbers in the strains expressing

RT1-Aa and TAP-B (DA.1HR10, DA.1UR10) (Fig. 8D). In

addition, DP cells in these strains showed a greater proportion of

mature cells, which express high levels of TCR and CD5 (Fig. 8D)

[64]. Such a reduction of DP cells was not observed in other

strains with low expression of class I, such as DA.1IR85 (RT1-An,

TAP-A) (data not shown), suggesting that it is not the lower

expression of class I that influences the number of DP cells in

DA.1HR10 and DA.1UR10 but rather the quality of the class-I

peptide repertoire.

Next, we determined how genes in the MHC-I and II regions

influence lineage commitment and negative selection. TCR cross-

linking of DP cells in vitro has been shown to generate CD8SP cells

in the rat and CD4SP cells in the mouse [66,67]. As shown in

Figure 8E, ,60% of CD8SP cells in DA express low or

intermediate levels of TCR, which is in marked contrast to

CD8SP cells in the mouse where essentially all are TCRhi [68].

However, both the frequency and the total number of CD8SP

TCRhi cells varied substantially among the strains: the majority of

CD8SP cells in strains with TAP-A expressed low TCR levels

whereas most CD8SP cells in DA.1HR10 and DA.1UR10 (TAP-

B) were TCRhi (Fig. 8E and 8F). A similar increase in TCRhi

expressing CD8SP cells was not observed in DA.1H (RT1-Ah,

TAP-B) (Fig. 8F), indicating that the increase of CD8SP cells in

DA.1HR10 (RT1-Aa, TAP-B) is cim-dependent. Neither was it

observed in Tcs1-congenic strains with low surface expression of

class I (DA.1HR83, DA.1IR85; Fig. 8F), which suggests that it is

the quality of the peptide repertoire and not the lower expression

of class I that is responsible for the increase of CD8SP TCRhi cells

in DA.1HR10 and DA.1UR10.

In contrast to CD8SP cells, virtually all CD4SP cells were

TCRhi (Fig. 8G). All Tcs1-congenic strains had similar numbers of

CD4SP cells (data not shown), while we observed an increase of

total CD4SP cells in DA.1HR10 and a decrease in the same subset

in DA.1FR9 compared to DA and DA.1UR10 (Fig. 8G). The

variation in the number of CD4SP cells probably reflects the

genetic variation in the classical MHC class II genes, in particular

in the RT1-B genes since the RT1-D genes are conserved between

DA and DA.1FR9 (Fig. 4). It is further unlikely that the variation

in CD4SP cells is cim-dependent since only DA.1HR10, and not

DA.1UR10, showed an increase in CD4SP cells.

These data suggest that classical cim reduces negative selection

of class I restricted thymocytes, probably by limiting the

Figure 7. Tcs1 and Tcs2-congenic strains show similar variation
in extracellular MHC expression in thymus and spleen. (A)
Thymic conventional DCs (CD103+, CD11b/c+) stained extracellularly for
class I (OX18). Scatterplots show results from two different experiments
with Tcs1 and Tcs2-congenic strains. The variation between the strains is
comparable to data shown in Figure 5 for CD68+ cells. (B–C) Splenic
DCs (CD103+, CD68+, CD11b/c+) (B) and thymic DCs (C) stained
extracellularly for RT1-D (OX17) and RT1-B (OX6). Histograms show
representative samples from DA (solid lines) and DA.1HR10 (dashed
lines).
doi:10.1371/journal.pgen.1004151.g007
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complexity of available peptides in the ER. In addition, cim may

influence positive selection as shown by the reduced number of DP

cells in DA.1HR10 and DA.1UR10.

Classical cim influences the number of peripheral CD8 T
cells

Class-I modification was associated with an increased number of

CD8SP TCRhi cells in the thymus. However, it was unclear whether

this also led to an increase of CD8 T cells in the periphery. Thus, we

assessed the number of CD8 recent thymic emigrants (RTEs), which

in the rat can be distinguished by their expression of CD90 (Thy-1)

and CD45RC [69,70], in the spleen of 6.5 week-old Tcs2-congenic

rats. The total number of CD8 RTEs was found to be significantly

increased in DA.1HR10 and DA.1UR10 (RT1-Aa, TAP-B)

compared to DA and DA.1FR9 (RT1-Aa, TAP-A). Furthermore,

the number of CD8 RTEs in the spleen correlated significantly with

the number of CD8SP TCRhi cells in the thymus (R2 = 0.83; P,

0.001), indicating that CD8SP TCRhi cells constitute a mature

subset of thymocytes. CD8SP cells with low or intermediate TCR

expression, by contrast, showed a weak inverse correlation with

CD8 RTEs in the spleen (data not shown). Similarly to the CD8

RTEs, the CD4 RTEs in the spleen strongly correlated with CD4SP

cells in the thymus (Fig. 9B). Differences in CD4 and CD8 RTEs

were less pronounced in older rats (13–14 weeks of age), which also

showed less, and slightly different, variations in total CD4 and CD8

T cell numbers compared to younger rats (Fig. S11). This

emphasizes that other mechanisms, such as clonal expansion, may

be more important than thymic output for maintaining the

proportions of CD4 and CD8 T cells in older rats.

We further compared CD8 T cell numbers between heterozy-

gous and homozygous DA.1HR61 (Fig. 2) and DA.1UR10 rats

(both Tap2B). Since the Tap2B allele is recessive [29], it was

Figure 8. Class-I modification reduces negative selection of CD8 cells. (A) The QTLs in Tcs1 and Tcs2 did not affect the total number of
double negative cells (DN; CD42, CD8b2). B cells (CD45RA+) were excluded from the DN gate. (B) DN cell maturation is defined by CD45RC and CD2
(see Fig. S10). DN cells in DA.1FR9 showed a lower frequency of early thymic precursors (ETP) compared to DA. Counter plot shows gating strategy
with numbers indicating percent (%) of parent population (stated above plot). (C) Counter plot shows CD45RC2, CD2hi DN cells from DA.1UR83, and
scatter plots the frequency of TCRb2 and TCRb+ (DN4 in mouse) cells in DA and DA.1UR83. (D) Thymi from Tcs2-congenic strains with TAP-B (HR10
and UR10) contained fewer double positive (DP) cells but more cells (in %) with high TCR expression. (E) TAP-B strains (HR10 and UR10) showed
higher frequencies (histograms) and total numbers (scatter plots) of CD8 single positive (SP) cells with high TCR expression. Numbers (%) in
histograms represent mean-values 6SD of cells with high TCR expression (gated, n = 5). (F) Frequencies (histograms; n = 5) and total numbers (scatter
plot) of CD8SP cells with high TCR expression in DA.1H (RT1-Ah, TAP-B) and in strains with low levels of surface MHC class I (HR83 [RT1-Ah, TAP-A] and
IR85 [RT1-An, TAP-A]). (G) Virtually all CD4SP cells express high levels of TCR. Histogram shows expression of TCR on CD4SP thymocytes in DA (n = 5).
Scatterplot shows total number of CD4SP cells per thymus in Tcs2-congenic strains.
doi:10.1371/journal.pgen.1004151.g008

Polymorphisms in Tap2 Influence T Cell Selection

PLOS Genetics | www.plosgenetics.org 12 February 2014 | Volume 10 | Issue 2 | e1004151



expected that rats with heterozygous Tap2 alleles had fewer CD8

T cells in the spleen compared to their Tap2B homozygous

littermates (Fig. 9C). However, they had also fewer CD8 T cells

than their DA littermates, a phenomenon known as under-

dominance, which has not previously been reported for T cell

selection. The impact of heterozygosity was the opposite in

DA.1UR83 (Tap2A), in which heterozygous rats had more CD8 T

cells than their homozygous littermates (so called overdominance)

(Fig. 9C). Hence, these phenomena were not directly related to

cim but seem to be specific for the CD8 lineage, and may reflect

the default CD8 lineage choice that has been reported in the rat

[66,67].

Taken together, we show that cim reduces negative selection of

CD8 cells, increases the thymic output of CD8 T cells and

thereby significantly contributes to the peripheral CD8 T cell

repertoire.

Discussion
We show that two linked haplotypes in the MHC-I and II

regions control MHC expression and T cell selection in rats. A

recombination between these haplotypes, which broke the

evolutionary conserved linkage between RT1-A and Tap2, affected

negative selection and lineage commitment of CD8 cells. This

effect was found to be associated with the Tap2B allele and

dependent on the co-expression of RT1-Aa. The same combination

of alleles has previously been shown to reduce the expression and

alter the antigenicity of the RT1-Aa molecule, a phenomenon

known as class-I modification (cim) [61]. We found in addition

that the combination RT1-Ah and Tap2A, encoding for the

promiscuous TAP-A transporter, also reduced the extracellular

expression of class I, which we term inverse cim. Thus, our results

show how natural polymorphisms in Tap2 modify class I

expression and alter T cell selection in rats.

Following the identification of Tap2 as a trans-acting modifier of

RT1-Aa antigenicity [25], it has been thoroughly investigated how

different TAP transporters are associated with changes in RT1-A

protein expression and the RT1-A peptide repertoire. These

studies suggest that TAP-A and TAP-B are equally efficient in

transporting peptides with hydrophobic C-terminal residues, while

TAP-B has weak affinity for peptides with basic C-terminal

residues [18,22,26–28]. These differences were exploited here to

assess how an altered spectrum of class I peptides influences T cell

Figure 9. Classical cim influences the number of CD8 recent thymic emigrants. (A) Recent thymic emigrants (RTEs) express CD90 and low
levels of CD45RC. Counterplots show CD8 RTEs (gated) in the spleen of 6.5-week old congenic and DA rats (representative samples, numbers in gates
show percent of CD8 T cells). Scatterplot shows total number of CD8 RTEs per spleen, which correlates to the absolute number of CD8SP TCRhi cells in
the thymi from the same animals (far right). (B) The corresponding staining (as shown in A) for CD4 RTEs, including total numbers (scatterplot) and
correlation to CD4SP TCRhi cells in the thymus. (C) Absolute numbers of CD4 (blue) and CD8 (red) T cells in the spleen of 13-week old rats. Strains and
genotypes are shown above and below graphs, respectively; n = 5–7 per group.
doi:10.1371/journal.pgen.1004151.g009
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selection in animals with natural variations in the TCR and MHC

loci.

Thymic DCs in the corticomedullary junction present antigens

to positively selected thymocytes ([71], reviewed in [72]).

Thymocytes with high affinity for self-peptide:MHC complexes

are eliminated through negative selection. However, if the peptide

repertoire on the DCs is limited, as in DA.1HR10 and DA.1UR10

(RT1-Aa, TAP-B), fewer thymocytes will express TCRs with high

affinity for peptide:MHC complexes and fewer cells will therefore

undergo negative selection. We showed in addition that less

negative selection in rats with RT1-Aa and TAP-B allotypes

correlated with an increased number of CD8 RTEs in the

periphery. Thus, it seems possible that cim may lead to an escape

of autoreactive CD8 T cells. Preliminary results from our

laboratory, however, show that CD8 cells from DA.1HR10 and

DA.1UR10 produce lower levels of pro-inflammatory cytokines

compared to strains expressing RT1-Aa and TAP-A (Tuncel and

Haag, unpublished data).

Although the major effect of cim appears to be during negative

selection, it also influenced the number of DP cells. This finding is

consistent with studies in fetal thymus organ cultures in which a

complex mixture of class-I peptides has been shown to increase

positive selection [68,73]. Hence, it seems reasonable that fewer

thymocytes will be positively selected in strains, such as

DA.1HR10 and DA.1UR10, where the class I peptide repertoire

is limited by the restrictive TAP-B transporter. In contrast to

negative selection, positive selection is largely dependent on

cortical thymic epithelial cells (cTECs). Interestingly, in the mouse

it has been shown that thymic DCs express 106 higher levels of

MHC class I than cTECs [74]. This latter subset is still poorly

characterized in the rat and we have therefore not been able to

determine the expression of class I on these cells. However, it

seems likely that different allelic variants of Tap2 would also affect

the expression of class I on epithelial cells. The increased number

of DP thymocytes should therefore be further investigated

considering the lower expression of MHC class I described on

cTECs in the mouse and the fact that the processing of antigens in

these cells is different due to a thymoproteasome specific subunit

encoded by PSMB11 [75,76].

Cim did not affect TCR selection at the early DN stage. All

strains, regardless of Tap2 genotype, had similar number of DN

cells and normal transition from early thymic precursors to more

mature TCRb+ cells (DN4). By contrast, the frequency of early

thymic progenitor cells was reduced in DA.1FR9, which is

congenic for the Tcs2 interval as well as the entire MHC-III region

and parts of the non-classical MHC class Ib (RT1-CEM) region. A

potential candidate in the MHC-III region, which could influence

the regulation of DN cells in this strain, is Notch4. Notch4 is

expressed in the thymus [77] and has been shown to influence

lymphoid progenitor fate [78] while another Notch family

member, Notch1, has been shown to determine early commitment

to T cell lineage [79]. We have recently obtained a new RCS,

DA.1FR61 (Fig. 2), which excludes Notch4 and future studies on

this strain will help delineate whether Notch-4 is involved in the

regulation of DN cells.

We did not find evidence for a correlation between class I

expression levels and T cell selection. All Tcs1-congenic strains

showed low levels of extracellular class I expression (compared to

DA) but varied widely in their CD8 cell numbers. Damoiseaux et

al. suggested that the expression of two RT1-A genes in the BN

strain, compared to one in LEW, was responsible for the increased

negative selection of CD8 cells in the LEW.1N strain [36]. This

reduction of CD8 cells is probably associated with the RT1-A

locus (RT1-An) in LEW.1N and thus the same phenotype as we

mapped in DA.1IR85. We determined the expression of the two

RT1-A genes (A1n and A2n) in DA.1IR85 and although both genes

were highly expressed, the level of class I protein at the cell surface

was low compared to DA. However, the low surface level of class I

in DA.1IR85 is probably dependent on the presence of TAP-A in

this strain, while RT1-An in LEW.1N is associated with TAP-B.

Thus, it is unlikely that the reduction of CD8 cells in DA.1IR85

and LEW.1N [36] is associated with the levels of class I expression

on the cell surface. However, that CD8 selection would be

influenced by the number of protein-coding class I genes, as

proposed by Damoiseaux et al. [36], remains an attractive

hypothesis. It is further interesting to note that also DA.1HR83

expresses two RT1-A genes and has low numbers of CD8 cells,

while DA and DA.1UR83, which have higher numbers of CD8

cells, only express a single RT1-A gene each. However, whether it

is the number of expressed class I genes or the increased diversity

of class I peptides that promote clonal deletion of CD8 cells

remains to be tested in more strains.

We further noted that QTLs for the expression of class I (Q2 on

RNO2, Q6 on RNO10) and class II (Q1 on RNO2, Q7 on

RNO17) did not co-localize with QTLs for the CD4:CD8 T cell

ratio in the HS rats. Thus, Tap2 remains, at least to our knowledge,

the only naturally selected non-classical MHC gene that has been

found to be associated with both variations in MHC surface

expression and CD4:CD8 lineage commitment. In addition to the

MHC, a second major QTL controlling CD4:CD8 T cell variation

was identified within a narrow region on chromosome 9. A gene at

this locus, Satb1, is predominantly expressed in the thymus [80].

Reduced expression of Satb1 at the protein level has been shown to

be associated with a reduction in the frequency of CD8SP cells in

the thymus as well as in the periphery [81]. Variation in CD8 T cells

in the HS rats, however, did not correlate with the allelic

distribution of Satb1, nor did the gene expression of Satb1 in the

thymus of 136 HS rats (data not shown).

A strong correlation similar to that we showed for Tap2 and

CD8 selection could not be found for any gene in Tcs2 and CD4

selection. Apart from the extensive diversity we observed in RT1-

Db1, Ba and Bb, several non-synonymous SNPs were in addition

identified in RT1-DOb. This gene encodes one subunit of the non-

classical class II molecule DO. The human homologue, HLA-DO,

which has been shown to be expressed in the thymus [82],

competes with the peptide editor HLA-DM for the binding of

MHC class II molecules [83,84]. Hence, polymorphisms that alter

the affinity of DO for MHC class II may also affect the peptide

repertoire of the MHC class II molecule and, thus, the selection of

T cells. We found in addition evidence on transcript and protein

level for a second RT1-Db locus (Db2), which is probably the rat

ortholog of murine Eb2 [85]. Similar to the mouse gene, Db2

appears to be highly conserved among inbred rat strains. The

genetic interaction between allotypes of TAP and RT1-A for the

selection of CD8 T cells raises the question whether a similar

interaction exists between the two highly polymorphic class II

molecules (RT1-B and RT1-D) and alleles of RT1-DOb for the

selection of CD4 T cells. Such interaction could be one

explanation for the strong LD between these genes.

It has been a long-standing question why the rat has two TAP

variants [24], in particular since the restrictive TAP-B transporter

does not seem to offer advantages over the promiscuous TAP-A

transporter. The redundancy of the TAP-B transporter has also

been shown experimentally in the PVG.R23 recombinant strain in

which RT1-Au, which is typically found associated with TAP-B, is

expressed together with TAP-A [61]. In this strain, the association

with TAP-A did not influence the expression of class I, which is

consistent with our results in DA.1UR83. It was therefore
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somewhat surprising that certain other RT1-A allotypes appear to

be dependent on the association with TAP-B for optimal

expression on the cell surface. We termed this phenomenon inverse

cim and showed that the extracellular expression of RT1-Ah is

reduced when the molecule is associated with TAP-A compared to

TAP-B. The same seems to be true for the RT1-An molecule(s) in

DA.1IR85, although the linkage to TAP-A in the parental strain

made it difficult to further address this question. One of the

antibodies, F16-4-4, used to determine the inverse cim for the

RT1-A molecules in DA.1HR83 has been shown to bind the A1h

but not the A2h isoform (Anne France Le Rolle, personal

communication). Thus, the inverse cim reduces the expression of

A1h while it remains to be investigated whether it also reduces the

expression of A2h.

The expression of RT1-A at the gene level did not correlate well

with the protein expression on the cell surface and did not explain

the low levels of extracellular class I in DA.1HR83 and DA.1IR85.

In DA.1HR83, the expression of A2 was ,15-fold higher

compared to A1, which is inconsistent with the idea that if any

allele is expressed at the A1 locus, this allele will function as the

principle class Ia molecule [18]. However, since both isoforms

were detected at the protein level, it remains possible that A1

indeed is the dominant class Ia molecule in DA.1HR83, despite

being expressed at a lower level. By contrast, RT1-A1n showed a 5-

fold increased expression over RT1-A2n in DA.1IR85, and both

isoforms were readily detected at the protein level. There was no

evidence at the protein level for an A3 isoform, which may suggest

that DA.1IR85 has not acquired all functional class Ia genes from

BN. The class Ia molecules in DA.1IR85 further differed from

DA.1HR83 by a high intracellular expression in lymphocytes,

while a similar difference was not observed for myeloid cells. It

should be noted that the OX18 antibody used for the intracellular

staining of MHC class I also recognizes MHC class I in the

absence of b2-microglobulin. Hence, the high intracellular levels

of MHC class I in DA.1IR85 lymphocytes do not necessarily need

to reflect an increase in mature peptide-loaded molecules. An

interesting possibility is that the differences in intracellular class I

levels between leukocyte lineages is regulated at the transcript

level, which could suggest that the expression of A1 and A2 in

DA.1IR85 is lineage specific. This has indeed been shown

previously in rhesus macaques where specific class Ia transcripts

have been associated with either myeloid or lymphoid lineages

[86].

Co-evolution of genes in the class I and Tap loci is certainly not

an isolated phenomenon in the rat, although the class I genes are

separated from the TAP genes by the class II region in the

majority of mammals. The class I molecules in both humans and

mice have evolved to accommodate peptides that are supported by

their associated TAP transporters, while the Tap1 and Tap2 genes

themselves have remained functionally monomorphic. By contrast,

functional alleles of Tap2 that have co-evolved specifically with

different alleles of class I have been described in the chicken [87].

The Tap genes in the chicken are directly flanked by class I genes

[88], which probably have preserved the linkage. In the rat, by

contrast, the Tap2 and class I loci are separated by a ,250 kb

interval, which is relatively susceptible to recombinations (Fig. 3).

On the contrary, the recombination activity between Tap2 and the

class II genes is extremely low as shown in this study. This may

suggest that alleles of Tap2 have been conserved in the rat in cis-

configuration with alleles in the RT1-B and RT1-D loci. This

linkage may not have been maintained in species that lack

functional polymorphisms in the Tap genes, such as in the mouse

[89–91] and in humans [92]. Highly conserved MHC-II

haplotypes are also evident in many inbred and partially outbred

rat strains [13], with the only exception to our knowledge being

the WRC strain that has a recombination in the RT1-B locus [93].

In addition, several related inbred strains, which have been

derived from outbred stocks, have recombinations between Tap2

and RT1-A, e.g. LN (Tap2B) vs. LL (Tap2A), and FHL (Tap2B) vs.

FHH (Tap2A) [13]. With an increasing number of genome

sequences available, and the possibility to obtain sequence

information from wild rats, it might be possible to investigate

whether the strong linkage between Tap2 and the class II genes is

associated with certain haplotypes and bears an evolutionary

advantage.

In summary, we mapped two QTLs associated with variations

in CD4:CD8 lineage commitment and MHC expression to the

MHC-I and MHC-II region in the rat. A recombination between

these two regions modifies class I expression by breaking the

linkage between co-evolved RT1-A and Tap2 alleles, which

previously has been described as class-I modification (cim). We

demonstrate a novel type of cim and also show that certain

combinations of RT1-A and Tap2 alleles are not affected by cim.

Furthermore, we show that cim had a pronounced effect on

thymic selection. Cim did not influence DN stages, but decreased

the number of DP thymocytes. Most importantly, cim rescued

CD8 T cells from negative selection and thereby increased the

number of CD8 T cell in the periphery.

Materials and Methods

Ethics statement
All experiments involving animals were approved by the local

ethics committees at Karolinska Institutet, Stockholm, or by the

Spanish legislation on ‘‘Protection of Animals Used for Experi-

mental and Other Scientific Purposes’’ and the European

Communities Council Directive (86/609/EEC) on this subject.

Animals
NIH-HS. The origin of the strains and the outbreeding

regime that was used to create and maintain the NIH-HS have

been described elsewhere [42]. Briefly, the colony was founded

from 8 inbred progenitor strains: BN/SsN (RT1n), MR/N (RT1d),

BUF/N (RT1b), M520/N (RT1b), WN/N (RT1l), ACI/N (RT1a),

WKY/N (RT1l), and F344/N (RT1lv1) [37]. Animals were housed

in open polycarbonate (Makrolon) cages at a temperature of

22uC62uC and with 12 h light-dark cycle and fed standard rodent

chow and tap water ad libitum.

Congenic strains. Inbred DA/Ztm rats were obtained from

the Zentralinstitut für Versuchstierzucht (Hannover, Germany)

and DA/OlaHsd from Harlan Europe (Horst, the Netherlands).

Rats were maintained in a barrier facility by sister-brother mating

and were specific pathogen free according to the current FELASA

guidelines. Animals were kept in a climate-controlled environment

with 14 h light/10 h dark cycles, in individually ventilated

microisolator-cages (Allentown Inc. NJ, USA) containing wood

shavings and fed standard rodent chow and microfiltered water ad

libitum. Congenic strains were originally established on DA/Ztm

background (N.20) and thereafter further backcrossed (N.5) to

DA/OlaHsd. The RCS were produced by crossing F1 hybrid rats.

The derivation of DA.1FR9, DA.1FR10, DA.1FR8 and DA.1FR5

from congenic DA.1F (DA.LEW-RT1f) has been described

previously [94]. RCS with MHC haplotype RT1u were derived

from DA.1U, which was generated by introgression of the

corresponding E3/ZtmRhd fragment on chromosome 20. RCS

with MHC haplotypes RT1i and RT1h were derived from DA.1I

and DA.1H, respectively (both established at the Zentralinstitut fur

Versuchstierzucht). The RT1i haplotype originates from the now
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extinct BI (formerly called B3) strain [95] and the RT1h haplotype

from the KHW strain. DA.1I contains a derivative MHC

haplotype (RT1-AiBaDa); however, several STRs and SNPs in

the MHC-II region and, to a lesser extent, in the MHC-III and Ib

regions are polymorphic between DA.1I and DA. RT1h is a

standard haplotype [56] but most genetic variants in the MHC-II

region are shared with RT1n (this study). Several genes in the

MHC-Ia region (including RT1-A1 and RT1-A2 [sequences from

GenBank]) and the MHC-III region, however, are unique for

RT1h (Tuncel and Yau, unpublished data). Additional information

about strains can be found on our website http://www.inflam.

mbb.ki.se/rat/MHC. The QTLs described have identification

numbers 7175096 (Tcs1) and 7175099 (Tcs2) in the Rat Genome

Database (RGD) (http://rgd.mcw.edu/rgdweb/search/qtls.html).

Genotyping
NIH-HS. Information on polymorphic SNPs was provided

through the STAR consortium that identified SNPs and haplo-

types in the rat to assist complex trait analysis as part of the

EURATRANS consortium. DNA was extracted from liver

biopsies using a standard proteinase K protocol. Genotyping was

performed using a custom-designed high density Affymetrix SNP

genotyping array (RATDIV), which is based on sequence

information from 13 inbred rat strains. The array interrogates

803,485 SNPs of which 265,551 polymorphic high quality SNPs

were chosen for the reconstruction of the HS chromosomes as a

mosaic of the founder haplotypes as described below.

Congenic strains. Genomic DNA was extracted from

biopsies as has been described previously [94]. PCR primers for

short tandem repeats (STRs) and SNPs were retrieved from the rat

genome sequence 3.4/rn4 2004 assembly and designed using

PrimerSelect 8.1.3 (Lasergene, DNAstar Inc., WI, USA). Forward

primers were fluorescently labelled with 6-FAM, HEX, VIC, PET

or NED (MWG Biotech, Riskov, Denmark). STRs were amplified

with PCR according to standard protocols, diluted in HPLC

water, combined with the size standard Liz-600 in 10 ml HiDi

formamide (both from Applied Biosystems, CA, USA) and

analyzed on a 48-capillary 3730 DNA analyzer (Applied

Biosystems). SNPs were genotyped by Sanger sequencing as

described below.

Exon sequencing
RNA was extracted from spleen using the RNeasy Mini kit

(Qiagen, Ballerup, Denmark) and treated with DNase I (Roche,

Mannhein, Germany). Complementary DNA (cDNA) was syn-

thesized with iScript (Bio-Rad, CA, USA). Genomic DNA (gDNA)

was isolated from spleen by proteinase K digestion (AquaPure

Genomic DNA kit, Bio-Rad). Primer sequences were obtained

from the RefSeq 3.4 genome assembly. All sequences were

obtained through conventional capillary sequencing except Btnl2,

which was sequenced on the SOLiD platform (Applied Biosys-

tems). For capillary sequencing, products were amplified in a 25 ml

PCR reaction containing 0.5 mg DNA, 2 ml 2.5 mM dNTP (New

England Biolabs), 1 ml 50 mM MgCl2, 0.1 ml Platinum Taq

(Invitrogen, CA, USA) and 0.5 ml of each 10 mM primer. The

products were purified using the Millipore’s Montage Cleanup Kit

and diluted in HPLC water or were isolated by agarose digestion

after gel electrophoresis. Sequencing was performed with BigDye

Terminator v3.1 according to instructions (Applied Biosystems)

using 0.4 mM of single primers. Products were purified by ethanol

precipitation, resuspended in 10 ml HiDi formamide and analyzed

on a 48-capillary 3730 DNA analyzer. Nucleotide sequences have

been submitted to GenBank (http://www.ncbi.nlm.nih.gov/

genbank) under accession numbers KC222882–KC222951.

Flow cytometry
Analysis of PBMCs from NIH-HS rats has been described

recently [41]. Briefly, phenotyping were performed in 8 cohorts of

230–270 individuals over 3 years. Rats had been subjected to

behavioral tests (week 8–10) prior to blood sampling (week 13), but

besides from a wound-healing test (puncture of the external ear) in

week 7 and a glucose tolerance test (week 11), no invasive

procedures had been performed. Twenty ml blood was stained for

20 min in duplicates with saturating concentrations of fluores-

cently-labeled monoclonal antibodies (MAbs, see below). After

erythrolysis, cells were fixed for 20 min at RT in a 2% phosphate-

buffered formaldehyde solution and then washed twice in PBS

before acquisition.

Congenic strains. For analysis of MHC expression on DCs,

tissues were cut into ,1 mm3 cubes and incubated with 2 ml

digestion buffer containing 2.5 mg/ml collagenase IV (Sigma-

Aldrich, MO, USA), 0.2 mg/ml bovine pancreas DNase I (Roche

Applied Science), 2% fetal calf serum (FCS, Gibco Laboratories,

MA, USA) in Hank’s Balanced Salt Solution (HBSS) (Sigma-

Aldrich) for 20 min at 37uC. Undigested material was disrupted by

pipetting, 2 ml fresh digestion buffer was added and the

incubation was continued for 10–15 min. The digestion was

stopped by adding EDTA (Merck) to a finale concentration of

20 mM. After incubation for 5 min in EDTA on an orbital shaker

(100 rpm) at RT, the suspensions were filtered through 40 mm cell

strainers (BD Falcon), and washed twice in ice-cold FACS buffer

(calcium- and magnesium-free PBS-D supplemented with 1%

FCS, 10 mM EDTA and 0.02% NaN3). For thymocyte and

lymphocyte analyses, single-cell suspensions were prepared with-

out collagenase/DNase I treatment, filtered through 40 mm cell

strainers, washed twice in cold EDTA-FACS buffer and

resuspended in the same buffer and counted on a Sysmex KX-

21N. 106 cells/well were added in duplicates to 96-well v-bottom

polypropylene plates (BD Falcon) and stained with saturating

concentrations of MAbs (30 ml finale staining volume). The

following Alexa Fluor 488, FITC, PE, Pe-Cy5, PerCP-Cy5.5,

APC, APC-Cy7, Pe-Cy7, Alexa Fluor 648 and biotin conjugated

antibodies were used: CD4 (OX35), CD8a (OX8), CD8b (341),

CD45RA (OX22), anti-granulcoytes (His48), RT1-B (OX6), RT1-

D (OX17), MHC class I (OX18) were purchased from BD

Pharmingen (CA, USA); CD45 (OX1), CD45RA (OX33), CD90

(OX7), CD4 (W3/25), CD11b/c (OX42), CD103 (OX62) and ab-

TCR (R73) were purchased from BioLegend (CA, USA); CD68

(ED1) and RT1-A (F16-4-4, conjugated in-house with Alexa Fluor

647 using the APEX labeling kit, Invitrogen) were obtained from

AbD Serotec (Düsseldorf, Germany). CD2 (OX34) and CD5

(OX19) were produced in-house. To stain for b2-microglobulin

(using clone TLD-3H12B, BD), as an alternative to OX18, was

evaluated but did not result in reproducible data. R73 (ab-TCR)

was used to gate TCRb+ cells in the DN population (Fig. 8).

LIVE/Dead Violet (Invitrogen) was included in all stains to

exclude necrotic cells. For the intracellular staining of class I,

unlabeled OX18 or F16-4-4 was used to block extracellular

epitopes and the cells were thereafter incubated in BD Cytofix/

Cytoperm for 20 min at RT. Cells were then washed twice in BD

PermWash and stained intracellularly with labelled OX18 and

F16-4-4. A SORP BD LSRII Analytic Flow Cytometer or a

FACSCalibur (BD) were used for acquisition and the data was

analyzed with FlowJo (Tree Star Inc., OR, USA). Significant

differences between groups were analyzed using a non-parametric

test (Mann-Whitney U).
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Quantitative RT-PCR
RNA was extracted from 26106 non-stimulated spleen cells

using the RNeasy Mini kit (Qiagen) and treated with DNase I

(Roche). RNA concentration was determined spectrophotometri-

cally on a NanoDrop ND-1000 (NanoDrop Technologies, DE,

USA), diluted to 60 ng/ml and reverse transcribed to cDNA using

High Capacity cDNA Reverse Transcription (Applied Biosystems).

Quantitative real-time PCR (qPCR) was performed on an ABI

7900HT (Applied Biosystems) using SYBR Green (Applied

Biosystems) and a two-step PCR protocol (95uC for 10 min

followed by 40 cycles of 95uC for 10 sec and 60uC for 30 sec).

Allele-specific primers (Table S3) for RT1-Aa, RT1-Au, RT1-A1n,

RT1-A2n, RT1-A1h, RT1-A2h and clone 3.6 were designed using

NCBI/Primer-BLAST with sequences retrieved from public

databases. The performances of all primers were evaluated prior

to use to ensure that all PCR reactions were performed at

comparable efficiencies. In the final experiments, each target was

amplified using 2–4 different primer pairs and the cycle threshold

(Ct) values were then averaged at the gene level. Average Ct-values

were compared to beta-2-microglobuline or normalized to the

geometric mean of the reference genes Arbp, Hprt-1 and Mdh-1

(Table S3), whereafter fold-change variations were determined

using the relative quantification method (DDCt).

Microarray
Array hybridization. Thymi and inguinal lymph nodes

(iLN) were removed from DA.1IR83 rats and non-congenic

littermates (n = 6) immediately post mortem. To minimize the risk

of blood contamination in the thymi, the aorta was first incised

below the chest to allow blood to drain into the abdominal cavity.

Whole organs were excised, instantly frozen in liquid nitrogen and

stored at 270uC until prepared. RNA extraction and array

hybridization were performed as previously described [96]. Briefly,

total RNA was extracted using TRIzol reagent, and further

purified and DNase I treated using an RNeasy Mini kit (Qiagen)

and RNase-Free DNase Set (Qiagen), according to the manufac-

turer protocols. RNA quality was assessed using the Agilent 2100

Bioanalyzer (Agilent Technologies, CA, USA). A total of 1 mg

RNA was used for array hybridization against Affymetrix

GeneChip Rat Exon 1.0 ST Arrays in accordance with the

recommendations of the manufacturer (Affymetrix).

Data analysis. CEL intensity files were produced using

GeneChip Operating Software version 1.4 (Affymetrix) and

quality tested using the Affymetrix Expression Console. Detection

of differential expression was performed at the gene level using the

Partek Genomics Suite 6.4 (Partek Incorporated, MO, USA) and

summarized at the gene level using a One-Step Tukey’s Biweight

Algorithm.

Mass spectrometry
For the detection of class I derived peptides, single cell

suspensions were prepared from spleens in PBS after lysis of

erythrocytes. Cells were washed and taken up in 5% FCS

supplemented DMEM-medium. 30 million cells were incubated

for 7 hours at 37uC with 10 ng/ml IFN-c, cells were washed in PBS

and subsequently lysed in PBS containing 1.2% (w/v) CHAPS (GE

Healthcare Life Sciences) and protease inhibitors (Complete, Roche

Applied Science). RT1-D was immunoprecipitated from spleen cell-

lysate using the monoclonal antibody OX-17. Proteins were

reduced using 5 mM dithiothreitol (DTT) in 50 mM NH4CO3 for

10 min at 90uC and alkylated with 10 mM iodoacetamide (IAA)

for 30 min at room temperature in the dark. Protein was

precipitated overnight at 220uC in 95% acetone, precipitate was

collected by centrifugation and washed with 80% acetone, 10%

methanol, 0.2% acetic acid and incubated for 30 min at 220uC.

Protein was pelleted by centrifugation and dissolved in 20 ml

DMSO, diluted to 50 mM NH4CO3 and 30% DMSO with a final

trypsin:protein ratio of 1:20 for in-solution digestion overnight at

37uC. Prior to MS analysis, the peptide mixture was dried,

reconstituted in 5% formic acid, and cleaned using ZipTipC18

(Millipore) [97]. LC-MS/MS analyses were performed on an Easy-

nLC system (Thermo Scientific, Bremen, Germany) directly on-

line coupled to a hybrid QExcative Orbitrap mass spectrometer

(Thermo Scientific). 1 mg of each sample was injected from a

cooled auto sampler onto the LC column, peptide separation was

performed on a 10 cm long fused silica tip column (SilicaTips, New

Objective Inc., MA, USA) packed in-house with 3 mm C18-AQ

ReproSil-Pur (Dr. Maisch GmbH, Ammerbuch, Germany). The

chromatographic separation was performed using an acetonitrile

(ACN)/water solvent system containing 0.2% formic acid with the

following gradient set up: 5–35% ACN in 90 min, 35–95% ACN

in 5 min and 95% ACN for 5 min all at a flow rate of 0.3 ml/min.

The MS acquisition method consisted of one survey scan ranging

from m/z 300 to m/z 1650 acquired in the FT-Orbitrap with a

resolution of R = 70,000 at m/z 200, followed by ten consecutive

data-dependent MS/MS scans from the top ten precursor ions with

a charge state $2. The MS/MS scans were fragmented using

HCD and acquired with a resolution of 17,500 at m/z 200. The

instrument was calibrated externally according to the manufactur-

er’s instructions and all samples were acquired using internal lock

mass calibration on m/z 429.088735 and 445.120025. Mass lists

were extracted from the raw data using the in-house written

software Raw2MGF, and searched using the Mascot search engine

(Matrix Science Ltd., London, UK) against a database consisting of

the IPI rat database (v. 3.82), all accessions matching rat in the

SwissProt database (downloaded 2011.04.05), as well as a protein

FASTA file containing translated Sanger-sequenced regions of

congenic MHC-II haplotypes (Fig. 4). The following parameters

were used: tryptic digestion with maximum 2 miscleavages;

carbamidomethylation of cysteines as a fixed modification;

oxidation of methionine and glutamine to pyroglutamate conver-

sions at peptide N-termini as variable modifications; precursor and

fragment tolerance set to 10 ppm and 0.1 Da respectively.

QTL mapping and statistical analysis
Genetic analysis was performed using HAPPY (http://www.

well.ox.ac.uk/happy/) to calculate the probabilities of descent

from the eight HS founders as described previously in [98]. To

account for relatedness, the Efficient Mixed-Model Association

eXpedited (EMMAX) method was used [41]. The negative logP

threshold necessary to achieve a false discovery rate (FDR) of 10%

across all traits was estimated by simulation to ,4.2. To account

for the complex family structure in the HS, we alternatively used

Bagphenotype [99], where each QTL is scored by its Resample-

based Model Inclusion Probability (RMIP). Confidence intervals

were calculated by simulation of phenotypes, each arising from a

single QTL, in addition to a correlated genetic random effect and

uncorrelated errors. All the genome scans and annotated QTLs

are publicly available from the website http://mus.well.ox.ac.uk/

gscandb/rat.

Supporting Information

Figure S1 The rat expresses two transcripts of RT1-DOb. (A)

PCR amplification of cDNA from the 4 haplotypes tested with

primers specific for RT1-DOb revealed two distinct products when

separated by gel electrophoresis. (B) Analysis of the two products

(shown in A) by Sanger sequencing revealed two transcripts of
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RT1-DOb (isf_1 and isf_2). The shorter transcript (Transcript

Variant 2; GenBank accession number KC222928–KC222931)

displayed a 77 bp deletion in exon 3 (red shaded area). (C) Amino

acid sequence of RT1-DOb (haplotype RT1av1) with the 26-residue

deletion in the b2 domain highlighted in red. (D) Structural model

of rat RT1-DOb isoform 1 (haplotype RT1n, accession ID

Q6MGA2). The red area illustrates the deletion in isoform 2

(Val 121-Thr146). (E) The shorter isoform of mouse H2-Ob

(haplotype H2-g7, accession number Q3T9T7) lacks the cysteine,

which corresponds to Cys143 in the long isoform of RT1-DOb,

and can therefore not form a cysteine bridge with Cys173. See

Figure S2 for the alignment of human, rat and mouse sequences.

(EPS)

Figure S2 MHC class II antigen DO beta chain alignment of

human, mouse and rat. The 26 amino acid deletion identified on

transcript level in rat RT1-DOb (see Figure S1) is also found in

human HLA-DOB and mouse H2-Ob. All sequences aligned are

based on evidence at the transcription level except for the 6 tryptic

peptides (underscored), which were identified by MS in the

proteome of B cells (see Methods). The tryptic peptides account in

total for 32% coverage of the mature protein (isoform 1) but do not

prove the existence of a shorter isoform. Residues marked with an

asterisk (*) are shared in-between species. Transcript with

accession number E9PND4 is a fragment, lacking exon 4–6.

(EPS)

Figure S3 Immunoprecipitation (IP) with anti-RT1-D alpha

identifies RT1-Db2 specific peptides in cell lysate from

DA.1HR61 and DA. RT1-Db2 was immunoprecipitated from

DA (a) and DA.1HR61 (h) lymph node whole-cell lysate using the

anti-rat RT1-D alpha specific antibody OX17. Identified peptides

(pep1-6) that were identified in only one of the two lysates are

marked as (a) or (h) whereas peptides that were identified in lysates

from both strains are depicted as (a, h). Only peptides with Mascot

scores .20 are shown. Identified peptides specific for RT1-Db1

are not shown in the alignment.

(EPS)

Figure S4 MHC class I molecules expressed in DA. Unique

peptides identified in trypsin digested IFNc-stimulated DA

splenocytes matching MHC class I entries on UniProt. Peptide 9

is specific to RT1-Aa (HA12_RAT). Peptide 17 is specific to clone

3.6 (HA11_RAT) and the RT1-Cf entry O62936_RAT. Peptide

1–2, 4–8, and 10–12 match to HA12_RAT, but not to the non-

classical HA11_RAT entry, while peptide 14–16 discriminate

clone 3.6 from RT1-Aa. Peptide 3 and 13 are shared between

RT1-Aa and clone 3.6. Shaded amino acids indicate residues in

the F pocket, which discriminate TAP-A from TAB-B-linked

RT1-A molecules [24]. ‘‘Specific’’ indicates that the peptide

matches only to the indicated entries on UniProt (other peptides

also match to other class I entries, e.g. from other haplotypes).

(EPS)

Figure S5 MHC class I molecules expressed in DA.1UR83.

Unique peptides identified in trypsin digested IFNc-stimulated

DA.1UR83 splenocytes matching MHC class I entries on UniProt.

Peptide 2 is specific to the UniProt entries Q31256_RAT,

Q95571_RAT, and Q95577_RAT, which all 3 refer to the gene

RT1-Au. Q95571_RAT is identical to Q31256_RAT, but lacks the

signal peptide. Q95577_RAT is identical to Q31256_RAT with the

exception of a Val to Ala substitution at position 313. Peptides 1 and

3–5 are shared between these RT1-Au entries as well as other rat

MHC class I molecules. Shaded amino acids indicate residues in the

F pocket, which discriminate TAP-A from TAB-B-linked RT1-A

molecules [24]. ‘‘Specific’’ indicates that the peptide matches only to

the indicated entries on UniProt (other peptides also match to other

class I entries, e.g. from other haplotypes).

(EPS)

Figure S6 MHC class I molecules expressed in DA.1IR85.

Unique peptides identified in trypsin digested IFNc-stimulated

DA.1IR85 splenocytes matching MHC class I entries on UniProt.

Peptide 9 and peptide 8 are specific to the following UniProt

entries Q6MGB9_RAT, E9PSS8_RAT, P79600_RAT,

P79588_RAT, which are different length variants of RT1-A1n.

Peptide 12 is specific to RT1-A2n and matches to the UniProt

entries P79602_RAT, E9PSX3_RAT, Q6MGB8_RAT, and

F7ERG5_RAT, which are different length variants of RT1-A2n.

Peptide 5, 10 and 11 further distinguish RT1-A1n from RT1-A2n,

but are also shared with other rat MHC class I entries. Peptide 1–

3, 4 and 6–7 are shared between RT1-A1n and RT1-A2n as well

as other rat MHC class I molecules. Shaded amino acids indicate

residues in the F pocket, which discriminate TAP-A from TAB-B-

linked RT1-A molecules [24]. ‘‘Specific’’ indicates that the peptide

matches only to the indicated entries on UniProt (other peptides

also match to other class I entries, e.g. from other haplotypes).

(EPS)

Figure S7 MHC class I molecules expressed in DA.1HR83.

Unique peptides identified in trypsin digested IFNc-stimulated

DA.1HR83 splenocytes matching MHC class I entries on UniProt.

Peptide 1 and peptide 7 are specific to RT1-A1h (Q9QYQ3_-

RAT). Peptide 11 is specific to RT1-A2h (Q9QYQ2_RAT) and

peptide 13 only matches to the UniProt entries O62936_RAT and

HA11_RAT. Peptide 4, 5, 8, 10 and peptide 12 further distinguish

RT1-A1h from RT1-A2h or clone 3.6, while peptide 3 and 6 are

shared between RT1-A1h, RT1-A2h and the two class Ib

molecules. Peptide 9 is shared between the two classical class I

molecules, but not with clone 3.6. Shaded amino acids indicate

residues in the F pocket, which discriminate TAP-A from TAB-B-

linked RT1-A molecules [24]. ‘‘Specific’’ indicates that the peptide

matches only to the indicated entries on UniProt (other peptides

also match to other class I entries, e.g. from other haplotypes).

(EPS)

Figure S8 F16-4-4 recognizes a polymorphic determinant on

MHC class Ia. The level of OX18 staining is ,30-fold higher

intracellularly than extracellularly, which probably reflects this

antibody’s affinity for MHC class Ib antigens. (A) DA splenocytes

were stained with different concentrations of fluorescent-labelled

anti-MHC class Ia and Ib (clone OX18) or anti-MHC class Ia

(F16-4-4) antibodies. For detection of intracellular MHC class I,

antibody epitopes on the cell surface were first blocked with

unlabeled antibody. Cells were then fixed, permeabilized and

stained intracellularly with fluorescent labelled antibodies using

the same volume as used for extracellular staining. Histograms

show samples with comparable mean fluorescent intensity when

stained with indicated antibody dilutions (in brackets) extracellu-

larly (red) and intracellularly (blue). (B) F16-4-4 binds a

paraformaldehyde (PFA) sensitive epitope on MHC class Ia

proteins. Non-permeabilized splenocytes from DA and DA.1IR85

were incubated with saturating concentrations of F16-4-4 (upper

panel) or OX18 (lower panel) before (+ PFA) or after (2 PFA)

incubation of cells in a 4% PFA solution. Note the decreased

F16-4-4 staining of PFA- treated cells from DA.1IR85, which

suggests that F16-4-4 binds a polymorphic determinant (similar

PFA sensitive epitopes were found in DA.1HR83 and DA.1UR83

(data not shown)). Gray histograms represent fluorescence minus

one (FMO) controls.

(EPS)
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Figure S9 Differentially expressed genes between DA and

DA.1IR83 are confined to the Tcs1 region. Microarray profile of

gene expression in thymus (blue) and inguinal lymph nodes

(purple) in DA.1IR83 and littermate DA rats (n = 6). Data show

gene expression fold change levels at FDR ,5% (above dashed

line) and ,10% (below dashed line). Asterisked genes are encoded

within the congenic segment. Up - and downregulated genes in

DA.1IR83 are shown on the right and left side of the vertical line,

respectively. For the expression levels of classical MHC class I

genes see Figure 6. Note that Cd8a and cathepsin W (Ctsw) are

predominantly expressed in CD8 T cells and that the fold-change

variation for these genes therefore is likely to reflect the variation

in total number of CD8 T cells between the strains.

(EPS)

Figure S10 Progression of rat thymocytes from double negative

to double positive stage. (A) Double negative (DN) cells in the rat

are CD44+, similar to DN1, DN2 and DN3 in the mouse, but

express no or very low levels of CD25 (IL-2 receptor; lower panel).

(B) Triple negative (TN; CD42, CD82, TCRb2) early thymic

progenitor cells express CD45RC and CD5 (upper left panel) and

low levels of CD2. CD2 expression increases when cells progress

into double negative stage (CD2hi, CD45RC+). A small number of

these cells stain positive with R73 (anti-abTCR), indicating that

they have started to rearrange and express TCRb (upper right

panel). More mature DN cells downregulate CD45RC to become

CD2hi, CD45RC2 (lower right quadrant). DN cells progress

through an immature CD8a single positive stage (ISP). These cells

have completed the rearrangement of the TCRb locus and express

low levels of TCRb on the cell surface. Cells in the final DN stage,

which correspond to DN4 in the mouse, express high levels of

TCRb on the cell surface. (C) Double negative cells progress into

double positive stage. CD25 expression increases with the

expression of TCRab on DP cells. Red arrows indicate the

progress of maturation and are based on [63,64].

(EPS)

Figure S11 Variation in CD4 T cell numbers decreases with

thymic output. (A) CD4 T cells in the spleen were stained for

CD90 and CD45RC (upper panel) or only for CD90 (lower panel)

in two different experiments to determine the frequency of recent

thymic emigrants (RTEs) in young (6 weeks of age) and old (13

weeks of age) DA and DA.1HR10 rats. The higher frequency of

RTEs in young DA.1HR10 rats compared to young DA rats is not

seen in the older rats and, hence, the variation in the total number

of CD4 T cells (shown in B), seen in young rats, disappears when

thymic output decreases in old rats.

(EPS)

Table S1 Polymorphic Short Tandem Repeat (STR) markers.

(DOC)

Table S2 Single Nucleotide Polymorphism (SNP) markers.

(DOC)

Table S3 Quantitative-RT-PCR primers.

(DOC)
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