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Abstract
Insulin resistance (IR) in skeletal muscle is an important component of both type 2 diabetes

and the syndrome of sarcopaenic obesity, for which there are no effective therapies.

Urocortins (UCNs) are not only well established as neuropeptides but also have their roles in

metabolism in peripheral tissues. We have shown recently that global overexpression of

UCN3 resulted in muscular hypertrophy and resistance to the adverse metabolic effects of a

high-fat diet. Herein, we aimed to establish whether short-term local UCN3 expression could

enhance glucose disposal and insulin signalling in skeletal muscle. UCN3 was found to be

expressed in right tibialis cranialis and extensor digitorum longus muscles of rats by in vivo

electrotransfer and the effects studied vs the contralateral muscles after 1 week. No increase

in muscle mass was detected, but test muscles showed 19% larger muscle fibre diameter

(PZ0.030), associated with increased IGF1 and IGF1 receptor mRNA and increased SER256

phosphorylation of forkhead transcription factor. Glucose clearance into the test muscles

after an intraperitoneal glucose load was increased by 23% (PZ0.018) per unit mass,

associated with increased GLUT1 (34% increase; PZ0.026) and GLUT4 (48% increase;

PZ0.0009) proteins, and significantly increased phosphorylation of insulin receptor

substrate-1, AKT, AKT substrate of 160 kDa, glycogen synthase kinase-3b, AMP-activated

protein kinase and its substrate acetyl coA carboxylase. Thus, UCN3 expression enhances

glucose disposal and signalling in muscle by an autocrine/paracrine mechanism that is

separate from its pro-hypertrophic effects, implying that such a manipulation may have

promised for the treatment of IR syndromes including sarcopaenic obesity.
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Introduction
Impaired insulin-stimulated glucose disposal into skeletal

muscle is a major component of the insulin resistance

(IR) that develops in advance of type 2 diabetes (T2D)

(DeFronzo & Tripathy 2009). In addition, obesity and IR

commonly also co-exist with muscular atrophy in the
elderly in the syndrome of sarcopaenic obesity (Stenholm

et al. 2008, Narici & Maffulli 2010, Bassil & Gougeon

2013). Despite this affecting between 4 and 12% of the

elderly population (Stenholm et al. 2008) and there being

several identified common pathways involved in the
sed under a Creative Commons
nported License.
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regulation of muscle size and insulin action (Rommel et al.

2001, Sandri et al. 2006, Cleasby et al. 2007, 2014, Lantier

et al. 2010), there are no effective treatments available.

However, recent work has demonstrated that generalised

overexpression of urocortin 3 (UCN3) in mice results in

both hypertrophy and increased glucose disposal into

muscle (Jamieson et al. 2011), making this an interesting

candidate for further study.

The UCNs comprise three neuropeptides (UCN1,

UCN2 and UCN3) with homology to corticotropin-

releasing factor (CRF) that are ligands for CRF receptors

(CRFR1 and R2) (Vaughan et al. 1995, Hsu & Hsueh 2001,

Lewis et al. 2001, Reyes et al. 2001). CRFR1 is well

established as the stress-coping receptor in brain regions,

modifying both physiological and behavioural functions.

However, CRFR2 and its specific ligands UCN2 and UCN3,

in addition to expression in specific brain regions, are also

expressed in discrete non-neural tissues in which direct

metabolic effects might be expected (Hsu & Hsueh 2001,

Lewis et al. 2001, Reyes et al. 2001).

CRFR2-knockout mice are resistant to high-fat diet

(HFD)-induced fat accretion and IR, despite unaltered

body weight and increased appetite (Bale et al. 2003),

apparently due to increased brown fat thermogenesis

(Carlin et al. 2006). Some of these effects are certainly

centrally mediated, as CRFR2 knockdown in the ventro-

medial hypothalamus (VMH) reduced adipose tissue

lipolysis and lipid oxidation (Chao et al. 2012). However,

UCN2 is expressed in brown adipose tissue and heart of

mice and demonstrates autocrine/paracrine cardioprotec-

tive effects mediated via ERK1/2, AKT and PKC3 activation

(Brar et al. 2002, 2004, Lawrence et al. 2005). UCN2 and

CRFR2 are both expressed in mouse skeletal muscle (Chen

et al. 2004, Keipert et al. 2013), where they inhibit atrophy

and promote hypertrophy (Hinkle et al. 2003, Chanalaris

et al. 2005, Reutenauer-Patte et al. 2012). UCN2-knockout

mice show increased whole-body insulin sensitivity and

resist the effects of an HFD, due to CRFR2-mediated

activation of AKT and ERK1/2 signalling in skeletal muscle

(Chen et al. 2006). Furthermore, CRF stimulates muscle

substrate oxidation through the activation of both

phosphoinositol 3-kinase (PI3K) and AMP-activated pro-

tein kinase (AMPK) pathways (Solinas et al. 2006).

Investigations into the role of UCN3 in metabolism

are less advanced. Injection of UCN3 into the VMH

elevated blood glucose and insulin levels and reduced

food intake (Chen et al. 2010), while overexpression of

UCN3 in the rostral perifornical area of the brain caused

increased energy expenditure but a reduction in insulin

sensitivity (Kuperman et al. 2010). The peripheral effects
http://joe.endocrinology-journals.org
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of UCN3 are clearly significant, however, as global UCN3

knockout increased food intake and reduced insulin

sensitivity, while not affecting energy expenditure (Chao

et al. 2012). Importantly, UCN3 and CRFRs are expressed

in pancreatic b cells, where they facilitate insulin secretion

in response to high-glucose concentrations (Li et al. 2003,

2007). However, although UCN3 is not normally

expressed in skeletal muscle, transgenic global UCN3-

overexpressing mice showed high levels of UCN3

expression in skeletal muscle, associated with muscle

hypertrophy, elevated muscle insulin-like growth factor

1 (IGF1), reduced plasma glucose, improved glucose

tolerance and increased glucose disposal into muscle

(Jamieson et al. 2011). This occurred in the absence of

any effect on whole-body insulin sensitivity, although

plasma insulin levels and phosphorylation of insulin

signalling intermediates in muscle were reduced.

Thus it is likely that CRFR2-mediated effects of UCN3

on metabolism are exerted through distinct central and

peripheral actions. Given the positiveeffects ofUCN2 action

in skeletal muscle on glucose homeostasis and atrophy

resistance and the analogous results generated by whole-

body UCN3 overexpression, we aimed to establish whether

there might be a paracrine role for UCN3 to improve glucose

disposal in skeletal muscle in vivo after forced expression. To

this end, local overexpression of UCN3 was carried out in a

single muscle group and the effects compared with the

contralateral control muscles after just 1 week, to enable

assessment of the acute tissue-specific effects.
Materials and methods

Materials

Molecular reagents were supplied by Promega Corp. and

general reagents by Sigma–Aldrich. Antibodies targeting

pY608-IRS1, total IRS1, AS160, GLUT1 and total glycogen

synthase kinase (GSK) 3a/b were purchased from Millipore

(Billerica, MA, USA), b-actin antibody from Sigma and all

others from Cell Signaling Technology (Danvers, MA, USA).
Construction of UCN3 expression vector

pCR–TOPOII containing the full-length mouse UCN3

cDNA (Lewis et al. 2001) was consecutively digested with

EcoRI, the cDNA insert agarose gel-separated, extracted

using a QIAquick gel extraction kit (Qiagen) and

phosphorylated using polynucleotide kinase. The mUcn3

cDNA was then ligated into the dephosphorylated EcoRI-

linearised pCAGGS expression vector (Patel et al. 2012).
Published by Bioscientifica Ltd
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The product was used to transform competent JM109

Escherichia coli, and correct insertion of cDNA into clones

was verified by HindIII digestion and sequencing

of minipreps derived from colonies.
Animals and in vivo electrotransfer

All experimental procedures were approved by the Royal

Veterinary College’s Ethics and Welfare committee and

were carried out under UK Home Office licence to comply

with the Animals (Scientific Procedures) Act 1986. Male

Wistar rats were obtained from Charles River (Margate,

UK) at 150–175 g and maintained at 22G0.5 8C under

a 12 h light:12 h darkness cycle on a standard chow diet

and acclimatised to their new surroundings for 1 week.

Preparation and injection of DNA, i.m. injection of

hyaluronidase and in vivo electrotransfer (IVE) of tibialis

cranialis (TC) and extensor digitorum longus (EDL)

muscles were carried out under isofluorane anaesthesia

as described previously (Cleasby et al. 2005, Patel et al.

2012). Right TCMs were injected with pCAGGS–mUCN3

and left TCMs with empty pCAGGS vector as within-

animal control. The rats were killed by pentobarbitone

injection for 1 week later and their muscles rapidly

dissected and weighed. The portions of each muscle were

fixed in 10% buffered formalin for 48 h and stored in 70%

ethanol, snap-frozen in liquid nitrogen-cooled isopentane

surrounded in OCT compound (Sakura Finetech, Alphen

aan den Rijn, The Netherlands) or freeze-clamped and

stored at K80 8C. A total of 26 rats were used.
Glucose uptake into muscle

Half of the rats were starved overnight, and glucose uptake

into paired TC muscles was measured using an intra-

peritoneal glucose tolerance test (IPGTT), combined with

administration of 2-[1,2-3H(N)]-deoxy-D-glucose (3H-2DG;

Perkin-Elmer, Seer Green, Bucks, UK) tracer (Crosson et al.

2003, Cleasby et al. 2007, 2014). Briefly, w5 MBq 3H-2DG

in 2 mg/kg glucose was administered i.p. and blood samples

were collected for the measurement of glucose concen-

tration (Accu-chek Aviva glucometer, Roche Diagnostics)

and radioactivity immediately beforehand and 15, 30, 60

and 90 min afterwards. Plasma was separated, deprotei-

nised and counted in Ultima Gold scintillation fluid

(Perkin-Elmer) on a beta counter (LS6500, Beckman

Coulter, High Wycombe, UK). The powdered muscle was

homogenised in dH2O, 3H-2DG-6-phosphate separated

by passage through columns containing AG 1-X8 resin

(Bio-Rad) and similarly counted. Tissue glucose uptake was
http://joe.endocrinology-journals.org
DOI: 10.1530/JOE-14-0181
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estimated by dividing the 3H-2DG-6-phosphate counts by

the plasma glucose-specific activity over 90 min and was

stated per unit muscle mass.
Muscle glycogen content

Glycogen was extracted from muscles and quantified as

described previously (Chan & Exton 1976). Briefly, TC

muscle tissue was digested in 1 M KOH and glycogen

precipitated using Na2SO4 and ethanol. The glycogen

pellet was digested overnight at 37 8C using 0.3 mg/ml

amyloglucosidase in 0.25 M acetate buffer of pH 4.75.

Glycogen content was estimated as the quantity of glucose

detected at 490 nm in samples incubated in 0.12 M

phosphate buffer of pH 7.0 containing 0.5 mg/ml

4-aminoantipyrine, 1.6 U/ml peroxidase and 10 U/ml

glucose oxidase for 25 min at 37 8C, vs a standard curve.
Determination of muscle fibre size and type distribution

The muscle fibre size was estimated in a blinded fashion

in transverse test and control muscle sections of TC

mid-belly that were immunostained for laminin using a

method adapted from that described previously (Cleasby

et al. 2007). Fixed tissue was paraffin wax-embedded and

10 mm sections were cut, dewaxed, rehydrated and then

antigen retrievalwascarried outusing10!Tris–EDTA buffer

(pH: 9.0) at 95 8C for 10 min. The sections were blocked for

30 min in blocking buffer (1! PBS, 0.5% Tween 20, 10%

goat serum) and incubated overnight with 1:200 rabbit

anti-laminin antibody (Sigma), followed by washing 3!

10 min in 1! PBS/ 0.5% Tween-20, incubation for 1 h with

1:1000 Alexa Fluor 488 goat anti-rabbit IgG (Invitrogen)

secondary antibody and a further 3!10 min washes. The

sections were hydro-mounted and images captured using a

DM4000B upright microscope and Application Suite soft-

ware (Leica, Wetzler, Germany). Minimum Feret diameter

was measured usingLeica QWinsoftware forw600 fibres per

section and a mean value calculated for each muscle.

Fibre type distribution was determined by simul-

taneous immunostaining of myosin heavy-chain isoforms

(MHC) type I, IIa and IIb of 10 mm TC mid-muscle belly

cryosections as described previously (Cleasby et al. 2014)

using primary antibodies that were a kind gift from

Dr Keith Foster, University of Reading, UK. The primary

antibodies were visualised using 1:200 dilutions of Alexa

Fluor 488, 568 and 633 (Invitrogen) secondary antibodies

and the above microscope. The percentage of each fibre

type per section was calculated from counts of total

numbers of fibres (mean w1200 per muscle) and counts
Published by Bioscientifica Ltd
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of those immunoreactive for MHC I, IIa and IIb, with the

percentage of IIx fibres obtained by difference.
Real-time PCR analysis

Extraction of RNA, preparation of cDNA and relative

quantitation of mRNA transcript levels corresponding to

most genes of interest was carried out by real-time PCR

assay using SYBR Green chemistry (Patel et al. 2012) and

primers and conditions described previously (Cleasby

et al. 2014). RNA concentration and quality were assessed

using a Nanodrop 1000 (Wilmington, DE, USA) and by

visualisation of ribosomal bands after agarose gel electro-

phoresis. As no SYBR assay could be successfully developed

to quantify total mouse and rat UCN3 expression, a mouse

UCN3 Taqman assay (Applied Biosystems Mm00453206-s1)

was performed to demonstrate relative expression of

mUCN3 in muscles vs a dilution series of pCR–TOPOII–

UCN3 plasmid. The results are quoted after normalisation

to the geometric mean of the mRNA levels of cyclophilin,

36B4 and 18S, expression of which were unchanged by

the treatments (data not shown).
UCN3 RIA

EDL muscles were acid-extracted and partially purified

using octadecyl silica cartridges as described previously

(Li et al. 2003). The purified samples were lyophilised,

resuspended in RIA buffer and assayed at several concen-

trations. The production of antiserum, iodination and

purification of synthetic rat/mouse UCN3 (r/mUcn3)

analogue for use as tracer, and r/mUCN3 RIA buffers and

procedures were similar to those described in detail for

inhibin subunits (Vaughan et al. 1989). Briefly, the

analogue [Tyr0Nle12] r/mUCN3 was radiolabelled with
125I and purified by HPLC using a 0.1% trifluoroacetic

acid-acetonitrile solvent system and a diphenyl column.

R/m UCN3 antiserum was raised in rabbit using r/mUCN3

coupled to keyhole limpet haemocyanin via carbodiimide.

Rabbit 7255 anti-r/mUCN3 was used at a 1:300 000 final

dilution and synthetic r/mUCN3 was used as a standard.

The EC50 and minimal detectable dose for r/mUCN3

were 20 and 1 pg/tube respectively. Closely related CRF

family peptides displayed the following crossreactivities:

rUCN 1 and rCRF being !0.01%; mUCN 2, 0.5%. This

r/mUCN3 RIA employing rabbit 7255 antiserum showed

improved sensitivity over the RIA previously published

(Li et al. 2003); both assays detect UCN3 peptide in murine

brain and pancreas, the highest endogenously expressing

tissues, in similar quantities.
http://joe.endocrinology-journals.org
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SDS–PAGE and immunoblotting

The muscle tissue was homogenised in RIPA buffer using

the Ultra-Turrax, followed by rotation for 90 min at 4 8C

and centrifugation for 10 min at 16 000 g, and the protein

content of the supernatants was quantified using the

bicinchoninic acid method (Pierce Biotechnology, Inc.,

Rockford, IL, USA) using a BSA standard, normalised to the

lowest concentration and denatured in Laemmli buffer for

10 min at 65 8C. The aliquots containing 40–80 mg protein

were resolved by SDS–PAGE, electro-transferred and

immunoblotted as described previously (Cleasby et al.

2007, Patel et al. 2012). Specific bands were detected

by chemiluminescence (Western Lightning Plus, Perkin-

Elmer, Waltham, MA, USA) on Fuji Super RX film

(Bedford, UK), scanned and quantified using Image

J software (NIH, Bethesda, MD, USA). Equal loading was

confirmed by blotting for GAPDH protein.
Statistical analyses

The data are quoted as meanGS.E.M. Comparisons between

treated and control muscles were made using paired

Student’s t-tests, after confirming normality of data sets

using the Shapiro–Wilk test. The analyses were conducted

using Sigma Plot v11.2.0.5 (Systat Software, Inc., Chicago,

IL, USA), with P!0.05 regarded as significant.
Results

Expression of mUCN3 in rat muscle increases fibre size

but does not affect total muscle mass or fibre type

distribution after 1 week

One week after IVE, expression of mUCN3 was substan-

tially increased at both the RNA (Fig. 1A) and protein

(Fig. 1B) levels in test muscles.mUcn3RNA was measured in

paired TC muscles and was below the limit of detection in

left muscles using this assay, consistent with reports that

UCN3 is not normally expressed in muscle (Jamieson et al.

2011). By way of comparison, test muscle mUcn3 mRNA

expression was several-fold higher than in a positive

control sample of mouse whole brain. mUCN3 immuno-

reactivity was measured in the extracts prepared from

whole EDLs and was increased by 4.2-fold in test vs control

muscles. Of note, we detected UCN3 peptide in mouse

skeletal muscle (Vaughan JM, unpublished observation) in

a different highly specific RIA previously described (Li et al.

2003) that displays minimal cross-reactivity with UCN2

(!0.01%). Because Ucn3 mRNA is not normally expressed
Published by Bioscientifica Ltd
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Figure 1

Expression of mUCN3 in rat skeletal muscle. Levels of (A) mouse Ucn3 mRNA

expression in test and paired control tibialis cranialis muscles compared

with a whole brain sample, measured using real-time PCR and (B) UCN3

peptide in test and control extensor digitorum longus muscles, measured

by RIA, 1 week after IVE. Data are meanGS.E.M. (nZ8). ***P!0.001 vs

paired control.
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in muscle, the immunoreactivity observed in EDL may be

derived from circulating sources. Nevertheless, it is clear

that there is substantially more UCN peptide in the

pCAGGS–UCN3 electroporated muscles. Unfortunately,

the available antibodies proved unsuitable for immuno-

fluorescence in muscle tissue, and therefore we could not

assess the transfection efficiency of UCN3 by this method.

However, the RIA data combined with the set of consistent

metabolic, gene expression and signalling data presented

below are suggestive that physiologically relevant concen-

trations of UCN3 were achieved.

There was a mean 19% increase in TC fibre diameter

over this period in mUCN3-expressing muscles (PZ0.030;

Fig. 2A, B and C), which was not accompanied by a change

in the coefficient of variation between test and control

muscles (data not shown). However, this short duration of

expression was not sufficient to affect the mass of whole

TC or EDL muscles (TC: test 0.378G0.018 g, control

0.379G0.014 g; EDL: test 0.133G0.0053 g, control

0.135G0.0045 g; nZ10). In addition, the percentage of

type I, IIa, IIb and IIx fibres comprising each TC muscle

was not altered at this time point (Fig. 2D, E, F, G and H;

nZ6–8), although it seemed that there was a tendency for

there to be fewer IIx (PZ0.07) and more IIb (PZ0.08) fibres

in mUCN3-expressing muscles.
mUCN3 expression is associated with increases in the

expression of IGF and its receptor, but also of selected

pro-atrophic genes

In order to establish whether particular pro-hypertrophic

or pro-atrophic pathways were activated at this early time
http://joe.endocrinology-journals.org
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point of local UCN3 expression in TC muscle, potentially

explaining the modest increase in muscle fibre size

observed, expression and activation of key mediators in

these pathways were assessed using real-time PCR and

immunoblotting. Firstly, consistent with the effects of

transgenic overexpression (Jamieson et al. 2011), mRNA

expression of both IGF1 and IGF1R were upregulated in

UCN3 OE muscles (by 87 and 1067%, PZ0.049 and

PZ0.014 respectively; Fig. 3A). Secondly, pS256–FOXO1

was increased by the manipulation (by 22%, PZ0.032;

Fig. 3C/E), implying the inhibition of its transcriptional

activity. However, although increased FOXO1 activity

would be expected to suppress the expression of

pro-atrophic E3 ubiquitin ligases (Stitt et al. 2004), in fact

mRNA levels of both MURF1 and Atrogin1 were slightly

increased in these muscles (by 17 and 15%, PZ0.049 and

P!0.001 respectively; Fig. 3B).

mRNA expression of the pro-atrophic transforming

growth factor-b family member myostatin was in fact

increased (by 45%, PZ0.030; Fig. 3B). However, this effect

would be unlikely to limit increases in muscle size, as

expression of its receptor, the activin 2B receptor, was

reduced by 60% (PZ0.042; Fig. 3B; Lee & McPherron 2001,

Cleasby et al. 2014). Furthermore, mRNA expression of

latent transforming growth factor b-binding protein-3

(LTBP3), which impairs myostatin signalling (Anderson

et al. 2008), was increased (by 233%, PZ0.010; Fig. 3A).

Finally, no change in mighty (akirin-1) expression, a

downstream target of myostatin in muscle (Marshall et al.

2008), was detected (Fig. 3A).

Although there was a small increase in total p70S6k

protein (by 15%, PZ0.011), no change in pT389–p70S6k

was shown (Fig. 3D/E), suggesting that this kinase was not

involved in the phenotype. In addition, mRNA expression

of the pro-atrophic NFkB–p65 subunit was also unaffected

by forced UCN3 expression (Fig. 3B).
mUCN3 expression enhances glucose uptake into

muscle during an IPGTT and increases cellular glucose

transporter content

Glucose uptake into mUCN3 expressing and paired

control TC muscles were also assessed after 1 week. The

IPGTTs carried out in these rats resulted in typical plasma

glucose excursions (data not shown). Despite the lack of

effect on gross muscle mass, glucose uptake into test

muscles was enhanced (by 23%, PZ0.032; Fig. 4A) on a

per unit mass basis, implying that UCN3 mediates enhan-

ced muscle glucose disposal by a mechanism that is not

totally dependent on hypertrophy. The enhanced glucose
Published by Bioscientifica Ltd
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Expression of mUCN3 for 1 week resulted in increased muscle fibre size

in the absence of a change in muscle mass, and no change in fibre type

distribution. Muscle fibre diameter was measured in fixed transverse

sections of TC muscles immunostained for laminin. Representative sections

from (A) control and (B) mUCN3-expressing muscles are accompanied by (C)

summary data. The percentage of each fibre type present in TC muscles was

calculated after immunostaining of frozen transverse sections for type I, IIa

and IIb fibres, with type IIx fibres indicated by lack of immunostaining.

(D) Control and (E) mUCN3-expressing muscles immunostained for type I

myosin heavy chain (MHC; red) and laminin (green). (F) Control and (G)

mUCN3-expressing muscles immunstained for type IIa MHC (green) and

type IIb MHC (red). (H) Summary fibre type distribution. Scale bars: 100 mm,

nZ6–8. Data are meanGS.E.M. *P!0.05 vs paired control. Black bars,

control; white bars, UCN3 IVE muscle.
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disposal was associated with increases in total cell levels of

both the GLUT1 (by a mean 34%, PZ0.026; Fig. 4B/D) and

GLUT4 (by a mean 48%, PZ0.0009; Fig. 4C/D) glucose

transporter proteins. The associated increased capacity

for insulin-stimulated glucose uptake likely contributed to

the increased clearance observed and these data suggest

that basal glucose uptake may also be increased by muscle

UCN3 expression. However, glycogen storage by the

muscles at the 1 week time point was unaffected (data

not shown), suggesting that the additional glucose taken

up is being utilised rather than stored.
http://joe.endocrinology-journals.org
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mUCN3 expression increases both phosphorylation and

total protein expression of PI3-kinase pathway signalling

intermediates

To assess whether muscle mUCN3 expression might also

impact glucose disposal through increased activation of

the PI3-kinase signalling pathway, protein expression

levels and phosphorylation of intermediates at regulatory

residues were assessed in lysates generated from paired

TC muscles removed from fed, otherwise untreated rats.

Interestingly, significant increases were detected in both
Published by Bioscientifica Ltd
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Muscle UCN3 expression has contrasting effects on mediators of muscle

hypertrophy and atrophy. Effects of local muscle UCN3 expression on

relative mRNA and protein expression and phosphorylation of key

mediators in pathways regulating muscle mass. Expression data were

obtained by real-time PCR analysis of mRNA extracted from mUCN3-

expressing and control TC muscles and are shown normalised to control.

(A) mRNA levels of pro-hypertrophic genes: IGF1, IGF1 receptor (IGF1R),

mighty (akirin1) and latent transforming growth factor-b 3 (LTBP3).

(B) mRNA levels of pro-atrophic genes: myostatin, activin IIB receptor

(activin 2BR), muscle ring finger protein 1 (MURF1), atrogin1 and the p65

subunit of nuclear factor kB (NFkB–p65). (C) pS256–FOXO1 and (D) p70S6k

total protein levels and (E) sample immunoblots are shown. Total FOXO1

protein and pT389–p70S6k were not affected by forced UCN3 expression.

C, control; T, test. Data are meanGS.E.M.; nZ8; *P!0.05, **P!0.01,

***P!0.001 vs paired control.
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phosphorylation and total protein levels of all the

intermediates assessed in UCN3-electroporated muscles,

in the absence of any effect on either GAPDH or b-actin

levels. Specifically, pY612-IRS1 and total IRS1 were

increased by 38 and 15% respectively (PZ0.008 and

PZ0.024; Fig. 5A/B/I), pS473–AKT and total AKT were

increased by 72 and 30% (PZ0.005 and PZ0.0003;

Fig. 5C/D/I), pT642–AKT substrate of 160 kDa (AS160)

and total AS160 by 24 and 12% (PZ0.026 and PZ0.047;

Fig. 5E/F/I) and pS9–GSK3b and GSK3b both by 40%

(PZ0.0011 and PZ0.0002; Fig. 5G/H/I). Phosphorylation

and protein levels of GSK3a were unaltered (Fig. 5I). Thus

the UCN3-induced increase in glucose disposal may also

be contributed to by increased flux through the PI3-kinase

pathway from at least the level of IRS1, likely mediated

by the increased IGF1 binding to its receptor (Fig. 3A;

Rommel et al. 2001, Jamieson et al. 2011).
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Figure 4

mUCN3 expression enhances muscle glucose disposal and increases protein

levels of GLUT1 and GLUT4 glucose transporters. (A) Glucose uptake into

paired TC muscles, estimated using 2-[1,2-3H(N)]-deoxy-D-glucose tracer

during an intraperitoneal glucose tolerance test. Summary data for (B)

GLUT1 and (C) GLUT4 protein contents quantified by western immuno-

blotting of mUcn3 expressing and paired control muscle lysates, normalised

to control. (D) Sample immunoblots for GLUT1, GLUT4 and GAPDH, which

was unaltered by the manipulation. Data are meanGS.E.M., nZ8–9.

*P!0.05, ***P!0.001 vs paired control.
mUCN3 expression also activates AMPK in muscle

As muscle glucose uptake is also mediated by activation of

AMPK, phosphorylation and protein expression of AMPK

and its substrate acetyl coA carboxylase (ACC) were

quantified by western blotting analysis. UCN3 expression

resulted in a 27% increase in pT172–AMPK (PZ0.024;

Fig. 6A/E), implying increased activation, accompanied by a

consistent 59% increase in pS79–ACC (PZ0.0001; Fig. 6B/E)

and also an increase in total ACC protein (by 36%, PZ0.023;

Fig. 6C/E). Total AMPK protein remained unchanged.

However, surprisingly, PGC1a levels were reduced (by 44%,

PZ0.0020; Fig. 6D/E) implying that the AMPK activation

would be unlikely to result in increased mitochondrial
http://joe.endocrinology-journals.org
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biogenesis and oxidation (Wu et al. 1999, Mootha et al.

2003). Nevertheless, our findings imply that multiple

changes in signalling molecules that promote glucose uptake

arise as a result of UCN3 expression in TC muscle.
Published by Bioscientifica Ltd
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Figure 5

Enhanced muscle glucose disposal is associated with increased phos-

phorylation and protein levels of phosphoinositol 3-kinase pathway

intermediates. Western immunoblotting for phosphorylation of regulatory

residues and total protein content of PI3-kinase pathway intermediates

was undertaken using mUCN3 expressing and paired control TC muscle

lysates. Summary data for (A) pY612-IRS1, (B) total IRS1, (C) pS473–AKT,

(D) total AKT, (E) pT642-AS160, (F) total AS160, (G) pS21–GSK3b and (H)

total GSK3b are shown. (I) Sample immunoblots for each protein target and

GAPDH, levels of which were unchanged by the manipulation, as were

pS21–GSK3a and total GSK3a. Data are meanGS.E.M., nZ8. *P!0.05,

**P!0.01, ***P!0.001 vs paired control.
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Discussion

In this study, we aimed to establish the effects of a short

period of local overexpression of UCN3 on glucose

disposal by skeletal muscle to identify the potential

molecular mediators of any effect. This manipulation

resulted in a modest increase in myofibre diameter in the

electroporated muscle, but did not generate a detectable

difference in whole-muscle mass after only 1 week,

analogous to the dose-dependent effects of UCN2 peptide

administration to mice (Hinkle et al. 2003). However,

UCN3 expression enhanced glucose disposal in treated vs

paired control TC muscles on a per unit mass basis,

indicating that this effect of UCN3 expression is at least in

part exerted through an autocrine/paracrine mechanism

and also that it was not an indirect effect of increased

muscle mass. This positive effect on glucose disposal

occurred after administration of a glucose load and may

have been mediated by the activation of the insulin

signalling pathway, the concurrent AMPK activation

and/or the increased GLUT1/4 protein expression

observed.
http://joe.endocrinology-journals.org
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The 1 week time point was chosen to give the UCN3

construct time for expression and to minimise any

inflammation resulting from the IVE procedure (Cleasby

et al. 2005), while avoiding the longer term effects that

gross hypertrophy might have on glucose disposal and the

potential confounding effects of the whole-body germ-

line manipulation carried out previously (Jamieson et al.

2011). Nevertheless, increased muscle fibre diameter was

observed and this was associated with elevations in

both IGF1 and IGF1R expression, indicating that gross

hypertrophy consistent with our previously published

work (Jamieson et al. 2011), the effects of UCN2 (Hinkle

et al. 2003, Reutenauer-Patte et al. 2012) and the pro-

hypertrophic effects of all UCNs in cardiomyocytes

(Chanalaris et al. 2005), would likely develop after a

longer period of forced expression. It is known that IGF1 is

sufficient to cause activation of the PI3K–AKT pathway

and both increased muscle mass and glucose uptake (Di

Cola et al. 1997, Rommel et al. 2001, Palazzolo et al. 2009),

but the details of the signalling mechanisms whereby

elevated IGF1 might impact upon these parameters was

unclear in our previous work (Jamieson et al. 2011).
Published by Bioscientifica Ltd
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Figure 6

Muscle mUCN3 expression increases activation of AMPK but decreases

PGC1a. Western immunoblotting for (A) pT172–AMPK, (B) pS79–ACC, (C)

total ACC and (D) total PGC1a protein was undertaken using mUCN3

expressing and paired control TC muscle lysates. Summary data and (E)

sample immunoblots for each protein target and the loading control

GAPDH are shown. Levels of total AMPK and GAPDH proteins were

unchanged by the manipulation. Data are meanGS.E.M., nZ8. *P!0.05,

***P!0.001 vs paired control.
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In addition to the observed inconsistency between

increased insulin sensitivity in CRFR2 and UCN2-knock-

out mice (Bale et al. 2003, Carlin et al. 2006, Chen et al.

2006) and increased glucose tolerance in the absence of

any effect on insulin sensitivity in UCN3-overexpressing

mice (Jamieson et al. 2011), localised UCN3 expression

in muscle resulted in an increase in glucose uptake

associated with changes in signalling consistent with

increased muscle insulin sensitivity after a glucose load.

These differences are probably related with the universal

changes in UCN3 or CRFR2 expression having disparate

influences on central and peripheral control mechanisms

or feedback effects of pronounced hypertrophy on AKT

and/or AMPK signalling. The study described here

compared the effects of acute local UCN3 expression in

muscle vs a within-animal control and therefore permits

a clearer insights into the direct autocrine/paracrine

effects of UCN3 in muscle.

The UCN3-mediated increase in glucose uptake was

associated with the phosphorylation of a number of

intermediates in both the PI3K–AKT–FOXO1 and AMPK

signalling pathways, indicating increased activity, both or

either of which could mediate this effect. In addition, total

protein levels of many of these molecules were also

increased, suggesting an effect of UCN3 expression at the

level of translation or above. Consistent with this, we

observed increased uncoupling protein and IGF1 mRNA in

UCN3 transgenic mice (Jamieson et al. 2011), while UCNs

have also been shown to activate transcription factors in

macrophages (Tsatsanis et al. 2006). These data contrast

with the reduced IRS1 and AKT phosphorylation observed

in the transgenic mice (Jamieson et al. 2011), which may

have been the result of the reduced circulating insulin

levels or a compensatory effect for the chronic global

overexpression. In support of a role for both the PI3K and
http://joe.endocrinology-journals.org
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AMPK pathways in mediating the effects of short-term

mUCN3 expression in muscle, CRF was shown to cause

increased substrate oxidation in muscle that relied on

both AMPK and PI3K activation (Solinas et al. 2006). In

contrast, UCN2 increased glucose uptake in the heart

through a mechanism that required AMPK but not AKT

activation (Li et al. 2013), while the hypertrophic effects

required AKT (Chanalaris et al. 2005). However, in

addition, AMPK activation may have beneficial effects on

muscle mass through the inhibition of apoptosis and

promotion of normal autophagy (Luo et al. 2013). Thus,

additional research is still required to assess the import-

ance of each pathway in the phenotype of enhanced

glucose disposal and muscular hypertrophy and to

establish how they are being activated by UCN3.

Acute UCN3 expression did not alter glycogen storage

in the rat muscles, while the increased glucose uptake

in global UCN3-overexpressing mice was reflected in

increased glycogen storage (Jamieson et al. 2011), imply-

ing either that utilisation was also increased in the IVE test

muscles, or that this is a feature of longer term expression.

The observed reduction in PGC1a levels also suggests

that UCN3 does not have the mitochondrial preservation

effects recorded in cardiac muscle (Kuizon et al. 2009). This

effect does not seem to be the result of a UCN3-mediated

shift towards type II glycolytic fibres, as seen in the trans-

genic model, as type I fibre percentage was unchanged,

although this again may reflect the short timescale of the

study. In addition, as the majority of the data presented

have been obtained in the predominantly fast twitch TC

muscle, it may be that muscles with alternative fibre

compositions would demonstrate different results. In

addition, we observed increased expression of pro-

atrophic pathways in this model, which might seem

surprising at first glance, given that activation of AKT
Published by Bioscientifica Ltd
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and FOXO1 normally switch off such expression (Stitt et al.

2004, Latres et al. 2005). It may be that this reflects

counter-regulatory changes in the activity of an alterna-

tive transcription factor, for example FOXO3 (Zheng et al.

2010), or that our data corroborate the recently published

work that implies a requirement for atrogin as part of the

process of remodelling involved in muscular hypertrophy

(Baehr et al. 2014).

The effect of local UCN3 expression on muscle fibre

size and the further enhancement of glucose disposal

beyond the level that would be expected purely as a

result of the hypertrophy is very similar to the phenotype

we observed recently after adeno-associated virus-

mediated local inhibition of myostatin action in muscle

(Cleasby et al. 2014), despite the modest upregulation of

myostatin mRNA we observed here, which has also been

observed in another model of rat muscle hypertrophy

(Abo et al. 2012). The effects of myostatin inhibition

occurred despite a reduction in IGF1 expression and

reduced activating phosphorylation of AMPK and AKT,

but as here, increased levels of cellular GLUT1 and

GLUT4 proteins resulted, implying increased capacity for

both basal and insulin-stimulated glucose uptake. How-

ever, we have not as yet established a causal link between

these variables, while glucose clearance into muscle is

determined not only by the capacity for transporter-

mediated facilitated diffusion, but also by other physio-

logical variables, including capillary density, vascular

smooth muscle tone and hexokinase activity. Notably,

UCN3 has been shown to cause arterial vasodilatation

(Venkatasubramanian et al. 2013), thus a paracrine effect

of mUCN3 on muscle arterioles could also contribute to

the observed effect. Nevertheless, targeting of CRFR2 or

myostatin in muscle may therefore provide potential for

treatment of IR and atrophic syndromes to complement

nutrition and exercise-based interventions (Bassil &

Gougeon 2013). Although UCN3 is not normally

expressed in rodent muscle, it is expressed in human

muscle (Hsu & Hsueh 2001), suggesting that interven-

tions targeting this pathway may be of more physiologi-

cal relevance in this species.

Thus, we have shown that forced expression of UCN3

in skeletal muscle enhances local glucose uptake by

an autocrine/paracrine mechanism associated with acti-

vation of both PI3-kinase-Akt and AMPK pathways and

increased glucose transporter expression. This occurs in

addition to a hypertrophic effect, implying that local

CRFR2 agonism may be a useful therapeutic approach in

the treatment of IR syndromes including T2D and

sarcopaenic obesity.
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