
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Inequality-Constrained Matrix Completion

Citation for published version:
Takac, M, Marecek, J & Richtarik, P 2014 'Inequality-Constrained Matrix Completion: Adding the Obvious
Helps!' ArXiv. <http://arxiv.org/abs/1408.2467>

Link:
Link to publication record in Edinburgh Research Explorer

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 04. Jan. 2021

http://arxiv.org/abs/1408.2467
https://www.research.ed.ac.uk/portal/en/publications/inequalityconstrained-matrix-completion(7fbe36b4-69f2-4ebc-a1a2-2286beb54179).html


Inequality-Constrained Matrix Completion:

Adding the Obvious Helps!

Martin Takáč, Jakub Mareček, and Peter Richtárik ∗

August 12, 2014

Abstract

We propose imposing box constraints on the individual elements of
the unknown matrix in the matrix completion problem and present a
number of natural applications, ranging from collaborative filtering under
interval uncertainty to computer vision. Moreover, we design an alternat-
ing direction parallel coordinate descent method (MACO) for a smooth
unconstrained optimization reformulation of the problem. In large scale
numerical experiments in collaborative filtering under uncertainty, our
method obtains solution with considerably smaller errors compared to
classical matrix completion with equalities. We show that, surprisingly,
seemingly obvious and trivial inequality constraints, when added to the
formulation, can have a large impact. This is demonstrated on a number
of machine learning problems.

1 Motivation

Matrix completion is a well-known problem, with applications ranging from
image processing to recommender systems. When dimensions of a matrix X and
some of its elements Xi,j , (i, j) ∈ I are known, the goal is to find the unknown
elements. Without imposing any further requirements on X, there are infinitely
many solutions. In many applications, however, the matrix completion that
minimizes the rank:

min rank(Y ),

subject to Yi,j = Xi,j , (i, j) ∈ I,
(1)

works the best. In this paper, we present a variant of the problem, where there
are inequalities, instead of equalities. This variant has a number of important
applications:

∗Martin Takáč is at Lehigh University, Jakub Mareček is at IBM Research, and Pe-
ter Richtárik is at the University of Edinburgh. Their addresses aretakac.mt@gmail.com,
jakub@marecek.cz, and peter.richtarik@ed.ac.uk, respectively.

1

ar
X

iv
:1

40
8.

24
67

v1
  [

m
at

h.
O

C
] 

 1
1 

A
ug

 2
01

4



Collaborative Filtering under Uncertainty. Collaborative filtering is a
well-established application of matrix completion problems Srebro (2004), largely
thanks to the success of the Netflix Prize (netflixprize.com). Let us have a
matrix, where each row corresponds to one user and each column corresponds to
a product or service. There are only a small number of entries known, consider-
ing that every user rates only a modest number of products or services. Further,
notice that one user may provide two different ratings for one and the same
product at two different times, depending on the current mood and other cir-
cumstances at the two times. One may hence want to consider an interval [x, x]
instead of a fixed value x, e.g., [x−ε, x+ε] or rather [max{L, x−ε},min{x+ε, U}],
when x is known to be a rating on the scale of [L,U ]. One may hence want to
solve:

minY maxXi,j∈[Xi,j ,Xi,j ]∀(i,j)∈Irank(Y ),

subject to Yi,j = Xi,j , (i, j) ∈ I.
(2)

Notice that this generalizes the robust linear programming of Soyster (1973) to
rank minimization.

Low-Rank Approximations in Image Processing. Another use of matrix
completion can be found in image processing. In inpainting problems, a subset of
pixels from an image are given and the task is to fill in the missing pixels. Matrix
completion with equalities (1), where I is the index set of all known pixels, has
been used numerous times in this setting. If the original matrix comes from the
real life, it probably will be full rank, albeit with quickly decreasing singular
values in the spectrum. In this case, instead of solving the equality-constrained
problem (1), one should like to find a low-rank approximation Y ∗ of X, such
that the known entry of X is not far away from Y ∗, i.e., ∀(i, j) ∈ I we have
Yi,j ≈ Xi,j . Let us illustrate this with a small matrix

X =

68.16 78.12 24.04
78.12 90.09 30.03
24.04 30.03 20.01

 ,

which has rank 3 and its singular values Σ = (167.9945, 10.2553, 0.0102)T . It is
easy to verify that

Y ∗2 =

68.1546 78.1250 24.0389
78.1250 90.0853 30.0310
24.0389 30.0310 20.0098


is the best rank 2 approximation of X in Frobenius norm. Observe that no single
element of Y ∗2 is identical to X, but that Y ∗2 ≈ X. It is an easy exercise to show
that for any X ∈ Rm×n with singular values σ1 ≥ σ2 ≥ · · · ≥ σmin{m,n}, and Y ∗r
as its best rank-r approximation, we have |Xi,j − (Y ∗r )i,j | ≤

∑min{m,n}
i=r+1 σi =:

R(r) for all (i, j). Therefore, we should not require equality constrains in (1),
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but rather inequalities |Yi,j −Xi,j | ≤ R(r),∀(i, j) ∈ I. One should like to stress
that this approach is not the same as minimizing

∑
(i,j)∈I(Xi,j − Yi,j)

2 over
all rank r matrices, because we do not penalize the elements of Y , which are
already close to X. It is also different from the usual treatment of noise in the
observations Candès & Plan (2010). One could rather formulate this as the
minimization of

∑
(i,j)∈I max{0, |Xi,j − Yi,j | − R(r)}2 over all rank r matrices.

Inpainting with Side Information. Let us present another image process-
ing application. If our original matrix is a gray scale image, then one knows
more about the missing pixels than just that they are missing! In particular,
one knows that those missing pixels take values from the interval [0, 1]. This
can hence be seen as “side information” which, as we will show in numerical
section, improves recovery of a low-rank approximation considerably. One can
extend this approach further, e.g. if the pixel is missing within a light region of
the image, one can assume that the intensity should be at least 0.8.

Forecasting with Side Information. A related application comes from the
forecasting of seasonal data, e.g. sales. Let us assume that in process {Xt},
one knows k+ 1 = τ such that FX(xt1+τ , . . . , xtk+τ ) = FX(xt1 , . . . , xtk) for the
cumulative distribution function FX(xt1+τ , . . . , xtk+τ ) of the joint distribution
of {Xt} at times t1 + τ, . . . , tk + τ . One can then formulate the forecasting into
the future as a matrix completion problem, where there the historical datum
at time t is at row bt/τc, column t mod k specified by an equality or a pair of
inequalities, and where inequalities represent side information. For an example
of such side information in sales forecasts, notice that one often has bookings
for many months in advance and knows that the sales for the respective months
will not be less than the bookings taken.

A number of other applications, e.g., in the recovery of structured matrices
Chen & Chi (2013) and in sparse principal component analysis with priors on
the principal components, can be envisioned.

2 The Problem

In this section we introduce our notation and formalize the problem. Let X be
an m × n matrix to be reconstructed. Assume that elements (i, j) ∈ E of X
we wish to fix, for elements (i, j) ∈ L we have lower bounds and for elements
(i, j) ∈ U we have upper bounds. We propose the following natural formulation
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for the equality and inequality constrained matrix completion problem:

min
X∈Rm×n

rank(X)

subject to Xij = XEij , (i, j) ∈ E ,
Xij ≥ XLij , (i, j) ∈ L,
Xij ≤ XUij , (i, j) ∈ U .

(3)

This problem is NP-hard, even with U = L = ∅ Natarajan (1995). This
special case of (3) has been widely studied, e.g., in Recht et al. (2011); Goldfarb
et al. (2009); Ma et al. (2011).

A popular heuristic enforces low rank in a synthetic way by writing X as a
product of two matrices, X = LR, where L ∈ Rm×r and R ∈ Rr×n. Hence, X
is of rank at most r. This has been proposed and analyzed by Lee et al. (2010);
Recht et al. (2010); Srebro et al. (2004); Tanner & Wei (2013). Let Li: and R:j

be the i-th row and j-h column of L and R, respectively. Instead of (3), we
consider the problem

min{f(L,R) : L ∈ Rm×r, R ∈ Rr×n}, (4)

where

f(L,R) := µ
2 ‖L‖

2
F + µ

2 ‖R‖
2
F

+ fE(L,R) + fL(L,R) + fU (L,R),

and

fE(L,R) := 1
2

∑
(ij)∈E(Li:R:j −XEij)2,

fL(L,R) := 1
2

∑
(ij)∈L(XLij − Li:R:j)

2
+,

fU (L,R) := 1
2

∑
(ij)∈U (Li:R:j −XUij)2+,

and ξ+ = max{0, ξ}.
Parameter µ helps to prevent scaling issues1. Hence, we could optionally

set µ to zero and then from time to time rescale matrices L and R, so that
their product stays constant Tanner & Wei (2013). The term fE (resp. fU , fL)
encourages the equality (resp. inequality) constraints to hold.

3 The Algorithm

Coordinate descent algorithms (CDA) are effective in solving large-scale prob-
lems, due to their low per-iteration computational cost. Although each iteration
of CDA is cheap, many more iterations are required for convergence, compared
to second-order algorithms or similar. The stochastic CDA has received much

1Let X = LR, then also X = (cL)( 1
c
R) as well, but we see that for c → 0 or c → ∞ we

have ‖L‖2F + ‖R‖2F � ‖cL‖
2
F + ‖ 1

c
R‖2F .
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attention, recently, because it has numerous benefits, compared to the deter-
ministic version Nesterov (2012); Tseng (2001). Notably, it has been shown that
stochastic CDA can be efficiently parallelized and one can obtain almost linear
speed-up Bradley et al. (2011); Richtárik & Takáč (2012); Recht et al. (2011),
e.g., in regimes when the number of parallel updates τ is much smaller that the
dimension of the optimization problem.

We now present our alternating parallel coordinate descent method for MA-
trix COmpletion (“MACO”) in Algorithm 1.

Algorithm 1 Matrix Completion via Alternating Parallel Coordinate Descent

input E ,L,U , XE , XL, XU , rank r
1: choose L ∈ Rm×r and R ∈ Rr×n
2: for k = 0, 1, 2, . . . do
3: choose random subset Ŝ ∈ {1, . . . ,m}
4: for i ∈ Ŝ in parallel do
5: choose r̂ ∈ {1, . . . , r} uniformly at random
6: compute δir̂ using formula (5)
7: update Lir̂ ← Lir̂ + δir̂
8: end for
9: choose random subset Ŝ ∈ {1, . . . , n}

10: for j ∈ Ŝ in parallel do
11: choose r̂ ∈ {1, . . . , r} uniformly at random
12: compute δr̂j using (7)
13: update Rr̂j ← Rr̂j + δr̂j
14: end for
15: end for

In Steps 3–8 of our algorithm, we fix R, choose random r̂ and a random set
Ŝ of rows of L, and update, in parallel for i ∈ Ŝ: Lir̂ ← Lir̂+δir̂. In Steps 9–14,
we fix L, choose random r̂ and a random set Ŝ of columns of R, and update, in
parallel for j ∈ Ŝ: Rr̂j ← Rr̂j + δr̂j .

Let us now comment on the computation of the updates, δir̂ and δr̂j . First,
note that while f is not convex jointly in (L,R), it is convex in L for fixed R
and in L for fixed R.

If we now fix i ∈ {1, 2, . . . ,m} and r̂ ∈ {1, 2, . . . , r}, and view f as a function
of Lir̂ only, it has a Lipschitz gradient with constant

WLir̂ = µ+
∑

v : (iv)∈E

R2
r̂v +

∑
v : (iv)∈L∪U

R2
r̂v.

That is, for all L, R and δ ∈ R, we have

f(L+ δEir̂, R) ≤ f(L,R) + 〈∇Lf(L,R), Eir̂〉δ +
WLir̂
2 δ2,

where E is the n×r matrix with 1 in the (ir̂) entry and zeros elsewhere. Likewise,
if we now fix j ∈ {1, 2, . . . , n} and r̂ ∈ {1, 2, . . . , r}, and view f as a function of
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Rr̂j only, it has a Lipschitz gradient with constant

V Ur̂j = µ+
∑

v : (vj)∈E

L2
vr̂ +

∑
v : (vj)∈U∪L

L2
vr̂.

That is, for all L, R and δ ∈ R, we have

f(L,R+ δEr̂j) ≤ f(L,R) + 〈∇Rf(L,R), Er̂j〉δ +
V Ur̂j
2 δ2,

where E is the r ×m matrix with 1 in the (r̂j) entry and zeros elsewhere.
The minimizer of the right hand side of the bound on f(L+δEir̂, R) is given

by
δir̂ := − 1

WLir̂
〈∇Lf(L,R), Eir̂〉, (5)

where 〈∇Lf(L,R), Eir̂〉 equals

µLir̂ +
∑
v : (iv)∈E(Li:R:v −XEiv)Rr̂v

+
∑
v : (iv)∈U & Li:R:v<XUiv

(Li:R:v −XUiv)Rr̂v
+
∑
v : (iv)∈L & Li:R:v>XLiv

(Li:R:v −XLiv)Rr̂v.

Note that

f(L+ δir̂Eir̂, R) ≤ f(L,R)− (〈∇Lf(L,R),Eir̂〉)2
2Wir̂

. (6)

The minimizer of the right hand side of the bound on f(L,R+δEr̂j) is given
by

δr̂j := − 1
V Ur̂j
〈∇Rf(L,R), Er̂j〉, (7)

where 〈∇Rf(L,R), Er̂j〉 equals

µRr̂j +
∑
v : (vj)∈E(Lv:R:j −XEvj)Lvr̂

+
∑
v : (vj)∈L & Lv:R:j<XLvj

(Lv:R:j −XLvj)Lvr̂

+
∑
v : (vj)∈U & Lv:R:j>XUvj

(Lv:R:j −XUvj)Lvr̂.

Note that

f(L,R+ δr̂jEr̂j) ≤ f(L,R)− (〈∇Rf(L,R),Er̂j〉)2
2Vr̂j

. (8)

The random set Ŝ can be chosen uniformly at random, or can be chosen
nonuniform, as is common in importance sampling. In our experiments we have
chosen the uniform variant. If we have a multicore machine available with τ
cores, then a reasonable subset Ŝ should have cardinality τ , or some integral
multiple of τ , so that every core has a reasonable (not too small so that it is
underutilized, but not too large so that processing takes a long time) load at
every iteration.
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Figure 1: Dependence of Error(∆) as function of ∆ for various p ∈ {30, 50, 80}.

Efficient implementation. Formulas (5) and (7) suggest that the com-
putation of the final step requires a lot of computation. This can, however, be
avoided if we define matrices A ∈ Rm×r and B ∈ Rr×n such that Aiv = WLiv
and Bvj = V Uvj . After each update of the solution, we can also update those
matrices. Similarly, one can store sparse residuals matrices ∆E , ∆L, ∆U , where

(∆E)i,j =

{
Li:R:j −XEij , if (ij) ∈ E
0, otherwise,

and ∆U , ∆L are defined in similar way. Subsequently, the computation of δir̂
or δr̂j is reduced to just a few multiplications and additions.

Lock-free implementations. Since each iteration is cheap and does not
depend on the size of the problem, one could possibly solve problems of any
dimension. Because each thread deals with a different row of L (column of R),
there is no risk of race conditions at run-time. Hence no atomic operations
are required. At some point, no single computer will have sufficient memory
capacity, and hence one will have to distribute the computation across a clus-
ter. Fortunately, techniques developed in Yun et al. (2013) are also applicable
to Algorithm 1, and hence this algorithm can be extended to the distributed
setting.

Related work. Let us note that Cai et al. (2010) analyzed matrix com-
pletion with an arbitrary convex constraint and proposed to solve the problem
using Singular Value Thresholding (SVT) algorithm. This, however, requires
the computation of a singular value decomposition (SVD) in each iteration.
A number of other approaches, e.g., augmented Lagrangian methods Tomioka
et al. (2010), could also be extended, but would require a singular value de-
composition or a number of iterations of the power method Jaggi & Sulovský
(2010); Shalev-shwartz et al. (2011). Even considering the recent progress in
randomized methods for approximating singular value decompositions Halko
et al. (2011), the approximation becomes very time-consuming very quickly as
the dimensions of matrices grow.

Our algorithm can be seen as a coordinate-wise version of the alternating
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least squares (ALS) algorithm. If r = 1 and U ≡ L ≡ ∅ and one always chooses
all elements of Ŝ, then this algorithm is equivalent with classical ALS.

3.1 Convergence Analysis

Due to the non-convex nature of (4), one has to be satisfied with convergence
to a stationary point.

Theorem 1. Let µ > 0 and (L(k), R(k)) be the (random) matrices produced
by Algorithm 1 after k iterations. Then Algorithm 1 is monotonic, i.e., for all
k ≥ 0,

0 ≤ f(L(k+1), R(k+1)) ≤ f(L(k), R(k)), (9)

Moreover, almost surely,

∇Lf(L(k), R(k))→ 0, ∇Rf(L(k), R(k))→ 0.

Sketch of the proof. Monotonicity can be deduced from (6) and (8). Then as-
sumption that µ > 0 together with monotonicity (9) implies that the levelset
{(L,R) : f(L,R) ≤ f(L(0), R(0))} is bounded. Hence, the Lipschitz constants
W and V are bounded above. The rest follows again from (6) and (8).

4 Numerical Experiments

In this Section, we present the results of various experiments, including a com-
parison with classical matrix completion with U ≡ L ≡ ∅. We focus on how
much can one benefit from imposing obvious inequalities.

4.1 Dependence of classical MC and the one with inequal-
ity with ∆ margin

Motivated by the fact that the best r-rank approximation of the original matrix
can have each element different from the observed elements, we decided to pro-
pose an experiment, where we generate a random matrix X ∈ R20×20 with rank
8. Afterwards, we sample p% of entries of that matrix, which we store in index
set I, and solve (4) with just the inequality constrains, i.e., E ≡ ∅,U ≡ L ≡ I,
XU = X−∆1 and XL = X+∆1, where 1 ∈ Rm×n is a matrix with all elements
equals to 1. Let us denote by Y ∗(∆) the solution of that optimization problem
after 105 serial iterations (|Ŝ| = 1) and with µ = 10−5. Figure 1 shows the
dependence of error defined as follows

Error(∆) =
‖Y ∗(∆)−X(7)‖F

‖X(7)‖F
,

where X(r) is the best rank r approximation of X obtain using SVD decompo-
sition of the whole matrix. Figure 1 clearly suggest that, e.g., if 50% of elements
are observed then by allowing each entry ∈ I of reconstructed matrix to lie in
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∆ neighborhood of observed values, we can decrease the relative error of recon-
struction from approximately 1.22 to 0.4 for ∆ ≈ R(r). In this case, the value
of ‖X(7)‖F was 21.3245 and R(r) = 0.1075.

4.2 Recovery

It is well known that a recovery of rank r matrix X ∈ Rm×n from just p <
r(m + n − r) observed entries is an ill-posed problem Candès & Tao (2010);
Tanner & Wei (2013), because there can exist infinitely many rank r matrices
with the entries observed.

In the next experiment, we constructed matrices X ∈ Rm×n with different
ranks r ∈ {1, 2, . . . ,min{m,n}} and tried 10 different random samplings of p
elements. For each random sampling, we ran Algorithm 1 for the maximum of
106 serial iterations (|Ŝ| = 1). Figure 2 shows how many times (out of 10) we
managed obtain reconstruction with relative error less than 5% of the original
matrix. The red line is a theoretical line, above which there is no guarantee of
recovery (when p < r(m+ n− r)).

m = 20, n = 20 m = 20, n = 40 m = 20, n = 80
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Figure 2: Recovery of rank k matrix X ∈ Rm×n for different number of observed
elements p.

4.3 Inpaiting

Inpaiting is a process of reconstruction of parts of images or videos. Again, we
can think about (e.g. grayscale) image as a matrix X with values in [0, 1]. We
again observe just a subset of elements indexed by I and we want to find a
low rank matrix Y such that PI(Y ) ≈ PI(X). However, this is actually not
all we know! We also know that ∀(i, j) : Yi,j should lay in [0, 1]. Actually,
because we are searching for rank r approximation of X we know that for sure
−R(r) ≥ Yi,j ≥ 1 +R(r), but for simplicity we assume that r is big enough and
therefore R(r) is small.

To show how this simple and obvious side-information can help us to find
a better rank r matrix, we undertook the following experiment. We took a
512 × 512 grayscale image (Lenna) and chose 50% of the pixels randomly, in-
dexed as I. Then, we ran Algorithm 1 for 107 serial iterations (|Ŝ| = 1). We
obtained solutions XE(rank) and XIN (rank), where XE(rank) was obtained

9



when we used only equality constrains (E = I,U ≡ L ≡ ∅) and XIN (rank)
was obtained when we used also inequality constrains (E = I, U ≡ L ≡ −I,
XU = 0 ∈ R512×512, XL = 1 ∈ R512×512, where −I is a set of all elements of
X except those in I). Figure 3 shows for different rank ∈ {30, 50, 100} the best
rank approximation obtained by SVD (X(rank)) and solutions XE(rank) and
XIN (rank). The benefit of obvious inequality constrains is nicely visible, e.g.,
at rank = 100, where the relative error of reconstruction is more than twice
smaller. Further, the image is more smooth, upon visual inspection.

rank X(rank) XE(rank) XIN (rank)

30
‖X(rank)‖F = 223.9999 ‖X(rank) −XE(rank)‖F = 13.1394 ‖X(rank) −XIN (rank)‖F = 12.6303

50
‖X(rank)‖F = 224.6876 ‖X(rank) −XE(rank)‖F = 18.2070 ‖X(rank) −XIN (rank)‖F = 13.1859

100
‖X(rank)‖F = 225.2117 ‖X(rank) −XE(rank)‖F = 39.1631 ‖X(rank) −XIN (rank)‖F = 15.2551

Figure 3: Adding obvious constrains can help to get better solution.

To illustrate the effect of the obvious constrains further, we took a 50 × 50
image and sample randomly 50% of pixels. (The image is the top-left corner of
the Lenna image.)

Figure 4 shows the original image X and the best rank 10 approximation
X(10). The solutions XE , XE+U , XE+L and XE+U+L were obtained by running
Algorithm 1 for 3×105 serial iterations (|Ŝ| = 1), where E contains the observed
pixels and U and L contains all other pixels. We have used XU = 0 and
XL = 1. The result again suggest that adding simple and obvious constrains
leads to better low rank reconstruction and helps to keep reconstructed elements
of matrix in expected bounds.
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X X(10) XE

‖X‖F = 26.63 ‖X(10)‖F = 26.63 RE = 0.1031

XE+U XE+L XE+U+L

RE = 0.0357 RE = 0.0262 RE = 0.0262

Figure 4: Original 50 × 50 image, the best rank 10 approximation and recon-
struction using Algorithm 1 with different settings. The RE is a relative error
defined as RE(X·) = ‖X· −X(10)‖F /‖X(10)‖.

4.4 The Netflix Problem

Within collaborative filtering, we focus on the problem presented in the Netflix
Prize, which bears the name of Netflix, a company which provides streaming
media (e.g. movies and TV series) on-demand on-line. Customers of Netflix can
rate movies, which they have seen already, and Netflix uses such recommenda-
tions to suggest which movies to watch next. If you have ever rated movies
on Netflix, though, you may have noticed that whether you give a movie three
stars or four depends on your current mood, viewing conditions, etc. Formally,
there is a matrix X, where each row corresponds to one user and each column
corresponds to a movie. We know values at Xi,j for all (i, j) ∈ I, but consider
interval uncertainty sets around the actual ratings Xi,j and solve:

minimize rank(Y ),

subject to Yi,j ≤ min{5, Xi,j + 1}, (i, j) ∈ I,
Yi,j ≥ max{1, Xi,j − 1}, (i, j) ∈ I.

(10)

Given that Netflix uses the scale of 1 to 5 stars in the ratings, we use width 2
interval uncertainty set, but this can be changed freely.

In our computational experiments, we have used

• smallnetflix_mm.train for training and smallnetflix_mm.validate

for testing. The training dataset contains ctr = 3, 298, 163 rating ∈
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{1, 2, 3, 4, 5} of m = 95, 526 users for n = 3, 561 movies. There we look for
a 95526× 3561 matrix of rank 2 or 3.

• a dataset, which contains 100, 198, 805 ratings of 480, 189 users for 17, 770
movies. There, we look for a 480189× 17770 matrix of rank 20, but we do
not have a validation matrix to match.

All data were obtained from a repository hosted by Carnegie Mellon University2.
In order to illustrate the impact of the use of inequalities, we present the

evolution of Root-Mean-Square Error (RMSE) on smallnetflix in Figure 5.
RMSE is defined as follows:

RMSE =

√√√√∑
(i,j)∈Ival

(Xi,j − Y ∗i,j)2

cval
,

where Ival contains cval = 545, 177 validates points and Y ∗ is the solution
obtained by Algorithm 1 with µ = 0.001 and constrains Xi,j − ∆ ≤ Yi,j ≤
Xi,j + ∆ for all (i, j) ∈ Itr. By epoch we mean ctr element updates of matrix L
and ctr element updates of matrix R. Let us remark that RMSE is sensitive to
the choice of ∆ and the rank of the matrix we are looking for. If the underlying
matrix has a higher rank than expected, ∆ > 0 can lead to smaller values
of RMSE. We should also note that for some fixed ∆1 and ∆2, RMSE can
be better with ∆1 for a few epochs, but then get worse when compared with
∆2. Hence, in practice, a cross validation should be used to determine suitable
value of parameter ∆. One can use the following heuristic: Start solving the
problem with a relatively large ∆. Decrease this parameter slowly, e.g. after
each epoch. This corresponds to a process, where one seeks progressively less
rough approximations ofX, similar to decreasing penalty parameter λ in LASSO
Tibshirani (1996).

In order to illustrate the run-time and efficiency of parallelization of Al-
gorithm 1, Figure 6 shows the evolution of RMSE both per iteration and per
runtime on the larger data set. As expected, the evolution per iteration is al-
most identical. The only difference stems from the fact that different random
seeds were chosen. The evolution per runtime shows almost linear speed-up
between 1 and 4 cores and marginally worse speed-up between 4 and 8 cores.
Let us remark that in the recovery of a m× n matrix X, one iteration denotes
m coordinate updates of matrix L and n coordinate updates of matrix R.

5 Extensions and Conclusion

We have presented the inequality-constrained matrix completion problem and
an efficient algorithm, which converges to station points of the NP-Hard, non-
convex optimisation problem, without ever trying to approximate the spectrum
of the matrix. In our computational experiments, we have shown that even

2 http://www.select.cs.cmu.edu/code/graphlab/datasets/
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Figure 5: The evolution of RMSE on smallnetflix for rank of 2 and 3 and
equalities (∆ = 0) or inequalities (∆ = 1) for interval uncertainty set of width
2∆.

0 20 40 60 80 100
1.02

1.04

1.06

1.08

1.1

1.12

1.14

Iterations

R
M

S
E

 

 

1 core

4 cores

8 cores

0 500 1000 1500 2000 2500
1.02

1.04

1.06

1.08

1.1

1.12

1.14

Runtime [sec.]

R
M

S
E

 

 
1 core

4 cores

8 cores

Figure 6: The evolution of RMSE on the larger dataset as function of the number
of iterations and run-time using 1, 4 and 8 cores. The rank parameter is 20 and
µ = 10−3.

13



the most obvious inequality constraints are useful in a number of applications.
Some of the applications, e.g. the collaborative filtering under uncertainty, may
be of independent interest. This opens numerous avenues for further research:

Non-negative matrix factorization. The coordinate descent algorithm
for the problem (4) is easy to extend, e.g., towards non-negative factorization.
It is sufficient to modify lines 7 and 13 in Algorithm 1 as follows: Li,r̂ =
max{0, Li,r̂ + δi,r̂}, Rr̂,j = max{0, Rr̂,j + δr̂,j}. One could consider extensions
beyond box constraints on the individual elements as well.

Getting rid of parameter µ. If we have some a priori bound on the largest
eigenvalue of the matrix to reconstruct, let us denote it ζ, then we can modify
lines 7 and 13 in Algorithm 1 as follows Li,r̂ = max{min{ζ, Li,r̂ + δi,r̂},−ζ},
Rr̂,j = max{min{0, Rr̂,j + δr̂,j},−ζ}.

We would be delighted to share our code with other researchers interested
in the problem.
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