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Adiponectin is strongly inversely associated with insulin resis-
tance and type 2 diabetes, but its causal role remains controver-
sial. We used a Mendelian randomization approach to test the
hypothesis that adiponectin causally influences insulin resistance
and type 2 diabetes. We used genetic variants at the ADIPOQ
gene as instruments to calculate a regression slope between adi-
ponectin levels and metabolic traits (up to 31,000 individuals) and
a combination of instrumental variables and summary statistics–
based genetic risk scores to test the associations with gold-standard
measures of insulin sensitivity (2,969 individuals) and type 2 di-
abetes (15,960 case subjects and 64,731 control subjects). In
conventional regression analyses, a 1-SD decrease in adiponectin
levels was correlated with a 0.31-SD (95% CI 0.26–0.35) increase
in fasting insulin, a 0.34-SD (0.30–0.38) decrease in insulin sensi-
tivity, and a type 2 diabetes odds ratio (OR) of 1.75 (1.47–2.13).
The instrumental variable analysis revealed no evidence of
a causal association between genetically lower circulating adipo-
nectin and higher fasting insulin (0.02 SD; 95% CI 20.07 to 0.11;
N = 29,771), nominal evidence of a causal relationship with lower
insulin sensitivity (20.20 SD; 95% CI 20.38 to 20.02; N = 1,860),
and no evidence of a relationship with type 2 diabetes (OR 0.94;
95% CI 0.75–1.19; N = 2,777 case subjects and 13,011 control
subjects). Using the ADIPOQ summary statistics genetic risk
scores, we found no evidence of an association between adipo-
nectin-lowering alleles and insulin sensitivity (effect per weighted

adiponectin-lowering allele: 20.03 SD; 95% CI 20.07 to 0.01; N =
2,969) or type 2 diabetes (OR per weighted adiponectin-lowering
allele: 0.99; 95% CI 0.95–1.04; 15,960 case subjects vs. 64,731
control subjects). These results do not provide any consistent
evidence that interventions aimed at increasing adiponectin lev-
els will improve insulin sensitivity or risk of type 2 diabetes.
Diabetes 62:3589–3598, 2013

C
irculating adiponectin levels are strongly in-
versely correlated with insulin resistance and
risk of type 2 diabetes (1,2), but the causal
directions of these associations are unclear. The

correlation between fasting insulin and circulating adipo-
nectin levels is between;0.3 and 0.4, a correlation of about
half of that between fasting insulin and BMI. Adiponectin is
also inversely correlated with BMI, and its association with
insulin resistance might be confounded by BMI. There are
some studies that suggest that the association between
adiponectin and insulin remains as strong, or even stronger,
when correcting for BMI (3–5). The strength of the associ-
ation has led to suggestions that adiponectin could be used
as a putative insulin-sensitizing treatment (6–8). Evidence
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from genetically or pharmacologically manipulated murine
models suggests lowering adiponectin could induce insulin
resistance. These studies were usually conducted using
models challenged by a metabolic stressor such as high-fat
feeding or lipodystrophy (8,50–55). Evidence from human
studies is less clear (9,40–42,45–48,56–58) but includes data
from a recent genome-wide association study (GWAS) that
showed an association between an adiponectin genetic risk
score and fasting insulin and type 2 diabetes (12) and a re-
cent Mendelian randomization study using 942 individuals
that suggested a causal role for adiponectin in insulin sen-
sitivity (10).

In this study, we used the principle of Mendelian ran-
domization (11) to investigate the causal nature of the
association among circulating adiponectin levels, insulin
resistance, type 2 diabetes, and related metabolic traits.
We used a combination of four genetic variants within the
adiponectin-encoding gene ADIPOQ that explain 4% of the
variance in circulating adiponectin levels and up to 31,000
individuals with adiponectin, genetic variants, and meta-
bolic trait outcomes measured. In contrast to previous
studies that have used genetic variants to examine causation
in this relationship (10,12,13), our analyses used an in-
strumental variables approach, limited genetic variants to
those in the ADIPOQ gene (providing a test very unlikely to
be influenced by pleiotropy), and performed the analyses
using tens of thousands of individuals with both circulating
adiponectin and fasting insulin measurements.

RESEARCH DESIGN AND METHODS

Study design. We used two study designs (Supplementary Fig. 1). In the first
design, we used an instrumental variables approach. We used studies in which
adiponectin had been measured as well as fasting insulin or type 2 diabetes
status (our two primary outcomes) and other related metabolic traits (fasting

glucose, BMI, triglycerides, HDL cholesterol [HDL-C], LDL cholesterol
[LDL-C], and total cholesterol). We used up to 31,000 individuals of European
descent from 13 studies (Table 1 and Supplementary Table 1) and up to 5,100
individuals of non-European descent from 3 studies (Supplementary Table 2).
These data included 1,860 individuals from 3 studies with single nucleotide
polymorphisms (SNPs), adiponectin, and a measure of insulin sensitivity, in-
cluding the previously published Uppsala Longitudinal Study of Adult Men
(ULSAM) (10), Relationship between Insulin Sensitivity and Cardiovascular
Disease (RISC), and Minnesota study.

In the second study design, we used an adiponectin summary statistics
genetic risk score, in which measured adiponectin levels were not required. For
type 2 diabetes, we used a total of 15,960 diabetic case subjects and 64,731
control subjects (including results for three available adiponectin SNPs from
the DIAbetes Genetics Replication And Meta-analysis [DIAGRAM] [8,130 case
subjects vs. 38,987 control subjects]) (14) and results from seven studies not
in the DIAGRAM (7,830 case subjects vs. 25,744 control subjects; Supple-
mentary Tables 1 and 3). For insulin sensitivity, we used a meta-analysis of
M-value and insulin suppression test GWAS results from the GENESIS con-
sortium (RISC, ULSAM, Eugene2, Stanford; Supplementary Table 4) and the
Minnesota study (Supplementary Table 1) consisting of 2,969 individuals of
European descent.
Selection of SNPs. We limited our selection of genetic variants to those in or
near ADIPOQ, the gene that encodes the adiponectin protein. This approach
meant that our genetic instrument was less likely to violate the Mendelian
randomization assumption that the instrument should only affect the outcome
through the exposure of interest. We selected a set of SNPs (rs17366653,
rs17300539, rs3774261, and rs3821799) that explained 4% of the variance in
adiponectin levels. Details of genotyping and quality control are given in
Supplementary Table 1.
Exposure and outcome variables. Details of adiponectin measures (expo-
sure of interest) are given in Supplementary Table 1. Our primary outcomes
were fasting insulin (as a proxy of insulin resistance) and type 2 diabetes. Our
secondary outcomes were insulin sensitivity (M-value or insulin suppression
test), fasting glucose, HDL-C, LDL-C, BMI, triglycerides, and total cholesterol
(Supplementary Table 1).

For each European study, individuals of non-European descent were re-
moved. For the analyses of continuous metabolic outcomes (fasting insulin,
fasting glucose, HDL-C, LDL-C, BMI, glucose, triglycerides, and total choles-
terol) we excluded: 1) individuals with type 2 diabetes; 2) individuals with
fasting glucose values $7.0 mmol/L and/or 2-h oral glucose tolerance test
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glucose $11.1 mmol/L. For the analyses of type 2 diabetes, we excluded: in
case subjects, 1) individuals aged at diagnosis ,35 or .70 years; 2) individ-
uals who needed insulin treatment within 1 year of diagnosis; and 3) indi-
viduals aged ,45 years whose age at diagnosis was not known at the time of
study; and in control subjects, 1) individuals aged ,35 or .70 years at the
time of study; and 2) individuals with HbA1c .6.4% and/or fasting glucose
.7 mmol/L.

Continuous variables (Supplementary Table 1) that were not normally
distributed were log10-transformed. We then took the residuals of the standard
linear regression using two covariates, age and sex, and, if applicable to the
study, principle components, center, or other measures required to correct for
ethnicity. We inverse-normal transformed all variable levels in each individual
study to enable meta-analyses.
SNP–trait association. We performed SNP–trait associations in each study
using two different models: 1) a univariable model in which each SNP was
analyzed separately; and 2) a multivariable model in which all four SNPs were
used together. The multivariable model accounts for correlation between the
SNPs due to linkage disequilibrium. We used an additive genetic model.
Instrumental variable analysis. To estimate the causal effect of adiponectin
levels on metabolic outcomes, we performed instrumental variable analyses
using the four ADIPOQ SNPs entered separately into the same model (11). We
applied the two-stage least-squares estimator method that uses predicted
levels of adiponectin per genotype and regresses each outcome against these
predicted values.

For continuous metabolic outcomes, we performed all of the instrumental
variable analyses either in Stata using the ivreg2 command or in R using the tsls
command from library (sem). The Framingham Heart Study (FHS) used a two-
stage approach (similar to the approach used for type 2 diabetes, please see the
following) to correct for familial correlation. For type 2 diabetes, we performed
instrumental variable analysis in two stages. First, we assessed the association
between the four SNPs and inverse-normal transformed adiponectin levels. We
saved the predicted values and residuals from this regression model. Second,
we used the predicted values from stage 1 as the independent variable (reflecting
an unconfounded estimate of adiponectin levels) and diabetes status as the
dependent variable in a logistic regression analysis. Both stages were performed
either in R or Stata. We examined F-statistics from first-stage regressions to
evaluate the strength of the instruments; weak instruments can bias results
toward the (confounded) multivariable regression association (15,16).
Association between adiponectin and metabolic outcomes. To compare
the result of instrumental variable analysis with a standard association test, we
regressed each metabolic outcome against adiponectin levels using linear
regression for continuous outcome variables and logistic regression for type 2
diabetes. We adjusted for age and sex in all studies and age, sex, and either BMI
or triglyceride levels in a subset of studies (RISC, Genetics of Diabetes Audit
and Research Tayside Scotland [GoDARTS], Salzburg Atherosclerosis Pre-
vention Program in Subjects at High Individual Risk [SAPHIR], FHS, and
Cohorte Lausannoise [CoLaus]; n = up to 11,829).
Summary statistics genetic risk score. We used a summary statistics ge-
netic risk score calculated in each study using three available common SNPs
associated with adiponectin levels (rs17300539, rs3774261, and rs3821799). We
did not use rs17366653 because it was not well-imputed in these studies.
We calculated the genetic risk score using summary statistics of phenotype–
genotype association weighted by each SNP’s corresponding effect size with
adiponectin (17). We confirmed that this summary statistics genetic risk score

was valid by calculating the score using individual level genotype data avail-
able in a subset of studies as below:

sj ¼ ∑
4

i¼1
wigij;

where sj is the score for individual j, gij is the number of risk alleles (0, 1, 2, or
dosage of the risk allele) for SNP i carried by individuals j, and wi is the effect
size on adiponectin levels for SNP i from the meta-analysis results of 13
studies (up to 33,671 individuals): wrs17300539 (G as effect allele) = 20.330;
wrs3774261 (G as effect allele) = 20.354; and wrs3821799 (T as effect allele) =
20.352. We performed a logistic regression with the outcome variable of type
2 diabetes status and exposure variable as genetic risk score and covariates
including age, sex, and principle components or center or other measures
required to correct for ethnicity.
Summary statistics genetic risk score for fasting insulin-associated

variants.We used recently identified genetic variants associated with fasting
insulin levels (18) to perform a reciprocal analysis to test the hypothesis
that genetic determinants of insulin resistance (as measured by higher
fasting insulin levels) are causally associated with lower circulating adipo-
nectin levels. We used a summary statistics genetic risk score using 17 SNPs
identified as associated with fasting insulin and or fasting insulin adjusted
for BMI (18).
Sensitivity analysis. We performed two sets of sensitivity analyses: 1) to
assess whether or not associations differed between sexes, we repeated the
inverse-variance meta-analyses in men and women separately (sex-difference
P values were calculated by t tests); and 2) since rs17366653 is predicted to
alter the splicing pattern of adiponectin (13) and may produce different
transcripts or proteins, we reran analyses excluding this SNP.
Meta-analysis. We performed meta-analysis using METAL 2009-10-10 release
(19) and package metafor in R (20). Overall associations from observational
analyses and instrumental variable analyses were evaluated across the studies
with fixed-effects inverse variance–weighted meta-analysis. Heterogeneity sta-
tistics were calculated in the meta-analysis by the I2 statistic, which is a measure
of the variation in effect size attributable to heterogeneity (21). Random effects
and meta-regression were used to allow for and explore associations with evi-
dence of heterogeneity.
Measures of insulin sensitivity. For measures of insulin sensitivity, we used
five studies (RISC, Eugene2, ULSAM, Stanford Insulin Suppression Test [IST],
and Minnesota) and meta-analyzed results using the program METAL. In
Eugene2, ULSAM, Minnesota, and RISC, insulin sensitivity was measured using
the hyperinsulinemic-euglycemic clamp based protocol (22). In the Stanford
study, insulin sensitivity was measured by the insulin suppression test with
a readout of steady-state plasma glucose. The steady-state plasma glucose
value is highly inversely correlated to M-value [r = 20.87 (23) and 20.93 (24)],
so meta-analysis was performed among the five studies by reversing the signs
of the effect sizes in Stanford.
Power calculation. To assess the power of our study, we calculated the
approximate number of individuals we would need to detect the expected
instrumental variable (four ADIPOQ SNPs): fasting insulin or type 2 diabetes
associations given the instrumental variable–adiponectin and adiponectin–
fasting insulin or type 2 diabetes associations. We used the product of the

TABLE 1
Summary details and relevant characteristics of European studies

Study N (males/females) Age (years) BMI Adiponectin (mg/mL) Fasting plasma insulin (pmol/L)

BWHHS 3,904 (0/3,904) 68.83 (5.5) NA 16.04 (7.6) 9.46 (24.7)
CoLaus 6,152 (2,922/3,230) 53.00 (11.0) 25.80 (4.6) 9.90 (8.1) 52.80 (37.2)
ELY 1,570 (731/839) 53.27 (7.7) 25.65 (3.8) 7.62 (3.8) 44.92 (31.9)
ERF 2,812 (1,248/1,564) 49.76 (15.0) 26.84 (4.6) 10.52 (5.6) 13.25 (7.5)
Fenland 4,338 (2,010/2,328) 46.15 (7.2) 26.83 (4.9) 5.80 (2.2) 35.90 (14.8)
FHS 4,488 (2,064/2,424) 49.26 (9.3) 27.32 (5.2) 9.38 (5.9) 24.33 (18.4)
GoDARTS 3,696 (1,842/1,854) 62.57 (12.1) 27.50 (4.6) 4.96 (3.9) 36.00 (27.6)
METSIM 8,156 (8,156/0) 57.50 (7.0) 26.80 (3.8) 6.90 (4.1) 38.40 (34.2)
Minnesota 221 (116/105) 21.13 (2.7) 24.17 (3.7) 8.62 (3.5) 49.00 (20.5)
RISC 1,031 (453/578) 43.96 (8.4) 25.47 (4.0) 8.34 (3.7) 34.40 (18.7)
SAPHIR 1,770 (1,107/663) 51.39 (6.0) 25.99 (5.1) 7.60 (5.3) 36.00 (27.5)
TUK 1,399 (0/1,399) 48.10 (11.3) 25.43 (4.9) 7.99 (3.7) 12.60 (16.1)
YF 1,844 (825/1,019) 39.00 (5.0) 25.13 (5.5) 9.04 (6.8) 47.99 (42.8)

Data are mean (SD) unless otherwise indicated. NA, not applicable.
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variance explained by the instrumental variable–adiponectin and adiponectin–
fasting insulin or type 2 diabetes associations and a P value of 0.01.

RESULTS

A combination of four ADIPOQ variants explained
4% of the variation in circulating adiponectin levels.
We identified four SNPs (rs17366653, rs17300539, rs3774261,
and rs3821799) at the ADIPOQ locus that explained 4% var-
iation in adiponectin levels in a multivariable analysis (n = up
to 33,671; Table 2 and Fig. 1). We did not observe any dif-
ference in these associations between males and females
(Supplementary Figs. 2–5). These variants, used together as
an instrument, provided us with .99% statistical power to
detect associations that explain 0.1% variance at P = 0.01.
The figure of 0.1% variance is the product of the variance
explained by the four SNPs (4%) and the variance explained
between adiponectin and fasting insulin levels when cor-
rected for BMI (correlation r = 0.16; variance r2 = 2.5%).
Instrumental variables and summary statistics genetic
risk score approaches provide no evidence of a causal
association between circulating adiponectin and insulin
resistance in up to 29,771 individuals. Lower circulating
adiponectin levels were strongly correlated with increased
fasting insulin. A 1-SD decrease in adiponectin levels was
associated with a 0.31 SD (95% CI 0.26–0.35) increase in
fasting insulin (P = 5E-40; Table 3 and Fig. 2A). In contrast,
the instrumental variable analysis did not provide any evi-
dence of a causal association between lower adiponectin and
increased fasting insulin; the mean difference in fasting in-
sulin per SD of adiponectin was 0.02 (95% CI 20.07 to 0.11;
P = 0.60; n = 29,771) (Fig. 2B). The 95% CIs from the in-
strumental variable analysis clearly excluded the observa-
tional regression estimate (Fig. 3 and Table 3). The 95% CIs
from the instrumental variables analysis also clearly ex-
cluded the observational regression estimate when adjusting
for BMI (0.16 [95% CI 0.15–0.18]; n = 11,829) or triglyceride
levels (0.19 [0.17–0.20]; n = 11,346). There was some evi-
dence of heterogeneity (Table 3 and Supplementary Table 5)
but meta-regression analysis, including the variables of av-
erage age, proportion of males, and average BMI, did not
reduce heterogeneity (test of moderators, P = 0.39). Sensi-
tivity analyses did not appreciably change these estimates
(Supplementary Table 6 and Supplementary Figs. 6 and 7).

Lower circulating adiponectin levels were strongly cor-
related with insulin sensitivity as measured by hyper-
insulinemic-euglycemic clamp in 2,109 individuals from
the RISC, ULSAM, and Minnesota studies. A 1-SD decrease
in adiponectin levels was associated with a 0.34-SD (95%
CI 0.30–0.38; P = 3E-61) decrease in M-value. We observed
nominal evidence of a causal association between ge-
netically lower adiponectin levels and insulin sensitivity

(20.20 SD [20.38 to 20.02]; P = 0.03) in 1,860 individuals
from the ULSAM, RISC, and Minnesota studies in which
adiponectin levels were measured and we could perform
an instrumental variable analysis using three ADIPOQ
SNPs. In contrast, a summary statistics genetic risk score
(Supplementary Table 7) provided no evidence of a causal
association between circulating adiponectin levels and
insulin sensitivity in 2,969 individuals (20.03 SD [20.07
to 20.01]; P = 0.12).
A summary statistic genetic risk score approach
provides evidence of a causal association between
insulin resistance as measured by fasting insulin
levels and lower circulating adiponectin levels. We
used 17 SNPs recently identified as associated with fasting
insulin at the genome-wide significance level [by the Meta-
Analyses of Glucose and Insulin Related Traits Consortium
(18)] to test the reciprocal hypothesis that genetic deter-
minants of insulin resistance (as measured by fasting
insulin) causally influence circulating adiponectin. The
fasting insulin summary statistics genetic risk score was
strongly associated with adiponectin using .29,000 indi-
viduals (12) (per weighted fasting insulin raising allele was
associated with a 20.01 SD (P = 2E-20) change in adipo-
nectin levels (Supplementary Fig. 8).
A summary statistics genetic risk score approach
provides no evidence of a causal association between
circulating adiponectin and type 2 diabetes in 15,960
case subjects vs. 64,731 control subjects. Lower adi-
ponectin levels were strongly correlated with an increased
risk of type 2 diabetes; a decrease of 1 SD in adiponectin
levels was associated with an odds ratio of 1.75 (95% CI
1.47–2.13; P = 5E-10) (Table 4 and Fig. 4A). Conversely,
the analysis of the weighted adiponectin summary sta-
tistics genetic risk score, constructed based on three
SNPs (rs17300539, rs3774261, and rs3821799), provided
no evidence that individuals with lower genetically in-
fluenced adiponectin levels were at increased risk of
type 2 diabetes (OR per weighted adiponectin lowering
allele: 0.99 [0.95–1.04]; P = 0.77; 15,960 case subjects vs.
64,731 control subjects). This result was consistent with
an allele score calculated from a subset of five studies
using individual-level genotype data (OR per weighted
adiponectin-lowering allele: 1.03 [0.86–1.24]; 8,552 case
subjects vs. 24,050 control subjects). We also observed no
evidence of a causal association between genetically lower
adiponectin levels and increased risk of type 2 diabetes
(OR 0.94 [0.75–1.19]; P = 0.61) in the 2,777 case subjects and
13,011 control subjects in whom we had adiponectin levels
measured and could perform an instrumental variable
analysis (Table 4 and Fig. 4B). The 95% CIs from the instru-
mental variable analysis clearly excluded the observational
regression slope (Table 4). We observed heterogeneity in

TABLE 2
Associations between four SNPs and adiponectin levels in univariable and multivariable models from 13 European studies

SNP
Alleles

(effect/other)
Effect allele
frequency

Univariable analysis Multivariable analysis

Effect (SD) SE P value N Effect (SD) SE P value N

rs17300539 A/G 0.08 0.35 0.02 6E-115 35,031 0.32 0.02 2E-83 33,671
rs17366653 T/C 0.98 0.59 0.03 6E-66 34,571 0.59 0.04 8E-62 33,599
rs3774261 A/G 0.38 0.12 0.01 5E-49 34,662 0.35 0.02 3E-99 33,235
rs3821799 T/C 0.43 0.02 0.01 0.005 34,700 20.34* 0.02 5E-99 33,235

*The big change in the effect size is because the two SNPs are in partial linkage disequilibrium (r2 5 0.7) and the adiponectin-decreasing alleles
are on opposite haplotypes (i.e., rs3774261 and rs3821799 cancel each other out, as described previously for gene expression levels) (49).
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observational analysis (I2 = 90.4). Sensitivity analyses did
not appreciably change these estimates (Supplementary
Table 6 and Supplementary Figs. 9 and 10).
An instrumental variables approach provides no
evidence of a causal association between circulating
adiponectin and other metabolic traits in up to 30,588
individuals. Instrumental variable analyses did not provide
any evidence that genetically decreased circulating adipo-
nectin levels have a causal effect on fasting glucose, BMI,
triglycerides, HDL-C, and cholesterol (Table 3). In all ana-
lyses, the 95% CIs from the instrumental variable analysis had
no overlap with the 95% CIs from the observational analysis
and clearly excluded the observational regression slope, ex-
cept the analysis of LDL-C (observational 95% CI 0.03–0.10;
instrumental variable 95% CI 20.03 to 0.09; Table 3). Sensi-
tivity analyses did not appreciably change these estimates
(Supplementary Table 6). We observed heterogeneity in ob-
servational analyses (I2 81.6–90.4), but meta-regression did
not detect variables that reduced this heterogeneity.

Non-European studies. Using data from two Asian
studies including the Cebu Longitudinal Health and Nu-
trition Study (CLHNS) and Cardiovascular Risk Factor
Prevalence Study (CRISPS) (total n = 2,991), we did not
find any evidence of a causal effect of adiponectin on
fasting insulin or risk of type 2 diabetes using one available
SNP (rs6773957), which is in complete linkage disequilib-
rium with rs3774261 and rs3821799 in Asian populations.
In the Jackson Heart Study (JHS) of African American
individuals (n = 2,053), none of the SNPs were associated
with adiponectin levels.

DISCUSSION

Our approach allowed us to plot a genetically determined
regression line between adiponectin and secondary meta-
bolic traits. Our study adds to the current literature, as it
included a large enough number of individuals to confi-
dently exclude the observational regression estimates for

FIG. 1. Adiponectin: SNP association in univariable analysis (triangles) and multivariable analysis (circles). chr3, chromosome 3; LD, linkage
disequilibrium.

TABLE 3
Associations between lower adiponectin levels and metabolic traits using linear regression and instrumental variable analysis (results
from random effects meta-analysis)

Trait

Observational regression analysis Instrumental variable analysis

Effect (SD) 95% LCI 95% UCI SE P value N I2 Effect (SD) 95% LCI 95% UCI SE P value N I2

Fasting
insulin 0.31 0.26 0.35 0.02 5E-40 30,458 93.6 0.02 20.07 0.11 0.05 0.60 29,771 50.6

BMI 0.27 0.24 0.30 0.02 3E-59 31,277 87.5 0.02 20.07 0.10 0.04 0.70 30,588 48
Fasting
glucose 0.14 0.11 0.17 0.01 1E-22 30,931 81.6 0.02 20.04 0.07 0.03 0.58 30,234 0

Total
cholesterol 20.01 20.04 0.02 0.02 0.59 30,706 86.9 0.04 20.02 0.09 0.03 0.23 29,951 0

HDL-C 20.41 20.44 20.38 0.02 9E-158 30,651 86.1 20.06 20.12 0.06 0.03 0.06 29,899 11.6
LDL-C 0.06 0.03 0.10 0.02 9E-05 30,211 85.4 0.03 20.03 0.09 0.03 0.31 29,498 0
Triglycerides 0.28 0.25 0.32 0.02 2E-64 30,362 87.0 0.03 20.03 0.09 0.03 0.32 29,646 0.8

The effect value is the SD change in trait levels per 1-SD decreased adiponectin levels. LCI, lower CI; UCI, upper CI.
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fasting insulin and type 2 diabetes. Limited sample size
meant that we could not confidently include or exclude the
observational regression estimates for insulin sensitivity
as measured by hyperinsulinemic-euglycemic clamp or
insulin suppression tests. Previous studies studied fewer
individuals, included variants likely to have pleiotropic
effects, or did not conduct an instrumental variables
analysis. Our results provided no evidence that genetically
determined lower adiponectin levels increase insulin re-
sistance, as assessed by fasting insulin, or type 2 diabetes
risk. The 95% CIs around our instrumental variables

estimate of the adiponectin–fasting insulin association ex-
cluded effects approximately one-third and above of the
observed (age- and sex-adjusted) association between adi-
ponectin and fasting insulin. Total circulating adiponectin
levels are significantly higher in females than males (25,26),
but our sex-dichotomized analyses did not show any evi-
dence for differences between sexes in its association with
fasting insulin, type 2 diabetes, or other outcomes.

A large number of studies have tested associations
between ADIPOQ SNPs and insulin resistance and type 2
diabetes (13,27–38). Most of these studies have been

FIG. 2. Forest plots of the associations between circulating adiponectin levels and fasting insulin in European studies. A: Meta-analysis of ob-
servational linear regression results of mean difference in fasting insulin per 1-SD lower adiponectin levels. B: Meta-analysis of instrumental
variables results of mean difference in fasting insulin per 1-SD lower adiponectin levels. Although linear regression suggests a strong relationship
between lower circulating adiponectin levels and increased fasting insulin, instrumental variable analysis does not support a causal association. In
each plot, the dashed line indicates the effect size from the overall meta-analysis. The effects are for 1-SD decrease in adiponectin levels. RE,
random effects.
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appreciably smaller than our study. The largest study
(5,145 case subjects vs. 6,374 control subjects) that tested
specifically the association between ADIPOQ SNPs and
type 2 diabetes, and overlapped with our data, was nega-
tive (13). In a recent GWAS study of adiponectin levels,
a multi-SNP allele risk score, calculated based on 196
SNPs from across the genome, was associated with type 2
diabetes risk and a number of related traits (12). Contrary
to our results, these findings could be interpreted as pro-
viding causal evidence for the association of adiponectin
with these outcomes. However, as the authors noted, their
results may have been influenced by pleiotropy at loci
other than ADIPOQ and therefore do not constitute
a Mendelian randomization study. To clarify further the
potentially confusing messages between our study and the
adiponectin GWAS study, we tested the 10 SNPs associ-
ated with adiponectin levels outside of the ADIPOQ region
and confirmed that they are associated with fasting insulin

in the Meta-Analyses of Glucose and Insulin Related Traits
Consortium study (18) The overall effect of non-ADIPOQ
adiponectin-decreasing alleles was associated with a
0.24-SD increase in fasting insulin (95% CI 0.18–0.30; P =
3E-14). This association, together with our null associa-
tion of ADIPOQ SNPs, strongly suggests that the non-
ADIPOQ SNPs operate through secondary or pleiotropic
mechanisms. Our results add to a recent Mendelian ran-
domization study that showed evidence of a causal associ-
ation between adiponectin levels and insulin resistance
assessed by euglycemic clamp in 942 men from ULSAM
(10). Our meta-analysis of 1,860 individuals, including the
ULSAM study, indicates that larger numbers will be needed
to confidently include or exclude the observational associ-
ation between adiponectin and insulin sensitivity. Testing
insulin sensitivity in very large numbers, however, is not
very feasible given the complexity and invasiveness of the
physiological tests, and a combination of our summary
statistics–based results in 2,969 individuals and the results
with fasting insulin in 29,771 individuals suggest the weight
of evidence is against a causal role of adiponectin in insulin
resistance.

Although the conclusion that genetically determined low
levels of adiponectin are not associated with increased
risk of insulin resistance is at odds with the widely held
view of adiponectin as an insulin-sensitizing hormone, the
direct evidence supporting this notion comes largely from
rodent models, and the situation in humans is more com-
plex (39). Indeed, in humans with extreme insulin re-
sistance due to loss of insulin receptor function, plasma
adiponectin levels are often extremely high (40–44).
Moreover in healthy volunteers, insulin infusion lowers
plasma adiponectin (45), and in type 1 diabetes, it is ele-
vated (46–48). Allied to other findings, including the ob-
servation that in a single family with insulin resistance, due
to mutation of the intracellular signal transducer AKT2,
adiponectin levels are very low (42), this has raised the
possibility that the association between insulin resistance
in humans may be explained by high levels of insulin
suppressing adiponectin production through intact signal-
ing pathways (39). In other words, it is possible to in-
terpret current human data as providing evidence that it is
the hyperinsulinemia caused by prevalent forms of insulin
resistance that leads to low plasma adiponectin levels
rather than vice versa. The current results, including the
association between the fasting insulin raising genetic
score and lower adiponectin levels, are consistent with
this model.

Our study has limitations. First, the SNPs we used are
associated with altered levels of adiponectin protein and
not its function; we have tested the role of increased and
decreased circulating adiponectin levels rather than its

TABLE 4
Associations between lower adiponectin levels and type 2 diabetes using logistic regression, instrumental variable analysis, allele
score, and summary statistics genetic risk score

Analysis OR 95% LCI 95% UCI P value I2 N (case subjects vs. control subjects)

Logistic regression analysis 1.75 1.47 2.13 5E-10 90.4 16,075 (2,851 vs. 13,224)
Instrumental variable analysis 0.94 0.75 1.19 0.61 0 15,788 (2,777 vs. 13,011)
Summary statistics genetic
risk score 0.99 0.95 1.01 0.77 0 72,192 (15,960 vs. 64,731)

Model includes rs17300539, rs3774261, and rs3821799. LCI, lower CI; UCI, upper CI.

FIG. 3. Comparison of linear relationships between circulating adipo-
nectin levels and fasting insulin adjusted for age and sex (line A); age,
sex, and BMI (line B); and when estimated using the four adiponectin
SNPs together as an instrument (line C). The x- and y-axes represent
circulating adiponectin levels and fasting insulin (both variables inverse-
normal transformed), respectively. Light gray points represent a scatter
plot of the correlation between circulating adiponectin levels and fasting
insulin based on the data from three studies (RISC, GoDARTS, and
BWHHS) in which individual level data were available. Gray areas con-
strained by dashed lines represent 95% CI around each estimate. Obser-
vational and instrumental variable slopes and CIs have been formulated
based on the meta-analysis results of 13 studies.
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function in other tissues such as the liver. Second, we
cannot rule out a causal association between circulat-
ing adiponectin and insulin sensitivity as measured by
hyperinsulinemic-euglycemic clamp, and we cannot com-
pletely rule out a causal association between fasting-based
measures of insulin resistance, because our study is con-
sistent with a regression slope of 0.11 (the upper 95% CI
of our instrumental variable estimate). Third, we observed
appreciable heterogeneity between studies in our observa-
tional associations that mean our estimates of the nongenetic
correlations are noisy. However, there was little heteroge-
neity in the genetic associations. Finally, the Mendelian
randomization approach has limitations. For example, we
cannot account for complex feedback loops or canaliza-
tion, the body’s adaptation to early physiological changes

caused by subtle genetic changes. We cannot also rule out
the possibility that the relationship between adiponectin
and outcome metabolic traits varies by age or after diabetes
diagnosis, potentially adding more noise to the instrumental
variables analysis.

In summary, we have performed a Mendelian randomi-
zation study to test the causal role of lower adiponectin
levels with increased insulin resistance and type 2 di-
abetes. Our results provide no consistent evidence that
genetically influenced decreased circulating adiponectin
levels increase the risk of insulin resistance or type 2 di-
abetes. These results do not provide any evidence that
pharmaceutical and lifestyle interventions designed to al-
ter adiponectin levels will improve insulin resistance or
prevent type 2 diabetes.

FIG. 4. Forest plots of the associations between circulating adiponectin levels and type 2 diabetes risk in Europeans. A: Meta-analysis of ob-
servational linear regression results of OR of type 2 diabetes per 1-SD lower adiponectin levels. B: Meta-analysis of instrumental variables results
of OR of type 2 diabetes per 1-SD lower adiponectin levels. Although linear regression suggests a strong relationship between lower circulating
adiponectin levels and higher risk of type 2 diabetes, instrumental variable analysis does not support a causal association. In each plot, the dashed
gray line indicates the effect size from the overall meta-analysis. The ORs are for 1-SD decrease in adiponectin levels. RE, random effects.
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