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Regional Heritability Mapping to identify loci
underlying genetic variation of complex traits
Valentina Riggio*, Ricardo Pong-Wong

From 16th QTL-MAS Workshop
Alghero, Italy. 24-25 May 2012

Abstract

Background: Genome-wide association studies can have limited power to identify QTL, partly due to the stringent
correction for multiple testing and low linkage-disequilibrium between SNPs and QTL. Regional Heritability
Mapping (RHM) has been advanced as an alternative approach to capture underlying genetic effects. In this study,
RHM was used to identify loci underlying variation in the 16th QTLMAS workshop simulated traits.

Methods: The method was implemented by fitting a mixed model where a genomic region and the overall
genetic background were added as random effects. Heritabilities for the genetic regional effects were estimated,
and the presence of a QTL in the region was tested using a likelihood ratio test (LRT). Several region sizes were
considered (100, 50 and 20 adjacent SNPs). Bonferroni correction was used to calculate the LRT thresholds for
genome-wide (p < 0.05) and suggestive (i.e., one false positive per genome scan) significance.

Results: Genomic heritabilities (0.31, 0.32 and 0.48, respectively) and genetic correlations (0.80, -0.42 and 0.19,
between trait-pairs 1&2, 1&3 and 2&3) were similar to the simulated ones. RHM identified 7 QTL (4 at genome-wide
and 3 at suggestive level) for Trait1; 4 (2 genome-wide and 2 suggestive) for Trait2; and 7 (6 genome-wide and
1 suggestive) for Trait3. Only one of the identified suggestive QTL was a false-positive. The position of these QTL
tended to coincide with the position where the largest QTL (or several of them) were simulated. Several signals
were detected for the simulated QTL with smaller effect. A combined analysis including all significant regions
showed that they explain more than half of the total genetic variance of the traits. However, this might be
overestimated, due to Beavis effect. All QTL affecting traits 1&2 and 2&3 had positive correlations, following the
trend of the overall correlation of both trait-pairs. All but one QTL affecting traits 1&3 were negatively correlated, in
agreement with the simulated situation. Moreover, RHM identified extra loci that were not found by association
and linkage analysis, highlighting the improved power of this approach.

Conclusions: RHM identified the largest QTL among the simulated ones, with some signals for the ones with small
effect. Moreover, RHM performed better than association and linkage analysis, in terms of both power and resolution.

Background
Genome-wide association studies (GWAS) have gener-
ally failed to explain most of the known genetic varia-
tion influencing complex diseases [1]. This is partly due
to the stringent correction for multiple testing and low
linkage-disequilibrium (LD) between SNPs and QTL.
Attempts to increase the power of GWAS have focused
on increasing either the number of markers or the

number of observations per trait. An alternative
approach exploiting dense SNP chip data, known as
Regional Heritability Mapping (RHM) [2], has been
advanced as a better approach to capture more of the
underlying genetic effects. This method provides herit-
ability estimates attributable to small genomic regions,
and it has the power to detect regions containing multi-
ple alleles that individually contribute too little variance
to be detected by GWAS. The aim of this study was to
identify QTL affecting the three traits simulated in the* Correspondence: valentina.riggio@roslin.ed.ac.uk
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16th QTL-MAS workshop dataset and recover their pos-
sible pleiotropic actions, using RHM.

Methods
1. Dataset
The dataset, provided by the 16th QTLMAS workshop
organisers, consisted of 3,000 individuals, all females,
from three generations (G1-G3); all were genotyped for
about 10,000 SNPs on five chromosomes of equal length
(99.95 Mb each). The phenotypes (Trait1, Trait2, and
Trait3) resembled three milk production traits, given as
individual yield deviations, and generated in order to
mimic two yields and the corresponding content.

2. QTL mapping analysis
The implementation of RHM is described in [2]. RHM
is related to interval mapping methodology, using var-
iance component approach [3]. Basically, RHM is a
mixed model where the effect of a genomic region
(attributable to the QTL within the region in question)
plus the overall genetic background were added as ran-
dom, with covariance structure proportional to the
genetic relationship matrix calculated using genotype
information. The relationship matrix modelling the
overall genetic background was estimated using all
SNPs, whereas the one for the region was estimated
using the SNPs falling within that region. Heritabilities
for the genetic regional effects were estimated [4], and
the presence of a QTL in the region was tested using a
likelihood ratio test (LRT). Several region sizes were
considered (i.e. 100, 50 and 20 adjacent SNPs), and the
regions shifted every 10 SNPs. After Bonferroni correc-
tion, the LRT thresholds for genome-wide (p < 0.05)
and suggestive (i.e., one false positive per genome scan)
significance levels were 10.83 and 6.64 (corresponding
to -log10(p) of 3.30 and 2.00), 12.12 and 7.88 (-log10(p)
of 3.60 and 2.30), and 13.83 and 9.55 (-log10(p) of 4.00
and 2.70) for the three region sizes, respectively.
RHM results were compared with association and link-

age analysis results, in order to assess its potential use as a
tool for QTL mapping. The linkage analysis was imple-
mented in GridQTL [5], studying the segregation of the
paternal allele; the association analysis, using the GRAM-
MAR approach [6], which comprises two steps: first, phe-
notypes were adjusted for the polygenic effects and
second, residuals were fitted against each SNP using addi-
tive model as implemented in GenABEL [7].
When a QTL was found significant for more than one

trait, correlations between regional EBVs were estimated
to evaluate possible pleiotropic effects among traits.

Results and discussion
Heritabilities obtained using the genomic relationship
matrix were 0.31, 0.32 and 0.48 for Trait1, 2 and 3,

respectively and similar to those estimated with a pedi-
gree-based relationship matrix (0.38, 0.39 and 0.49,
respectively) and those simulated (0.36, 0.35 and 0.52,
respectively). Genetic correlations estimated with the
genomic relationship matrix were 0.80 (Trait 1&2), -0.43
(Trait 1&3) and 0.19 (Trait 2&3), and similar to those
estimated with a pedigree-based relationship matrix
(0.83, -0.42 and 0.14, respectively), and those simulated
(0.80, -0.43 and 0.17, respectively).
The results from RHM were in general consistent

across the three region sizes tested, hence, we will con-
centrate on the results with 20 SNPs per region. Figure 1
shows the Manhattan plot for the analyses of Trait1, 2
and 3 (a, b, and c, respectively). RHM identified 7 QTL
(4 at genome-wide level and 3 at suggestive level) for
Trait1; 4 (2 genome-wide and 2 suggestive) for Trait2;
and 7 (6 genome-wide and 1 suggestive) for Trait3.
Only one of the identified QTL, significant at the sug-
gestive level, was a false-positive. The position of these
QTL tended to coincide with the position where the lar-
gest QTL (or several of them) were simulated. RHM did
not identify regions harbouring QTL with small effect,
which is attributable to the size of the data. Neverthe-
less, several signals were detected, although they did not
reach significance.
When comparing RHM results with association and

linkage analysis results, all three methods were success-
ful in identifying the larger QTL and with some extend
the other ones (Additional Files 1 to 3). However, for
the QTL with smaller effect RHM performed better
than both association and linkage analysis, i.e. more
power than association and more resolution than
linkage.
Table 1 shows the heritability (h2reg) for all signifi-

cant regions and the proportion of genetic variance
explained when all significant QTL were simulta-
neously fitted into the model together with a genomic
effect (to capture genetic variance not explained by the
fitted QTL). The sum of all genetic variances from the
joint analysis showed some discrepancies from the one
observed in the analysis including one single genomic
effect (especially with Trait3). Our results show that
these regions explain more than half of the total
genetic variance of the traits in question, suggesting
that the undetected QTL explain a small proportion of
genetic variance. However, the estimated variance
might be inflated, due to Beavis effect [8], arising from
small sample size.
Examination of the regional EBVs showed that some

QTL have pleiotropic effects among traits. Genetic cor-
relations (i.e., correlations between regional EBVs)
between the regions in common across the three traits
are in Table 2. All QTL affecting traits 1&2 and 2&3
had positive correlations, following the trend of the
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Table 1 Regional heritability (h2reg) for regions significant both at the genomic level (p < 0.05) and at the suggestive
level and proportion of genetic variance explained for the three traits with 20 SNP region size.

Heritability (h2reg)

Chromosome Region Position (Kb) Trait1 Trait2 Trait3

1 30 14500-15450 0.02 0.03 0.03

117 58000-58950 0.03 0.05

169 84000-84950 0.02 0.05

2 159 79000-79950 0.01

3 5 2000-2950 0.03 0.03

74 36500-37450 0.05

4 24 11500-12450 0.01f.p.

49 24000-24950 0.07 0.08

171 85000-85950 0.01 0.01

5 131 65000-65950 0.01 0.01

Sum of h2reg 0.17 0.15 0.23

Remaining heritability 0.14 0.14 0.16

Proportion of genetic variance explained by mapped QTL 55% 52% 59%
f.p. False-positive

Figure 1 RHM results for Trait1 (a), Trait2 (b) and Trait3 (c) using 20 SNP region size. Genome-wide p < 0.05 and suggestive thresholds
are shown (solid lines). Simulated QTL are also shown, with arrows whose size is proportional to the effect of the QTL.
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overall correlation of both trait-pairs. All but one
QTL affecting traits 1&3 were negatively correlated.
Our results were however in agreement with the simu-
lated ones.

Conclusions
RHM identified the largest QTL among the simulated
ones. Moreover, for the ones with smaller effect, several
signals were detected, although they did not reach sig-
nificance. In general RHM identified extra loci that were
not found by association and linkage analysis, highlight-
ing the improved power of this approach.

Additional material

Additional file 1: Comparison among RHM, association and linkage
analysis results for Trait1.

Additional file 2: Comparison among RHM, association and linkage
analysis results for Trait2.

Additional file 3: Comparison among RHM, association and linkage
analysis results for Trait3.
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Table 2 Genetic correlations for regions which were
found to affect more than one trait and overall genetic
correlations.

Genetic correlations

Chromosome Region Position
(Kb)

Trait
1&2

Trait
1&3

Trait
2&3

1 30 14500-15450 0.88 0.29 0.70

117 58000-58950 -0.87

169 84000-84950 -0.89

3 5 2000-2950 0.63

4 49 24000-24950 0.97

171 85000-85950 -0.85

5 131 65000-65950 0.93

Overall correlation 0.80 -0.43 0.19
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