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Fundamental performance limits for ideal decoders
in high-dimensional linear inverse problems

Anthony Bourrier, Mike E. Davies, Senior Member, IEEE, Tomer Peleg, Student Member, IEEE, Patrick Pérez and
Rémi Gribonval, Fellow, IEEE

Abstract—The primary challenge in linear inverse problems
is to design stable and robust “decoders” to reconstruct high-
dimensional vectors from a low-dimensional observation through
a linear operator. Sparsity, low-rank, and related assumptions are
typically exploited to design decoders which performance is then
bounded based on some measure of deviation from the idealized
model, typically using a norm.

This paper focuses on characterizing the fundamental perfor-
mance limits that can be expected from an ideal decoder given a
general model, i.e., a general subset of “simple” vectors of inter-
est. First, we extend the so-called notion of instance optimality
of a decoder to settings where one only wishes to reconstruct
some part of the original high dimensional vector from a low-
dimensional observation. This covers practical settings such as
medical imaging of a region of interest, or audio source separation
when one is only interested in estimating the contribution of a
specific instrument to a musical recording. We define instance
optimality relatively to a model much beyond the traditional
framework of sparse recovery, and characterize the existence
of an instance optimal decoder in terms of joint properties of
the model and the considered linear operator. Noiseless and
noise-robust settings are both considered. We show somewhat
surprisingly that the existence of noise-aware instance optimal
decoders for all noise levels implies the existence of a noise-blind
decoder.

A consequence of our results is that for models that are rich
enough to contain an orthonormal basis, the existence of an ¢ /(>
instance optimal decoder is only possible when the linear operator
is not substantially dimension-reducing. This covers well-known
cases (sparse vectors, low-rank matrices) as well as a number of
seemingly new situations (structured sparsity and sparse inverse
covariance matrices for instance).

We exhibit an operator-dependent norm which, under a model-
specific generalization of the Restricted Isometry Property (RIP),
always yields a feasible instance optimality property. This norm
can be upper bounded by an atomic norm relative to the
considered model.

Index Terms—Linear inverse problems, instance optimality,
null space property, restricted isometry property.

I. INTRODUCTION

In linear inverse problems, one considers a linear mea-
surement operator IM mapping the signal space R™ to a
measurement space R, where typically M is either ill-
conditioned or dimensionality reducing. The reconstruction of
x from Mx is thus a hopeless task unless one can exploit
prior knowledge on x to complete the incomplete observation
Mx.

A. Bourrier is with Gipsa-Lab. M.E. Davies is with University of Ed-
imburgh. T. Peleg is with Israel Institute of Technology. P. Pérez is with
Technicolor. R. Gribonval is with INRIA.

Sparsity is a well-known enabling model for this type of
inverse problems: it has been proven that for certain such
operators M, one can expect to recover the signal x from
its measure Mx provided that x is sufficiently sparse, i.e., it
has few nonzero components [1]. If the set of k-sparse signals
is denoted ¥ = {x € R",||x]lo < k}, where |.||o is the
pseudo-norm counting the number of nonzero components,
then this recovery property can be interpreted as the existence
of a decoder A : R™ — R™ such that Vx € ¥, A(Mx) = x,
thus making M a linear encoder associated to the (typically
nonlinear) decoder A.

Further, the body of theoretical work around sparse recovery
in linear inverse problems has given rise to the notion of
compressive sensing (CS) [2], where the focus is on choosing
—among a more or less constrained set of operators — a dimen-
sionality reducing M to which a decoder can be associated'.
It is now well-established that this can be achieved in scenarii
where m < n, showing that a whole class of seemingly
high-dimensional signals can thus be reconstructed from far
lower dimensional linear measurements than their apparent
dimension.

A. Instance optimal sparse decoders

A good decoder A is certainly expected to have nicer
properties than simply reconstructing ;. Indeed, the signal
X to be reconstructed may not belong exactly in X but “live
near” ¥ under a distance d, meaning that d(x, X) is “small”
in a certain sense. In this case, one wants to be able to build a
sufficiently precise estimate of x from Mx, that is a quantity
A(Mx) such that ||[x — A(Mx)|| is “small” for a certain norm
|I||. This stability to the model has been formalized into the
so-called Instance Optimality assumption on A. Decoder A is
said to be instance optimal if:

Vx € R" ||lx — A(Mx)|| < Cd(x, k), (D

for a certain choice of norm |.|| and distance d. For this
property to be meaningful, the constant C' must not scale
with n and typically “good” instance optimal decoders are
decoders which involve a constant which is the same for all
n (note that this implicitly relies on the fact that a sparse
set X C R™ can be defined for any n). When the norm is
£2 or ¢! and the distance is ¢!, such good instance optimal
decoders exist and can be implemented as the minimization

By contrast, linear inverse problems usually refer to a setup where one
aims at reconstructing a signal from its measurements by a given operator (e.g.
imposed by the underlying physics), which may be dimensionality-reducing.
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of a convex objective [2]-[4] under assumptions on M such
as the Restricted Isometry Property (RIP). Note that instance
optimality is a uniform upper bound on the reconstruction
error, and that other types of bounds on decoders can be
studied, particularly from a probabilistic point of view [5].
Other early work include upper bounds on the reconstruction
error from noisy measurements with a regularizing function
when the signal belongs exactly to the model [6].

In [7], the authors considered the following question: Given
the encoder M, is there a simple characterization of the
existence of an instance optimal decoder? Their goal was not
to find implementable decoders that would have this property,
but rather to identify conditions on M and ¥;, under which the
reconstruction problem is ill-posed if one aims at finding an
instance optimal decoder with small constant. The existence
of a decoder A which satisfies (1) will be called the Instance
Optimality Property (IOP). The authors proved that this IOP
is closely related to a property of the kernel of M with respect
to Yo, called the Null Space Property (NSP). This relation
allowed them to study the existence of stable decoders under
several choices of norm ||.|| and distance d(.,.).

A related question addressed in [7] is that of the fundamen-
tal limits of dimension reduction: Given the target dimension
m and desired constant C, is there an encoder M with
an associated instance optimal decoder? They particularly
showed that there is a fundamental trade-off between the size
of the constant C in (1) (with ¢? norm and ¢2? distance) and
the dimension reduction ratio m/n.

B. Low-dimensional models beyond sparsity

Beyond the sparse model, many other low-dimensional
models have been considered in the context of linear inverse
problems and CS [8]. In these generalized models, the signals
of interest typically live in or close to a subset X of the space,
which typically contains far fewer vectors than the whole
space. Such models encompass sets of elements as various as
block-sparse signals [9], unions of subspaces, whether finite
[10] or possibly infinite [11], signals sparse in a redundant
dictionary [12], cosparse signals [13], approximately low-rank
matrices [14], [15], low-rank and sparse matrices [16], [17],
symmetric matrices with sparse inverse [18], [19] or manifolds
[20], [21]. An old result which can also be interpreted as
generalized CS is the low-dimensional embedding of a point
cloud [22], [23]. Some of these models are pictured in Figure
1.

Since these models generalize the sparse model, the fol-
lowing question arises: can they be considered under a general
framework, sharing common reconstruction properties? In this
work, we are particularly interested in the extension of the
results of [7] to these general models, allowing to further
investigate the well-posedness of such problems.

In [24], the theoretical results of [7] are generalized in
the case where one aims at stably decoding a vector living
near a finite union of subspaces (UoS). They also show in
this case the impossibility of getting a good ¢?/¢? instance
optimal decoder with substantial dimensionality reduction.
Their extension also covers the case where the quantity one

wants to decode is not the signal itself but a linear measure
of the signal.

In this work, we further extend the study of the IOP to
general models of signals: we consider signals of interest
living in or near a subset X of a vector space E, without
further restriction, and show that instance optimality can be
generalized for such models. In fact, we consider the following
generalizations of instance optimality as considered in [7]:

« Robustness to noise: noise-robust instance optimality is
characterized, showing somewhat surprisingly the equiva-
lence between the existence of two flavors of noise-robust
decoders (noise-aware and noise-blind);

« Infinite dimension: signal spaces E that may be infinite
dimensional are considered. For example I may be a
Banach space such as an LP space or a space a signed
measures. This is motivated by recent work on infinite
dimensional compressed sensing [25] or compressive
density estimation [26];

o Task-oriented decoders: the decoder is not constrained
to approximate the signal x itself but rather a linear
feature derived from the signal, Ax, as in [24]; in the
usual inverse problem framework, A is the identity.
Examples of problems where A # I include:

— Medical imaging of a particular region of the body:
as in Magnetic Resonance Imaging, one may acquire
Fourier coefficients of a function defined on the body,
but only want to reconstruct properly a particular
region. In this case, A would be the orthogonal
projection on this region.

— Partial source separation: given an audio signal
mixed from several sources whose positions are
known, as well as the microphone filters, the task of
isolating one of the sources from the mixed signal
is a reconstruction task where E is the space of
concatenated sources, and A orthogonally projects
such a signal in a single source signal space.

o Pseudo-norms: Instead of considering instance optimal-
ity involving norms, we use pseudo-norms with fewer
constraints, allowing us to characterize a wider range
of instance optimality properties. As we will see in
Section II-C, this flexibility on the pseudo-norms has a
relationship with the previous point: it essentially allows
one to suppose A = I in every case, up to a change in
the pseudo-norm considered for the approximation error.

C. Contributions of this work

We summarize below our main contributions.

1) Instance optimality for inverse problems with general
models: In the noiseless case, we express a concept of instance
optimality which does not necessarily involve homogeneous
norms and distances but some pseudo-norms instead. Such a
generalized instance optimality can be expressed as follows:

Vx € B, ||Ax — A(Mx)| ¢ < Cdg(x,3), 2)

where ||.|¢ is a pseudo-norm and dg is a distance the
properties of which will be specified in due time, and A is a
linear operator representing the feature one wants to estimate
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Fig. 1. Illustration of several CS models. From left to right: k-sparse vectors, union of subspaces, smooth manifold and point cloud.

from Mx. Our first contribution is to prove that the existence
of a decoder A satisfying (2), which is a generalized IOP, can
be linked with a generalized NSP, similarly to the sparse case.
This generalized NSP can be stated as:

Vh € ker(M), |Ah||¢ < Ddg(h, % — %), 3)

where the set X — X is comprised of all differences of elements
in 3, that is ¥ — % = {z1 — 22 : 21,22 € X}. The constants C
and D are related by a factor no more than 2, as will be stated
in Theorems 1 and 2 characterizing the relationships between
these two properties. In particular, all previously mentioned
low-dimensional models can fit in this generalized framework.

2) Noise-robust instance optimality: Our second contribu-
tion (Theorems 3 and 4) is to link a noise-robust extension
of instance optimality to a property called the Robust NSP.
Section II regroups these noiseless and noise-robust results
after a review of the initial IOP/NSP results of [7]. We
show somewhat surprisingly that the existence of noise-aware
instance optimal decoders for all noise levels implies the
existence of a noise-blind decoder (Theorem 5).

If a Robust NSP is satisfied, an instance optimal decoder
can be defined as:

A(y) =argmin  Dydg(u,X) + Dodrp(Mu,y), (4)
uekr

where the constants D, Do and distances dg,dr are those
which appear in the Robust NSP. The objective function is the
sum of two terms: a distance to the model and a distance to
the measurements. Also note that by fixing D, to infinity, one
defines an instance optimal noise-free decoder provided the
corresponding NSP is satisfied.

3) Limits of dimensionality reduction with generalized mod-
els: The reformulation of IOP as an NSP allows us to consider
the ¢2 /¢? instance optimality for general models in Section III.
In this case, the NSP can be interpreted in terms of scalar
product and we precise the necessity of the NSP for the
existence of an instance optimal decoder. This leads to the
proof of Theorem 6 stating that, just as in the sparse case,
one cannot expect to build an (*/¢? instance optimal decoder
if M reduces substantially the dimension and the model is
“too large” in a precise sense. In particular, we will see that
the model is “too large” when the set ¥ — X contains an
orthonormal basis. This encompasses a wide range of standard
models where a consequence of our results is that £2/¢2 IOP
with dimensionality reduction is impossible:

o k-sparse vectors. In the case where ¥ = ¥, is the set

of k-sparse vectors, ¥ contains the null vector and the
canonical basis, so that > — X contains the canonical

basis. Note that the impossibility of good ¢2/¢? IOP has
been proved in [7].

Block-sparse vectors [9]. The same argument as above
applies in this case as well, implying that imposing
a block structure on sparsity does not improve ¢2/¢?
feasibility.

Low-rank matrices [14], [15]. In the case where E =
M, (R) and ¥ is the set of matrices of rank < k, ¥ also
contains the null matrix and the canonical basis.
Low-rank + sparse matrices [16], [17]. The same
argument applies to the case where the model contains
all matrices that are jointly low-rank and sparse, which
appear in phase retrieval [27]-[29].

Low-rank matrices with non-sparsity constraints. In
order to reduce the ambivalence of the low-rank + sparse
decomposition of a matrix, [17] introduced non-sparsity
constraints on the low-rank matrix in order to enforce
its entries to have approximately the same magnitude.
However, as shown in Lemma 3, an orthonormal Fourier
basis of the matrix space can be written as differences of
matrices which belong to this model.

Reduced union of subspace models [8] obtained by
pruning out the combinatorial collection of k-dimensional
subspaces associated to k-sparse vectors. This covers
block-sparse vectors [9], tree-structured sparse vectors,
and more. Despite the fact that these unions of subspaces
may contain much fewer k-dimensional subspaces than
the combinatorial number of subspaces of the standard k-
sparse model, the same argument as in the k-sparse model
applies to these signal models, provided they contain the
basis collection of 1-sparse signals. This contradicts the
naive intuition that ¢2/¢? IOP could be achievable at the
price of substantially reducing the richness of the model
through a drastic pruning of its subspaces.

k-sparse expansions in a dictionary model [12]. More
generally, if the model is the set of vectors which a linear
combination of at most k£ elements of a dictionary D
which contains an orthogonal family or a tight frame,
then Theorem 6 applies.

Cosparse vectors with respect to the finite difference
operator [13], [24]. As shown in [24], the canonical basis
is highly cosparse with respect to the finite difference
operator, hence it is contained in the corresponding union
of subspaces.

As shown in Lemma 2, this is also the case for symmetric
definite positive square matrices with k-sparse inverse.
The covariance matrix of high-dimensional Gaussian



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X

graphical models is of this type: the numerous pairwise
conditional independences that characterize the structure
of such models, and make them tractable, translate into
zeros entries of the inverse covariance matrix (the con-
centration matrix). Combining sparsity prior on the con-
centration matrix with maximum likelihood estimation of
covariance from data, permits to learn jointly the structure
and the parameters of Gaussian graphical models (so
called “covariance selection” problem) [18], [19]. In very
high-dimensional cases, compressive solutions to this
problem would be appealing.

« Johnson-Lindenstrauss embedding of point clouds [23].
Given a set X’ of L vectors in R" and e > 0, there exists
a linear mapping f : R™ — R™, with m = O(In(L)/€?)
and

(1=a)lx=yl2 < lFx)=f(¥)l2 < (1+e)[x=yll2 (5)

holds for all x,y € X. The fact that the point cloud
contains a tight frame is satisfied if it “spreads” in a num-
ber of directions which span the space. In this case, one
cannot guarantee precise out-of-sample reconstruction of
the points in R™ in the ¢2-sense, except for a very limited
neighborhood of the point cloud. This is further discussed
in Section V.

4) Generalized Restricted Isometry Property: Our last con-
tribution, in Section IV, is to study the relations between the
NSP and a generalized version of the Restricted Isometry
Property (RIP). This generalized RIP bounds ||[Mx|/r from
below and/or above on a certain set V, and can be decomposed
in:

Lower — RIP : Vx € V, a|x||¢ < |Mx||Fr (6)
Upper — RIP : vx € V, [Mx|r < flx[la, ()

where ||.||¢ and |.||F are pseudo-norms defined respectively
on the signal space and on the measure space, and 0 <
a < B < +4oo. We prove particularly in Theorem 7 that
a generalized lower-RIP on ¥ — ¥ implies the existence of
instance optimal decoders in the noiseless and the noisy cases
for a certain norm || - ||z we call the “M-norm™?.

Furthermore, we prove that under an upper-RIP assumption
on X, this M -norm can be upper bounded by an atomic norm
[5] defined using ¥ and denoted ||.||s. This norm is easier
to interpret than the M -norm: it can in particular be upper
bounded by usual norms for the k-sparse vectors and low-
rank matrices models. We have the following general result
relating generalized RIP and IOP (Theorem 9): if M satisfies
a lower-RIP (6) for V. = ¥ — ¥ and an upper-RIP (7) for
V' =%, then for all § > 0, there exists a decoder A satisfying
Vx € F,Ve € F,

2
Ix — As(Mx +e)||lg < 2 <1 + ﬁ) ds(x,%) + aHe“E + 4,
(3

which is a particular case of Robust instance optimality, as
described in Section II.

The prefix “M-" should be thought as “Measurement-related norm™ since
in other works the measurement matrix may be denoted by other letters.

In particular, this generalized RIP encompasses classical or
recent RIP formulations, such as
o The standard RIP [4] with V' as the set of k-sparse

vectors, || - ||g and || - || » being ¢? norms.
¢ The Union of Subspaces RIP [11] with V' as a union of
subspaces, || - ||¢ and || - || being ¢? norms.

e The RIP for low-rank matrices [15] with V' as the set
of matrices of rank < 7, || - ||¢ as the Frobenius norm
and || - || as the ¢? norm;

o The D-RIP [30] for the dictionary model with V as
the set of vectors spanned by %k columns of a dictionary
matrix, || - ||¢ and || - || being £? norms;

o The Q-RIP [31] for the cosparse model with V as the
set of vectors x such that £2x is k-sparse, where (2 is the
cosparse operator, || - ||¢ and || - || being £ norms;

o Similarly, the task-RIP can be defined given a linear
operator A such that one aims at reconstructing the
quantity Ax (instead of x) to perform a particular task.
As we will see in Section II-C, in terms of IOP, this
is essentially equivalent to reconstructing x in terms of
the norm ||A - ||¢. In this case, the corresponding lower
task-RIP reads:

ol Ax|l¢ < [Mx||p. )

5) Infinite-dimensional inverse problems: The generaliza-
tion of the relationship between the IOP, the NSP and the RIP
to arbitrary vector spaces allows us to consider recovery results
for infinite dimensional inverse problems. Such problems have
mainly been considered in separable Hilbert spaces [25], [32],
where the signals of interest are sparse with respect to a Hilbert
basis and the measurement operators subsample along another
Hilbert basis. In the theory of generalized sampling [32],
even when the signal model X is simply a finite dimensional
subspace, it can be necessary to oversample by some factor in
order to guarantee stable recovery. In fact Theorem 4.1 of [33]
can be read as a statement of ¢2/¢? instance optimality for a
specific (linear) decoder given in terms of the NSP constant of
the measurement operator. The results presented here therefore
provide an extension of generalized sampling for linear models
beyond £2.

However, as mentioned in Section IV-C1, one cannot hope
to get uniform instance optimality in this setting for a standard
sparsity model. This is mentioned in [25] when the authors
state that no RIP can be satisfied in this case. In section
IV-C2, we nevertheless discuss the possibility of uniform
instance optimality results in infinite dimensions with a proper
choice of model % and pseudo-norms. In particular, a non-
constructive topological result ensures that a generalized RIP
is satisfied for a model of finite box-counting dimension [34].
This generalized RIP leads to an IOP, according to Theorem
7.

Hopefully, our results will therefore help characterizing
conditions under which infinite-dimensional uniform IOP is
possible.

D. Structure of the paper

We will now describe the layout of the paper. Section II first
contains a quick review of the relationship between IOP and
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NSP in the usual sparse case, then exposes the more general
setting considered in this paper, for which these properties
and their relationship are extended, both in noiseless and noisy
settings. Section III then focuses on the particular case of £2/¢?
IOP, proving the impossibility for a certain class of models to
achieve such IOP with decent precision in dimension reducing
scenarii. In particular, we show that this encompasses a wide
range of usual models. Finally, in Section IV, we get back
to the problem of IO with general norms and prove that a
generalized version of the lower-RIP implies the existence of
an instance optimal decoder for a certain norm we call the
“M-norm”. Using a topological result, we illustrate that this
implication may be exploited for certain models and norms,
even in infinite dimensions. We propose an upper-bound on
this norm under a generalized upper-RIP assumption to get
an IOP with simpler norms, illustrating the result in standard
cases.

II. GENERALIZED IOP AND NSP EQUIVALENCES

In this section, we review the initial IOP/NSP relationship
before extending it in several ways.

A. The initial result

In [7], the authors consider two norms ||.|¢ and ||.||g
defined on the signal space R™. The distance derived from
Il will be denoted dg. Given a vector x € R™ and a
subset A C R", the distance from x to A is defined as
dr(x,A) = ;relifq Ix — y||g. These two norms allow the

definition of instance optimality: a decoder A : R™ — R”
is said to be instance optimal for k-sparse signals if

Vx € R", ||lx — A(Mx)||¢ < Cdg(x, X),

for some constant C' > 0.

This property on A upper bounds the reconstruction error of
a vector, measured by |.||g, by the distance from the vector
to the model, measured by dg. The authors prove that the
existence of an instance optimal decoder, called IOP, is closely
related to the NSP of M with respect to the set o of 2k-
sparse vectors. Noting A/ = ker(M), this NSP states

Vh € N, Hh”G < DdE(h,Egk)

for some constant D.

The relationship between the IOP and the NSP is the
following: if there exists an instance optimal decoder A
satisfying (10), then (11) holds with D = C. Conversely, if
(11) holds, then there exists a decoder A such that (10) holds
with C = 2D. Such a decoder can be defined as follows,
supposing M is onto:

A(Mx) = argmin

ze(x+N)

x+N denoting the set {x+h, h € N'}. The well-posedness of

this definition is discussed in Appendix A, in the more general

setting where the model is a finite union of subspaces in finite

dimension. Note that for generalized models, such a decoder

may not necessarily exist since the infimum of dg(z,Y) may
not be achieved, as we will discuss in the next section.

This result can be seen as an “equivalence” between the
IOP and the NSP, with similar constants.

(10)

(1)

dp(z,5y), 12)

B. Proposed extensions

The framework we consider is more general. The signal
space is a vector space E, possibly infinite-dimensional. In
particular, £ may be a Banach space such as an LP space
or a space of signed measures. On this space is defined a
linear operator M : E — F, where F' is the measurement
space, which will most likely be finite-dimensional in practice.
We assume that M is onto. We further define a signal model
¥ C FE comprising the signals which we want to be able
to “reconstruct” from their images by M. In the framework
we consider, this “reconstruction” is not necessarily an in-
verse problem where we want to recover x from Mx. More
precisely, as in [24], we consider a case where we want to
recover from Mx a quantity Ax, where A is a linear operator
mapping FE into a space G. When G = E and A =1, we are
brought back to the usual case where we want to reconstruct
x. This generalized framework is illustrated in Figure 2.

In this generalized framework, we are now interested in
the concepts of IOP and NSP, as well as their relationship. A
decoder A : F' — G will aim at approximating Ax from Mx.

The approximation error will be measured by a function
Illg : G — Ry. This function needs not be a norm in order
to state the following results. It still must satisfy the following
properties:

Symmetry : [|x]l¢ = || — x|la (13)

Triangle inequality : |x + y|l¢ < [x]l¢ + lylla. (14)

The differences with a regular norm is that neither definiteness
nor homogeneity is required: ||x||¢ = 0 needs not imply
x = 0 and ||Ax||¢ needs not equal |\|||x||¢. We provide two
examples of such pseudo-norms in the case where G = R™:

e |l can be defined as a “non-normalized” ¢P-quasinorm
for 0 < p <1, that is [|x||¢ = Y i, |=;[P. In this case,
Axlle = [AP[x]l6-

e More generally, if f: Ry — R, is a concave function
such that f(z) = 0 < x = 0, then |.||¢ can be defined
as the f-(pseudo-)norm ||x|r = >7 | f(J@i]), see [35].

In order to measure the distance from a vector to the model,
we also endow E with a pseudo-norm |.||g : E — Ry
which satisfies the same properties as ||.||¢ with the additional
requirement that ||0|| g = 0. The pseudo-distance d is defined
on E? by d(x,y) = ||x—y|| e. Yet again, |.|| g can be defined
as a non-normalized ¢P-norm or an f-norm.

We will also consider a noisy framework where the measure
Mx is perturbed by an additive noise term e. To consider IOP
and NSP in this context, we measure the amount of noise with
a pseudo-norm in the measurement space F', which we will
denote by ||.||r. The assumptions we make on ||.|| are the
same as the assumptions on ||| g-

To sum up, here are the extensions we propose compared
to the framework of [7], [24] :

¢ The measure Mx can be perturbed by an additive noise
e.

o The model set > can be any subset of .

o E is not necessarily R™ but can be any vector space,
possibly infinite-dimensional.
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Signal space E
Pseudo-norm | - || g
(pseudo-distance dg)

Feature space G

Pseudo-norm || - ||

Measure space F

Pseudo-norm || - || ¢

-->

S AMx +e)

|Ax — A(Mx + e)||¢

Fig. 2. Tllustration of the proposed generalized setting. The signals belong to the space F, supplied with a pseudo-norm ||.||z used to measure the distance
from a vector to the model ¥ containing the signals of interest. E is mapped in the measure space F' by the operator M and the measure is perturbed by
an additive noise e. The space F' is supplied with a pseudo-norm ||.||p. The feature space G, supplied with a norm .||, is composed of vectors obtained
by applying a linear operator A to the signals in E. These feature vectors are the vectors one wants to reconstruct from the measures in M by applying a
decoder A. The reconstruction error for the vector x and noise e is therefore ||[Ax — A(Mx + e)||g. Note that in the case where F = G and A =1, the

decoder is aimed at reconstructing exactly the signals.

o The reconstruction of Ax is targeted rather than that of
X.

o The functions ||.||g, ||.||r and ||.||¢ need not be norms
but can be pseudo-norms with relaxed hypotheses. In
particular, Table I summarizes the requirements on these
functions.

Once we have derived the generalized IOP and NSP equiv-
alences, we see that one can essentially be brought back to
the case where A = I with a proper choice of || - ||. This
will be discussed in Section II-C.

Let’s note that even though [7] does not consider the noisy
case, some other works have studied noisy instance optimality
for the standard sparse model and with ¢P-norms ( [36],
Chapter 11 of [37]). They mainly study conditions under which
standard ¢! decoders are instance optimal. Here, we adopt a
more conceptual approach by considering conditions for the
existence of an instance optimal decoder, without restriction on
its practical tractability. This has the advantage of providing
fairly simple equivalences and also to identify fundamental
performance limits in a certain framework.

In these works, the underlined relationships between /¢!
instance optimality and NSP are somewhat different than ours
since they usually take advantage of the particular geometry
of the sparse problem with ¢! decoder. An interesting open
question is to what extent we can bridge the gap between this
particular setup and a more general setup.

1) The noiseless case: We first consider the same frame-
work as [7], [24], where one measures IMx with infinite
precision. In our generalized framework, instance optimality
for a decoder A reads:

Vx € E,||Ax — A(Mx)||¢ < Cdg(x,X).

We will prove that if IOP holds, i.e., if the above holds for a
certain decoder A, then a generalized NSP is satisfied, that is:

with D = C. Note that the set ¥y, has been replaced by
Y-Y={x—-y,x € X,y € £}. When ¥ = X}, we have
indeed X — 3 = Yoy

The construction of an instance optimal decoder from
the NSP is more complicated and the form of the instance
optimality we get depends on additional assumptions on %
and M. Let’s first suppose that for all x € E, there exists
z € (x + N) such that dg(z,%) = dg(x + N, X). Then the
NSP (3) implies the existence of an instance optimal decoder
satisfying (2) with C' = 2D. If this assumption is not true
anymore, then the NSP implies a slightly modified IOP, which
states, for any 6 > 0, the existence of a decoder Ay such that:

Vx € B, |Ax — As(Mx)||¢ < Cdp(x,2) +06,  (15)

reflecting the fact that one cannot necessarily consider the
exact quantity

argmin  dg(z,X)

z€(x+N)
but rather a certain vector z € (x+N) satisfying dg(z,X) <
dp(x+N,3)+4. A similar positive “projection error” appears
in [11].

Remark 1. To understand the necessity of such an additive
error term when X is a general set, we can consider the
following toy example depicted in Figure 3 where E = R?,
N =R x {0}, & = {(z1,22) € (Ry)? : 20 = z%} and
Il.lc/|l.|| & are the €2 norm. In this case, the minimal distance
between x + N and X is not reached at any point, making it
necessary to add the § term for the decoder to be well-defined.
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Triangle Inequality | Symmetry | [|0]] =0 | Definiteness | Homogeneity
e X X X - -
AlF X X X - -
1 X X - N -
TABLE I

SUMMARY OF THE HYPOTHESES ON THE PSEUDO-NORMS ||.|| g, ||.||# AND ||.||g. A CROSS MEANS THE PROPERTY IS REQUIRED, A HORIZONTAL BAR
MEANS IT IS NOT.

Fig. 3. Necessity of the additive term 4 in a simple case. For each x in the blue half-plane, the distance dg(z + N, X) is never reached at a particular point
of x + N : the distance strictly decreases as one goes right along the affine plane x + N (d(x1,%) < d(x2,%) < d(x3, X)), so that the minimal distance

is reached “at infinity”.

In this setting, the NSP (3) implies the existence of instance
optimal decoders in the sense of (15) for all § > 0. Moreover,
this weak IOP formulation still implies the regular NSP with
D = C'. This is summarized in Theorems 1 and 2.

Theorem 1. Suppose V6 > 0, there exists a decoder Ag
satisfying (15):

Vx € E, ||[Ax — As(Mx)||¢ < Cdg(x,X) + 0.
Then M satisfies the NSP (3):
Vh € N,||Ah|lg < Ddg(h,% — ),
with constant D = C.
Theorem 2. Suppose that M satisfies the NSP (3):
Vh € N,||Ah|lg < Ddg(h,% — X).
Then ¥§ > 0, there exists a decoder As satisfying (15):
Vx € E, ||Ax — As(Mx)| ¢ < Cdp(x,X) + 4,

with C' = 2D.
If we further assume that

Vx e E,3z € (x+N),dg(z,X) =dp(x+N,3), (16)
then there exists a decoder A satisfying (2):
Vx € E,[|[Ax — AMx)||¢ < Cdg(x,X) 17)

with C = 2D.

Note that this result is similar to the result proven in [24],
which was stated in the case where X is a finite union of
subspaces in finite dimension. In this framework, condition

(16) is always satisfied as soon as ||.||g is a norm, by the
same argument as in usual CS (see Appendix A).

Let’s also note the following property: if ||.||g is definite,
that is ||x||[z = 0 = x = 0, then dg is a distance. In the
following proposition, we prove that if we further suppose
that the set ¥ + A is a closed set with respect to dg, then the
NSP (3) implies for any § > 0 the existence of a decoder As
satisfying (2) with C = (2 + §)D. This assumption therefore
allows us to suppress the additive constant in (15) and replace
it by an arbitrarily small increase in the multiplicative constant
of (2).

Proposition 1. Suppose that M satisfies the NSP (3), that dg
is a distance and that ¥ + N is a closed set with respect to
dg. Then Y0 > 0, there exists a decoder Ag satisfying:

Vx € B, ||Ax — As(Mx)|l¢ < (24 9)Ddg(x,%). (18)

2) The noisy case: In practice, it is not likely that one can
measure with infinite precision the quantity Mx. This measure
is likely to be contaminated with some noise, which will be
considered in the following as an additive term e € F, so that
the measure one gets is y = Mx + e. In this case, a good
decoder should be robust to noise, so that moderate values of
e should not have a severe impact on the approximation error.
We are interested in the existence of similar results as before
in this noisy setting.

We first need to define a noise-robust version of instance
optimality. The robustness to noise of practical decoders is
in fact a problem that has been considered by many authors.
A first type of result considers noise-aware decoders, where
given the noise level € > 0 a decoder A fulfills the following
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property:
Vxe E,Vec F, |e||lr <e

= [|[Ax — A(Mx + e)|lg < C1dg(x,X) + Cre.  (19)

Here, the upper bound on the approximation error gets a
new term measuring the amplitude of the noise. For example,
this noise-robust instance optimality holds for a noise-aware /!
decoder in the sparse case with bounded noise [4] for |.||¢ =
I.ll2 and ||.|z = ||.]l1/vk, provided M satisfies the RIP on
Yok

In practical settings, it is hard to assume that one knows
precisely the noise level. To exploit the above guarantee with
a noise-aware decoder, one typically needs to overestimate the
noise level. This loosens the effective performance guarantee
and potentially degrades the actual performance of the decoder.
An apparently stronger property for a decoder is to be robust
even without knowledge of the noise level:

Vx € F,Ve € F,

|Ax — A(Mx + e)|l¢ < Cidp(x, %) + Cale|lr.  (20)

Further on, such decoders will be referred to as noise-blind.
Guarantees of this type have been obtained under a RIP
assumption for practical decoders such as iterative hard thresh-
olding, CoSAMP, or hard thresholding pursuit, see e.g. [38,
Corollary 3.9].

Of course, the existence of a noise-blind noise-robust de-
coder in the sense of (20) implies the existence of a noise-
aware noise-robust decoder in the sense of (19) for any noise
level e. We will see that, somewhat surprisingly, the converse
is true in a sense, for both are equivalent to a noise-robust
NSP.

Just as in the noiseless case, dealing with an arbitrary
model ¥ and possibly infinite dimensional E requires some
caution. For § > 0, the noise-robust (and noise-blind) instance
optimality of a decoder Ay is defined as:

Vx € F,Ve € F|

|Ax — As(Mx + )|l < Crdp(x, %) + Calle|r + 6.
(21)

One can see that As necessarily also satisfies the noiseless
instance optimality (15) by setting e = 0.

As we show below, if for every d > 0 there exists a noise-
robust instance optimal decoder Ajs satisfying (21), then a
generalized NSP for M relatively to ¥ — X, referred to as
Robust NSP, must hold:

Vh e E,||Ah|¢ < Didp(h, X — X) + D[ Mh|F, (22)

with D; = Cy and Dy = Cs. This property appears e.g. in
[37] (Chap. 4) with ||.||¢ = ||.|le = ||-||» and ||.||# any norm.
Note that this Robust NSP concerns every vector of E and
not just the vectors of the null space N = ker(M)>. In the
case where h € N, one retrieves the regular NSP. For other
vectors h, another additive term, measuring the “size” of Mbh,
appears in the upper bound.

3In fact, unlike the NSP (3), (22) is not purely a property of the null space
N even though it implies the NSP. The name Robust NSP is thus somewhat
improper, but has become a standard for this type of property.

Conversely, the Robust NSP implies the existence of noise-
robust instance optimal decoders Aj satisfying (21) with
Cy = 2D; and Cy = 2D5 for all § > 0. These results are
summarized in Theorems 3 and 4.

Theorem 3. Suppose Y5 > 0, there exists a decoder Ag
satisfying (21):
Vx € F,Ve € F,
HAX — A(;(MX + e)HG < CldE(X, Z) + CQHE”F + 6.

Then M satisfies the Robust NSP (22):
¥h € E, |Ahlg < Dydp(h,S — %) + Dy|[Mbl|p,
with constants D1 = C1 and Dy = Cs.
Theorem 4. Suppose that M satisfies the Robust NSP (22):
Vh € E,||Ah|g < Didg(h, X — X) + Dy||Mh|| 5.
Then Y6 > 0, there exists a decoder As satisfying (21):

Vx € E,Ve € F,
HAX — Ag(MX + e)HG < CldE(X,E) + CQHQHF + 9,

with constants C1 = 2D and Cy = 2Ds.

We conclude this section by discussing the relation between
noise-aware and noise-blind decoders. A noise-aware version
of noise-robust instance optimality can be defined where for
€ > 0,6 > 0 we require

Vx € E,Ve € F, |le|lr <e

= ||AX — A57E(MX + e)||G < CldE(X, Z) + Che + 9.
(23)

Of course, the existence of a noise-blind instance optimal
decoder implies that of noise-aware decoders for every ¢ > 0.
The converse is indeed essentially true, up to the value of the
constants Cj:

Theorem 5. Suppose Ve, § > 0, there exists a noise-aware
decoder As . satisfying (23):

Vx € E,.Ve € F, |le|r <e=
HAX — A576<MX + e)HG < CldE(X,Z) + Ce + 0.

Then M satisfies the Robust NSP (22) with constants Dy =
Ci and Dy = 2C5. Therefore, by Theorem 4, there exists an
instance optimal noise-blind decoder satisfying:

Vx € F,Ve € F|
[Ax — As(Mx + e)||¢ < 2C1dE(x, %) +4Cs el F + 6.

C. Task-oriented instance optimality

In this section, we show that the generalized instance
optimality as stated in (15) is essentially equivalent to the
same property with A = I and a different choice for the
pseudo-norm ||.| .

Indeed, let’s consider that one aims at reconstructing a
certain feature Ax from the measurements Mx. If for any
0 > 0 there exists an instance optimal decoder As such
that (15) is satisfied, then Theorem 1 ensures that NSP (3)
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is satisfied. Let’s define the following pseudo-norm for any
signal x € E:

%[l = [Ax]|c- 24)
The following NSP is satisfied:
Vh € ker(M), ||h| < Cdg(h, X -X). (25)

Therefore, Theorem 2 ensures that there exists decoders Ag :
F — @ instance optimal in the following sense:

[x — A5(Mx)|| < 2Cdg(x,X) + 6. (26)

This means that if a family of decoders As; aimed at
decoding a feature Ax is instance optimal for the pseudo-
norm ||.||¢, then there exists a family of decoders Af aimed
at decoding the signal x which is instance optimal for the
pseudo-norm ||.|| with a similar constant (up to a factor 2).
Conversely, if there exists a family of decoders A aimed
at decoding x which is instance optimal for the pseudo-norm
|||, then a simple rewriting of the IOP gives that the decoders
As = AA are instance optimal for the pseudo-norm ||.|¢.

Therefore, IOP with a task-oriented decoder is essentially
equivalent to IOP with a standard decoder provided a suitable
change in the pseudo-norm is performed. The same reasoning
can be applied to deduce this equivalence for Robust IOP. As
a consequence, we will only consider the case A = I in the
remainder of the paper.

III. ¢2/¢* INSTANCE OPTIMALITY

In this section, we suppose that E is a Hilbert space
equipped with the norm |.||2 and scalar product (.,.), that
F =R™ and we consider a finite-dimensional subspace V' of
dimension n, on which we define the measure operator M.
We are interested in the following question in the noiseless
framework: Is it possible to have a “good” noiseless instance
optimal decoder with ||.||¢ = ||.|lg = ||.||2 in a dimensionality
reducing context where m < n?

A result of [7] states that in the usual sparse setting, one
cannot expect to get a good instance optimal decoder if
M performs a substantial dimensionality reduction, the best
corresponding constant being \/% . In [24], the authors prove
that this lower bound on the constant holds in the case where
is a finite union of subspaces in finite dimension. Here, we are
interested in a version of this result for the general case where
3 can be a more general subset of E. More precisely, we
will give a sufficient condition on ¥ under which the optimal
(2 /£? instance optimalityconstant is of the order of /2, thus
preventing the existence of a ¢?/¢? instance optimal decoder
with small constant if m < n.

A. Homogeneity of the NSP

In the case where |.||g, |||z and [|.||r are homogeneous
with the same degree, the general NSP can be rewritten as an
NSP holding on the cone R(X — X) generated by X — 3, i.e.,
the set {\z|]A e R,z € ¥ — ¥}

Lemma 1. If ||.||¢ and ||.||g are homogeneous with the same
degree, we have an equivalence between the NSP on % — X.:

and the NSP on R(X — %)

Vh e N, ||h|¢ < Ddp(h,R(E — ¥)). (28)

Similarly, if |.|lc, |||z and ||.||F are homogeneous with the
same degree, we have an equivalence between the robust NSP
on ¥ —X:

Vh e E, [hfl¢g < Didp(h, X - ¥) 4 D;|[Mh||p,
and the robust NSP on R(X — X):
vh € B, |hllg < Didp(h, R(S — %)) + D [Mhr. (30)

(29)

This lemma, which is valid even in the case where A is not
the identity, shows that the NSP imposes a constraint on the
whole linear cone spanned by the elements of ¥ — ¥ and not
only on the elements themselves. Note that this equivalence
is trivial in the case where X is a union of subspaces since
3 — ¥ is already a cone in this case.

B. The optimal (?/¢* NSP constant

Remark 2. In the subsequent sections of the paper, we will
assume that A =1 (this implies G = E), so that one aims at
reconstructing the actual signal.

In the ¢2/¢? case, one can give a simple definition of the
optimal NSP constant D,, that is the minimal real positive
number D such that the ¢2/¢? NSP is satisfied with constant
D:

D,= inf {DeR,|VheN,|h|s < Ddy(h,X—X)}.
(3D

This definition assumes that there exists some constant so that

the NSP is satisfied. Using the NSP definition and Lemma 1,

we get that

h
D, = sup sup 7H l2
heN zer(=-w) |[h—z[}2
1
= sup sup Th =z 1 (32)
heN\{0} zeR(Z-X%) || iz ~ Thlz ||2

Denoting B2 the unit ball for the ¢% norm, we can rewrite
this last expression as:

1
D, = sup sup —_—
heN By zer(z-w) |Ih—2z|2
= sup sup sup —— . (33)
heN By  zeR(z-)nBs ek [|[h—Azls
A simple study gives that if ||h|z; = ||z|]]2 = 1, then
1 1 .
S RNl T i SO At
1
D, = sup sup —_— (34)
heNNB:  zER(E—%)NB, 1 —(h,z)?

The contraposition of Theorem 1 gives the following result :
if the NSP (3) is not satisfied for a certain constant D, then no
decoder As can satisfy instance optimality (15) with constant
D. In the ¢2/¢?% case, considering D < D,, h € N' N By
and z € R(X — £) N By such that (h,z)> > 1 — 2, we
can construct two vectors such that for any decoder, instance
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Fig. 4. Illustration of the impact of the correlation between A and ¥ — 3 on
instance optimality. Here, z1 and zg are two vectors in X such that z1 —zsg is
well correlated with N, implying that at least one of the two vectors p; and
P2, which are close to X but far from one another, will not be well decoded.

optimality with constant < +/D? — 1 can only be satisfied
for at most one of them. This will shed light on the link
between NSP and IOP. We have z = ﬁ for some
71,22 € ¥. Let A be a decoder. If A(Mz;) # z;, then this
vector prevents A from being instance optimal. The same goes
for zo if A(Mzs) # z3. Now, let’s suppose that z; and zo
are correctly decoded. In this case, (z; + 2z2)/2 is decoded
with a constant worse than v/ D2 — 1, as depicted in Figure
4. Indeed, noting p = (z1 + 22)/2 and defining the vectors
p1 and po respectively as the orthogonal projections of z;
and z, on the affine plane p + A, we must have A(Mp;) =
A(Mpy). Denoting as py . the orthogonal projection on N'*,
we have da(p1,X) < da(p1,21) = |pave(z2 — 2z1)||2/2.
Similarly, da(p2,X) < |lpas(z2 — 2z1)]]2/2. The fact that
A(Mp;) = A(Mps) implies that there exists i € {1,2} such
that [[p; — AMp;)|l2 = [[P1 —p2ll2/2 = [[pa(z1 — 22)2/2.
Therefore,

Ip: — AP >
d2(pi72)

o (2 — 21) |2
~ lpars (22 — 2z1) |2

1 Y

This illustrates the closeness between NSP and IOP: a vector
of R(X—X) which is correlated with A/ can be used to define a
couple of vectors such that for any decoder, one of the vectors
will not be well decoded.

(35)

C. (?/0? 10 with dimensionality reduction

1) Main theorem: Let’s now exploit the expression of D,
to state the main result of this section: if R(X — ) contains an
orthonormal basis of the finite-dimensional subspace V C E
(or even a family of vectors that is sufficiently correlated with
every vector of V'), then one cannot expect to get a 0 /62
instance optimal decoder with a small constant while M sub-
stantially reduces the dimension of V. The fact that R(X —X)
contains such a tight frame implies that the dimension of A
cannot be too big without N being strongly correlated with
3> — %, thus yielding the impossibility of a good instance
optimal decoder.

Before showing examples where this theorem applies, let’s
first state it and prove it.

Theorem 6. Suppose V is of dimension n and > — . contains
a family z1,...,z, of unit-norm vectors of E satisfying
vx € V, Y (z;,x)? > K|x||3. Then to satisfy the NSP
on V, M must map V into a space of dimension at least
(1—%(1—]3%))71.

If the number of measurements m is fixed, then an (*/(?
10 decoder must have a constant at least ——————.

1-K(1-%)

In particular, if ¥ — X contains an orthonormal basis of V,
then K = 1 and the minimal number of measures to achieve
NSP with constant D, is n/Df Similarly, if m is fixed so that
m < n, then a £?/¢? instance optimal decoder has constant
at least /L.

2) Examples: As discussed in the introduction, there is a
wide range of standard models where > — ¥ contains an or-
thonormal basis, and so where ¢ /¢? IOP with dimensionality
reduction is impossible. We provide here less trivial examples,
where £ =V is finite-dimensional.

a) Symmetric definite positive matrices with sparse in-
verse:

Lemma 2. Consider E is the space of symmetric n-
dimensional matrices, and ¥ C E the subset of symmetric
positive-definite matrices with sparse inverse and with sparsity
constant k > n+2 (note that k > n is necessary for the matrix
to be invertible). The set ¥ — Y contains an orthonormal basis
of E.

Proof. This orthonormal basis we consider is made of the
n(n+1)/2 matrices: E; ; and %(E” +E;.i)izj, where E;
is the matrix where the only nonzero entry is the (i, ;) entry
which has value 1.

First, consider B; = I+ E; ;, where I is the identity matrix.
Since Bi_1 =1- %EH is n-sparse, we have B; € 3. Since,
Ie¥ wehave E;; =B, -1 X -X.

Now, consider the matrix C; ; = 2I + E; ; + E;;. This
matrix is symmetric and for x = (x1,...,x,) € R™, we have
xTC; jx = 2(||x||3 — wiz;) > 0, so that C; ; is semi-definite
positive. We can remark that C; ; is invertible and that its
inverse is 11+ 1(E;;+E; ;) — +(E; ; +E;;), which is n+2-
sparse. The fact that C; ; is invertible implies that it is definite,
so that C; ; € X. Therefore, we can write E;; + E;; =
C;; —2I € ¥ — 3. Since ¥ is a positive cone, multiplying
this equality by % yields the desired result. O

b) Low-rank and nonsparse matrices: In [17], the au-
thors consider a matrix decomposition of the form L + S,
where L is low-rank and S is sparse. In order to give meaning
to this decomposition, one must avoid L to be sparse. To
this end, a “nonsparsity model” for low-rank matrices was
introduced.

Let FE be the space of complex matrices of size ni X no.
Given ¢ > 1 and r < min(ny,ng), let X, , be the set of
matrices of E of rank < r satisfying the two following condi-
tions (denoting the SVD of such a matrix by >, _, opuvj,
where o, > 0 and the ug and vj are unit-norm vectors) :
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D) VE, [uglle <

£ and |lvilloo < /45

2) Denoting U and V the matrices obtained by concate-

nating the vectors u; and vy, [UV*|l < /0.

These two conditions aim at “homogenizing” the entries of U
and V. Note that we necessarily have p > 1.

Lemma 3. Let £ = My, ,(C) and 3, » be the subset of E
containing the matrices satisfying the two above conditions
(with p > 1 and r > 1). Then ¥, , — X, contains an
orthonormal basis.

Proof. Since X, contains the null matrix, it is sufficient to
prove that ¥, . contains an orthonormal basis. Let {ej};.,
and {f;},2, be the discrete Fourier bases of C™ and C"2,
that is

1 ) . T
e, = = |:1’ eQzTrk/nl, s 6217r(n171)k:/n1:|
1 ) ) T
and f, = 72 {1’ eszrZ/ng7 e eZm’(ngfl)l/nQ}

Then the nin, rank-1 matrices of the form e.f; are
elements of X, . since they obviously satisfy the two above
conditions. But they also form an orthonormal basis of E,
since each entry of e, f; is of module L__ and that, denoting

T Vninz
(.,.) the Hermitian scalar product on E,

(erfy, erfy)

71171 _ / ’ﬂ271 _ 12
= Z exp (2i7ruk i ) Z exp <2i7rvg ¢ )
ny n2
u=0 v=0
=5K's¢, (36)

proving that these matrices form an orthonormal basis of E.
O

IV. THE NSP AND ITS RELATIONSHIP WITH THE RIP

As we have seen in the previous section, one cannot expect
to get £2/¢? instance optimality in a dimensionality reduction
context. This raises the following question: given pseudo-
norms ||.||¢ and ||.||r defined respectively on E and F, is
there a pseudo-norm ||.||g such that IOP holds? We will see
that this property is closely related to the RIP on M.

A. Generalized RIP and its necessity for robustness

The Restricted Isometry Property is a widely-used property
on the operator M which yields nice stability and robustness
results on the recovery of vectors from their compressive
measurements. In the usual CS framework, the RIP provides
a relation of the form (1 —9)||x[|¢ < [|[Mx]||r < (149)|x||l¢
for any vector x in Xoj. The norms ||.||¢ and ||.||r are usually
both taken as the £2-norm. A form of RIP can easily be stated
in a generalized framework: we will say that M satisfies the
RIP on ¥ — X if there exists positive constants «, 3 such that

Ve e S - .alele < [Ma|r < fllzlc.  (37)

Similarly to the sparse case, it is possible to make a distinction
between lower-RIP (left inequality) and upper-RIP (right in-
equality). Let’s remark that this definition has been stated for

vectors of X — X: this choice is justified by the links between
this formulation and the NSP, which will be discussed later in
this section. Let’s also note that this form of RIP encompasses
several generalized RIP previously proposed, as mentioned in
Section I-C4.

Let’s now suppose the existence of decoders robust to noise,
that is for all 6 > 0, (21) is satisfied for a certain As. This
property implies the Robust NSP (22) with the same constants
according to Theorem 3. By considering h € ¥—%., the Robust
NSP reads:

¥h € S - 3, ||hll < Dy Mh] 5. (38)

This is the lower-RIP on ¥ — X, with constant 1/D5. The
stability to noise therefore implies the lower-RIP on the set
of differences of vectors of X, which is therefore necessary if
one seeks the existence of a decoder robust to noise.

B. M-norm instance optimality with the RIP

The lower-RIP is necessary for the existence of a Robust
instance optimal decoder, but what can we say this time if we
suppose that M satisfies the lower-RIP on ¥ —3J with constant
a, that is Vz € ¥ — X, o||z]|¢ < ||Mz||¢? We will prove that
in both the noiseless and the noisy cases, this implies the IOP
with norms ||.||¢ and ||.|| a7, the latter being called “M-norm™*
and involving ||.||¢ and ||.||#.

Let’s define the M-norm on E' as the following quantity,
extending its definition for ¢2 norms in [24] and its implicit
appearance in the proof of early results of the field [4]:

1
vx € E, [Ix|nr = lIxlla + —[|Mx]|p. (39)

Note that the term M-norm should be understood as M-
pseudo-norm in the general case: if ||.||r and ||.||¢ satisfy
the properties listed in Table I, then ||.||5s satisfies the same
properties as ||.||¢. However, when ||.||¢ and ||.||r are norms,
[Illaz is also a norm. We will note dp;(.,.) its associated
(pseudo-)distance. The following theorem states that this ||.|| 5
allows one to derive an NSP from the lower-RIP on ¥ — X.

Theorem 7. Let’s suppose that M satisfies the lower-RIP on
> — X with constant « (left inequality of (37)). Then the
following Robust NSP is satisfied:

1
Vh € E, ||h|c SdM(haE_Z)+E||MhHF- (40)
In particular, the following regular NSP is satisfied:
Vhe N, |h|g <dy(h X -3%). (41)

Therefore, if M satisfies the lower-RIP on ¥ — ¥ with
constant «, then for all § > 0, there exists a noise-robust
instance optimal decoder A; satisfying the following property
(Theorem 4):

Vx € E,Ve € F,
2
Ix — As(Mx + e)||la < 2dum(x,2) + aHeHF +94. (42)

“to highlight its dependency on the Measurement operator
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Note that in [11], the author explored the implication of a
lower-RIP on ¥ — X for the case where X is an arbitrary UoS
and ||.||c/||.|| r are the £2 norm. He proved that this generalized
lower-RIP implies the following IOP: for all § > 0, there exists
a decoder Ay such that Vx € E,Ve € F\Vz € %,

Ix — As(Mx + e)|2

2
< fx—zllz + ~IM(x — z) +efl2 + 4. (43)
In this set-up, the instance optimality in equation (42) can
be reformulated as Vx € E,Ve € F\Vz € X,

lx — As(Mx + e)|2

< 2x gl + MG - )l + el 45 @4

Comparing these two instance optimality results, we can
remark that the one in [11] is slightly tighter. This is merely
a consequence of the difference in our method of proof, as
we add the NSP as an intermediate result to prove instance
optimality. The upper bound in [11] can also be derived in
our case with the same proof layout if we suppose the lower-
RIP. Compared to [11], our theory deals with general (pseudo-
)norms and sets X beyond Union of Subspaces.

C. Infinite-dimensional examples

As mentioned in the introduction, we do not constrain the
signal space to be finite-dimensional, so that we can apply our
results in an infinite-dimensional framework.

1) Negative example: Sparse model in a separable Hilbert
space: If E = L*([0,1]) and {¢, }nen is an orthonormal
basis of E, a typical measurement process of a signal x
is to subsample along another orthonormal basis {U,},en.
Typically, {¢,, } is a wavelet basis and {V,, } a Fourier basis. In
[25], the authors argue that standard sparsity does not represent
well natural signals, which are rather asymptotically sparse,
that is more sparse at fine levels than at coarse levels. They
propose an asymptotic sparsity model with different levels of
sparsity on different scales.

Indeed, as the authors mention in their paper, a standard
sparsity model ¥ with respect to basis {¢, } cannot yield uni-
form recovery for the L2 norm: this is an obvious consequence
of Theorem 6 if d is the L? distance and it is actually true
for any other distance. Indeed, the NSP can never be satisfied
since one has ||¢,, +@ni1/|2 = V2 for all n (since the family
{¢n} is orthonormal) while the right hand side term of the
NSP for h,, = ¢,, + @n+1 is equal to

d(hnvz - Z) + ||Mhn||2 = ||Mhn||2a (45)

which goes to 0 when n — oo (since M is continuous).

2) Positive example: Topological RIP result for 3 of finite
box-counting dimension: Even though the IOP cannot be
satisfied for the standard sparse model in a Hilbert space, it
does not mean IOP is impossible for all models in an infinite-
dimensional space. Let’s mention the following topological
result, which is Theorem 8.1 in [34] and ensures that a RIP
is satisfied in some settings:

Theorem 8. Let 3. be a compact subset of a Banach space B
supplied with norm ||.||g. Suppose ¥ has finite (upper) box-
counting dimension d. Then for any m > 2d, any norm |.||
on R™, and any 0 satisfying

m — 2d
0<l < ———-r,
m(1 + d)
there exists a prevalent set> of continuous linear operators
M : B — R™ such that for any x,y € %,

Omlx —y5 < |Mx - My]|’. (46)
This theorem essentially says that if X has finite upper
box-counting dimension®, then a lower-RIP is satisfied for
a prevalent set of operators M with the pseudo-norms ||.||z
and ||.||% - this last one being a pseudo-norm since § < 1.
According to the previous section, this implies an IOP with
the corresponding M -norm, that is the existence of a family
of decoders As such that forall x € E, e € F and z € X:

2
IIx — A(Mx)||g < 2dp(x, %) + @Heﬂ‘g + 4. 47

We necessarily have # < 1, meaning the exponent drops to
0 as d grows, and therefore the corresponding IOP becomes
much less powerful with a high-dimensional set ¥ (in the
sense of the upper box-counting dimension). However, this
essentially proves that uniform instance optimality is possible
even in infinite dimensions with appropriate > and pseudo-
norms. Furthermore, weakening the existence of a prevalent
set of operators M to the existence of an operator M or a
certain class of such operators satisfying a Robust IOP has
the potential to yield IOP with better pseudo-norms.

As an example of an infinite-dimensional model with finite
upper box-counting dimension, let’s consider the problem
experimented in [26]: we consider E = L'(R™) N L?(R")
and aim at decoding a probability density p € E from a linear
measurement Mp. The a priori on p is that it can be expressed
as a linear combination of a few densities taken in a set P. In
[26], the authors considered P as a set of isotropic Gaussians,
that is

P={pu:x—exp(—llx—pl3) lwerR™}.  (48)
Denoting > (P) the compact set of convex linear combina-
tions of k elements in P with ||p||2 < C, the upper-box
counting dimension of ¥ (P) is upper bounded by k(n+1), so
that a prevalent set of linear operators satisfies the IOP (47) as
soon as the number of measurements satisfies m > 2k(n+1).

This example shows that one can obtain uniform IOP for an
infinite-dimensional model which “spans in an infinite number
of directions”, such as the aforementioned model ¥4 (P). We
hope that more precise characterizations on this kind of IOP
can be obtained in this general framework.

5 A prevalent set being a set which complementary is negligible in a certain
sense. Definition is given in [34].
SThis is a notion of dimension defined by asymptotic behavior of e-covers.
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D. Upper-bound on the M-norm by an atomic norm

As we have seen, provided a lower-RIP on Y — X, an NSP
can be derived with the M-norm as ||.|| . However, this may
look like a tautology since the M-norm explicitly depends on
M. Hence, one may wonder if this NSP is of any use. We
will prove in the following that provided an upper-RIP on a
certain cone X’ (which can be taken as RY), a more natural
upper bound can be derived by bounding the M -norm with an
atomic norm [5]. In particular, this type of inequality applied
to the usual k-sparse vectors and low-rank matrices models
give, under standard RIP conditions, instance optimality upper
bounds with typical norms.

We will suppose in this section that ||.|| is a norm.

1) The atomic norm ||.||s/: Let ¥’ be a subset of E and let
E’ be the closure of span(X’) with respect to the norm ||.||g-
For x € E’, one can define the “norm” ||x||s by:

“+oo
|5 = inf {Z Ikl : Yk, x5 € RY
k=0

K
and [[x = Xillg =K too 0} .49
k=0

Remark that there may be some vectors x for which
Ix||s = 400, if Z?jﬁ) Ixx |l = +oo for any decomposition
of x as an infinite sum of elements of RY’. However, the set
V = {x € E|||x||zr < +0o0} is a normed subspace of E which
contains X’ [39]. In the following, we assume that V = F.
Note that this norm can be linked to atomic norms defined in
[5] by considering A as the set of normalized elements of X’
with respect to ||.||q-

Now suppose M satisfies an upper-RIP on ¥/, so that

vx' e ¥ ||Mx||r < BlIx|G- (50)

For x € F admitting a decomposition Y% x; on RY,
we can therefore upper bound || Mx||p by >, % [[Mxy | r <
Jé; Z::S ||Ixx || This inequality is valid for any decomposition
of x as a sum of elements of RY, so that | Mx|| r < 8]|x| -
Therefore, under these hypotheses,

e Bl < o + 2l < (14 2) el 5D

In particular, we have the following result:

Theorem 9. Suppose M satisfies the lower-RIP on ¥ —% with
constant o and the upper-RIP on Y with constant 3, that is

Vx € X -5, alx|le < [Mx|[r (52)

and
vx € I, [Mx||r < B[x[lc- (53)

Then for all 6 > 0, there exists a decoder Ay satisfying Vx €
E Ve € F,

2
x — As(Mx + e)||¢ < 2 <1 + i) ds(x,2) + —|lel|lz + 4,

(54)
where dy; is the distance associated to the norm ||.||s.

Remark 3. Note that these results can be extended with
relative ease to the case where ||.||¢ is not necessarily ho-
mogeneous but p-homogeneous, that is || x||¢ = |A\P||x||c-

2) Study of ||.|s in two usual cases: We now provide a
more thorough analysis of the norm ||.||s; for usual models
which are sparse vectors and low-rank matrices. In particular,
we give a simple equivalent of this norm involving usual
norms in the case where ||.||¢ = ||.||2 (for matrices, this is
the Frobenius norm).

The norm ||.||5; relies on the decomposition of a vector as
a sum of elements of RY. When X is the set of k-sparse
vectors or the set or matrices of rank k, there are particular
decompositions of this type:

o In the case where ¥ is the set of k-sparse vectors, a
vector x can be decomposed as Z;’il x;, where all x;
are k-sparse vectors with disjoint supports, which are
eventually zero, and such that any entry of x; does
not exceed any entry of x;_; (in magnitude). This is a
decomposition of x into disjoint supports of size k with
a nonincreasing constraint on the coefficients.

o Similarly, in the case where X is the set of matrices
of rank k£ and N is a matrix, the SVD of N gives a
decomposition of the form N = 23011 N, where the
N, are rank k, eventually zero matrices such that any
singular value of N; does not exceed any singular value
of Njfl.

For j > 2, we can upper bound the quantity ||x;||2 using

the assumption on the particular decomposition: |x;[l2 <

VEIxjlloe < VEERD = Dl imilarly, [N, <
M, where ||.||. is the trace norm, defined as the sum of

singular values. We can therefore, in both cases, upper bound
the norm ||.||x. In the case of k-sparse vectors, this gives:

%51 (B3I
[x[ls < [lxall2 + < [Ix|l2 + : (55)
; vk VE
In the case of matrices of rank k, this gives:
N N«
INYis < N o+ 3 IR < gy IS s

vk Vi

We can also upper bound the right hand side of these
equations by O(||.||s) with a small constant, which will prove
that the norms defined in these equations are of the same order.
Indeed, a simple application of the triangle inequality gives us
first that ||x||2 < ||x||s and |N||F < ||N||s. Then, considering
a decomposition of x as a sum of k-sparse vectors »_ i>1 %5
we get

Jj=1

(57

[1%[11 [151]x
<> <D Il
vk j>1 vk j>1
(indeed, each x; can be viewed as a k-dimensional vector and
we have for such a vector ||x;||1 < v/k|[x;||2). Similarly,

IN].
<INl
vk Jj=1

Since these upper bounds are satisfied for any decomposi-
tion, they can be replaced respectively by ||x||s and ||N]||x.
Finally, we have

(58)

[IN]]
NG

Ixlls + B0 <2)x|ls and [IN]|p + 1Tk < N5,

(59)
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We have thus shown:

Lemma 4. When X is the set of k-sparse vectors, the norm
Il satisfies

- Ih

s <Mz + T S 2[| - [l (60)
When 3. is the set of rank-k matrices, it satisfies
-l <1 1lr + <2[ = (61)

Vk

We can thus remark that for these two standard models,
the norm ||.||s can easily be upper bounded by usual norms
under RIP conditions, yielding an IOP with a usual upper
bound. We can also note that stronger RIP conditions can
yield a stronger result: in [4], the author proves that under
upper and lower-RIP on ¥ — ¥ with ¥ being the set of k-
sparse vectors, an instance optimal decoder can be defined as
the minimization of a convex objective: the ¢ norm, which
appears as strongly connected to the norm | - ||s. One may
then wonder if a generalization of such a result is possible:
when can an instance optimal decoder be obtained by solving
a convex minimization problem with a norm related to || - [|=?

V. DISCUSSION AND OUTLOOKS ON INSTANCE
OPTIMALITY

Let’s now summarize the results and give some insights
on interesting future work. As has been detailed throughout
the paper, Instance Optimality is a property presenting several
benefits:

o It can be defined in a very general framework, for any
signal space, signal model and pseudo-norms, as well as
for both noiseless and noisy settings.

o It is a nice uniform formulation of the “good behavior”
of a decoder and thus of the well-posedness of an inverse
problem.

o It can be linked to Null Space Property and Restricted
Isometry Property, which provide necessary and/or suffi-
cient conditions for the existence of an Instance Optimal
decoder.

We now present some immediate outlooks and interesting
open questions related to instance optimality and to the results
presented in this paper.

a) Condition for the well-posedness of the “optimal” de-
coder: We have seen that for general models 3, an additionnal
term § appears in the right hand side term of the instance
optimality inequality ((15),(21)), reflecting the fact that the
minimal distance of the “optimal” decoder (69) may not be
reached at a specific point. However, as mentioned in Property
1, this additive constant can be dropped in the noiseless case
provided ¥ + A is a closed set. One can then wonder if there
exists a similar condition (e.g., a sort of local compactness
property) in the noisy case for which one can drop the constant
0 and get a more usual instance optimality result.

b) Compressed graphical models: As has been men-
tioned in Section I-C3, the case where X is the set of
symmetric definite positive square matrices with sparse inverse
is related to high-dimensional Gaussian graphical models. In
Lemma 2, we showed this type of models fits in our theory
since we could apply Theorem 6 in this case, proving the
impossibility of ¢2/¢? IOP in a dimension-reduction case. Yet,
as for other signal models, can Gaussian graphical models
satisfy some IOP/NSP with different norms in a compressive
framework?

¢) Guarantees for signal-space reconstructions and
more: When D is a redundant dictionary of size d x n and
the signals of interest are vectors of the form z = Dx, where
X is a sparse vector, traditional reconstruction guarantees
from y = Mz assume the RIP on the matrix MD. This
is often too restrictive: for example when D has strongly
correlated columns, failure to identify x from y does not
necessarily prevent one from correctly estimating z. Recent
work on signal-space algorithms [40] has shown that the D-
RIP assumption on M is in fact sufficient.

The framework presented in this paper offers two ways to

approach this setting:

o Considering ¥ = Xj as the set of k-sparse vectors
of dimension n and A = D, the upper bound on the
reconstruction error is of the form dg(x,Xy). Signal-
space guarantees can be envisioned by choosing a metric
|-z =ID-].

o Considering ¥ = DY;; as the set of d-dimensional vec-
tors that have a k-sparse representation in the dictionary
D and A =1, the upper bound is of the form d’(z, DX;,).

In [41], the authors propose a result similar to instance
optimality by upper bounding, for a Total Variation decoder,
the reconstruction error of an image X from compressive
measurement by a quantity involving d;(VX, ), where V
is the gradient operator, 3j, the k-sparse union of subspaces
(in the gradient space) and d; is the ¢! distance. This quantity
is therefore the distance between the gradient of the image and
the k-sparse vectors model. Can such a bound be interpreted
in our framework, and possibly be generalized to other types
of signals?

d) Task-oriented decoders versus general purpose de-
coders: We already mentioned two very different application
set-ups, in medical imaging and audio source separation,
where only parts of the original signals need to be recovered.
One can think of other, more dramatic, cases where only task-
oriented linear features should be reconstructed. One such situ-
ation is met in current image classification work-flows. Indeed,
most recent state-of-art image classification methods rely on
very high-dimensional image representation (e.g., so called
Fisher vectors, of dimension ranging from 10,000 to 200,000)
and conduct supervised learning on such labeled signals by
means of linear SVMs [42]. Not only this approach yields
top-ranking performance in terms of classification accuracy
on challenging image classification benchmarks, but it also
permits very large scale learning thanks to the low complexity
of linear SVM training and its efficient implementations, e.g.,
with stochastic gradient descent. For each visual category to
recognize, a linear classifier w is learned, which associates
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to an input image with representation x the score w’x. The
single or multiple labels that are finally assigned to x by the
system depend on the scores provided by all trained classifiers
(typically from 10 to 100), hence on a vector of the form
Ax, where each row of A is one one-vs-all linear SVM.
In this set-up, the operator A implies a dramatic dimension
reduction. For very large scale problems of this type, storing
and manipulating original image signatures in the database
can become intractable. The theoretical framework proposed in
this paper might help designing new solutions to this problem
in the future. In particular, it will provide tools to answer the
following questions:

e A being given (learned on a labeled subset of the
database): can one design a compressive measurement
operator M such that the “classifiers” scores can be
recovered directly from the compressed image signature
Mx, hence avoiding the prior reconstruction of the high-
dimensional signal x?

e« M being given (“legacy” compressed storing of image
signatures): what are the linear classifier collections that
can be precisely emulated in the compressed domain
thanks to a good decoder A?

Note that this classification-oriented set-up might call for a
specific norm ||.||¢ on the output of a linear score bank.

Another important domain of application that might benefit
from both aspects (general purpose and task-oriented) of our
work is data analysis under privacy constraints. Two scenarii
can be envisioned, where our framework could help decide
whether or not such constraints are compatible with the
analysis of interest:

}

o General purpose scenario: given a linear measurement
operator M of interest for further analysis, can one
guarantee that there is no decoder permitting good enough
recovery of original signals?

o Task-oriented scenario: the operator M serving as a
means to obfuscate original signals such that critical
information can’t be recovered, let’s consider a specific
analysis task on original signals requiring the application
of the feature extractor A. Can this task be implemented
on obfuscated signals instead, via a good decoder A,
hence in a privacy-preserving fashion?

e) Worst case versus average case instance optimality:

The raw concept of Instance Optimality has a major drawback:
the uniformity of the bound may impose, in some settings, a
large global instance optimality constant whereas the inverse
problem is well posed for the vast majority of signals. Let’s
consider the example depicted in Figure 5, where the signal
space FE is of dimension 2, the signal model ¥ is a point cloud
mostly concentrated along the line D and the measurement
operator M is the orthogonal projection on D. The figure
depicts the ratio (approximation error)/(distance to model) for
each x € R?. The optimal constant, which is the supremum
of these ratios, is infinite: the ratio actually goes to infinity in
the vicinity of the point p. However, for the vast majority of
vectors, the ratio is rather low (the blue section covers most
of the space).

An interesting outlook to circumvent this pessimistic

“worst-case” phenomenon is to consider a probabilistic formu-
lation of instance optimality, as in [7]: given {2 a probability
space with probability measure P, and considering M as a
random variable on (2, is there a decoder A(.|M) (which
computes an estimate given the observation and the particular
draw of the measurement operator M) such that for any
x € F, the instance optimality inequality

Ix — A(Mx|[M)||¢ < Cdp(x,5) (62)

holds with high probability on the drawing of M? A par-
ticular challenge would be to understand in which dimension
reduction scenarii there exists both a probability measure and a
decoder with the above property. Another possible formulation
of probabilistic instance optimality is to define a probability
distribution on the signal space and to upper bound the average
reconstruction error of the vectors, as in [43].

APPENDIX A
WELL-POSEDNESS OF THE FINITE UOS DECODER

In this section, we will prove that if ¥ is a finite union
of subspaces in R” and ||.|| a norm on R", then the quantity
arg minge (x4 a1 d(z,X), where d is the distance relative to
|III, is defined for all x € R™.

Let’s first prove the following lemma:

Lemma 5. Let V and W be two subspaces of R™ and ||.||
a norm on R™. Then Vx € R",Jy € (x + V) such that
d(y, W) = d(x+V, W), where d is the distance derived from

Proof. Let ® be defined on V + W by ®(u) = |ju — x|
Since ®(u) > |lu|| — [|x||, we have lim |y 400 P(u) = 400,
so that IM > 0 such that |ju|| > M = ®(u) > ||x||. The set
B={ueV+W,|u| <M} is aclosed ball of V+W and
is thus a compact. Since ® is continuous, ® has a minimizer
v on B. 0 € B, so that ®(0) = ||x|| > ®(v). For all u such
that ||u|| > M, we have ®(u) > ||x|| > ®(v), so that v is a
global minimizer of ®.

We therefore have V(u,w) € Vx W, ||x—v| < ||x— (u+
w)||. The vector v can be written f+g withf € Vandg € W,
so that the vector y = x —f, which belongs to x+ V/, satisfies
dx—f,W)=|(x—1f)—g| =dx,V+W) =d(x+V,W),
which proves the result.

O

Let ¥ = [[U ]]
ie[1l,p
5 applied to V = N and W = V; ensures the existence
of x; € (x +N) such that dg(x;,V;) = dr(x + N,V;).
Therefore, A(Mx) can be defined as argmin  dg(x;, V;)
{xi,i€L,p]}
and satisfies dgp(A(Mx),Y) = dg(x + N,¥), so that the
decoder A(Mx) = argmin d(z,X) is properly defined. In
z€ (x+N)

particular, this applies to the decoder (12).

Vi, where V; are subspaces of R™. Lemma

APPENDIX B
PROOF OF THEOREM 1

Let 6 > 0 and As and C be such that (15) holds Vx €
E.Let h € N. Then Jhy € 3 — 3 such that dg(h,hy) <
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Fig. 5. Drawback of uniform instance optimality in a simple case: the model X (Left) is the set of black points including those on D and the point p and
the operator M is the 1-dimensional orthogonal projection on the horizontal axis. If we choose A as the pseudo-inverse of M, the depicted IO ratio (Right)

is low on most of the space, but the uniform constant is infinite.

dE(h7Z — E) + 6. Let hg = hy — hy with hy,hy € ¥, and
hs = h — hg. Since h € N, we have:

M(h; + h3) = Mhs. (63)

Applying (15) to x = hy € ¥ and using the fact that ||0||g =
0, we get:

|[Ahy — As(Mhs)|lg < 6. (64)

Let’s now find an upper bound for ||Ah||g:
|[Ahlg = [[A(h; —hy + h3)[[c
= [|A(hy +h3) — As(M(hy + hs))
— Ahy + As(M(h; + hs))l|e
< [|A(hy + hs) — As(M(h; + hs))|[¢

+ [[Ahy — As(M(h;y + h3))|lc, (65)

where we have used (13) and (14) for the last inequality.
Combining (63) and (64), we get that:

[Ahy — As(M(h; + hg))|le < 6. (66)
Applying (15) to x = h; + h3, we get:

|A(h; + h3) — As(M(h; + h3))|lc
< Cdg(hy +h3, %) +6 < Cllhs||g +0
— Cdp(h,ho) + 6 < Cdp(h, T — %) + (C + 1)6.

Combining (65), (66) and (67) gives:
|Ah|lc < Cdg(h,X — %) + (C + 2)4.

(67)

(68)

(68) is valid for all § > 0, so it is valid for § = 0. This gives
us the property (3) with D = C.

APPENDIX C
PROOF OF THEOREM 2

Let’s first assume that (16) holds and define the following
decoder on F"

A’'(Mx) = argmin
z€(x+N)

dp(z,%). (69)

Note that the decoder is well defined, since Mx; = Mx, =
X1 + N = X9 + N
For x € E, we have x — A’(Mx) € N, so that (3) yields:

[Ax — AA'(Mx)||¢ < Ddg(x — A'(Mx), % — %)
< Ddp(x,3) + Ddg (A (Mx), %)
< 2Ddg(x,%), (70)

where we have used (14) for the second inequality. The last
inequality comes from (69), which yields dg(A’(Mx), ) <
dg(x,Y). Therefore, by posing A = AA’, we get (2).

Let’s return to the general case, and consider v > 0. We
define the following decoder on F':

Al (Mx) € {ue (x+N)|dg(u,X) <dg(x+N,%) + v}

(1)

Note that this set may not contain a unique element and thus
this definition relies on the axiom of choice.

For x € E, we have again x — A/ (Mx) € N, so that by

3):
[Ax — AA! (Mx)||¢ < Ddg(x — Al,(Mx),Y — X)
< Ddg(x,%) + Ddg(Al(Mx),Y)
< 2Ddp(x,%) + Dv, (72)

where we have used (14) again for the second inequal-
ity. The last inequality comes from (71), which yields
drp(Al,(Mx),Y) < dg(x,X) + v. Therefore, by posing
As = AAg/D, we get (15).

APPENDIX D
PROOF OF PROPOSITION 1

Letxe€Eandv >0.If0=dg(x+N,X) =dp(x,% +
N), then since X+ is a closed set, x € X+, and therefore
(x + N)N X # 0. In this case, we define A/,(Mx) as any
element of (x + N)NX.

If dg(x + N,X) > 0, then we define A, (Mx) € {u €
(x+N)|dg(u,X) < (1 +v)de(x+N,X)}. This provides a
consistent definition of A/.
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Let’s remark that for all x € E, dg(Al,(Mx),X) < (1+
v)dp(x +N,%) < (1+v)de(x,X).
For x € E, x — A,(Mx) € N, so that (3) gives:
[Ax — AA] (Mx)|¢ < Ddg(x — A}, (Mx), ¥ — %)
< (24 v)Ddg(x,%). (73)

Defining A5 = AA!,, we get the desired result.

APPENDIX E
PROOF OF THEOREM 3 AND THEOREM 5

Let’s first remark that applying (21) (resp. (23)) with x =
z € ¥ and e = 0 yields [|[Az — As(Mz)||¢ < § and ||Az —
As.(Mz)||¢ < Cae+4 for any z € X, € > 0, where we have
used the fact that ||0||p = 0.

Let h € F and z € X. We apply (21) (resp. (23)) with
x =z —h, e = Mh, and ¢ = ||Mh]||r, which yields:

|Az — Ah — As(Mz)||¢
< Cidp(z —h, X)) + Co||Mh| g + 6
and
|Az — Ah — As . (Mz)|| ¢
< Cidg(z —h,X) + Co||Mh| g + 6.

Let’s remark that (13) and (14) imply ||y|l¢ < [[x—ylc +
|x||¢ for all x,y € G. Therefore, since |Az— As(Mz)|g <
J (resp. ||[Az — A5 (Mz)||¢ < Co||Mh||r + §), we have:

HAh”G < CldE(Z—h,E)+CQ||MhHF+25
(resp. [|[Ah|l¢ < Cidg(z—h,X)+ 2C||Mh|r + 26.)

This last inequality is valid for all z € %, therefore (21)
implies:

lAhllg < Ciinf - dp(z —h, %) + Cof|[Mh|F +26

=Ciinf inf ||lz—h—u|g+ C3||Mh|pr +2§
z€¥ ueX

= Cidg(h,¥ — %) + Co[[Mhl|p + 29, (74)

where we have used (13) for the last inequality. Similarly, (23)
implies

|Ahllg < Cidg(h, = — ) +2C5[Mh| s + 25 (75)

We conclude by using the fact that (74) and (75) hold for all
0> 0.

APPENDIX F
PROOF OF THEOREM 4

Let’s suppose (22) and define for § > 0 the decoder A% :
F' — FE such that Vy € F':

< inf [DldE(LL Z) + DQdF(Mu, y)] + 6.

uck

(76)

Let’s prove that this decoder meets property (21).

Let x € E and e € F. Applying (22) with h = x —
A5 (Mx + e), we get:
[A(x — A5(Mx +e))llc
< Dydp(x — A5(Mx +€),X — %)
+ D2|[M(x — Aj(Mx + e))||F
< D1dg(%,X) + D1dp(A5(Mx + e), %)
+ Dadp(MAS(Mx + €), Mx + €) + Dslle||r

S 2D1dE(X, 2) + 2D2||6||F + 6, (77)

where we have used (13) and (14) for the second inequality
and the last inequality is a consequence of (76).

Posing As = AA) proves (21) with Cy = 2D; and C; =
2D.

APPENDIX G
PROOF OF LEMMA 1

The two equivalences are very similar to prove, so that we
will only prove the first. (28) = (27) is obvious. Let’s now
suppose (27), so that:

Vh e N,Vz € ¥ — %, |h|l¢ < D|h — z||g. (78)
By homogeneity, we also have:

VA e R*Vh € N,Vz € X—%, ||Ah| ¢ < D||Ah—z||g, (79)
so that:

VA eR*Vh e N,Vz € X—%, ||h|l¢ < D|h—2z/\||g. (80)
This last inequality yields (28).

APPENDIX H
PROOF OF THEOREM 6

Let’s note M = M)y and N = N NV. Let m be the
dimension of the range of M, so that V' is of dimension n—m.

Let hy,...,h,_,, be an orthonormal basis of N. We have:
n—m 1 n—m n
n—m=Y|h|3< e > hyz)® @D
j=1 =1 i=1

Using (34), we get that, for all h € N and unit-norm vector
z € ¥ -3, (hz)? < (1 - %) |h||3. If we denote by
Py the orthogonal projection on N and apply this inequality
with h = pg(z;) = > 7 "(hj,z))h; and z = z;, we

get that [|pg(z)[5 < (1 - %3) |p(2i)||3, which can be

simplified to ||pj\7(z1)||§ = Z?;f(hj,zﬁz < (1 — 52> even
if |pg(zi)ll2 = 0.
Using this relation in (81), we get:
n 1
—-m< =(1-—= 82
n-—ms 2 ( Dz), (82)
so that:
> 1 i 1 L (83)
m>n I D? .

We get the lower bound on D? by isolating it in the
inequality.
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Let h € F and z € ¥ — X. We have the following
inequalities:
1
Ihllc < b —zlc +lzle < [Ih - zlle + —[IMz][F, (84)

where we have used the lower-RIP for the second inequality.
A similar consideration on Mz yields:

Mz F < [M(z - h)||r + [[Mh] . (85)

Substituting (85) into (84), we get:

1 1
o < b~ 2o + [M(h = 2)|» + — [Mbl| £

1
Hh_z||M+a||MhHF~ (86)

Taking the infimum of the right hand-side quantity over all
z € X — X, one gets the desired Robust NSP:

1
|hlle < dy(h, X —%)+ E||Mh||F~ (87)
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