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Remark . homology

Remark .

The cochain complexes have the natural structure
of coassociative counital dg coalgebras over .

Proof.
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Background terminology.



Universal coalgebras.

Example .
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Tilting modules.



Example .

Preduals.
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The Tannakian envelope.

The monoidal structure endows the dg coalgebras
of Proposition 1.10 with the natural structure of unital dg bialgebras. These are graded-
commutative whenever and are symmetric.

Proof.
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The universal bialgebra.



Remark .

The unit is equipped with a canonical associative
multiplication

which is commutative whenever is symmetric. The unit for this multiplication is

for .

Proof.

Remark .



Example .

Given a universal bialgebra and a strong monoidal dg functor , the
dg coalgebra becomes a unital associative dg bialgebra, which is
commutative whenever is commutative and symmetric.

Proof.

Remark .

Tilting modules.

Given a universal bialgebra and a strong monoidal dg functor , the
ti lting module becomes a monoid in with respect to , which
is commutative whenever is commutative and symmetric.
Moreover, the co-action of 1.2.3 is an algebra morphism in the sense

that the diagram

//

�� ��
//

commutes, where the horizontal maps are co-action and the vertical maps are multipli-
cation.

Proof.



Model structure on dg comodules.

There is a closed model structure on in which weak equivalences
are quasi-isomorphisms and cofibrations are injections. Fibrations are surjections with
kernel such that

the graded module underlying is injective as a comodule over the graded
coalgebra underlying , and
for all acyclic , is acyclic.

Proof.
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The Quil len adjunction.

The adjunction

A //

C

oo

is a Quil len adjunction.

Proof.

The retraction.

The counit

of the derived adjunction is an isomorphism in the derived
category for all .

Proof.



For the constructions of and the ti ltingmodule above, the
derived adjunction gives rise to a quasi-equivalence between
the dg categories and . Moreover, the map
to the dg quotient is a quasi-equivalence.

Proof.
C A
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Remark .

a fortiori

Remark .



Assume that is faithful in the sense that
is the category of acyclic -modules, and take the ti lting module and dg coalgebra

as above. Then the derived adjunction of
Theorem 2.9 gives rise to a quasi-equivalence between the dg categories and

.
Moreover, the enhanced idempotent-complete triangulated category gener-

ated by is quasi-equivalent to the full dg subcategory of on ob-
jects which are compact in . I f is Morita fibrant, this gives a quasi-equivalence

.

Proof.
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Example .
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Remark .
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For and , there is a natural trans-
formation

Proof.

The functor is lax monoidal, with the
transformations

being quasi-isomorphisms.

Proof.
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Take a -linear dg category with concentrated in non-
negative degrees, for al l , and with a semisimple abelian category.
Assume that we have a -linear functor . Then there is a model for
the coalgebra of 1.2.3 with .

Proof.

| {z }

| {z }

| {z }

| {z }



Remark .

| {z }

Remark .

M

n

n − n n

Take a -linear dg category with concentrated in non-
negative degrees, and a semisimple abelian category. Assume that we have a -
linear functor . Then there is a dg coalgebra with

, together with quasi-equivalences .

Proof.
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Under the conditions of Corollary 3.5, if the functor
is faithful, then we have a quasi-equivalence .

Proof.

Y Y

The equivalence of Proposition 3.7 induces a quasi-equivalence be-
tween (see Definition 1.11) and the full dg subcategory of on
fibrant replacements of -comodules in finite-dimensional cochain complexes. This gives
a quasi-equivalence from to .



Proof.
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Example .
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M
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Remark .

The functors are a pair of Quil len equivalences between the
categories .



Proof.

Remark .

Take a -linear dg category with the category abelian
semisimple and for all objects . Then is quasi-isomorphic
to a dg category concentrated in non-negative degrees, with for all

.

Proof.
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Take a -linear dg category with the category abelian semisim-
ple and for all objects . Assume that we have a -linear dg func-
tor with finite-dimensional and concentrated in degree for all

. Then there is a dg coalgebra with , together
with quasi-equivalences .

Proof.

Example .
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Non-negatively graded dg tensor categories.

Take a -linear rigid tensor dg category with con-
centrated in non-negative degrees, for all , and a semisim-
ple rigid tensor subcategory. Assume that we have a strong monoidal -linear functor

. Then there is a model for the bialgebra of 1.3.2 with
.



Proof.
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X
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Remark .
⋉ ⋉

⋉
⋉

Koszul duality for tensor categories.



⊗
V

M

V

The functors give a pair of Quil len equivalences between
the categories .

Hearts of tensor -structures.

Take a -linear rigid tensor dg category with the category
abelian semisimple and for all objects . Then is quasi-
isomorphic to a rigid tensor dg category concentrated in non-negative degrees, with

for all .

Proof.

Take a -linear rigid tensor dg category with the category
abelian semisimple and for all objects . Assume that we have a



lax monoidal -linear dg functor with for al l ,
finite-dimensional for all , and quasi-strong in the sense that the structure maps

quasi-isomorphisms for all .
Then there is a dg Hopf algebra with , together

with a tensor functor inducing quasi-equivalences
. Here, and are defined using the coalgebra (not the

algebra) structure of .
I f the functor is faithful, then these induce quasi-equivalences

and .

Proof.
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When consists of all semisimple local systems, we have
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Proof. V V V A •
X
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U R A

F U AX
A

U F F V V
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The dg categories and are quasi-equivalent.

Proof. R A
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Examples .
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When is a manifold and O , the dg Hopf
algebra of Corollary 3.29 associated to the fibre functor

is a model for the relative Malcev homotopy type of under
the equivalences of .

Proof.

⋉ O

⋉

⋉

Remark .



The dg category of Definition 3.8 is quasi-
equivalent to , for the dg category of derived connec-
tions from Definition 4.2. Under this equivalence, corresponds to the full
dg subcategory of on fibrant replacements of finite-dimensional
comodules. The equivalence respects the tensor structures.

Proof.

⋉

⋉
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A •
X

A universal bialgebra corresponds under the equivalence
above to a sheaf D

equipped with a commutative unital multiplication

D D D

and a coassociative A -linear comultiplication

D D A •
X

D

with A -linear counit
D
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Example .
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The dg Hopf algebra of Corol lary 3.29 associ-
ated to the fibre functor is a model for the relative Malcev homotopy
type of under the equivalences of .

Proof.
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Nilpotent homotopy types.
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Quasi-projective pairs.

The pairs and admit r ight calculi of fractions in the
sense of .
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Localisation and DG quotients.
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F

Take a small category and a subcategory such that and
admit right calculi of fractions. Let be the localised category given by

formally inverting all morphisms in . Then the functor gives a left Quil len
functor

left adjoint to , making Quil len-equivalent to the left Bousfield localisation
of at the image of under the Yoneda embedding .

Proof.
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In the setting of Proposition A.7, the functor gives a quasi-
equivalence of dg categories. Moreover, the map

to the dg quotient is a quasi-equivalence.

Proof.

The excision functor induces quasi-equivalences
.

Proof.

Formal Weil cohomology theories.
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//

C11❜❜❜❜❜

The -Hodge complex associated to the cosimplicial algebra
in is canonically quasi-isomorphic to as a com-

mutative algebra in cosimplicial -Hodge complexes.

Proof.
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Each choice of Levi decomposition for the universal Mumford–
Tate group gives rise to a zigzag of -filtered quasi-isomorphisms between the
cosimplicial algebra-valued functors

where is the diff erential on the page of the Leray spectral sequence and
.

Proof.

I f denotes the Weil cohomology theory associated to Betti coho-
mology, and its formal analogue as in Examples 2.20 and A.1.3, then each choice
of Levi decomposition for the universal Mumford–Tate group Q gives a zigzag of
quasi-isomorphisms between and .

Proof. C Q
C C
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