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TANNAKA DUALITY FOR ENHANCED TRIANGULATED
CATEGORIES

J.P.PRIDHAM

ABSTRACT. We develop Tannaka duality theory for dg categories. To any dg functor
from a dg category A to finite-dimensional complexes, we associate a dg coalgebra C
via a Hochschild homology construction. When the functor is faithful, this gives a
quasi-equivalence between the derived dg categories of A-modules and of C'-comodules.
When A is Morita fibrant (i.e. an enhanced idempotent-complete triangulated cate-
gory), it is thus quasi-equivalent to the derived dg category of compact C-comodules.
We give several applications for pro-algebraic homotopy types associated to various
cohomology theories, and for motivic Galois groups.

INTRODUCTION

Tannaka duality in Joyal and Street’s formulation ([JS, §7, Theorem 3]) characterises
abelian k-linear categories A with exact faithful k-linear functors w to finite-dimensional
k-vector spaces as categories of finite-dimensional comodules of coalgebras C. When A
is a rigid tensor category and w monoidal, C' becomes a Hopf algebra (so SpecC is a
group scheme), giving the duality theorem of [DMOS, Ch. IIJ.

The purpose of this paper is to extend these duality theorems to dg categories. Var-
ious derived versions of Tannaka duality have already been established, notably [Toél],
[Wal], [FI] and [Lur]. However, those works usually require the presence of t-structures,
and all follow [DMOS, Ch. II] in restricting attention to monoidal derived categories,
then take higher stacks as the derived generalisation of group schemes. Our view-
point does not require the dg categories to have monoidal structures, and takes dg
coalgebras as the dual objects. Arbitrary dg coalgebras are poorly behaved (for in-
stance, quasi-isomorphism does not imply Morita equivalence), but they perfectly cap-
ture the behaviour of arbitrary dg categories without ¢-structures. Even in the presence
of monoidal structures, we consider more general dg categories than heretofore, and our
dg coalgebras then become dg bialgebras.

The first crucial observation we make is that in the Joyal-Street setting, the dual
coalgebra C to w: A — FDVect is given by the Hochschild homology group

W ®4w=HHy(A w"’ ®pw),

where wV: A°PP — FDVect sends X to the dual w(X)Y. The natural generalisation of
the dual coalgebra to dg categories is then clear: given a k-linear dg category A and a
k-linear dg functor w to finite-dimensional complexes, we put a dg coalgebra structure
C on the Hochschild homology complex

wY @b w CC (A, wY @ w).

This work was supported by the Engineering and Physical Sciences Research Council [grant number
EP/1004130/1].
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In order to understand the correct generalisation of the fibre functor w, we look to
Morita (or Morita—Takeuchi) theory. In the underived setting, if w is representable by
an object G € A, the condition that w be exact and faithful amounts to requiring that
G be a projective generator for A. This means that in the dg setting, Hom(G, —) should
be a fibre functor if and only if G is a derived generator. In other words, Hom(G, —)
must reflect acyclicity of complexes, so we consider dg functors w from A to finite-
dimensional complexes with the property that w(X) is acyclic only if X is acyclic, for
X in the derived category D(A).

Theorem 2.9 and Corollary 2.12 give derived analogues of [JS, §7, Theorem 3|. Ex-
plicitly, when w is faithful in the sense above, they give a quasi-equivalence between
the dg enhancements Dy, (A) and Dge(C') of the derived categories of A and C. This
comparison holds for all dg categories; in particular, replacing A with any subcategory
of compact generators of Dy, (A) will yield a dg coalgebra C with the same property.
Our derived analogue of an abelian category is a Morita fibrant dg category: when A is
such a dg category, we have a quasi-equivalence between A and the full dg subcategory
of Dyg(C) on compact objects.

Section 1 contains the key constructions used throughout the paper. After recalling
the Hochschild homology complex CC,4(A, F') of a dg category A with coefficients in a
A-bimodule F, we study the dg coalgebra C,,(A) := CCe(A,w" @% w).

We then introduce the notion of universal coalgebras of A, which are certain reso-
lutions D of A(—,—) as a ® 4-coalgebra in A-bimodules. The canonical choice is the
Hochschild complex CCq(A, hgorr ®p h4) of the Yoneda embedding. For any univer-
sal coalgebra D, a fibre functor w gives a dg coalgebra C' := wY ®4 D ®4 w, and a
tilting module P := D ® 4 w. When (A, X) is a tensor dg category, we consider univer-
sal bialgebras, which are universal coalgebras equipped with compatible multiplication
with respect to X, the Hochschild complex again being one such. In this case, a tensor
functor w makes C into a dg bialgebra.

The main results of the paper are in Section 2. For C and P a dg coalgebra and
tilting module as above, there is a left Quillen functor — ® 4 P from the category of
dg A-modules to the category of dg C-comodules (Lemma 2.5). The functors D(C) —
D(A) — D(C) then form a retraction (Proposition 2.7). Theorem 2.9 establishes quasi-
equivalences

Dyg(C) — (ker w) — Dyg(A)/ (ker w)

of dg enhancements of derived categories, which simplify to the equivalences of Corollary
2.12 when w is faithful. Remark 2.11 relates this to Ayoub’s weak Tannaka duality, with
various consequences for describing motivic Galois groups given in §2.4. Proposition 2.19
ensures that the equivalences preserve tensor structures when present, and Example 2.20
applies this to motivic Galois groups.

The main drawback of the Hochschild construction for the dg coalgebra is that it
always creates terms in negative cochain degrees. This means that quasi-isomorphisms
of such dg coalgebras might not be derived Morita equivalences, and that we cannot
rule out negative homotopy groups for dg categories of cohomological origin.

In Section 3, we modify the Hochschild construction to associate non-negative dg
coalgebras to hearts of ¢-structures (Corollary 3.19, Propositions 3.7, 3.9). In this set-
ting, the correspondence between dg categories and dg coalgebras can be understood
as a form of Koszul duality (Proposition 3.16). Via duality of the commutative and
Lie operads, dg tensor categories then correspond to dg Hopf algebras (Corollary 3.29,
Proposition 3.27). Example 3.20 then explains how these results combine with Ayoub’s
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calculations to show that existence of a motivic t-structure would characterise Beilin-
son’s motives as the derived category of Nori’s abelian category of mixed motives. §3.5
explains how our constructions generalise Moriya’s Tannakian dg categories.

Section 4 is mostly concerned with applications to the real relative Malcev homotopy
types of a manifold X. Lemma 4.4 equates the dg category of derived connections
on X with the enhanced triangulated category generated by the de Rham dg category
of semisimple local systems. Corollary 4.9 then equates this with the dg category of
representations of the schematic homotopy type G(X,z)8. §4.3 looks at the universal
bialgebra, which avoids choices of basepoint and can be thought of as the sheaf of
functions on the space of algebraic paths. In §4.4, we establish analogues for Qy relative
Malcev homotopy types of a scheme, and §4.5 discusses motivic generalisations.

In the appendix, we give technical details for constructing monoidal dg functors giving
rise to the motivic Galois groups of Example 2.20, and show that, in the case of Betti
cohomology, this construction gives a functor non-canonically quasi-isomorphic to the
usual cohomology functor (Corollary A.19).

I would like to thank Joseph Ayoub for providing helpful comments and spotting
careless errors.

Notational conventions. Fix a commutative ring k. When the base is not specified,
® will mean ®j. When k is a field, we write Vecty for the category of all vector spaces
over k, and FDVecty, for the full subcategory of finite-dimensional vector spaces.

We will always use the symbol = to denote isomorphism, while ~ will be equivalence,
quasi-isomorphism or quasi-equivalence.
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1. HOCHSCHILD HOMOLOGY OF A DG CATEGORY

Definition 1.1. A k-linear dg category is a category enriched in cochain complexes of k-
modules, so has objects ObC, cochain complexes Hom,(z,y) of morphisms, associative
multiplication

Homy (y, 2) ® Home(z,y) — Home(z, 2)
and identities id, € Hom(z,z)°.
Definition 1.2. Given a dg category C and objects z,y, write C(z,y) := Hom,(y, x).

Definition 1.3. A dg functor F: A — B is said to be a quasi-equivalence if
HOF: H°A — HB is an equivalence of categories, with A(X,Y) — B(FX,FY) a
quasi-isomorphism for all objects X,Y € A.

Definition 1.4. We follow [Kel2] in writing Cqg(k) for the dg category of chain com-
plexes over k, where Hom(U, V')! consists of graded k-linear morphisms U — Vi], and
the differential is given by df = do f ¥ fod. We write perg, (k) for the full dg subcategory
of finite rank cochain complexes of projective k-modules. Beware that this category is
not closed under quasi-isomorphisms, so does not include all perfect complexes in the
usual sense.

The following is adapted from [Mit] and [Kell]:
Definition 1.5. Take a small k-linear dg category A and an A-bimodule
F: Ax APP — Cyq(k),

(i.e. a k-bilinear functor). Define the homological Hochschild complex

CC,(A, F)
(a simplicial diagram of cochain complexes) by
M
CC, (A F) = A(Xo, X1)@pA(X1, X2)®%. .. QpA(Xn—1, Xn) @k F (Xn, Xo),

X0,..,Xn€0b A

with face maps

U
0 a2 ® ...an® (foay) i=0
ﬁi(a1®...an®f'):Dal®...ai_1®(aioa¢+1)®ai+2®...®an®f 0<i<n
a1 @ ...0p—1® (ano f) i=n

and degeneracies

oi(a1®...a, )= (1 ®...00;R1dRaj1+1®...a, X f).
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Definition 1.6. Define the total Hochschild complex
CC(A,F)

first regarding CC,(A,F') as a chain cochain complex with chain differential
;(=1)0;, then taking the total complex

(Tot CC, (A, F)*)" = CC,(A, F)"™,
i
with differential given by the cochain differential 4+ the chain differential.
There is also a quasi-isomorphic normalised version
NCC(A, F),
given by replacing CC; with CC;/ ;0,CC;_;.

Remark 1.7. Note that H'CC(A, F)* = HH_;(A, F), which is a Hochschild homology
group. We have, however, chosen cohomological gradings because our motivating ex-
amples will all have H<? = 0.

1.1. The Tannakian envelope. Fix a small k-linear dg category A and a k-linear dg
functor w: A — perg,y (k).

Remark 1.8. If k is a field and we instead have a functor w: A — AFDCh; to the
dg category of cohomologically finite-dimensional complexes (i.e. perfect complexes in
the usual sense), we can reduce to the setting above. We could first take a cofibrant
replacement A — A of A in Tabuada’s model structure ([Tab2], as adapted in [Kel2,
Theorem 4.1]) on dg categories. Next observe that the inclusion perg, (k) — hEFDChy, is

a quasi-equivalence, so the composite functor w: A — hFDChy, is homotopy equivalent
to a functor w': A — perg, (k).
Definition 1.9. Define the Tannakian dual C,,(A) by
Cy(A) := CCAwowY),

where the A-bimodule

w@w': Ax APP — pery, (k)
is given by

w@w'(z,y) = (wr) @k (wy)".
Similarly, write NC,,(A) := NCC(A,w @ w").
Proposition 1.10. The cochain complexes C,,(A), NC,(.A) have the natural structure
of coassociative counital dg coalgebras over k.

Proof. We may rewrite
GO, (A w e wY) =

A(Xo0, X1) @ A(X1,X2) ®@ ... 0 A(Xp—1, Xp) ® wX,, @ w(Xo)Y,
Xo0,..,Xn€0b A
as
w(Xo)Y ® A(Xg, X1) @ A(X1, X2) ® ... ® A(Xn_1, Xpn) ® wX,,.
Xo0,..,Xn€0b A

There is a comultiplication A on the bicomplex

CC(Awrw),
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with
A: CCip(Awew’) —
CC,,(A,wew’)®, CC, (4w w)
being the map
(WX0)" ®C(X0, X1) ® ... ®C(Xpmtn—1, Xmsn) ® (WXimpn) —
[(WX0) ®C(X0,X1) ® ... 0 C( X1, Xm) @ (WX1n)]
@ [(WXm)" @ C( X, Xmt1) @ - @ C(Xmtn-1, Xmin) @ (WXmin)]
given by tensoring with
idx € (WXm) ® (wXn)Y.
Now,
(0 %@ id) o Aptin(z®c1 ®... ® Cmgnt1 @Y)

Am,nai(lU@Cl X ... ® Cmant1 ®y) 1< m,
TRC®...Q0CH O (Wemt1) @Cm+2® ... @ Cignt1 @Yy i =m+ 1;

(id 69 i) o Amni1(T®c1 ® ... @ Cmgng1 ®Y)

Am,nai-&-m(x@q ®-~®0m+n®y) 1> 0,
TR ... R ® (Wemt1) ®mi2 @ ... @ Cpgnt1 Yy 1 =0.

P .
Thus the differential d = (—1)"0; has the property that
(d®id+ (-1)"id ® d) o Al = Ay 0 d.

In other words, A is a chain map with respect to d, so passes to a comultiplication
on C,(A) = Tot CC,(A,w ® w"). The properties of the d; above also ensure that the
comultiplication descends to NC,,(.A). O

1.2. The universal coalgebra and tilting modules.

1.2.1. Background terminology. Following the conventions of [Kel2], we will write
Cqg(A) for the dg category of k-linear dg functors A°PP — Cge(k) to chain complexes
over k. We write C(A) for the (non-dg) category Z°Cqq(A) of dg A-modules.

An object P of C(A) is cofibrant (for the projective model structure) if every surjective
quasi-isomorphism L — P has a section. The full dg subcategory of Cqq(A) on cofibrant
objects is denoted Dgg(A). This is the enhanced idempotent-complete triangulated
category (in the sense of [BK2]) generated by A and closed under filtered colimits. We
write D(A) for the derived category H'Dyg(A) of dg A-modules — this is equivalent to
the localisation of C(A) at quasi-isomorphisms.

Definition 1.11. Define perg,(A) C Dgg(A) to be the full subcategory on compact
objects, i.e those X for which

I—IO—mJ4(X7 _)
preserves filtered colimits. Explicitly, perdg(.A) consists of objects arising as direct
summands of finite extensions of objects of the form hx[n], for X € A.
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As explained in [Kel2], perg,(A) is the enhanced idempotent-complete triangulated
envelope of A, in the sense of [BK2]. Note that in [Kell, §2], enhanced triangulated
categories are called exact DG categories.

By [Tabl], there is a Morita model structure on k-linear dg categories. Weak equiv-
alences are dg functors A — B which are derived Morita equivalences in the sense
that

Ddg(.A) — Ddg (B)
is a quasi-equivalence. The functor A — perdg(.A) is fibrant replacement in this model
structure.

Note that a dg category A is an enhanced idempotent-complete triangulated category
if and only if the natural embedding A — perdg(A) is a quasi-equivalence. This is

equivalent to saying that A is Morita fibrant, or triangulated in the terminology of
[TV].

1.2.2. Universal coalgebras.

Definition 1.12. Recall (e.g. from [Toé3]) that there is a monoidal structure ® 4 on
the dg category Cyq(A°PP ® A), given by
(FoAG)(X,)Y)=F(X,—)®4G(-,Y),
for X € A, Y € A°PP. The unit of the monoidal structure is the functor id 4, given by
ida(X,Y) = A(X,Y).

Take a k-linear dg category A, and D € Dy, (A°PP ® A) a coassociative ® 4-coalgebra,
with the co-unit D — id4 a quasi-isomorphism. We regard this as being a universal
coalgebra associated to A.

Example 1.13. If the k-complexes A(X,Y) are all cofibrant (automatic when k is a
field), a canonical choice for D is the Hochschild complex

CC(A, hgorr @ h )

of the Yoneda embedding hgorr @ hg: APP @ A — Cge(APP @ A). Explicitly,
CC(A, hgorp @ h y4) is the total complex of the chain complex
M M

X @ Xo XoPP @ A(Xo, X1) ® Xp < ...,
XoeA Xo0,X1€A

where we write X := hyX and X°PP := h_gopp X °PP.
The ® 4-coalgebra structure is given by the formulae of Proposition 1.10, noting that

Y @4 X = A(Y, X),

soidyxy € X ®4 XOPP.

The normalised version of the Hochschild complex NCC(A,hgorr @ hy) provides
another choice for LD’ which is more canonical in some respects.

If we write L =y 4 X°PP @ X, then L is a ® g4-coalgebra in Cqq(APP ® A). The
counit is just the composition A(—, X) ®; A(X,—) — A(—,—), and comultiplication
comes from idy € X ® 4 X°PP. Then D is the total complex of the simplicial diagram
given by IL @4 L %4 R4 L; in level n, so D is just the Cech nerve of the ® 4-comonoid

n+1

L.
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Definition 1.14. Say that a coassociative ® 4-coalgebra D € Dg,(A°PP ® A) is ind-
compact if it can be expressed as a filtered colimit D = hgnz D;, with each D; a coasso-
ciative ® 4-coalgebra which is compact as an object of Dge(APP @ A).

Note that if A itself is a field, then the fundamental theorem of coalgebras says that
all ® 4-coalgebras are ind-compact.

Example 1.15. If k is a field, then the ® 4-coalgebra CC(A, h4ovp ® h 4) is ind-compact.
We construct the exhaustive system of compact subcoalgebras as follows. The indexing
set will consist of triples (S, n, V') with S a finite subset of Ob A, n € Ny and V(X,Y) C
A(X,Y) a collection of finite-dimensional cochain complexes for XY € S.

For X', Y' € S, wenow let V(X' Y') € A(X’,Y’) be the cochain complex generated
by strings of length at most 2! in elements of V. We now define Dsn,vy C D to be the
total complex of

M
X @ Xo + X @ VD (X, Xp) ® X,
Xp€eS X()JK}IES
- X @ VD (Xp, X1) @ VD (X, Xo) @ Xy
X07m7X2€S
e XPP VO (X, X1)®...0o VO(X, 1, X,) ® X,.
Xo,...Xn €S

This is indeed a complex because multiplication in A gives boundary maps
Ve-(X,Y) @ V-id(y,Z) — V—im(X,Z), and it is a subcoalgebra because
Vn=i=i) ¢ y(n=) Y (=3) The indexing set becomes a poset by saying (S,m,U) C
(T,n,V) whenever S C T, m <n and U C V. Thus we have a filtered colimit

D= lim Dy,
(S7n7v)

of the required form.
1.2.3. Tilting modules. Given w: A — pergy(k), define the tilting module P by P :=
D ® 4w € C(A°PP); this is cofibrant and has a natural quasi-isomorphism P — w. Also
set Q € C(A) by Q := w” ®4 D and set C := w" ®4 D ®4 w. Note that the natural
transformation id 4 — w ® w" makes C into a dg coalgebra over k:
C=w' I UuDR 4w —w' 4D 4D R4w
=w/ @AD @ idg @4 D Ryw
—w UADRpw R w @4 DR qw
=C®;C.
Likewise, P becomes a right C'-comodule and @ a left C-comodule.
Also note that because D is a cofibrant replacement for id 4, we have
C~w @hidgohw~w’ ohw.

For a chosen exhaustive system D = li iDZ- of an ind-compact coalgebra, we also
write Py :== D; @4 w, C; = w” @4 D; ®4w and Q; = w¥ ®4 D;. Each C; is a dg
coalgebra, with P; (resp. @;) a right (resp. left) Cj-comodule.
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Example 1.16. When D = CC(A, hopr ® h4), observe that
C=CCAwRw),
P=CC(A,hg®w),
Q = CC(A,w" ® hgorp),

so C'is just the dg coalgebra C,(A) of Definition 1.9.

1.2.4. Preduals.

Definition 1.17. Given M € Dy, (A), define the predual M’ € Cyq(A°PP) as follows.
For X € A, set X' = X°PP. Extend (=) to all cofibrant objects by first extending
to filtered colimits via lg M;) L A , then requiring that (—) preserves direct

summands.
L
Observe that when Vx is of finite rank,
M M
( XoV)= VY ® X°PP,
XeA XeA
Given any M € C(A°PP), we have
M M M
Mos( X@Vx)= M(X)® Vy = Hom gopo (Vi @ XPP M).
XeA XeA XeA
In general for K € C(A) compact and cofibrant, we have
]\/f ®A K = H0111.’40pp(]:(/7 ]\/1)
1.3. Monoidal categories. In order to recover the setting of [DMOS, Ch. II], we
now introduce monoidal structures. For the purposes of this subsection (A,X, 1) is a

monoidal dg category (with X: A®A — A a k-linear dg functor) and w: A — pery, (k)
a strong monoidal functor. This means that we have natural isomorphisms

wX)RwY)Zw(XKY), k=Zw(l)
compatible with the respective associativity transformations.
1.3.1. The Tannakian envelope.

Proposition 1.18. The monoidal structure endows the dg coalgebras C,,(A), NC,,(A)
of Proposition 1.10 with the natural structure of unital dg bialgebras. These are graded-
commutative whenever X and w are symmetric.

Proof. We first define a product * on
CC, (A wY @ w)
to be the map
(W(Xo)Y ® A(X0, X1)® ... @ A X1, Xm) @w(Xp))
® (W(X0)" © A(Xg, X1) ® ... @ A(Xp,_1, X,) @ w(X7,))
—(w(Xo R X)) @ A(Xy K XO,X1 RXD®...
DA X1 B X, X B X)) @ (X K X))

given by combining the monoidal structure maps A(X,Y) ® A(X',Y') - AX X
X' Y ®Y’) with the isomorphisms w(X) ® w(X') 2 w(X X X).
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This product is associative, and moreover commutative whenever X and w are sym-
metric. The unit for the product is given by

1®id"®1ck® A1,1)®" k=2 w(l)’ @ A(1,1)%" @ w(1).

Moreover, we have 9;(axb) = (0;a)x(9;b) and oj(a*xb) = (o;a)*(c;b). Thus CC,(A,w"®
w) is a commutative simplicial algebra in cochain complexes.

Observe that the comultiplication A: CC,, ., (A,w"Y ® w) — CC,,(A,w" ® w) ®
CC,,(A,w" ®w) is then an algebra morphism, since idxy Midyx = idygx'.

Now, the Eilenberg—Zilber shuffle product of [Qui, 1.4.2-3 ] applied to x gives an asso-
ciative multiplication on the cochain complexes C,,(A), NC,(.A), which is commutative
whenever * is so. (]

Remark 1.19. In the scenario considered in [DMOS, Ch. II], the tensor category was
rigid in the sense that it admitted strong duals, or equivalently internal Homs. Then
the Tannaka dual bialgebra HHy(A, w" & w) became a Hopf algebra.

If our dg category A has strong duals, then we may define an involution p on
CC,,(A,w"Y @ w) as the map

w(X0)¥ ® A(X0, X1) @ ... ® A(Xpm_1,Xm) @ w(Xp)
WXV 0 AXE, X )R 0 AXT, X)) @ w(XE)
given by functoriality A(X,Y) — A(Y™*, X*) of the dual functor X — X* and the
isomorphism w(X*) & w(X)Y, multiplied by (—1)™. This satisfies po 9; = d,_; 0 p and
poo;=0om—;op. Thus p descends to an involution on C,(A), NC,,(A).
The condition that p be an antipode on a bialgebra C' is that the diagrams

c -2 C(@C c -2, c0cC
ey Y (p®id) ey y (id®p)
Pty ¢ P —5

commute.

On the bialgebra moCC, (A, w" ®@ w), it turns out that p defines an antipode, making
the bialgebra into a Hopf algebra and recovering the construction of [DMOS, II.2].
However, the dg bialgebras C,(.A), NC,,(A) are far from being dg Hopf algebras.

This is easily seen by looking at

Y
CCH(A, WY @w)Y = End(wX).
XeA

The antipodal condition above reduces to saying that for all f € CCy(A,w" @ w)Y, we
require that w(ex)ofx+mx = fiow(ex), for ex: X*KX — 1 the duality transformation.
There are few dg categories A for which this holds, so p seldom makes CCy(A,w" @ w)
into a Hopf algebra. However, the condition above automatically holds for all Hochschild
0-cocycles, which is why moCC, (A, w" ® w) is a Hopf algebra.

In §3.4 we will see a context where a variant of the Hochschild complex does have a
suitable antipode, and hence the structure of a Hopf algebra.

1.3.2. The universal bialgebra. The monoidal structure X on A induces a monoidal
structure on A°PP, which we also denote by X. There is also a monoidal structure X2
on AP ® A, given by (X @ Y)X? (X'@Y’):= (XK X)® (Y RKY').
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Definition 1.20. Define the dg functor X: Dge(A) ® Dgg(A) — Dgg(A) by setting
hx W hy := hxgy for X,Y € A, then extending to direct summands of complexes
of representables by linearity. Define X: Dgo(A%PP) ® Dyg(A°PP) — Dge(A°PP) and
X?: Dyg(APP ® A) ® Dyg(APP @ A) — Dgg(APP ® A) similarly.

Definition 1.21. Define K, : Cqg(A) = Cyg(A ® A) by setting
(RM)X©Y)=MXKRY)

for X,Y € A.
Define X, : Cag(A°PP) — Cag(APP ® APP) and K?: Cyy(A°PPR.A) — Cag(APP R AR
A°PP ® A) similarly.

Remark 1.22. For S,T € Dgg(A) and M € C4g(A), note that we have a natural isomor-
phism
Homcdg(A) (S X T, M) = Homcdg(A®A) (S Rk T, g*M)
This isomorphism is tautological when S = hyx,T = hy for X,Y € A, noting that
hxey (U@ V) =AX,U) @, A(Y,V) = hx ® hy.

The general case follows by passing to extensions and direct summands.
The same observation holds for any monoidal dg category, and hence to (A°PP, X))
and (A°PP ® A, X?).

Lemma 1.23. The unit id4 € C(A ® A°PP) is equipped with a canonical associative
multiplication

id g @ idg — X2idy,
which is commutative whenever X is symmetric. The unit for this multiplication is
idy € A(1,1) = id4(1,1) = 12%,
for 12: Cag(k) — Cag(A°PP @ A).
Proof. Evaluated at X @ Y @ X' @ Y’ € A® A°PP @ A ® A°PP, this is just the map
AX,)Y) 2, AXY) - AXK X' Y XY
induced by the bilinearity of X. O

Definition 1.24. We say that a universal coalgebra D (in the sense of §1.2.2) is a
universal bialgebra with respect to X if is equipped with an associative multiplication
D ®;, D — K?D and unit £ — D(1,1). These are required to be compatible with the
coalgebra structure, in the sense that the comultiplication and co-unit

D—->D®sD D—idy

must be morphisms of associative unital X?-algebras.
When X is symmetric, we say that D is a universal commutative bialgebra if the
multiplication D ®; D — X2D is commutative.

Remark 1.25. Since universal coalgebras are required to be objects of Dye (AP ® A),
we may apply Remark 1.22 to rephrase the algebra structure on D to be an associative
multiplication D X? D — D and a unit 1 ® 1 — D.
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Example 1.26. Under the conditions of Example 1.15 (e.g. when k is a field), the
Hochschild complexes

CC(A, hgorr @ hg) NCC(A, hgorr @ h)

associated to the Yoneda embedding h gore @h 4: APPRA — Cyq(APP®.A) are universal
bialgebras, commutative whenever X is symmetric.

The coalgebra structure is given in Example 1.15, and the multiplication and unit
are given by the formulae of Proposition 1.18.

Lemma 1.27. Given a universal bialgebra D and a strong monoidal dg functor w, the
dg coalgebra C' := w" @4 D ®4 w becomes a unital associative dg bialgebra, which is
commutative whenever D is commutative and w symmetric.

Proof. Since w,w" are strong monoidal functors, we have an isomorphism
W' @4 (DRED)@qw = (W @D @gw) D (WY 4D Rqw),
so the multiplication D X2 D — D gives C ®;, C — C'. Likewise,
w A1) w=w'(1)®wl) =k,

so the unit gives k — C. Compatibility of the algebra and coalgebra structures follows
from the corresponding results for D. O

Remark 1.28. When A is a neutral Tannakian category, taking duals gives an equiv-
alence A°P? ~ A. Then idgy € C(A°®® ® A) corresponds to the ring of functions
on Deligne’s fundamental groupoid G(A) € C(A ® A)°PP from [Dell, 6.13]. Since
id4 = H°(D), we thus think of D as being the ring of functions on the path space
of A.

1.3.3. Tilting modules.

Lemma 1.29. Given a universal bialgebra D and a strong monoidal dg functor w, the
tilting module P := D ® 4 w becomes a monoid in Dy, (A°PP) with respect to X, which
is commutative whenever D is commutative and w symmetric.

Moreover, the co-action P — P ®; C of §1.2.3 is an algebra morphism in the sense
that the diagram

PRP—/P®,C)R(P®;C)=—=(PXP)®; (Cx0)
il ]
P AP ®y, C)

commutes, where the horizontal maps are co-action and the vertical maps are multipli-
cation.

Proof. Since w is a strong monoidal functor, we have an isomorphism
(DK? D) @40 2= (D @4w) B (D R4w),

which gives the required multiplication, with existence of the unit coming from the
isomorphism (1 ® 1) ® 4w = 1 @ w(l) = 1.

The final statement follows from compatibility of the algebra and coalgebra structures
for D. O
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2. COMODULES

From now on, k& will be a field. Throughout this section, we will fix a small k-
linear dg category A, a k-linear dg functor w: A — perg,(k), and a universal coalgebra
D € Dyg(A°PP®.A) in the sense of §1.2.2. We write C' := w’ @4 D® qw and P := D® qw
for the associated dg coalgebra and tilting module.

2.1. The Quillen adjunction.

2.1.1. Model structure on dg comodules.

Definition 2.1. Let C4.(C) be the dg category of right C-comodules in cochain com-
plexes over k. Write C(C) for the underlying category Z%Cay(C) of right C-comodules
in cochain complexes, and D(C) for the homotopy category given by formally inverting
quasi-isomorphisms.

Proposition 2.2. Thereisa closed model structure on C(C') in which weak equivalences
are quasi-isomorphisms and cofibrations are injections. Fibrations are surjections with
kernel K such that

(1) the graded module K# underlying K is injective as a comodule over the graded
ooalgebra C# underlying C, and
(2) for all acyclic N, Hom(N, K) is acyclic.

Proof. This is described in [Pos, Remark 8.2], as the model structure “of the first kind”.
For ease of reference, we summarise the arguments here.

As in [Pos, Theorem 8.1], the lifting properties follow from the statement that
Hom(E,I) ~ 0 whenever [ is fibrant and either E or [ is acyclic. For E, this is tau-
tologous. For I, note that the identity morphism in Hom (7, I) is then a coboundary,
so we have a contracting homotopy h with [d, h] = id, implying that Hom,(E,I) ~ 0
for all F.

To establish factorisation, we first observe that we can embed any comodule M into
a quasi-isomorphic C*-injective CRAmodule using a bar resolution

M @ C9" [ —n).
n>0

Fibrant replacement then follows from a triangulated argument, [Pos, Lemma 1.3]. The
key step is given in [Pos, Lemma 5.5], where Brown representability gives a right adjoint
to the functor from the coderived category to the derived category. O

Remark 2.3. We might sometimes wish to consider multiple fibre functors. Given a
set {wy }zex of fibre functors, we can consider the coalgebroid C' on objects X given
by C(z,y) := wy ®4 D ® 4 wy, with comultiplication C(z,y) — C(x,z) ®; C(z,y) and
counit C'(z,x) — k defined by the usual formulae.

There is also a category C(C) of right C-comodules in cochain complexes, with such
a comodule M consisting of cochain complexes M (z) for each x € X, together with a
distributive action M(y) — M(z) ® C(x,y). The proof of Proposition 2.2 then adapts
to give a closed model structure on the category C(C), noting that bar resolutions

Yy M(x0) @ C(z0,21) ® ... Q C(xn_1,2pn) ® C(Tn,y)[—n]
reXnt+l

still exist in this setting.



14 J.P.PRIDHAM

Definition 2.4. Given a left C'-comodule M and a right C-comodule N, set the cotensor
product N ®° M to be kernel of the map

(un @ idpy —idy @ par): N @ M — N @ C @y, M,
where p denotes the C-coaction. Note that this is denoted by N [l¢ M in [Pos].

2.1.2. The Quillen adjunction.

Lemma 2.5. The adjunction

—®a P /

C(A)o LT C(O)
}IO—mC (Pv_)

is a Quillen adjunction.
Proof. It suffices to show that —® 4 P sends (trivial) generating cofibrations to (trivial)
cofibrations. Generating cofibrations are of the form X ®; U — X ®; V for X € A and
U < V finite-dimensional cochain complexes. Now, (X ®; U)®4 P = U ®; P(X), and
®pP(X) preserves both injections and quasi-isomorphisms. O
Definition 2.6. Denote the co-unit of the Quillen adjunction by

en: Homo(P,N)®4 P — N.

2.1.3. The retraction. From now on, we assume that our chosen ® 4-coalgebra D is
ind-compact.

Proposition 2.7. The counit

en: RHomy(P,N) @4 P — N
of the derived adjunction (— ®4 P) 4 RHom (P, —) is an isomorphism in the derived
category D(C') for all N.

Proof. For any C-comodule N, we have the following isomorphisms

Hom(P,N) ®4 P =Hom~(P,N) ®4 (h_IT§ P;)
i

= lim(Home (P, N) ®.4 P;)

(2

 Jing Hom (F/, Hom, (P, N)

= li_I'>nHOch(.PZ‘/ XA PaN)7

where P/ is the predual of P;, as in Definition 1.17.
The co-unit ey induces C-comodule morphisms
Home (P ®4 P,N) = Hom(P,N) @4 P; = N
for all 4, and hence Cj-comodule morphisms
Hom (P ©4 P,N) = N ¢ C;.

Now, since C; is finite-dimensional, we have N ®° C; = Hom(C)Y, N), so ¢ induces
C-bicomodule morphisms
a;: CY — Pl @4 P,
compatible with the transition maps C; — C}, P; — P;.
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As P/ is cofibrant, the quasi-isomorphism P — w induces a quasi-isomorphism
Bi: Pl®@a P — P/ @aw = C} of cochain complexes. Now, «; is equivalent to the
coaction map P, — P; ® C; — P ® C;, so 5; o a; is equivalent to the coaction map
P, — w @y, C;. This is equivalent to the isomorphism P! ® 4 w = CY, so ; o ; is the
identity.
Therefore the «; are all quasi-isomorphisms, so for IV fibrant, the map
Hom (P, N) ©4 P, — N ®“ C;

is a quasi-isomorphism. Since filtered colimits commute with finite limits, this gives a
quasi-isomorphism

Hom (P, N) @4 P = liy Hom¢,(P, N) @4 P;
i
— th ®C C;
= N @ (lim C;)

= N&°C=N.
O

2.2. Tannakian comparison. We now show how for our chosen ind-compact universal
coalgebra D € Dyg(APP ® A) and dg functor w: A — perg,(k), the tilting module
P =D ®4 w can give rise to a comparison between the derived category of A-modules
and the derived category of comodules of C = w"® 4 D® 4w. This is analogous to derived
Morita theory (comparing two derived categories of modules) or Morita—Takeuchi theory
(comparing two derived categories of comodules).

Definition 2.8. Write kerw for the full dg subcategory of Dy, (.A) consisting of objects
X with w(X) := w®4 X quasi-isomorphic to 0.

Recall from [Dri, §12.6] that the right orthogonal complement (kerw)t C Dgq(.A)

is the full dg subcategory consisting of those X for which Hom jopp (M, X) >~ 0 for all
M € ker w.
Theorem 2.9. For the constructions of C' ~ wv®iw and the tilting module P above, the
derived adjunction (— ® 4 P) 1 RHom (P, —) gives rise to a quasi-equivalence between
the dg categories (ker w)’ and Dy, (C). Moreover, the map (ker w)t — Dyg(A)/ (ker w)
to the dg quotient is a quasi-equivalence.

Proof. Functorial cofibrant and fibrant replacement give us composite dg functors
Hom (P,—) a P

U: Ddg(C) < Cdg(.A) — Ddg(A) and F': 'Ddg(.A) A—> Cdg(C) — Ddg(C),
and these will yield the quasi-equivalence.

First observe that for K € ker w, we have quasi-isomorphisms

K®agP~wK)~0

of cochain complexes, since P is a resolution of w and K is cofibrant.

For any N € Dgg(C'), Proposition 2.7 gives that the counit

eny: Homo(P,N)®4 P — N
of the adjunction (— ®4 P) 4 Hom (P, —) is a quasi-isomorphism. Thus for any K €
ker w, we have
RHom 4 (K, RHomq(P,N)) ~ RHomq(K ® 4 P, N) ~ RHom(0, N) ~ 0,
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so UN (the cofibrant replacement of RHom (P, N)) lies in (kerw)™.

Thus F provides a retraction of (ker w)! onto Dyg(C), and in particular U: Dag(C) —
(ker w)* is a full and faithful dg functor.

For any M € Dgy(A), we now consider the unit

nv: M — RHomy (P, M ®4 P) = Homq (P, FM)

of the adjunction. On applying ® 4P, this becomes a quasi-isomorphism, with quasi-
inverse €pg, P, SO W ®£‘l (nar) is a quasi-isomorphism. Since M is cofibrant, the map
Ny lifts to a map
mv: M —UFM
of cofibrant objects, with
cone(fyr) € kerw,  i.e. Fcone(fyr) =~ 0.

The dg subcategory ker w is thus right admissible in the sense of [Dri, §12.6], because

we have the morphism
M ™ UFM
for all M € Dgg(A), with UFM € (kerw)’ and cocone(7jys) € ker w.

In particular, this implies that if M € (ker w)*, the map fja;: M — UFM is a quasi-
isomorphism, so U: Dgg(C) — (kerw)! is essentially surjective and hence a quasi-
equivalence.

As observed in [Dri, §12.6], the results of [BK1, §1] and [Ver, §1.2.6] show that right
admissibility is equivalent to saying that (kerw)! — Dyg(A)/(ker w) is an equivalence.

O

Remark 2.10. Note that Theorem 2.9 implies that for any choices D, D’ of ind-compact
®_4-coalgebra resolution of id 4, the associated coalgebras C, C” are derived Morita equiv-
alent. Given a quasi-isomorphism D — D', we then have a derived Morita equivalence
C — C', which is a fortiori a quasi-isomorphism.

It might therefore seem curious that D — idy4 is only required to be a quasi-
isomorphism. However, any quasi-isomorphism to the trivial coalgebra id 4 is auto-
matically a Morita equivalence. The reason for this is that fibrant replacement in the
category of D-comodules is given by the coaction M — M ® D, so the forgetful functor
from D-comodules to id 4-comodules is a quasi-equivalence.

Remark 2.11. In [Ayo3], Ayoub establishes a weak Tannaka duality result for any
monoidal functor f: M — £ of monoidal categories equipped with a (non-monoidal)
right adjoint g. He sets H := fg(1), shows (Theorem 1.21) that H has the natural
structure of a biunital bialgebra, and then (Propositions 1.28 and 1.55) proves that f
factors through the category of H-comodules, and that H is universal with this property.

We may compare this with our setting by taking M = D(A) and & = D(k), the
derived categories of A and k. In this case, Ayoub’s formula for the coalgebra underlying
H is defined provided A and f are k-linear, without requiring that D(.A) be monoidal.

We can take f to be ®Lw, which has right adjoint RHom,(w, —) (with the same
reasoning as Lemma 2.5). Thus

H ~ RHom, (w, k) @4 w = w" ok w,

which is the image in D(k) of our dg coalgebra C' € Cqq (k).
The reason our duality results in Theorem 2.9 gives a comparison rather than just
universality is that we use the dg category of C-comodules in Cqq (k). Instead, [Ayo3] just
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looks at C-comodules in the derived category D(k) — in other words, (weak) homotopy
comodules without higher coherence data.

2.3. Tannakian equivalence. When w is faithful, we now have statements about the
enhanced idempotent-complete triangulated envelope perdg(.A) of A, and its closure
Dyg(A) = ind(pery,(A)) under filtered colimits.

Corollary 2.12. Assume that w: Dgg(A) — Cyg(k) is faithful in the sense that ker w
is the category of acyclic .A-modules, and take the tilting module P and dg coalgebra
C ~ w¥ @4 w as above. Then the derived adjunction (— ®4 P) 4 RHom (P, —) of
Theorem 2.9 gives rise to a quasi-equivalence between the dg categories Dy, (.A) and
Dqe (C).

I%/Ioreover, the enhanced idempotent-complete triangulated category perg,(A) gener-
ated by A is quasi-equivalent to the full dg subcategory of Dye(C)cpr C Dy (C) ON 0Ob-
jects which are compact in D(C). If A is Morita fibrant, this gives a quasi-equivalence
A~ Dyg (C)cpt-

Proof. Since kerw consists only of acyclic modules, (kerw)t = Dgg(A), and we apply
Theorem 2.9. For the second part, note that the quasi-equivalence —®4 P: Dgg(A) —
Dgg(C) preserves filtered colimits, so — ®4 P: D(A) — D(C) preserves and reflects
compact objects. Since Hoperdg(/l) C D(A) is the full subcategory on compact objects,
the same must be true of its image in D(C). Finally, if A is Morita fibrant, then
A — perg,y (A) is a quasi-equivalence. O

Example 2.13. Let A = k[e] with €2 = 0 (the dual numbers), and let w be the A-module
k = kle]/e. This is faithful because for any cofibrant complex M of A-modules, we have
w(M) = M/eM, and a short exact sequence

0— w(M)S M — w(M) 0.
A model for the cofibrant dg ® 4-coalgebra D in A-bimodules is given by
D™"=A® (k&) ® A
for n > 0, with comultiplication given by

Ala® &, @b) = aR&ERIRERbE AR (k) @ A® (k) ® A,
i+j=n

and counit a ® £y ® b — ab € A. The differential is determined by
dlIR&ER1)=(e®HR1) — (1R ®«).

We therefore get C' := k ®4 D ®4 k = k(), the free dg coalgebra on generator
& = & in degree —1, with d§¢ = 0. The tilting module P is given by A(), with left
multiplication by A, right comultiplication by C, and d¢ = e.

Thus the dg category of cofibrant A-modules is equivalent to the dg category of fibrant
k(&)-comodules. Contrast this with [Kell, Example 2.5], which uses the tilting module
P to give a derived Morita equivalence between the category of all finitely generated
A-modules and the dg category of perfect k(£)Y-modules.

Remark 2.14. If we have a finite set {w,: A — pergy(k)}zex of fibre functors, we can
form a dg coalgebroid on objects X by C(z,y) = w; @4 D @4 wr and then Theorem

2.9 adapts to give an equivalence between dg C-comodules and ( .y ker w,) T, using
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Remark 2.3. When the w, are jointly faithful, Corollary 2.12 will thus adapt to give a
quasi-equivalence between Dgq(A) and Dgg(C).

Beware that if we had infinitely many fibre functors, the proof of Theorem 2.9 would
no longer adapt, because the expression N ®° C; in the proof of Proposition 2.7 would
then be an infinite limit.

This also raises the question of a generalisation to faithful fibre functors w: A — C
to more general categories. The obvious level of generality would replace pery, (k)
with some rigid tensor category C over k. In order to proceed further, we would need
an extension of Theorem 2.9 to deal with C-coalgebras. In particular, generalisations
would be required of the relevant model structures on comodules in [Pos].

2.4. Example: motives. Our main motivating example comes from the derived cate-
gory of motives.

As explained in [Ayo2, §3], there is a projective model structure on the category
M of symmetric T-spectra in presheaves of k-linear complexes on the category Sm/S
of smooth S-schemes. By [Ayol, Definitions 4.3.6 et 4.5.18], this has a left Bousfield
localisation M1, the projective (Al, ét)-local model structure, whose homotopy cat-
egory is Voevodsky’s triangulated category of motives over S whenever S is normal.
These model categories are defined in terms of cochain complexes, so have the natural
structure of dg model categories.

Write Mag, Mgg a1 for the full dg subcategories on fibrant cofibrant objects — this
ensures that Ho(M) ~ H° Mg, and similarly for Ma1. Take Mgg ¢, Myg a1 . to be the
full subcategories of Mgqg, Mgz a1 on homotopically compact objects.

A choice of Weil cohomology theory over S then gives a dg functor E from M" dg A1
to cohomologically finite complexes. Remark 1.8 allows us to replace this with a dg
functor

E: MZ??AI,C — pergg (k)

for some cofibrant replacement Mdg,Al,c of Mggatic, and we can then form the dg

coalgebra C := Cp, (Mdg7A17c).
Theorem 2.9 then gives a quasi-equivalence

Dag(C) = Mag a1/ (ker E)

between the dg category of C'-comodules and the dg enhancement of the triangulated
category of motives modulo homologically acyclic motives. If £’ is the composition of
E with the derived localisation functor Mdgc — Mdg’Al,m and C" == Cpv (./\/ldg ¢) this
also gives

Dag(C) = Mag/(ker E) =~ Dyg(C").

One consequence of the existence of a motivic t-structure over S would be that
Mg a1 lies in the right orthogonal complement (ker E)*, in which case Mg a1, would
be quasi-equivalent to a full dg subcategory of Dgs(C).

These constructions can all be varied by replacing M with the category M of
presheaves of k-linear complexes on Sm/S with its projective model structure. This
has a left Bousfield localisation M1, by [Ayol, Definition 4.4.33], and the homotopy
category of ./\/le 1 is Voevodsky’s triangulated category of effective motives when S is
normal, as in [Ayo2 Appendix B]. We now get a dg coalgebra C°f := C~ v (Meff
with

dg,Al.c )

Dag (C) = MG a1/ (ker E) =~ M3/ (ker E').
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A set of compact generators of Mﬁfé is given by the set of presheaves k(X)) for smooth
S-varieties X. 1If G is the full subcategory on these generators and E’ has finite-
dimensional values on G, then we get a Morita equivalence between C and Cg (G).
Note that thelvllatter is just given by the total complex of

n F'(X0) ® k(Xo(X1) x X1(X2) x ... x X 1(Xp)) @ E'(X,,)Y,
Xo,...Xn

with differentials as in Definition 1.9, where X (Y') = Homg(Y, X).

Example 2.15 (Ayoub’s motivic Galois group). We now compare this with Ayoub’s
construction of a motivic Galois group from [Ayo3, §2]. For a number field F, he
applies his Tannaka duality construction to the Betti realisation functor
Ho(E)": HMy, a1(F,Q) — D(Q)

associated to an embedding o: F — C, giving a Hopf algebra Hmot(F,0) € D(Q).
Replacing Mg, a1 (F, Q) with /\/lzg a1 (F, Q) gives a bialgebra HST (F, o) € D(Q).

From Remark 2.11, it follows that Humet(F, o) and HEX, (F, o) are just the homotopy
classes of our dg coalgebras C, C*f above, equipped with their natural multiplications
in the homotopy category coming from the monoidal structure of Ho(FE).

We now introduce alternative simplifications of the dg coalgebra in special cases.

Remark 2.16. When S is the spectrum of a field, the comparison of [Ayo2, Appendix B]
combines with the results of [VSF] to show that a set of generators of Mg, a1 is given
by the motives of the form M (X)(r) for X smooth and projective over S, and r € Z.
Thus the set of motives of the form My, (X)) := My(X)(r)[2r] is another generating set.
For X of dimension d over S, the dual of My, (X)) is M}, 4—,(X), so this set of generators
is closed under duals, and

Mdg,Al (Mk,r (X)7 Mk,S(Y)) = Mdg,Al (Mk(S)7 Mk,d+5—7‘ (X Xs Y))
When S is the spectrum of a perfect field, this implies that
H Mas (My (X)), M o(Y)) = CH (X x5 Y, —i) @z k,

so these generators have no positive Ext groups between them, and we can replace the
full dg category on these generators with its good truncation B in non-positive degrees,
given by
B(]\/[k,r(X)a Mk,s (Y)) = 7—Soj\/ldg,Al (Mk?,T(X)? Mk,s (Y))v
we then have Dyg(B) >~ Mg, a1-
The Weil cohomology theory E when restricted to B thus admits a good truncation
filtration, whose associated graded is quasi-isomorphic to

H*E: HBPP — Cyq(k);

think of this as a formal Weil cohomology theory. Note that this is a strong monoidal
functor determined by the Chern character CH*(Y) — H2(Y, E(s)).

Since H*F is finite-dimensional, we can then form the dg coalgebra Cy- g(B), without
needing to take a cofibrant replacement of B. Explicitly, this is given by the total
complex of

n H"#210(Xo, B(ro)) @ B(Miry (Xo), M (X1)) @k .

X0, Xn 70504570

o B(Mk,rn- 1(Xn—1)a Mk,rn (Xn)) Ok H*+27'n (Xm E(rn))vv
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with differentials as in Definition 1.9. We then have
Dyg(Cu+£(B)) ~ Dag(B)/ ker H* E >~ Dy (B)/ ker E =~ Mgy a1/ ker E.

Remark 2.17. If we write Z(X,e) for the k-linearisation of Bloch’s cycle complex as in
[Blo], then we can follow [Han] in defining Z(X x Y,e)®Z(Y x Z,e) C Z(X x Y, e) ®
Z(Y x Z,e) to be the quasi-isomorphic subcomplex of cycles intersecting transversely.
We then have a bicomplex

M
n— H*t210 (X, E(ro)) @5 2201770 (X x X1, —%)& ...

- _®Zdn- 1+7rn —7Tn- 1(Xn_1 X X, _*) Q% H* 2 (XnaE(Tn))vv

for X; of dimension d;, and with differentials as in Definition 1.9.
This gives a dg coalgebra, which should be Morita equivalent to the dg coalgebra
CH*E(B) of Remark 2.16.

2.5. Monoidal comparisons. We now consider the case where (A,X) is a monoidal
dg category and w: A — perg,(k) a strong monoidal functor. We also assume that D
is a universal bialgebra in the sense of §1.3.2.

Note that since C' is a dg bialgebra by Lemma 1.27, the dg category Cqe(C) has a
monoidal structure ®;,, where the coaction on N ® N’ is the composition

NN - (NeC)e(N'eO)Z(NeN)e(CeC) = (NeN)aC
of the co-actions with the multiplication on C.
Lemma 2.18. For M, M’ € Dgy(A) and N, N’ € Dq,(A°PP), there is a natural trans-

formation
(M @A N)®, (M'@4N')— (MR M) ®4(NXN.

Proof. When M, M’ = hx,hy and N, N’ = hy, by for X, X" YY" € A, this is just the
map
AX,)Y) 2 AX)Y) - AX KX Y XY
given by the bilinearity of X. This extends uniquely to extensions and direct summands.
0

Proposition 2.19. The functor (—®4 P): Dgg(A) — Cq(C) is lax monoidal, with the
transformations

(M @4 P)@ (M @4 P)— (MXM)®4P
being quasi-isomor phisms.
Proof. Lemma 2.18 gives the required transformations
(M @4 P)@, (M @4P)— (MRXM)®24(PRP)— (MXM)®y4P.

The quasi-isomorphism P — w then maps these transformations quasi-isomorphically
to

(M @4w) @, (M @4w) = (MKRM) 4w,
i.e.
wW(M) @k w(M) — w(M X M),

which is an isomorphism because w is required to be a strong monoidal functor. O
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Example 2.20 (Motives). The model category M of k-linear presheaves from §2.4
is monoidal, as is its localisation szf. However, the tensor product does not pre-
serve fibrant objects, so the dg categories Mﬁg,/\/lﬁgy a1 are not monoidal. [At best,
they are multicategories (a.k.a. coloured operads), with HO—mMig (X1,..., X3 Y) =

Hom e (X1 ® ... ® X,,;Y) ]

However, if we take the dg category Mfg of cofibrant objects in M, with MeE

dg,c
the full subcategory of compact objects, then MdgeH7Mgg . are the dg quotients of

Mgfgf' , Mﬁfgf:C by the class of weak equivalences in M, and Mfg , Mﬁg:c are monoidal
dg categories. A Weil cohomology theory then gives a contravariant monoidal dg functor
FE from Mgfé to cohomologically finite complexes.

Since symmetric monoidal dg categories do not form a model category, we cannot then
mimic the construction of §2.4 and replace £ with a monoidal functor from a cofibrant
replacement of Mfiﬁ to finite-dimensional complexes. However, we can apply Propo-
sition 2.19 if we can find a Weil cohomology theory taking values in finite-dimensional
complexes. ,

Objects of ./\/lflfgf are formal k-linear complexes of smooth varieties over S. When
S is a field admitting resolution of singularities, we can instead consider the model
category N of presheaves on the category of pairs j: U — X, where X is smooth and
projective over S, with U the complement of a normal crossings divisor. Then for any
Weil cohomology theory E, there is an as:i‘\h)ciated formal theory

Ef(j U_>X) = ( Ha(X7ij*EU7d2)7
a,b
where dy is the differential on the second page of the Leray spectral sequence. Alterna-
tively, this can be rewritten (as in [Del2, 3.2.4]) in terms of H*(D® F(—b)) and Gysin
maps, where D™ consists of local disjoint unions of n-fold intersections in D.

The constructions above all adapt from M to N, and the restriction of Ey to Ngg;

takes values in finite-dimensional complexes, so we have a dg bialgebra C' := C, (N O‘fg o)
and Proposition 2.19 gives a monoidal functor

NEE = Cag(O),

inducing an equivalence A/ jg’ /ker E ~ Dg,(C). With some work (see Appendix A.1.3),

it follows that A/ (‘fg /ker B ~ ./\/lgg/ ker E. This gives a strong compatibility result for
the comparisons of §2.4 with respect to the monoidal structures.

3. DENSE SUBCATEGORIES AND SEMISIMPLICITY

The beauty of Theorem 2.9 is that it describes the derived category D(A), so is
invariant under Morita equivalences. In particular, for any derived Morita equivalence
B — A, we have a quasi-equivalence Dgg(B) — Dgg(A). This becomes particularly
important when we can choose a dg category B for which the category Z°B is semisimple,
since the representing coalgebra then admits a particularly simple description.

In Remark 2.10, it was observed that different choices of universal coalgebra will give
dg coalgebras which are derived Morita equivalent. A quasi-isomorphism C — C’ of
dg coalgebras need not be a derived Morita equivalence, in general. However, for the
Tannakian dg coalgebras constructed in this section, quasi-isomorphisms will be derived
Morita equivalences (see §3.2 below).
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3.1. Non-negatively graded dg categories.

Definition 3.1. Let DGZCo, Alg denote the category of dg k-coalgebras C' in non-
negative cochain degrees, satisfying the additional property that the map H'C — C
of coalgebras is ind-conilpotent. This means that we can write C' as a nested union
C = li_n>1a C,, of dg coalgebras with H'C = H°C,, for all a and C,/H°C conilpotent in
the sense that the comultiplication

C,/H°C — (C,/HOC)®™
is 0 for some m > 2.

For any C € DGZ"Co,Alg;, the maximal cosemisimple subcoalgebra ([Pos, 4.3])
Creq = (H°C)1eq € HOC thus gives an ind-conilpotent map Creq — C. Since Cheq is
cosemisimple, the ind-conilpotent morphism Ci.q — Cjy admits a retraction, so C is
of the form C = Cioq @ N, for N an ind-conilpotent dg coalgebra with a compatible
Cleq-bicomodule structure.

Proposition 3.2. Take a k-linear dg category A with A(X,Y) concentrated in non-
negative degress, d.A°(X,Y) = 0 for all X,Y, and with A" a semisimple abelian category.
Assume that we have a k-linear functor w: A% — FDVect;,. Then there is a model for
the coalgebra C' ~ w ®Y4 w of §1.2.3 with C € DG=°Co, Alg;.

Proof. Fori: A° < A, we set D to be the direct sum total complex NCC(A/A?,i°PP @
i) of the normalisation NCCe(A/A% PP @ i) of the simplicial cochain complex
CCy(A/ A, i°PP @ i) given by

CC, (A/A%iPP @ i) := A(—, =) @ 40 T4(_’ —) ® 40 (s @ 40 A(—, —g @ 0 A(—, —).

Equivalently, NCCq(A/ A", i°P ® 1) is the total complex of
n— A(_7 _) ® 40 IA>O(_7 _) @ 40 {7 & A0 A>O(_) _? ®.A0'A(_7 _)‘

n

The comultiplication and counit are given by the formulae of Proposition 1.10, so
we need only show that the counit D — id4 is a quasi-isomorphism and that D is a
cofibrant module.

The identity idx € A(X, X) gives a contracting homotopy of the complex D(X,Y) —
A(X,Y), which ensures that the counit is a quasi-isomorphism. To see that D is cofi-

brant, we just note that
“’4(_7 ZX) Rk IA>O(_, _) @ 40 {7 @ 40 "4>0(_7 _? ®kA(ZY7 _)

n

is a cofibrant module for all X,Y € A° and that semisimplicity of A° ensures that
taking A%-coinvariants is an exact functor, so preserves cofibrancy.
Now, observe that C := wY ® 4 D ®4 w is the direct sum total complex of
n—w’ & 40 IA>O(—, —) ® 40 (7 & g0 .A>O(—, —? & qow,

n

which has no negative terms, since w is concentrated in degree 0 and (A>°)®" in degrees
> n.
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Finally, observe that the morphism w" ® 40 w — C' is an ind-conilpotent extension
(cofiltering by copowers of w¥ ® 40 A”° ® 40 w) and that w" ® 40 w C H°C, so the
morphism HYC' — C' is necessarily also conilpotent. O

Remark 3.3. Lilge the construction of Example 1.13, the universal bialgebra above can
be written as a Cech nerve. Set L := A(—,—) ® 40 A(—, —), which is a ® 4-coalgebra in
Cag(APP @ A). We then have
COL(A/A% I @) = [ @Al &y Dak
n+1

giving the Cech nerve of the ® 4-comonoid L.

Remark 3.4. If k is algebraically closed, then the complex CC4(A/A°,i°PP ® i) admits
a simpler description. Let {V,}, be a set of irreducible objects of .A°, with one in each
isomorphism class. Since k is algebraically closed, End 40 (V,,) = k, and we get

CC, (A/AY PP @ ) =
_IW( / )
.A(—, Vao) Xk A(Vaov Val) Rk - O -A(Van— 19 Van ) Xk A(Van 5 _)-

aQ;---;%n
Writing As C A for the full dg subcategory on objects {V, }4, this gives an isomor-
phism
CCy(As,i%P ® i) = CCo(A/ A%, i%P @ 1i).
Thus the quasi-isomorphism between CC,(A/ A%, i%PP ® i) — CCq(A, hgorr @ hy) is a
consequence of the derived Morita equivalence A; — A.

Corollary 3.5. Take a k-linear dg category A with A(X,Y) concentrated in non-
negative degrees, and H. A a semisimple abelian category. Assume that we have a k-
linear functor w: A° — FDVect. Then thereis a dg coalgebra C € DG=°Co, Alg;, with
C ~ w” ®Y w, together with quasi-equivalences Dy, (A)/ (ker w) ~ (ker w)® ~ Dyq(C).

Proof. Consider the morphism d: A°(—, —) — A!(—, —) of H’ A-bimodules. Since H° A
is semisimple, there exists a HY. A-bimodule decomposition

Al(_7 _) = dAO(_7 _) @ Bl(_7 _)'
We may therefore define a dg subcate%j)ry B C A by
O An(_v_) n#o/l
B'(—,—):=_ BY(—,-) n=
HOA(—,-) n=0.
Then B — A is a quasi-equivalence, and B satisfies the conditions of Proposition 3.2,

giving a dg coalgebra C concentrated in non-negative degrees. We then apply Theorem
2.9. O

Definition 3.6. For a dg coalgebra C € DGZ"Co,Alg,, , define D;{g(C) C Dy (C) to
be the full dg subcategory on cochain complexes V for which H*(V') is bounded below.
Write D¥(C) := H'Dg,(C)

For a k-linear dg category A with A(X,Y) concentrated in non-negative degrees,
define g'g(A) C Dgg(A) to be the full dg subcategory consisting of functors F for

which — v , H*F(X) is bounded below. Write D (A) := HODIg(A).
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Proposition 3.7. Under the conditions of Corollary 3.5, if the functor w: HA —
FDVecty, is faithful, then we have a quasi-equivalence ng(A) ~ Dj{g(C).

Proof. We first replace A with the dg category B from the proof of Corollary 3.5, so
BY = H°B. Since w is additive and B° semisimple, it follows that w|zo is exact, and
hence represented by some T € ind((B°)°PP), with w|ge = — ®@po T'. We may write T
as a filtered colimit T' = li_nnga for T,, € (B°)°PP, and because B° is abelian we may
assume that each T}, is a subobject of T". Since B° is semisimple, this means that 7}, is
a direct summand of T'.

Because w|po is faithful, it follows that the set {T, }, generates B°. Now, the functor
w: Dag(B) = Cag is (— @ BY(—, —) ®po T, so if w(M) ~ 0 then

M @5 B°(—,T,) = M @5 B (=, —)(T,) ~0
for all a (T, being a direct summand of T'). Since {7y}, generates B°, it follows that
M ®@pB°(—, —)(X) =~ 0 for all objects X € B, which is precisely the same as saying that
M ®p B(—,—) ~0.

For the natural projection m: B — B°, this says that 7*M =~ 0; for any B’-module
N, we then have Homg(M,m.N) ~ 0, so any complex quasi-isomorphic to m, N lies
in (kerw)®. Since (kerw)" is closed under extensions and homotopy limits, and any
Re D:{g(B) can be recovered from the B’-modules H'R via these operations, it follows

that R € (kerw)™’.

Thus Corollary 3.5 shows that the functor — ®p P gives a quasi-equivalence from
D(;;(B) to a full dg subcategory of D(Tg(C’ ). It remains to show that for any N € D;“g(C )
we have Hom~(P, N) € D;g(B); without loss of generality we may assume H<'N = 0.
NOW, Y Y

Hom (P, N)(X) =  Homq(X ®p P, N),
XeB
and H*(X ®p P) = H*(wX), which is concentrated in degree 0. By applying the cobar
resolution in the proof of [Pos, Theorem 4.4] to 729N, it follows that that N is quasi-
isomorphic to a C-comodule N’ concentrated in non-negative degrees and fibrant in
the coderived model structure. Then [Pos, Theorem 4.3.1] implies that Hom(—, N) ~
HO—mC (_? N /)7 50

Hom (X ®5 P,N) ~ Hom(H(X @3 P), N'),
which is concentrated in non-negative degrees. O

Definition 3.8. For any dg coalgebra C', define D (C) to be the full dg subcategory

of C4e(C) on objects K for which the graded module K # underlying K is injective as a
comodule over the graded coalgebra C# underlying C.

Note that from the properties of the model structure of [Pos, Theorem 8.2], the
homotopy category HOD(C{;(C) is equivalent to Positselski’s coderived category D (C).
Weak equivalences with respect to this model structure are morphisms whose cone L is
coacyclic in the sense of [Pos, 4.2] — this is a stronger condition than acyclicity, and is
equivalent to saying that Homq (L, K) is acyclic for all K € D (C).

Proposition 3.9. The equivalence of Proposition 3.7 induces a quasi-equivalence be-
tween pery,(A) (see Definition 1.11) and the full dg subcategory Fq(C') of Dgg(C) on
fibrant replacements of C'-comodules in finite-dimensional cochain complexes. This gives
a quasi-equivalence from Dqg(A) to Do (C).
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Proof. Observe that when filtered colimits exist in D:{g (A), they are homotopy colimits,
and that Homy4 (K, —) commutes with such limits for all K € perg,(A). Since every
object of Dyg(.A) can be written as a filtered colimit of perfect complexes, it follows that
pery,(A) consists of the homotopy-compact objects of Djl'g(A) (i.e. the objects K for
which Homp- (A)(K, —) commutes with filtered homotopy colimits, when they exist).
They therefore correspond under Proposition 3.7 to the homotopy-compact objects of
D, (C).

By [Pos, Theorem 4.3.1(a)], Dgg(C) is quasi-equivalent to the full subcategory of
Dgg(C) consisting of cochain complexes which are bounded below. By [Pos, 5.5], C-
comodules in finite-dimensional cochain complexes are compact generators of D(C),
and hence of DT (C). Thus the essential image of

— Q4 P: perdg(.A) — Ddg(C)
is just Fag(C).

Moreover, since the finite-k-dimensional C-comodules generate D (C') and the latter
is closed under arbitrary direct sums, we have a quasi-equivalence

liny: ind(Fs, (C)) = D(C).

which combines with the quasi-equivalence pery,(A) — Fag(C) above to give a quasi-
equivalence Dgg(A) — Dgg(C) on the associated ind-categories. O

Example 3.10. Observe that if ker w|po(4) = 0, we need not have kerw = 0 on Dyg(A).
We see this by considering an example which is in some respects dual to Example 2.13.
For t of degree 1, we can take k(t) to be the free non-commutative graded algebra
generated by ¢ and let A be the full dg subcategory of Dge(k(t)) on objects k(t)". Then
Dyg(A) =~ Dyg(k(t)), and the fibre functor w(M) := k @y M is faithful on DT (A).
However, it is not faithful on D(A), since k{t,t~') lies in the kernel.

The associated dg coalgebra C is Morita equivalent to k[e]Y, for € of degree 0 with
€2 =0, so a Corollary 3.5 in this case gives

Dag (k(t))/(k{t.t™")) = Dag(k[e]),
while Proposition 3.9 gives an equivalence between pery, (k(t)) and the dg derived cate-
gory of finite k[e]-modules. The difference between derived and coderived categories in
this case can also be seen by noting that the k[e]-module k is not perfect, but is compact
in the coderived category.

3.2. Koszul duality. The correspondence of Proposition 3.9 is a manifestation of
Koszul duality between modules and comodules, and can be regarded as a partial gen-
eralisation of [Pos, Theorem 6.3.a]. In particular, A & C is a cobar construction and
— ®4 P can be thought of as w @ C for the canonical twisting cochain 7.

Rather than fixing a dg category, we now use Koszul duality to give an equivalence
between certain homotopy categories of dg categories and of dg coalgebras. A con-
sequence is that quasi-isomorphisms in the category DG="Co, Alg (see Definition 3.1)
induce quasi-isomorphisms of the associated categories, so are necessarily derived Morita
equivalences.

Fix a cosemisimple coalgebra S, and set S to be the category of finite-dimensional
S-comodules, with w the forgetful functor to vector spaces. We can then interpret S-
bimodules as S-bicomodules, observing that S = w" ®s w. Note that a non-counital
coassociative dg ®g-coalgebra B in S-bimodules then corresponds to the non-counital
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coassociative dg ®°-coalgebra B := w" ®s B ®sw in S-bicomodules. This is equivalent
to a coassociative dg coalgebra structure on S @& B, for which S — S & B — S are
morphisms of dg coalgebras.

Definition 3.11. Let DG>°Cat(S) be the category of dg categories A in non-negative
degrees with A° = S and d.A° = 0, as considered in Proposition 3.2.

This is equivalent to the category of associative ®s-algebras A>°(—, —) in cochain
complexes of S-bimodules in strictly positive degrees. Applying [Hir, Theorem 11.3.2]
to the forgetful functor mapping to S-bimodules, it follows that DG=Cat(S) has a cofi-
brantly generated model structure in which weak equivalences are quasi-isomorphisms
and fibrations are surjections.

Definition 3.12. Dually, let DG="Co,Alg(S) be the category of non-counital ind-
conilpotent coassociative dg ®s-coalgebras B in complexes of S-bimodules in non-
negative cochain degrees.

By analogy with [Hin, Theorem 3.1] and [Pri4, Proposition ??], DG=%Co, Alg(S)
has a fibrantly cogenerated model structure in which weak equivalences are quasi-
isomorphisms and cofibrations are injective in degrees > 0.

Definition 3.13. Write 8(.A) for the cofree ind-conilpotent graded ®g-coalgebra on
generators A~0(—, —)[1]; thus

M
B(A) = r4>0(—7 —-) ®s e ®s A0 (-, —?[n]-

n>0

n

We make this a dg coalgebra by defining the differential on cogenerators to be
dg(a) = (da,0): (A70(= 1) & (A=, —) @5 A7°(=, -)[2]) = A0 (=, -)[2];

Note that the dg coalgebra C of Proposition 3.2 is just the dg coalgebra S @
(wY ®s B(A) ®s w). This cobar construction defines a functor f: DG>YCat(S) —
DG=%Co, Alg(S), with Proposition 3.2 saying that Dyg(A) ~ Dgg(S & (w¥ ®s B(A) ®s
w)).

Definition 3.14. Let 8* be the left adjoint to 8. This is the bar construction sending
C to the tensor algebra

M
FOXY) = (X )@ Ees O VY[,

n>0

n
with differential defined on generators by d¢ + Ac.
Remark 3.15. A key observation is that the filtration of 5(C) by powers of C[—1] gives
a convergent spectral sequence
Hq(c@p) _— Hp-i-q(/g*c)_

Note that convergence of this spectral sequence relies on H<O(C’) vanishing, and allows
us to use quasi-isomorphisms for our notion of dg coalgebra weak equivalences where
[Hin] used * to reflect weak equivalences.

Proposition 3.16. The functors g* - 5 are a pair of Quillen equivalences between the
categories DG=YCat(S), DG="Co, Alg(S).
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Proof. We need to show that for any C € DGZ°Co, Alg(S), the unit C — BB*C of
the adjunction is a quasi-isomorphism, and that for any A € DG>%Cat(S), the co-unit
B*BA — A is a quasi-isomorphism.

We begin by noting that [LV, Proposition 11.4.4] says that for C' fibrant, the unit
C — B5*(C) gives a quasi-isomorphism on tangent spaces, where tan(C') = ker(A: C —
C ® C). Now, tan3(A) = A>%(—, ), so setting C = B(A), it follows that the unit
C — BB*(C) gives a quasi-isomorphism A" — 5*B(A)>Y, from which it follows that
the co-unit is a quasi-isomorphism.

Now for C fibrant, filtration by the subspaces ker(C' — C®") gives a convergent
spectral sequence

EP? =HPM((tan C)®7F) = HPT(C),
so cotangent quasi-isomorphisms of fibrant objects are always quasi-isomorphisms, and
in particular the unit C' — B8*(C) is a quasi-isomorphism for fibrant C. Since the
functor 83 preserves quasi-isomorphisms, the unit must be a quasi-isomorphism for all

C. O

Remark 3.17. The key step in Proposition 3.16 invokes Koszul duality in the form of
[LV, Proposition 11.4.4]. When the field & has characteristic 0, there are therefore
analogues for any Koszul-dual pair of operads, with cochain dg P-algebras in strictly
positive degrees corresponding to conilpotent Pi-coalgebras in non-negative degrees.

3.3. Hearts of t-structures. For a Morita fibrant dg category D to admit a compat-
ible t-structure amounts to the existence of a full generating dg subcategory A with
H'A(X,Y) =0 for all i < 0 and all X,Y. The objects of A are given by any choice of
generators for the heart H'DV of the t-structure, and in particular we can take A to
be the full dg subcategory of D on the semisimple objects of H*DY, in which case HCA
will be abelian semisimple.

We now show how to extend the results of §3.1 to this generality.

Proposition 3.18. Take a k-linear dg category A with the category H°A abelian
semisimple and H<A(X,Y) = 0 for all objects X,Y. Then A is quasi-isomorphic
to a dg category B concentrated in non-negative degrees, with dB3°(X,Y) = 0 for all
X,Y.

Proof. First, observe that the good truncation filtration 7,, = 7" for n > 0 gives
quasi-isomorphisms M M
grr A(X,Y) — H"A(X,Y)[—n]

n n
for all X,Y € A, giving G,,-equivariant quasi-isomorphisms of the corresponding dg
categories, where gr] is assigned weight n.

Now, a dg category B over 794 on the same objects corresponds to the associative
unital ®, 4-algebra B(—, —) in Cqg((70.4)°PP®@79.A). Thus the quasi-isomorphism 9.4 —
HO A ensures that A is quasi-isomorphic to some dg category A’ over HOA.

Consider the polynomial ring k[t] with ¢ in degree 0 but equipped with a G,,-action
of weight 1. The Rees construction gives us a dg category (A, 7) with the same objects
as A and morphisms M

M
C(Av T) (X7 Y) = TTLA(Xv Y>tn = TnA(X) Y)a

which then becomes a G,,,-equivariant dg category, flat over k[t]. This has the properties

that ((A,7)/t 2 gr" A and ((A,7)/(t — 1) = A.
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Applying the argument above, we see that the G,,-equivariant dg category (A, )
over To.A[t] must be quasi-isomorphic to some G,,,-equivariant dg category Z over H° A[t]
(flat over k[t]). Note that Z/t and Z/(t — 1) are then quasi-isomorphic to gr”.A and A,
respectively.

Now, set GY = HYA, then take a cofibrant replacement G>°(—, —) of H>?A(—, —) as
a ®go-algebra in G-bimodules. This can be constructed canonically as a bar-cobar res-
olution as in Proposition 3.16, with the output concentrated in strictly positive degrees
(this relies on the semisimplicity of HYA). Moreover, the G,,-action on H*(A(X,Y))
(with H™ of weight n) transfers equivariantly to G := GV g>0.

Since G is cofibrant and gr™.A is quasi-isomorphic to H* A, we may lift the quasi-
isomorphism G — H*A to give a G,,-equivariant quasi-isomorphism

g — Z/t.

We now mimic [Pri6, Propositions 13.11,13.12]. Since G(—, —) is cofibrant as a unital
®go-algebra, forgetting the differential gives a retract G* of a freely generated G,,-
equivariant ®go-algebra. Since Z — Z/t is surjective, we may lift the map G — Z/t to
give a Gy,-equivariant map f: G* — Z of graded categories, and hence G*[t] — Z.

We then consider possible differentials on G>°[t] making f into a map of ®go-algebras.
The proof of [Pri7, Proposition ??| characterises obstructions to passing from a differ-
ential on GZ[t]/t" to one on GZC[t]/t"*! in terms of elements in Hochschild cohomology,
which necessarily vanish because the lift Z/t"t! — Z/t" exists. In the G,,-equivariant
category, G*[t] is the limit Hm_ G*[t]/t", so a suitable differential ¢ exists on G*[t], set to
0 on GY[t].

Writing R = (G*[t],d) with its differential, we thus have a G,-equivariant quasi-
isomorphism

R—Z
over k[t] (deformations of quasi-isomorphisms being quasi-isomorphisms), and hence a
quasi-isomorphism
R/(t—1)— Z/(t—1)~ A,
so B:=TR/(t — 1) has the required properties. O

Corollary 3.19. Take a k-linear dg category A with the category H° A abelian semisim-
ple and H<A(X,Y) = 0 for all objects X, Y. Assume that we have a k-linear dg func-
tor w: A — Cyg(k) with H*w(X) finite-dimensional and concentrated in degree 0 for all
X € A. Then there is a dg coalgebra C € DG=Co, Alg;, with C ~ w" ®@L w, together
with quasi-equivalences Dgg(A)/ (ker w) ~ (ker w) ~ Dyq (C).

Proof. By Proposition 3.18, there is a quasi-isomorphism ¢: B — A with B satisfying
the conditions of Proposition 3.2. It therefore suffices to replace w o q: B — Cyq(k)
with a quasi-isomorphic functor taking values in FDVect;. Now, since B? ~ H°A is
semisimple, we may decompose the B%-module (wo q)? as d(w o q)_1 @ MO for some
B°-module MY. Setting M? = (w o q)® for i > 0 and M<° = 0 then gives a quasi-
isomorphism M — w o ¢ of B-modules. Next, choose a decomposition M°? = Z°M @& N
of B%-modules, and set N* = M? for i > 0. Since H'M = 0 for i # 0, it follows that N
is acyclic, so M — M/N is a quasi-isomorphism, and M /N = H%(w o q) takes values in
FDVecty. O

Example 3.20 (The motivic coalgebra and mixed motives). As in §2.4, consider the dg
functor EY: Mgg a1 o(F, Q) = Cye(Q) associated to a Weil homology theory, and let C
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be the associated dg coalgebra, with quasi-equivalences
Dyg(C) = Mggar (F,Q)/(ker E) ~ Mgy (F,Q)/(ker E).

Similarly, let C°f be the dg coalgebra associated to the the restriction of F to effective
Beilinson motives, giving

Dag(C) = MET 01 (F, Q) (ker E) = M3 (F,Q)/ (ker E),

where Mﬁg(F ,Q) is the dg category of cofibrant presheaves of Q-complexes on smooth
F'-schemes.

When E is Betti cohomology, it is shown in [Ayo3, Corollary 2.105] that H>°C = 0
and H>C*! = 0. By [Ayo3, Lemma 2.145], existence of a motivic t-structure would
also imply that H<°C' = 0, so we would have quasi-isomorphisms C' — 72°C « HC' of
dg coalgebras, but it is not immediate that these are Morita equivalences.

However, if a motivic t-structure exists, then Mgy a1 (F, Q) C (ker E)* and apply-
ing Corollary 3.19 to the full dg subcategory A of Mgz a1 .(F,Q) or MggAl’c(F, Q)
on semisimple objects in the heart of the t-structure would yield N or Nef in
DGZ%Co,Alg,,, Morita equivalent to C' or C°%, so by Propositions 3.7 and 3.9,

Mg a1 (F,Q) ~ DR(N), MG 01 (F,Q) ~ Dga (N,
M, pr(F.Q) = DE(N), M7, (F.Q) = DY (N),

ghere Mngl (F,Q) is the full dg subcategory of Mg, a1(F, Q) consisting of objects in
 Ma1(F,Q)=" for the motivic t-structure.

By [Ayo3, Corollary 2.105], the morphisms H'N — N and H'Nf — N° would then
be quasi-isomorphisms, hence Morita equivalences by Proposition 3.16, and we would
have

Mg a1 (F,Q) ~ DRHN), MG i (F,Q) ~ D (HONT).
Letting MMFp and /\/l/\/l‘}Icf be the categories of H'N- and HON°f_comodules in finite-
dimensional vector spaces, and Dgg(MMp) and Dgg(MM) the dg enhancements of
their derived categories, we would then have

Magar(F,Q) = Dag(MMp), MG a1 (F.Q) = Dag(MMS),

so existence of a motivic t-structure would automatically realise Mg, o1 (F, Q) as the dg
derived category of an abelian category of mixed motives.

Moreover, the full dg subcategory szgf.’o C Mgg consisting of objects M with
H*E(M) concentrated in degree 0 contains ker E, so the heart of the ¢-structure would

be
A (F,Q)Y ~ MI(F,Q)Y/ ker E = MJI(F,Q)%/(ker HE).

Passing to the associated triangulated categories M := HO./\/ldg would give
MM ~ MST(F,Q)Y ~ M (F,Q)7/(ker HUE).

Nori’s abelian category MMSE . of effective mixed motives as in [HMS, Definition
1.3], is defined by forming a diagram D of good pairs, and taking the universal Q-linear
abelian category under D on which HE is faithful. The proof of [HMS, Corollary 1.7]
gives a functor (X,Y,4) — Q(X,Y)[i] from D to MF(Q, Q)Y and [HMS, Proposition
D.3] gives a quasi-inverse to the induced functor

MMeNfgri - Mgﬁ(Q7 Q)O/(ker HOE)v
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so existence of a motivic ¢t-structure would also imply
MM = MMG
Following Example 2.20, all these coalgebras can be promoted to bialgebras, with
the equivalences of categories preserving monoidal structures. In particular, H°C is a
naturally a Hopf algebra and H'C®% a bialgebra. Writing Giet(F) := Spec H'C' would

then give a motivic Galois group, and letting MM g be the abelian tensor category of
finite-dimensional Gt (F')-representations, the equivalence

HOMgg a1 (F, Q) = D(MMp),
would become monoidal, as would the equivalence
MMQ >~ MMNori

induced from ./\/l/\/leQff ~ /\/l/\/l‘f\lﬂzmi by stabilisation. In particular, this would imply that
Gmot (Q) is Nori’s motivic Galois group from [HMS, Theorem 1.14].

3.4. Tensor categories. For the remainder of this section, we require that the field &
be of characteristic 0.

3.4.1. Non-negatively graded dg tensor categories. Assume that 7 is a rigid tensor dg
category over k (i.e. a symmetric monoidal dg category with strong duals), with S := 77°
a rigid tensor subcategory. Define B € C(S°PP) by B(U) := T (U, 1). Note that tensor
properties ensure that 7(U,V)=T(UX VY, 1) = B{UX V).

Thus B: § — C is a symmetric lax monoidal functor, or equivalently a unital com-
mutative algebra object in C(S°PP). This is the same as saying that B is a DGA over S
in the sense of [Pri2, Definition 3.2].

If S is a semisimple abelian category and w: & — FDVect a faithful symmetric
monoidal functor, then [DMOS, Ch. II] shows that S is equivalent to the category
Rep(R) of finite-dimensional R-representations for the pro-reductive affine group scheme

R := Specw” ®s w.

Equivalently, this is the category of finite-dimensional O(R)-comodules, where O(R) is
the Hopf algebra w" ®s w.

As observed in [Pri2, Remark 3.15], the category of DGAs over S is equivalent to
the category of R-equivariant commutative dg algebras. Under this correspondence, B
corresponds to A := B(O(R)) (regarding the right R-representation O(R) as an object
of ind(S), with the R-action on A coming from the left action on O(R)). When this is
concentrated in non-negative cochain degrees, note that it defines a schematic homotopy
type in the sense of [KPT]. For the inverse construction, we have B(V) = A @V and
TWU,V)=8U ® A, V) =Hompg(V,U @ A).

Definition 3.21. Define DG="Hopf,Alg,. to consist of (commutative but not neces-
sarily cocommutative) dg Hopf algebras C' for which the underlying dg k-coalgebra lies
in the category DG=°Co, Alg,, of Definition 3.1. In other words, C is concentrated in
non-negative cochain degrees, with H°C' — C' ind-conilpotent.

Proposition 3.22. Take a k-linear rigid tensor dg category 7 with 7(X,Y) con-
centrated in non-negative degrees, d7°(X,Y) = 0 for all X,Y, and 7° a semisim-
ple rigid tensor subcategory. Assume that we have a strong monoidal k-linear functor
w: T% — FDVecty,. Then there is a model for the bialgebra C' ~ w" ®% w of §1.3.2 with
C € DG="Hopf,Algy.
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Proof. We just take the coalgebra C' from the proof of Proposition 3.2, and observe that
the formulae of §1.3.1 adapt to define a coproduct A and antipode p on C, making it
into a dg Hopf algebra.

Explicitly, writing S = 7, the expression 7 (U, V) = S(U ® A, V) above allows us to
rewrite M M

D= A®"T2Q0(R) C=  A®"®O(R),
n>0 n>0
with
X
Al ®...Q0a,®1) = (1 ®..0a, 1) (11 ®...0a, 1)
0<r<n

and
plar ®..®a, 1) =(-1)"(a,®...®0a; ®1),

and with multiplication given by the shuffle prpduct. The coalgebra structure on C' is
then given as the semidirect tensor product of A®" and O(R). O

Definition 3.23. Given a commutative unital dg algebra A in R-representations, define
the dg category Rep(R, A) to have R-representations in finite-dimensional vector spaces
as objects, with morphisms given by

Rep(R, A)(U,V) := A% (U @, VV).

Multiplication is induced by multiplication in A, with identities 14 ®idy € A @ (V @k
VY.
Remark 3.24. In the notation of [Pri3, Remark 4.35]), the dg Hopf algebra corresponding
to T is given by O(R X G(A)) = O(RX G(T(O(R),1))).

Then Propositions 3.7 and 3.9 give quasi-equivalences

DJ,(Rep(R, 4)) =~ D (O(RXG(A))),
Dag(Rep(R, 4)) ~ DR (O(R X G(A))).

3.4.2. Koszul duality for tensor categories. Now fix a pro-reductive affine group scheme
R.

Definition 3.25. Let DG~YCat®(R) be the category of rigid tensor dg categories 7 in
non-negative degrees with 7 the category of finite-dimensional R-representations and

d7? =0.

Note that under the discussion of §3.4.1, DG>°Cat®(R) is equivalent to the category
DG”YComm(R) of commutative R-equivariant dg algebras A in strictly positive cochain
degrees. There is a model structure on DG>°Cat®(R) in which weak equivalences are
quasi-isomorphisms and fibrations are surjections.

Definition 3.26. Dually, let DG="Hopf, Alg(R) be the category of R-equivariant ind-
conilpotent dg Hopf algebras IV in non-negative cochain degrees.

Note that these correspond to Hopf algebras C' equipped with maps O(R) — C —
O(R), such that O(R) — C' is ind-conilpotent. The correspondence sends N to the
tensor product O(R) ® N, with comultiplication given by semidirect product.
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Moreover, as in [Qui], ind-conilpotent dg Hopf algebras N correspond to ind-
conilpotent dg Lie coalgebras L, with L = tan(N). Thus DG=Hopf,Alg(R) is equiv-
alent to the category DG="Co,Lie(R) of ind-conilpotent dg Lie coalgebras L in non-
negative cochain degrees. It is thus equivalent to the category dgN (R) of [Pri3, Defini-
tion 4.1], so is a model for relative Malcev homotopy types over R.

By analogy with [Hin, Theorem 3.1] and [Pri4, Proposition ??], there is then a model
structure on DGZHopf, Alg,. in which weak equivalences are quasi-isomorphisms and
cofibrations induce injections on tangent spaces in degrees > 0.

Now, the functor [ of Definition 3.13 preserves tensor structures, so in-
duces B: DGZ°Cat®(R) — DG="Hopf,Alg(R). Equivalently, we have
Be: DGZYComm(R) — DGZ°Co,Lie(R) given by setting 3¢ (A) to be the cofree ind-
conilpotent graded Lie coalgebra on cogenerators A[1], with differential defined on co-
generators by

dgg (a) = (da,0): Al] @ (Symm?A4)[2] — A[2],

noting that (SymmZ2A4)[2] = = 2(A[1]).

Moreover, the commutative and Lie operads are Koszul duals, and 8 has a left adjoint
B, given by M

Bo(L) = Symm"(L[-1]),
n>0 v

with differential given on the generators by dp @ A: L[—1] — L& (- 2 L)[—1] where A
is the Lie cobracket.

Thus Remark 3.17 and the comparisons above allow us to adapt Proposition 3.16 to
give:

Proposition 3.27. The functors 3% - B give a pair of Quillen equivalences between
the categories DG>°Cat®(R), DG="Hopf, Alg(R).

Using the characterisation of DGZ%Cat®(R) in terms of commutative dg algebras
and DGZ"Hopf, Alg(R) in terms of dg Lie algebras, this result is effectively one of the
equivalences of [Pri3, Theorem 4.41].

3.4.3. Hearts of tensor ¢-structures.

Proposition 3.28. Take a k-linear rigid tensor dg category 7 with the category HOT
abelian semisimple and H<7(X,Y) = 0 for all objects X,Y. Then T is quasi-
isomorphic to a rigid tensor dg category B concentrated in non-negative degrees, with
dB%(X,Y) =0 for all X,Y.

Proof. If we write S := H°T, we see that the dg tensor categories S and 707 are
quasi-isomorphic, from which it follows that 7 is quasi-isomorphic to some rigid tensor
dg category T’ over S. Via the discussion of §3.4.1, this is equivalent to giving a
commutative dg algebra A in C(S°PP) with HA = k.

We now apply the Rees algebra construction (A, 7) to the good truncation filtration
on A, regarding the Rees algebra as a deformation of ((A,7) = H*(A). The bar-cobar
resolution B§B®(H>0A) of Proposition 3.27 gives a cofibrant replacement for H>%A
concentrated in strictly positive degrees. The proof of Proposition 3.18 now adapts,
substituting André-Quillen cohomology for Hochschild cohomology. O

Corollary 3.29. Take a k-linear rigid tensor dg category 7 with the category HOT
abelian semisimple and H<7(X,Y) = 0 for all objects X,Y. Assume that we have a
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lax monoidal k-linear dg functor w: 7 — Cag(k) with H'w(X) = 0 for all i # 0, How(X)
finite-dimensional for all X € 7, and quasi-strong in the sense that the structure maps

wX)rw) s wXeY), k—w(l)

quasi-isomorphisms for all X,Y € 7.

Then there is a dg Hopf algebra C' € DG="Hopf, Alg;, with C ~ w" @L w, together
with a tensor functor Dy, (7) — Cqg(C) inducing quasi-equivalences Dy (T )/ ker w ~
(kerw)t =~ Dyg(C). Here, Cqe(C) and Dy, (C) are defined using the coalgebra (not the
algebra) structure of C.

If the functor Hw: HT — FDVecty, is faithful, then these induce quasi-equivalences
Dg,(T) = Dg,(C) and Dag(T) =~ D53 (C).

Proof. By Proposition 3.28, there is a tensor quasi-isomorphism ¢: B — A with B
satisfying the conditions of Proposition 3.2. Write S := B ~ H A.

We now show how to replace woq: B — Cag(k) with H(wogq). If A is the commutative
dg algebra in C(S°PP) corresponding to B, then w o ¢ corresponds to an A-algebra
M in C(S°PP). Since H*M(X) is concentrated in degree 0 for all X, we have quasi-
isomorphisms M < 7SYM — HOM of algebras in C(S°PP). As A is cofibrant, the map
A — M is homotopic to a map taking values in 7<9M, so M and H°M are quasi-
isomorphic as A-algebras.

Since we now have a monoidal functor H° (wogq): B% — FDVecty, the first statement
of the corollary follows from Corollary 3.5, with Proposition 2.19 ensuring that the
tensor structure is preserved. The second statement is then an immediate consequence
of Propositions 3.7 and 3.9. O

3.5. Comparison with Moriya.

Definition 3.30. For a dg category A satisfying the conditions of Corollary 3.5, write

oA c D(A) for the subcategory generated by H° A under finite extensions (but not by
suspensions). This is the completion functor of [Mor, §2.2].

Note that all objects of oA are perfect, so we also have a natural embedding
ind(I@OA) — D(A). Under the conditions of Proposition 3.7, recall that Proposition 3.9
gives an equivalence between DV (A) and DT (C), with C' concentrated in non-negative
degrees, and that HYA is equivalent to the category of semisimple H?C-comodules in
finite-dimensional vector spaces. It then follows that 190 4 is equivalent to the category
of all H'C-comodules in finite-dimensional vector spaces, and ind(I@OA) is equivalent to
the category of all H°C-comodules in vector spaces.

In [Mor, Definition 3.1.1], Moriya gives a notion of Tannakian dg category. Given a
rigid dg tensor category A satisfying the conditions of Corollary 3.5 with a tensor functor
w: A% — FDVect such that wljo 4 is faithful (as in Proposition 3.7), we could form a
Tannakian dg category in Moriya’s sense by taking A to be the full dg subcategory of
Dgyg(A) on objects 1§04,

Note that because A is a full generating subcategory of pergy(A), it follows that
perdg(.A) — perdg(fi) is a quasi-equivalence, so Corollary 2.12 gives the same output
for both A and A. In topological contexts, this just amounts to saying that semisimple
local systems generate all local systems under extension.
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In [Mor, §3.3], functors 7% and T are defined from commutative unital dg algebras A
in R-representations to dg categories. In fact, T°(R, A) = Rep(R, A) as given in Defi-

nition 3.23, and T(R, A) = T*(R, A). We have therefore defined Morita equivalences
Rep(R, A) — T(R, A) — perg,(Rep(R, A)),

so Rep and T give rise to the same theory. However, T'(R, A) feels like a halfway house
between the minimal choice Rep(R2, A) and the fibrant replacement perg,(Rep(R, A)).

Moriya’s analogue of the construction in Corollary 2.12 is the construction A,.q of
[Mor, Definition 3.3.3], but this has only limited functoriality, which is a well-known
limitation of working with equivariant DGAs. By allowing dg coalgebras to have nega-
tive terms, Example 1.26 gives us a completely functorial choice of the dg Hopf algebra
C(T,w) corresponding under [Pri3, Theorem 4.41] to Moriya’s Aeq(T,w).

4. SCHEMATIC AND RELATIVE MALCEV HOMOTOPY TYPES

4.1. de Rham homotopy types. Take a pointed connected manifold (X,z), and
choose a full rigid tensor subcategory S of the category of real finite-dimensional
semisimple local systems on X. Let 7 be the real dg tensor category with the same
objects as S, but with morphisms

TU,V)=A(X, U V"),

where A®(X,—) is the de Rham complex. Note that H'T ~ S.

Now, the basepoint x defines a fibre functor z*: 7° — FDVectr sending U to U,.
We are therefore in the setting of Corollary 3.29. Moreover, z*: S — FDVect is faithful
because X is connected, so the conditions of Proposition 3.7 are satisfied.

Let R be the real pro-algebraic group Spec ((z*)Y ®s x*); as in §3.4, we have an
equivalence z*: & — Rep(R) of tensor categories. Equivalently, we have a Zariski-
dense group homomorphism p: m1(X,2) — R(R). As in [Pri3], write O(R) for the local
system corresponding to the right R ind-representation O(R). The R-equivariant dg
algebra A from §3.4 is then just the dg algebra

A*(X,O(R))

of equivariant cochains from [Pri3, Definition 3.51], so 7 is equivalent to

Rep(R, A*(X,0(R))).

Definition 4.1. Write A ¢ for the sheaf of real C* differential forms on X, regarded as
a sheaf of dg algebras with standard differential A § — A )?H. Note that A*(X,U) =
I'X,U®RrAZ).

Definition 4.2. Define the dg category P(X) to consist of locally perfect A ¢-modules
in complexes of sheaves on X. Define P(X,S) to be the full dg subcategory of P(X)
generated under shifts and extensions by objects of the form U ®r A ¢ for U € S.

Note that because A ¢ is a flabby resolution of R, the dg category P(X) is quasi-
equivalent to the category of locally constant hypersheaves in real complexes on X.

Lemma 4.3. When S oonsists of all semisimple local systems, we have P(X,S) =
P(X).
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Proof. Given V* € P(X), the sheaf V* := V* @a; AY is a finite rank complex of

C>-vector bundles on X. We then form the good truncation filtration {7<"V *},,. Now,
the morphisms A ¥ — A § — A of sheaves of dg algebras give an isomorphism

of graded A $-modules (where we write U* for the graded object underlying a complex
U®). We then define an increasing filtration {W,,V *}, on V * by

W,V * = (7S"WF) Bpp As.

Writing V for the differential jon V*® and § for the differential on V'*, we can set
V =6+ D, for some D: V" — V"™ Oap A;{H. By construction, dW,, C W,
and we automatically have DW,, C W,,, so {W,V *},, defines a filtration on V °.

Let U ® be the quotient W,V */W,,_1V *; the only non-zero terms of U are U =1, U ™.
For V = D + § as above, we have flat connections D: U* — U'¢ DA A ' and a map
§5: Ul - U™ commuting with D. Thus there exist local systems U™, U™ with
(U D)= (U'erA 2,idy ®d). Because any local system is an extension of semisimple
local systems, it follows that the F ; := (U_1®A)? A ?,id®d+D®id) liein P(X,S). Since
U * is an extension of F ,,_1[1 —n] by F ,,[—n], we also have W,V */W,,_1V* € P(X,S).
As the filtration is finite (V * being of finite rank), this means that V* € P(X,S), as
required. O

Lemma 4.4. The dg categories pery,(7) and P(X,S) are quasi-equivalent.

Proof. We define a dg functor ¢: 7 — P(X,S) by sending U to U ®r A . The dg
category P(X,S) is closed under shifts, extensions and direct summands, so P(X,S) is
Morita fibrant — in other words, P(X,S) — perg,(P(X,S)) is a quasi-equivalence.
Now, the functor ¢ is clearly full and faithful, since the maps 7 (U, V') — P(X) (U, V)
are isomorphisms. The definition of P(X,S) ensures that it is generated by (7, so
pery, (7)) — pergy(P) must be a quasi-equivalence. O

Note that Moriya’s category T (see §3.5) embeds in P(X) as the full dg subcategory
on objects V ® with V ® concentrated in degree 0 — these correspond to flabby resolutions
of local systems.

4.2. Betti homotopy types. We now let k be a field of characteristic 0.

Definition 4.5. As in [Pri3], define the relative Malcev homotopy type G(X, z)®Mal of
a pointed connected topological space (X, z) with respect to a Zariski-dense represen-
tation p: m (X, z) — R(k) as follows. First form the reduced simplicial set Sing(X,x)
of singular simplices based at x, then apply Kan’s loop group functor from [Kan] to
give a simplicial group G(X, z) := G(Sing(X, z)). Note that 7oG (X, z) = m (X, x), and
apply the relative Malcev completion construction of [Hai] levelwise to G(X,x) — R(k),
obtaining a simplicial affine group scheme

G(X, 2)e!,

with each G(X, x)f’Mal a pro-unipotent extension of R.

In other words, G(X,z), — (G(X,z)®Mal), (k) EIGN R(k) is the universal diagram

with f a pro-unipotent extension.
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To a relative Malcev homotopy type G(X,z)®Mal are associated relative Malcev ho-

motopy groups w, (XMl o) .= 7, 1 G(X,z)®BMal These are affine group schemes,
with o (X BMal 2) = 7 (X, 2)fMal | The higher homotopy groups are pro-finite dimen-
sional vector spaces, and are often just 7, (X, z) ®z k — see [Pri3, Theorem 3.21], [Pri6,
Theorem 3.10] and [Pri5, Theorem 3.40].

Examples 4.6. When § is the category of all semisimple local systems in k-vector spaces
on X, we write G(X,z)*Ma = G(X,r)*8. Note that [Pri3, Corollary 3.57] shows that
G(X,z)¥# is a model for Toén’s schematic homotopy types.

When S is the category of constant local systems on X, note that R = 1 and that
G(X, x)l’Mal is the nilpotent k-homotopy type, so Quillen’s rational homotopy type from
[Qui] when k£ = Q.

We now specialise to the setting of the previous section, with k£ = R.

Proposition 4.7. When X is a manifold and 7 = Rep(R, A*(X,0(R))), the dg Hopf
algebra C' ~ (x*)Y ®I% x* of Corollary 3.29 associated to the fibre functor z*: 7 —
FDVect is a model for the relative Maloev homotopy type G(X, z)®Mal of (X, z) under
the equivalences of [Pri3, Theorem 4.41].

Proof. We need to show that the Dold-Kan denormalisation functor D ([Pri3, Definition
4.24]) from dg Hopf algebras to cosimplicial Hopf algebras sends C' to a model for the
ring of functions on the simplicial group scheme G(X,z)®Mal By Remark 3.24, the dg
Hopf algebra C'is given by O(R X G(A)), for A = A®*(X,0(R)). Applying D then gives

DC = O(RX G(DA)),

where G is now the functor on cosimplicial algebras defined in [Pri3, Definition 3.46].
[Equivalently, this is a weak equivalence

BSpec DC ~ [(Spec DA)/R)

of affine stacks in the sense of [Toé2], where B is the nerve.]
By [Pri3, Proposition 4.50], the simplicial group scheme G(X, z)BMal s quasi-
isomorphic to R X G(DA), so we have shown

Spec DC ~ G(X, )ftMal,
U

Remark 4.8. For any reduced simplicial set X and Zariski-dense representation
p: m(X) — R(k), there is a relative Malcev homotopy type G(X)%Mal By [Pri3,
Theorem 3.55], this homotopy type corresponds (via [Pri3, Theorem 4.41]) to the R-
equivariant cosimplicial algebra

C*(X,p~ O(R))

of equivariant singular cochains with coefficients in the local coefficient system p~'O(R)
(with right multiplication).

A model for the corresponding R-equivariant dg algebra is given by applying the
Thom—Sullivan functor Th. The corresponding dg tensor category T has finite-
dimensional R-representations as objects, and morphisms

T(U,V)=ThC*X,p (U VY)).
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When R = 71(X)*¢ is the reductive pro-algebraic fundamental group of X, the quasi-
isomorphism between cosimplicial and cocubical cochains gives a quasi-isomorphism
between T and the dg category Tyr(X) of [Mor, Theorem 1.0.4].

Corollary 4.9. The dg category D (O(G(X,z)® M) of Definition 3.8 is quasi-
equivalent to ind(P(X,Rep(R))), for P(X,Rep(R)) the dg category of derived connec-
tions from Definition 4.2. Under this equivalence, P(X, Rep(R)) corresponds to the full
dg subcategory of Dae(O(G(X,z)FMal)) on fibrant replacements of finite-dimensional
comodules. T he equivalence respects the tensor structures.

Proof. Remark 3.24 gives a quasi-equivalence
Dag(Rep(R, A)) = Dy (O(R X G(4))),

which is compatible with tensor structures by Corollary 3.29. Proposition 4.7 gives
D (O(RXG(A))) = DR(O(G(X, ) M), while Lemma 4.4 gives perg, (Rep(R, A)) =
P(X,Rep(R)) and hence Dgg(Rep(R, A)) ~ ind(P(X,Rep(R))). Combining these gives
the tensor quasi-equivalence Dgg (O(G(X, x)BMal)) ~ ind(P(X, Rep(R))).

For the characterisation of P(X, Rep(R)), we appeal to Proposition 3.9. O

Remark 4.10. As in Remark 2.14, we can also consider a finite set 1" of basepoints.
Proposition 4.7 then adapts to show that the dg Hopf algebroid Cp given by Cr(z,y) ~
(x*)V ®%‘— y* is a for the unpointed relative Malcev homotopy type G(X;T)®Mal of X
where G(X;T) is the restriction of Dwyer and Kan’s loop groupoid G(X) (from [DK3])
to the set T' of objects.

Because these dg Hopf algebroids are all equivalent as T varies (or equivalently,
because the fibre functors are all quasi-isomorphic), taking the colimit over all finite T’
gives a model for G(X)®Mal,

Points of X also give a set {Z*} of fibre functors on the category of all k-linear sheaves,
not just on locally constant sheaves. Any such set T" of points yields a dg bialgebroid C7.,
but the dg derived category of C/.-comodules is then just monoidally quasi-equivalent
to the dg derived category of k-linear sheaves supported on 7. Because the site has
enough points, the set of all points gives a jointly faithful set of fibre functors on the
category of k-linear sheaves. However, Remark 2.14 only applies to finite sets of fibre
functors, so only finitely supported k-linear sheaves arise as comodules of the associated
dg bialgebroid C’ = lim Ch.

4.3. The universal Hopf algebra. An unfortunate feature of relative Malcev homo-
topy types is that they rely on a choice of basepoint(s). However, the constructions
of §1.3.2 give us a universal bialgebra construction D(X,S) associated to a topological
space X and a tensor category S of semisimple local systems. This should be regarded as
the ring of functions on the space of algebraic paths generated by S, while G(X, z)®Mal
is the loop group at a fixed basepoint.

In order to understand D(X,S), we must first understand the category Dqg (T @7 °PP)
in which it lives. When X is a manifold, recall that 7 = Rep(R, A*(X,0O(R))) and
Rep(R) ~ S = HT. By Lemma 4.4, we have a quasi-equivalence

perg, (T @ TPP) =~ P(X?,Rep(R?)),
(U, V) = ix2((pry 'U) @ (pry 'VY)),

and hence
Dag (T ® TPP) = ind(P(X?, Rep(R?))).
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Understanding Cqg (7 ® 7°PP) is harder, but observe that there is a dg functor r from
the dg category of A ¢,-modules to Cqg(7T ® T°PP), given by

(rM)(U,V) = Homa - (tx2((pr7 'UY) @4 (pr31V)), M).
Now, note that for K, L € P(X), we have
Homp (K, L) = HO_HM);Q((PTTK) @A, (prsLY), Asex (k)),
where A: X — X X X is the diagonal morphism. Thus
ida =rAsx(k) € Cag(T @ TOPP).
Likewise,
HO_mA);Q(LX2((Pr1_1U) @k (pry V")), M @7 N)
= MU -)®r N(=V)

Homp -  (ex2((pry U) @ (prz 'VY)), (prisM) @a (pr3sN))
= Homg - (ex2((pry ' U) @k (13" V), prio (pr1sM) @as,, ,, (Pr3zN)).

so we have

1%

M @7 N = rprys, ((prioM) A, (pragN)).
Combining these results gives:
Lemma 4.11. A universal bialgebra D(X,S) ocorresponds under the equivalence
D (T ® T°PP) ~ ind(P(X? Rep(R?))) above to a sheaf D € ind(P(X?, Rep(R?)))
equipped with a commutative unital multiplication
D®r,D—D
and a coassociative A ¢,-linear comultiplication
Dprys.((pri2D) ®a; , (prasD))

with A 2,-linear counit

D— A*Lx(k).

Beware that although the co-unit D — rA,tx (k) is a quasi-isomorphism of sheaves,
the induced map D — A,ux (k) is far from being so, with the object on the left locally
constant and that on the right supported on the diagonal. In some sense, D is the
universal coalgebra under A,k generated by S ® S°PP. In the same way that a path
space in topology is a fibrant replacement for the diagonal, D is a cofibrant replacement
for functions on the diagonal, which is why we think of it as functions on the space of
algebraic paths generated by S.

Example 4.12. Note that the construction of Propositions 3.2 and 3.22 gives an efficient
choice tx2 NCC(T/S,i°?P ® i) for the dg bialgebra D, in which case it becomes a dg
Hopf algebra. Explicitly, we have

tx2 NCCO(T /S, i%P@i) = NCO(T /S, (pr7 ' exi®™™)@(pry ' ex i) @14 yo(prs 1ag 1A X2
where

CC,,(T/S, (pry 'exi®P) @ (pry 'exi)) =

(pry ' xO(R)) @ A*(X, O(R)) ", @™ A*(X, O(R)} &"(pry ' tx O(R)).

n
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Thus CCy(T /S, i%P ®1i) = 1x2(O(R) @ O(R)), which is quasi-isomorphic to the local
system given by the 7 (X)?-representation O(R), with the two copies of 71(X) acting
as left and right multiplication.

Example 4.13. Following Remark 3.4, for i: § — T we may describe NCC(T /S, i°°P @
i) in terms of irreducibles. Let {V4}, be a set of irreducible objects of complex R-
representations, with one in each isomorphism class. Complex conjugation Gal(C/R)
acts on this set, and then we have

QCMI(T/S, (prl_lLXic’pp) ® (prz_lbxi)) ®Rr C =
(pry AR (Val)) ®c A*(X, Vay ®c V) ®c ... ®c A*(X, Vay_, ®c Vo) @c (0r3 'A% (Van ),

a@Q;---, Qn

with CC, (T/S, (pry 'exi%P) @ (pry 'ixi)) given by taking Gal(C/R)-invariants.
When S is the category of constant local systems, corresponding to the real (nilpotent)
homotopy type as in Examples 4.6, this simplifies to

vx2CC,(T/S,i @)
= [pr 'A% @R (A*(X,R)?" @R pry A R] @, 1A e 1Ay )] A X2
= (A*(X,R))*" @R A 3.

In other words,
1x2CC, (T/S,i% @) = CC4(A*(X,R),A $a).

Remark 4.14. Consider the case of a group G acting on a manifold X, with S a G-
equivariant rigid tensor subcategory of semisimple local systems (so ¢*U € S whenever
U e S and g € G). Then we have an action of G on D over X x X, with respect to the
diagonal action of G on X x X. This is because G-equivariance of S gives an action of
G on O(R) over X (i.e. compatible isomorphisms O(R) = ¢*O(R) for all g € G), and
hence an action on A*(X,O(R)). For well-behaved G-actions, this allows us to regard
D as a sheaf of dg algebras on the quotient (X x X)/G. When z € X is a fixed point
for the G-action, note that the dg Hopf algebra C' = (z,z)*D inherits a G-action from
D.

Of course, in order to define a G-action on D, it suffices to have G-actions on S and
on the relative Malcev homotopy type A®(X,O0(R)). When X is a compact Kéhler
manifold, the results of [Pri6] show that the Tannakian fundamental group II(MTS) of
the category of mixed twistor structures acts algebraically on A®(X,O(R)) for all R,
with trivial action on S (and hence O(R)). This gives an algebraic action of II(MTS) on
D, so would allow us to regard D as an object of the derived category of mixed twistor
modules, compatibly with the Hopf algebra structure. When the local systems in S all
underlie variations of Hodge structure, there is also an algebraic circle action on S and
on A*(X,0O(R)), combining with the II(MTS)-action to give an action of the Tannakian
fundamental group II(MHS) of the category of mixed Hodge structures. Then D would
lie in the derived category of mixed Hodge modules.

Remark 4.15. Note that the cohomology sheaf H °D is the local system O(co X Mal)
on X x X defined in [Pri6, Corollary 7.7] as corresponding to O(coy (XMl ) with its
left and right actions by (X, z). All of the cohomology sheaves of D are necessarily
local systems.

The pullback A*D to the diagonal is a sheaf of Hopf algebras (the ring of functions on
the space of algebraic loops generated by §). Then the higher cohomology sheaves of the
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sheaf of primitive elements of A*D are dual to the local systems IT"(X?Mal) of [Pri6,
Corollary 7.7] corresponding to the relative Malcev homotopy groups o, (X ®Mal 1)
with their adjoint actions by 71 (X, ).

When f: X — Y is a fibration with section p, choose R so that Rep(R) contains the
semisimplifications of the local systems R"™ f,R for all n. Then observe that we have a
decomposition

p*A*leR’Mal ~ W?R(X/Kp) X A*le}/R,Mal7
where m{R(X/Y,p) is Lazda’s relative fundamental group from [Laz].

4.4. Q-homotopy types. Take a connected algebraic space X and choose a full rigid
tensor subcategory S of the category of semisimple lisse Qy-sheaves on X. Let 7 be the
cosimplicial tensor category with the same objects as S, but with morphisms

TU,V)=C"(X,UVY),

where C*(X, —) is the f-adic Godement resolution of [Pril, Definition 2.3]. Note that
HT ~ S, and that

H'T(U,V) 2 Hy (X, U VY),
the ¢-adic étale cohomology groups. As in Remark 4.8, we may apply the Thom—Sullivan
functor Th to obtain a dg category Th (7).

Now, any geometric point Z defines a fibre functor z*: 7% — FDVectq, sending U
to Uz. As in §4.1, we may then construct an affine group scheme R := Spec (%)Y ®s *
over Qq, with an equivalence z*: & — Rep(R) of tensor categories. Equivalently, we
have a Zariski-dense continuous group homomorphism p: 7$%(X,Z) — R(Q). The
R-equivariant dg algebra A from §3.4 is then just the dg algebra

ThC*(X,0(R))

of equivariant cochains from [Pri5, Definition 1.21], so 7 is equivalent to

Rep(R, C*(X,0(R))).

Proposition 4.16. The dg Hopf algebra C' ~ (z*)V ®%h ) z* of Corollary 3.29 associ-

ated to the fibre functor z*: 7 — FDVect is a model for the relative Malcev homotopy
type G(X,z)Mal of (X,7) under the equivalences of [Pri3, Theorem 4.41].

Proof. The proof of Proposition 4.7 carries over, replacing [Pri3, Proposition 4.50] with
[Pri5, Theorem 3.30]. O

Now, we may regard perg,(7) as the dg subcategory of generated by S in the dg
category of C%(Qy)-modules in complexes of Qg-sheaves, where C% is the sheaf version
of the Godement resolution. Since C¥(Qy) is a flabby resolution of Qg, this means that
D(T) is the derived category of Q-hypersheaves generated by S under extensions, shifts
and direct sums.

If X is defined over a separably closed field F', then (X x z X)g = X¢ x Xg, which
means that a universal bialgebra D for (X,S) corresponds to a bialgebra D in the
category of Qg-hypersheaves on X x 7 X.

Remark 4.17. Although we are working with étale homotopy types rather than Betti
homotopy types, the argument of Remark 4.14 carries over to say that symmetries of
X transfer to the universal bialgebra. In particular, this applies to Galois actions.
Explicitly, take an an algebraic space X over a field F' with separable closure F,
and set X = Xo ®p F. Assume that S is generated by pullbacks of lisse sheaves on
X — this is equivalent to saying that S is Gal(F')-equivariant with finite orbits. Then
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[Pri5, Theorem 3.32] ensures that the relative Malcev homotopy type G(X)®™Mal carries

a continuous Galois action, so we may regard the universal bialgebra D as a Galois-
equivariant Qg-hypersheaf on X x 7 X, or equivalently as a Qg-hypersheaf on Xy x r Xj.
For any basepoint € Xo(F'), this gives an action of Gal(F’) on the dg bialgebra
(z,Z)*D, but the Gal(F')-action on the universal bialgebra D does not require X (F') to
be non-empty.

Remark 4.18. Asin Remarks 2.14 and 4.10, we can consider multiple basepoints instead,
and taking the set of all geometric points gives a dg Hopf algebroid C with C(z,y) ~
(T*)Y ®%h e y* as a model for the relative Malcev homotopy type G(Xg;)®Mal,

4.5. Motivic homotopy types. There is nothing special about the de Rham, Betti
and f-adic cohomology theories considered so far in this section. Each construction
of pro-algebraic homotopy types has only relied on a suitable sheaf of dg algebras,
and a category of projective modules over it. There are thus analogues for any Weil
cohomology theory in the sense of [CD], or if we are willing to replace Hopf algebras
with coalgebras, for any stable cohomology theory.

4.5.1. Nilpotent homotopy types. We now look at the simplest relative Malcev homotopy
types, when R = 1, as in Examples 4.6. A Weil cohomology theory E has an associated
sheaf Fx of commutative dg algebras on each scheme X over our base field F', and we
write E(X) := I'(X, Ex). Set S = FDVecty, and T = E(X) ® S, so T has the same
objects as S, but T(U,V) = E(X) ® S(U,V). We may then embed Dy, (TP* @ T) =
Dyg(E(X)°PP ® E(X)) into the category of Ex2-modules by setting

1x2(U, V) =U @, Ex2 @1, VY,

with the left and right actions of E(X) on Ex2 coming from the projections X2 — X.

As in §4.3, we may now construct a universal Hopf algebra D on X? = X x X, and
regard it as the ring of functions on the space of nilpotent algebraic paths. For an
explicit model, we follow Examples 1.13 and 4.13, setting

D := 12 CC(T/S, i @ i) = CC(E(X), Ex2),

for i: & — 7. This is the Hochschild homology complex of the DGA E(X) with
coefficients in the E(X)-bimodule Ey2 in sheaves on X?2.
As before, we have

D = CC(E(X). (pr Ex) @k (013 EX)) @ity (s 115 Ex2:
which is defined in terms of the (pr;*Ex) ®j (pry ' Ex)-modules
CC,(T/S, (pry exi™) @ (pry 'exi)) = pry Ex @ E(X)®" @ pry ' Bx.
on X2. Since E is a Weil cohomology theory, this is quasi-isomorphic to
pry'Ex ® E(X™) ®, pry ' Ex.

Writing h(X/Y) for the cohomological motive M, (X/Y )PP € M1 (Y)PP of X over
a base scheme Y and h(X) := h(X/F'), we see that the sheaf D comes from applying E
to the simplicial motive

n i pry Th(X/X) @5, h(X™) @ pry h(X/X)

on X2
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A choice of basepoint a: Spec F' — X gives a fibre functor a*: E(X) — k, and hence
T — FDVect. The associated dg Hopf algebra is

C:=(a,a)"D = E(X*),

with the outer boundary maps coming from pulling back by (a,id)*, (id,a)*: X" —
Xn—|—1.
Thus C' comes from applying the cohomology theory E to the simplicial motive

W) e h(X)2a —h(X x X)...,

a*

which is just h(P,(X)), for Wojtkowiak’s cosimplicial loop space P,(X) from [Woj.
The motivic fundamental group of [EL] is then essentially just

Spec HOW(P, (X)),

so becomes a special case of our Hochschild homology construction for Tannakian duals.

In fact, we can say much more. Following [EL, §6], we define a cosimplicial scheme
X001 py (x0yn —= XA = X"+2 The vertices of Al give a cosimplicial map from
X101 to the constant cosimplicial scheme X2, with P,(X) the fibre over (a,a). Now,
observe that the ring of functions D on the space of nilpotent algebraic paths is just

given by applying our chosen cohomology theory to the simplicial cohomological motive
D := h(XT/X?) over X?2.

4.5.2. Relative Malcev homotopy types. Rather than just looking at nilpotent homotopy
types, we could consider more general motivic homotopy types by choosing a set S of
rigid cohomological motives over X, the nilpotent case being S = {h(X/X)}. Taking
T to be the full dg category of Ex-modules on objects Ex (M) for M € S, we find that
the universal coalgebra D (thought of as the sheaf of functions on the space of algebraic
paths generated by S) is the normalised total complex of the simplicial diagram given
in level n by

mm (pry 'exhPP) @ (prytixhr)) &

pry  Ex(My) @ E(My ®@x MY') @ ... @) E(My_1 ®@x M) @y, pry ' Ex (M,,).
Mo,...,Mn €S

Here MV denotes the dual motive to M over X, which is just M(—d)[—2d] when M =
h(Y/X) is the motive of a smooth and proper morphism Y — X of relative dimension
d. We write @ x for the derived tensor product of motives over X (i.e. with respect to
kx := h(X/X)), and we set E(N) :=I'(X, Ex(N)).

Beware that the duals and tensor products in this expression are only defined up
to homotopy, so we have only described D as a coalgebra in the derived category of
FE-modules over X x X, with respect to the tensor product

(F,G) = prig,((prioF) @5, 5 (Pr33G)).
Now, D arises by applying E to the simplicial cohomological motive D over X? given

M
n — My @k (Mg ®x M) ®p ... @k (My—1 @x M) @k My,
Mo,...,Mn €S

by



TANNAKA DUALITY FOR ENHANCED TRIANGULATED CATEGORIES 43

where the h(X?)-module structure comes from the h(X)-module structures of M and
M,. When the set S is closed under the tensor product ®x, the universal coalgebra D
becomes a ® x-bialgebra over X2,

To understand the relation between D and the universal coalgebras of §1.2.2, observe
that the six functors formalism of [Ayol] makes Ma1(X) a category enriched in Ma1 (F')
and linear over it. The ® x-coalgebra D on X? is then a resolution of the enriched Hom
functor on objects in S given by (N, M) — Rf.(M @x NV), for f: X — Spec F. This
construction is thus the direct generalisation of §1.2.2 to enriched categories.

At a basepoint a € X, the E-Malcev homotopy type of (X, a) relative to S is the dg
coalgebra C' := (a,a)*D, which just comes from applying F to the simplicial cohomo-
logical F-motive (a,a)*D given by

M

n— (Ma/)a Rk (Mo ®@x Mf/) Rk« Qp (My—1 ®x M;L/) Rk (Mp)q-
Mo,...,Mn €S

In other words, we should think of D as the motive of M1 (F')-valued functions on the
space of algebraic paths generated by S. At any basepoint a, the motive (a,a)*D is then
the geometric motivic homotopy type of (X, a) relative to S. Note that the arithmetic
homotopy type would replace the motive (M;_; ®x M,’) with its motivic cohomology
complex. L

As in Example 1.13, the motive L := ;.o MY ®; M is a ®x-coalgebra over X?.
Then D,, = IL ®x L ®{;; L ®x I},, so D is just the Cech nerve of the comonoid L. Setting

n+1

S = {kx} (the nilpotent case), we get L = kx> = h(X?/X?) and recover the description
D = h(X!/X?) of §4.5.1.

For rigid motives P, Q € Ma1(X)°PP, we have

RHom yorv (x x) (priPY @xxx pry@Q,D) =~ RHom yore (x) (P, Q)
~ RHom vope (x x) (PP @xxx PrsQ, h(X/X?)),

where the morphism X — X2 is the diagonal map. Thus the universal coalgebra D
is just the universal motive under h(X/X?) generated by motives in S. Since duals
and tensor products are here only defined up to homotopy, we should perhaps think of
h(X/X?) (or at least its induced functor on rigid motives) as the fundamental object.

When S is the set of all rigid motives and we have a basepoint a € X, a*D € Da1(F)
is just Ayoub’s motivic Hopf algebra from [Ayo4, §2.4].

APPENDIX A. FORMAL WEIL COHOMOLOGY THEORIES

A.1. Quasi-projective pairs and localisation.

A.1.1. Quasi-projective pairs.

Definition A.1. Given a field F' admitting resolution of singularities, we let SmQP/F
be the category of pairs j: U — X, where X is smooth and projective over F', with U the
complement of a normal crossings divisor. We say that a morphism (U, X) — (U, X')
in SmQP/F is an equivalence (or in &) if it induces an isomorphism U — U’.

Lemma A.2. The pairs (SmQP/F,€) and (€,&) admit right calculi of fractions in the
sense of [DK1].
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Proof. We begin with the case (SmQP/F, ), noting that £ contains all identities and

is closed under composition. For any diagram (V,Y") ER (U, X) & (U, X") in SmQP/F
(so a is an equivalence), we first need to find a commutative diagram

(v,y) L= (U x")
y yo

(V,Y) —— (U.X),
with b an equivalence. To do this, we first form the fibre product X’ x x Y, and observe
that the isomorphism V = U xy V gives us amap V — X' xx Y. Taking Y’ to be a
resolution of singularities of the closure of V in X’ x x Y gives the required diagram.

Secondly, we need to show that if any parallel arrows f,g: (V,Y) — (U,X’) in

SmQP/F satisfy af = ag for some equivalence a: (U, X') — (U, X), then there exists
an equivalence b: (V,Y’) = (V,Y) with fb = gb. The condition af = ag implies that
the maps f,g: V — U are equal. There is therefore a diagonal map

VY Xfr X' g Y.

Taking Y’ to be a resolution of singularities of the closure of V'in Y x ¢ x* ;Y then gives

the construction required. Thus (SmQP/F, ) admits a right calculus of fractions.
Finally, note that £ satisfies the two out of three property, so as observed in [DK1,

7.1], it follows that (£, &) admits a right calculus of fractions. O

A.1.2. Localisation and DG quotients.

Definition A.3. Given a category C and a subcategory W, we follow [DK1] in writing
C[W™1] for the localised category given by formally inverting all morphisms in W.

Definition A.4. Given a category C and a subcategory W, and an object Y € C, we
write

W H(X,Y)
for the category whose objects are spans
vy L x

with » in W, and whose morphisms are commutative diagrams

y <y, I x
EON A

Yy Y2 Y, f2 X,

with v in W.
Note that this category is denoted in [DK2, 5.1] by N~1CW~1(Y, X).

Definition A.5. Given a category C, write kC for the k-linear category with the same
objects as C, but with morphisms given by the free k-modules

(kC)(X,Y) := k(C(X,Y)).
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Definition A.6. Given F € Cqe(kC) (i.e. a contravariant functor from C to cochain
complexes over k) and Y € C, define the cochain complex F W~1(Y) by
F W (Y) := holim F (Y”).
,
Y emy
Explicitly, this can be realised as the direct sum total complex of the simplicial cochain
complex

M
F(Y]) < F)e....
Y, =Y Y, =Y oY

Beware that this construction is not functorial in Y.

Proposition A.7. Take a small category C and a subcategory WV such that (C,V) and
(W, W) admit right calculi of fractions. Let D be the localised category C[WW~!] given by
formally inverting all morphisms in W. Then the functor A: C — D gives a left Quillen
functor

Ar: Cyg(kC) — Cqg(ED),
left adjoint to A~!, making Cq. (kD) Quillen-equivalent to the left Bousfield localisation
of Cqg(kC) at the image EW of W under the Yoneda embedding k: C — Cqq(kC).

Proof. The functor A satisfies A\j(kC') = kA(C'), which then determines A by right Kan
extension. We begin by computing this for cofibrant £C-modules.
Combining [DK1, Propositions 7.2 and 7.3], the morphism

BCW™H(X,Y) = D(AX, \Y)
is a weak equivalence of simplicial sets for all X,Y € C. Since kD(AX,\Y) =
(MEX)(AY), and BCOW 1 X,Y) = (kX)W L(Y), this gives a quasi-isomorphism
EXIWHY) = (MEX)(NY),
functorial in X (but not in Y'). Since any cofibrant kC-module F is a retraction of a
filtered colimit of finite complexes of kX'’s, this gives quasi-isomorphisms

(MF)(AY)

~

Fwly)>

forallY € C.
Now, the unit F — A™'\F of the adjunction gives maps

F )= (MF)AY)

for all Y € C, and these factor through the maps above, giving
FY)—>FWLY) S (WF)(Y).

The kC-module F will be kW-local if and only if F maps morphisms in W to quasi-
isomorphisms. If this is the case, then the map F (Y) — F W=}(Y) is a quasi-
isomorphism, so the unit

F (Y)—= (MF)Y)
is also a quasi-isomorphism.

Because A is essentially surjective on objects, the functor A~! reflects quasi-

isomorphisms. Thus the co-unit LAA"'G — G of the derived adjunction is a quasi-

isomorphism for all G. Since A maps W to isomorphisms, any object in the image of
A~1is kW-local. Tt therefore suffices to show that for any cofibrant F € DG(kC), the
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unit F (Y) — (MF )(AY) of the adjunction is a kW-local equivalence. Now, for any
kW-local object G

RHom,.(F ,G)

1

RHom,.(F ,\"'L\G)
RHo_mkp(AF LAG)
RHom, »(LAMAINF ,LAG)
~ RHom,.(A"'\F ,A7'LAG)
~ RHom,.(A\"'A\F ,G),

as required. O

12

1

Corollary A.8. In the setting of Proposition A.7, the functor A\, gives a quasi-
equivalence (kW)L — Dy (kD) of dg categories. Moreover, the map W)+ —
Dyg (kC)/Dag (KWW) to the dg quotient is a quasi-equivalence.

Proof. First observe that (kW)L C Dgag(kC) consists of the fibrant cofibrant objects
in the Bousfield model structure, automatically giving the quasi-equivalence (k‘VV)L
Dag (kD).

Fibrant replacement in the Bousfield model structure gives us morphisms r: M — M
in for each M € Dyg(kC), with M € (kW) = Dag(kW)* and cone(r) € Dag(kW).
Thus Dgg(kWV) is right admissible in the sense of [Dri, §12.6], giving the quasi-
equivalence (W)t — Dyg(kC)/Dag(kW). O

Now write Sm/F for the category of smooth schemes over F.

Corollary A.9. The excision functor (X,D) — X\D induces quasi-equivalences
Dag(SmQP/F, k) /Dag (kE) + (k) — Dag(Sm/F, k).

Proof. This comes from applying Lemma A.2 to Corollary A.8, noting that the excision
functor is essentially surjective, so gives an equivalence
(SmQP/F)[7'] ~ Sm/F.
O

A.1.3. Formal Weil cohomology theories. As in Example 2.20, for any k-linear Weil
cohomology theory E over the field F', we can now define the formal Weil cohomology
theory
E¢: (SmQP/F)PP — Cyg(k)
by '
Ef(UL X):=( HYX,RY.Ey,ds),
a,b

where ds is the differential on the second page of the Leray spectral sequence.

Weight considerations or standard results on Gysin maps imply that the Leray spec-
tral sequence degenerates at Fy (at least for all known Weil theories), so any equivalence
(U, X) = (U, X") in SmQP/F induces a quasi-isomorphism on Ej.

Writing Njg = Dyg(SmQP/K, k) as in Example 2.20, the functor E; extends k-
linearly, giving ’

N JDag(kE) = Cag(k),
since & lies in the kernel of E¢. By Corollary A.9, N, g’g /Dag(kE) is quasi-equivalent to
Meff'
dg
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Moreover, since the Leray spectral sequence degenerates, we have ker Ey = ker E/ on
./\/'(‘fg , SO
Ngg /ker By = Ngg /ker B ~ Mﬁg / ker E.
A.2. Mixed Hodge structures on Betti cohomology.

Definition A.10. For A C R a subfield, define MHS, to be the tensor category of mixed
Hodge structures in finite-dimensional vector spaces over A. Explicitly, an object of
MHS 4 consists of a finite-dimensional vector space V over A equipped with an increasing
(weight) filtration W, and a decreasing (Hodge) filtration F' on V @, C (both exhaustive
and Hausdorff), such that

gr’}gr%grzv V=0
for p+ q # n.

The functor forgetting the filtrations is faithful, so by Tannakian duality there is a
corresponding affine group scheme which (following [Ara]) we refer to as the universal
Mumford—Tate group MT}y; this allows us to identify MHSA with the category of finite-
dimensional MT j-representations.

Denote the pro-reductive quotient of MTy by PMT — representations of this corre-
spond to Hodge structures (i.e. direct sums of pure Hodge structures) over A. The as-
signment of weights to pure Hodge structures defines a homomorphism G,,, A — PMT}y.

Definition A.11. For A C R a subfield, a A-Hodge complex in the sense of [Bei,
Definition 3.2] is a tuple (Vp, Vi, Vg, ¢,v), where (Vj, W) is a filtered complex of A-
modules, (Vg, W) is a filtered complex of complex vector spaces, (Vy, W, F') a bifiltered
complex of complex vector spaces, and

¢: VANC = Ve o¢: Vp—= Ve
are W-filtered quasi—isorwﬁorphisms; these must also satisfy the conditions that

(1) the cohomology ~ ,H*(Vy) is finite-dimensional over A;

(2) for any n € Z, the differential in the filtered complex (gr’¥ Ve, grW' F) is
strictly compatible with the filtration, or equivalently the map H*(FPgr!V Vi) —
H*(grlV Vi) is injective;

(3) the induced Hodge filtration together with the isomorphism H*(gr!V V) @, C —
Hi(gr’V Vi) defines a pure A-Hodge structure of weight n on H(grlV' Vy).

Example A.12. For a sheaf F on Y(C), write Cy(F ) for the Godement resolution of
F — this is a cosimplicial diagram of flabby sheaves. Write C*(X,F ) for the global
sections of C%(F ).

Take a smooth projective complex variety X and a complement j: Y — X of a nor-
mal crossings divisor D. Then set A% := C*(X, j.Co(A)), AL := C*(X, j,Co(N1Q3)),
and A% = C*(X,N;1Q%(D)), where N, ! is the Dold-Kan denormalisation functor
from cochain complexes to cosimplicial modules. The filtration W is given by décalage
of the good truncation filtration on j, in each case. Then N_.A is mixed Hodge complex,
and on applying the Thom—Sullivan functor Th from cosimplicial DG algebras to DG
algebra, we obtain a commutative algebra Th (A) in mixed Hodge complexes.

Definition A.13. For A C R a subfield, define MHS, to be the category of mixed
Hodge structures in finite-dimensional vector spaces over A, and write II(MHS,) for
the group scheme over A corresponding to the forgetful functor from MHS, to A-vector
spaces.
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Definition A.14. Given a cosimplicial vector space V* and a simplicial set K, define
(V')K to be the cosimplicial vector space given by ((V*)¥)* = (V")n  with operations
o (VHE) — (V*)E)"*+1 defined by composing

i\K n n+19;
(Vn)Kn (6) (Vn-‘rl)Kn (V ) 3
and operations o’: ((V*)5)" — (V*)K)"~1 defined similarly.
In particular, (V')Al is a path object over V*, with the two vertices AY — Al
inducing two maps (V*)2" — V*.

(o,

Definition A.15. The A-algebra O(MTj) admits both left and right multiplication by
MT,. These induce two different ind-mixed Hodge structures on O(MT ), which we re-
fer to as the left and right mixed Hodge structures (O(MTy), W', F}), (O(MTy), W™, F}.)

Example A.16. Given A?\,H(XvD) = (AR}, 9, AL, ¥, A}) as in Example A.12, we can
define A}yg(X, D; A) to be the limit of the diagram

(W @ WhHo(AR @a O(MTR)) —5555555{W @ Who(AZ @4 O(MTy))
(W @ Who((AL)A" @4 O(MT,)) —555f(W @ Wo(AL ®5 O(MTy))
(W @ Who(F © F)°(Ay @4 O(MTy))

giving a cosimplicial algebra. The right Hodge structure on O(MT),) then gives us a
cosimplicial algebra

(Al.\/IHS(Xv -D7 A)7 Wra FT)
in ind(MHS,).

Proposition A.17. The A-Hodge complex associated to the cosimplicial algebra
Ans (X, D; A) in ind(MHS, ) is canonically quasi-isomorphic to A3 (X, D) as a com-
mutative algebra in cosimplicial A-Hodge complexes.

Proof. If we set
[ ] [ ] 1
By = A x4 (AY)2
Bc = (Ag)™
Bp = (A)™ x4, AY,

then B := (Bj, Bc, Br) has the natural structure of a A-Hodge complex, and the
morphism ¢°: A! — A® induces a quasi-isomorphism Ay 4(X,D) — B.

There is a map from the A-Hodge complex associated to A};yg(X, D;A) to B given
by projections. We need to show that these projections preserve the Hodge and weight
filtrations, and are (bi)filtered quasi-isomorphisms.

Now, for any mixed Hodge structure V there is a canonical isomorphism V =2 V @MTa
O(MT},) := (V®O(MT,))MTA where the Mumford-Tate action combines the action on
V with the left action on O(MT,). The mixed Hodge structure on V' then corresponds
to the Mumford-Tate action on (V ® O(MT»))MTA induced by the right action on
O(MTy).

Since W,,V is a sub-MHS, it follows that W,V = V @MTa JWTO(MT,), and since
W, is an idempotent functor, this is also isomorphic to (W, V) @MTa WrO(MT,). In
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particular, X

VeMTA WL wroMT,) ¢ (W, V)MTA Wl O(MT,) (WiV) @ (W]O(MT,)),
i<n,j<m,
_z'-i-]]':O

which is 0 for m+n < 0. Thus W!, W/ O(MT,) = 0. A similar argument shows that
FPFP(O(MTy) @4 C) = 0.

Now, the weight filtration W, A}ug(X,D;A) is given by replacing O(MT,)
with W)O(MT,) in the definition of AR;q(X,D;A), and the Hodge filtration
FP AR us(X, D; A) by replacing O(MT ) @4 C with F,?(OI{,MTA) ®@a C). Projection onto
the first factor gives a map from W, AYq(X, D;A) to  ,(W;A%) @ WLWIO(MTy),
which by the vanishing above is contained in (W,A}) ® O(MT,). Using similar ar-
guments for the other factors and composing with the co-unit O(MT,) — A gives
compatible (bi)filtered morphisms

Al.\/IHS(X7 D7 A) - BA
nus (X, D;A) @4 C — Be
Ajs (X, D; A) @5 C — Bp,
and it only remains to establish quasi-isomorphism.

The data N.A} (X, D) of Example A.12 define a A-Hodge complex, so by [Beil,
there exists a complex V'* of mixed Hodge structures whose associated Hodge complex
is quasi-isomorphic to N.A} 4(X, D).

Now, observe that N A}g(X,D;A) is a cocone calculating absolute Hodge coho-
mology, so

NeARups(X, D5 A) = RTx(A3 (X, D) @ (O(MTy), W', F))
~ RI'y(V* ® (O(MTy), W' )
~ RHomygg 4 (A, V* ® (O(MTy), W', F))
=~ Homypg A (A, V* @ (O(MT,), W' R))
=V @M O(MT,)
~ye,
with the last two properties following because V*® ® O(MTy) is an injective MTx-
representation and because ind(MHSp) is equivalent to the category of O(MT,)-

comodules in A-vector spaces. The quasi-isomorphisms above all respect mixed Hodge
structures (via the right action on O(MT))), completing the proof. O

A.3. Splittings for Betti cohomology. Since MT}, is an affine group scheme, it is an
inverse limit of linear algebraic groups, so by [HM], there exists a Levi decomposition
MTy = PMTy X Ry(MTy) of the universal Mumford—Tate group as the semidirect
product of its pro-reductive quotient and its pro-unipotent radical. Beware that this
decomposition is not canonical; it might be tempting to think that the functor V
gr'™V yields the required section by Tannaka duality, but it is not compatible with the
fibre functors.

Moreover, Levi decompositions are conjugate under the action of the radical
Ru(MT,), so the set of decompositions is isomorphic to the quotient

Ry(MTy)/Ry(MTy)PMTa
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by the centraliser of PMT,. For any element u of Ry,(MT,), we must have (u —
id)W,,V.C W,_1V for all mixed Hodge structures V. However, any element in the
centraliser necessarily has weight 0 for the G,,-action, so must be 1. Thus the set of
Levi decompositions is a torsor under

Ru(MTy).

Proposition A.18. Each choice of Levi decomposition for the universal Mumford—
Tate group MT gives rise to a zigzag of W-filtered quasi-isomorphisms between the
cosimplicial algebra-valued functors

(X,D) — AX(X,D)
(X, D) — N Y H*(X,R*j.A), dy),

where d, is the differential on the E5 page of the Leray spectral sequenceand j: X\D —
X.

Proof. A choice of Levi decomposition is equivalent to a retraction of MHS, onto HSy,
and V € MHS, is canonically isomorphic to gr'V'V. Since the weight filtration is a
functorial filtration by mixed Hodge substructures, it is necessarily preserved by any
such retraction, which thus amounts to giving a functorial W-filtered isomorphism V =
gr'™'V for all mixed Hodge structures V.

Proposition A.17 gives a zigzag of functorial W-filtered quasi-isomorphisms be-
tween the cosimplicial algebra AR;;;¢(X,D;A) and the Betti complex A}(X,D). A
choice of Levi decomposition then gives a W-filtered isomorphism ARuq(X, D;A) =
ngAf\/[HS(XvD?A)- Applying Proposition A.17 to the associated gradeds then
gives a zigzag of filtered quasi-isomorphisms between ngAl.\/IHS(X ,D;A) and
gt A% s (X, D; A), which maps quasi-isomorphically to N;1(H*(X,R*j.A),d2). O

Corollary A.19. If Ep denotes the Weil cohomology theory associated to Betti coho-
mology, and Ep  its formal analogue as in Examples 2.20 and §A.1.3, then each choice
of Levi decomposition for the universal Mumford-Tate group MTq gives a zigzag of
quasi-isomorphisms between Ep and Ep ;.

Proof. The functor Ep is given by X — Th(C*(X(C),Q)), so there is a canonical
quasi-isomorphism from Th (A} (X(C), D(C))) to Ep(X). Proposition A.18 thus gives a
zigzag of quasi-isomorphisms from Eg(X) to Th N7 '(H*(X(C),R*j,A), d2), functorial

in (X\D % X) in SmQP/F. The functors Th and N, are homotopy inverses, so this
is quasi-isomorphic to (H*(X (C), R*j.A), da), which is just Ep ;(X\D % X). O

REFERENCES

[Ara] Donu Arapura. The Hodge theoretic fundamental group and its cohomology. In The geometry
of algebraic cycles, volume 9 of Clay Math. Proc., pages 3-22. Amer. Math. Soc., Providence,
RI, 2010. arXiv:0902.4252v2 [math.AG].

[Ayol]  Joseph Ayoub. Les six opérations de Grothendieck et le formalisme des cycles évanescents dans
le monde motivique. I. Astérisque, (314):x+466 pp. (2008), 2007.

[Ayo2] Joseph Ayoub. La réalisation étale et les opérations de Grothendieck. Ann. Sci. Ec. Norm.
Supér. (4), 47(1):1-145, 2014.

[Ayo3] Joseph Ayoub. L’algebre de Hopf et le groupe de Galois motiviques d’un corps de car-
actéristique nulle, 1. J. Reine Angew. Math., to appear.

[Ayod] Joseph Ayoub. L’algebre de Hopf et le groupe de Galois motiviques d'un corps de car-
actéristique nulle, II. J. Reine Angew. Math., to appear.



[Bei]

[BK1]
[BK2]

[Blo]
[CD]

[Dell]
[Del2]
[DK1]
[DK2]
[DK3]
[DMOS]
o
[F1)
[Hai]

[Han)]
[Hin]

]
)
[HMS]
s
o
[Kel2]
[KPT]
Laz]
L]

[LV]
[Mit]

TANNAKA DUALITY FOR ENHANCED TRIANGULATED CATEGORIES 51

A. A. Beilinson. Notes on absolute Hodge cohomology. In Applications of algebraic K-theory
to algebraic geometry and number theory, Part I, Il (Boulder, Colo., 1983), volume 55 of
Contemp. Math., pages 35-68. Amer. Math. Soc., Providence, RI, 1986.

A. 1. Bondal and M. M. Kapranov. Representable functors, Serre functors, and reconstructions.
lIzv. Akad. Nauk SSSR Ser. Mat., 53(6):1183-1205, 1337, 1989.

A. 1. Bondal and M. M. Kapranov. Framed triangulated categories. Mat. Sh., 181(5):669-683,
1990.

Spencer Bloch. Algebraic cycles and higher K-theory. Adv. in Math., 61(3):267-304, 1986.
Denis-Charles Cisinski and Frédéric Déglise. Mixed Weil cohomologies. Adv. Math., 230(1):55—
130, 2012.

P. Deligne. Le groupe fondamental de la droite projective moins trois points. In Galois groups
over Q (Berkeley, CA, 1987), volume 16 of Math. Sci. Res. Inst. Publ., pages 79-297. Springer,
New York, 1989.

Pierre Deligne. Théorie de Hodge. II. Inst. Hautes Etudes Sci. Publ. Math., (40):5-57, 1971.
W. G. Dwyer and D. M. Kan. Calculating simplicial localizations. J. Pure Appl. Algebra,
18(1):17-35, 1980.

W. G. Dwyer and D. M. Kan. Simplicial localizations of categories. J. Pure Appl. Algebra,
17(3):267—284, 1980.

W. G. Dwyer and D. M. Kan. Homotopy theory and simplicial groupoids. Nederl. Akad.
Wetensch. Indag. Math., 46(4):379-385, 1984.

Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih. Hodge cycles, motives,
and Shimura varieties, volume 900 of Lecture Notes in Mathematics. Springer-Verlag, Berlin,
1982.

Vladimir Drinfeld. DG quotients of DG categories. J. Algebra, 272(2):643-691, 2004.

Hélene Esnault and Marc Levine. Tate motives and the fundamental group. arXiv:0708.4034v1
[math.AG], 2007.

Hiroshi Fukuyama and Isamu Iwanari. Monoidal infinity category of complexes from Tannakian
viewpoint. Math. Ann., 356(2):519-553, 2013.

Richard M. Hain. The Hodge de Rham theory of relative Malcev completion. Ann. Sci. Ecole
Norm. Sup. (4), 31(1):47-92, 1998.

Masaki Hanamura. Mixed motives and algebraic cycles. I. Math. Res. Lett., 2(6):811-821, 1995.
Vladimir Hinich. DG coalgebras as formal stacks. J. Pure Appl. Algebra, 162(2-3):209-250,
2001.

Philip S. Hirschhorn. Model categories and their localizations, volume 99 of Mathematical Sur-
veys and Monographs. American Mathematical Society, Providence, RI, 2003.

G. Hochschild and G. D. Mostow. Pro-affine algebraic groups. Amer. J. Math.; 91:1127-1140,
1969.

Annette Huber and Stefan Miiller-Stach. On the relation between Nori motives and Kontsevich
periods. arXiv:1105.0865v4, 2011.

André Joyal and Ross Street. An introduction to Tannaka duality and quantum groups. In Cat-
egory theory (Como, 1990), volume 1488 of Lecture Notes in Math., pages 413-492. Springer,
Berlin, 1991.

Daniel M. Kan. On homotopy theory and c.s.s. groups. Ann. of Math. (2), 68:38-53, 1958.
Bernhard Keller. On the cyclic homology of exact categories. J. Pure Appl. Algebra, 136(1):1-
56, 1999.

Bernhard Keller. On differential graded categories. In International Congress of Mathemati-
cians. Vol. Il, pages 151-190. Eur. Math. Soc., Ziirich, 2006.

L. Katzarkov, T. Pantev, and B. Toén. Algebraic and topological aspects of the schematization
functor. Compos. Math., 145(3):633-686, 2009. arXiv math.AG/0503418 v2.

Chris Lazda. Relative fundamental groups and rational points. arXiv:1303.6484v3 [math.NT],
2013.

Jacob Lurie. Derived algebraic geometry VIII: Quasi-coherent sheaves and Tannaka duality
theorems. 2011.

Jean-Louis Loday and Bruno Vallette. Algebraic operads. Berlin: Springer, 2012.

Barry Mitchell. Rings with several objects. Advances in Math., 8:1-161, 1972.



52

[Mor]
[Pos]
[Pril]

[Pri2]

[Pri3]
[Prid]
[Pri5]
[Pri6]
[Pri7]

[Qui]
[Tabl]

[Tab2]

[Toél]
[Toé2]

[Toé3]
[TV]
[Ver]
[VSF]

[Wal]
[Woj]

J.P.PRIDHAM

Syunji Moriya. The de Rham homotopy theory and differential graded category. Math. Z.,
271(3-4):961-1010, 2012.

Leonid Positselski. Two kinds of derived categories, Koszul duality, and comodule-
contramodule correspondence. Mem. Amer. Math. Soc., 212(996):vi+133, 2011.

J. P. Pridham. Deforming I-adic representations of the fundamental group of a smooth variety.
J. Algebraic Geom., 15(3):415-442, 2006.

J. P. Pridham. The pro-unipotent radical of the pro-algebraic fundamental group of a
compact Kéahler manifold. Ann. Fac. Sci. Toulouse Math. (6), 16(1):147-178, 2007. arXiv
math.CV /0502451 v5.

J. P. Pridham. Pro-algebraic homotopy types. Proc. London Math. Soc., 97(2):273-338, 2008.
arXiv math.AT /0606107 v8.

J. P. Pridham. Unifying derived deformation theories. Adv. Math., 224(3):772-826, 2010.
arXiv:0705.0344v5 [math.AG].

J. P. Pridham. Galois actions on homotopy groups. Geom. Topol., 15(1):501-607, 2011.
arXiv:0712.0928v4 [math.AG].

J. P. Pridham. Real non-abelian mixed Hodge structures for quasi-projective varieties: formal-
ity and splitting. arXiv: 1104.1409v2 [math.AG], 2011.

J. P. Pridham. Derived moduli of schemes and sheaves. J. K-Theory, 10(1):41-85, 2012.
arXiv:1011.2189v5 [math.AG].

Daniel Quillen. Rational homotopy theory. Ann. of Math. (2), 90:205-295, 1969.

Gongalo Tabuada. Invariants additifs de DG-catégories. Int. Math. Res. Not., (53):3309-3339,
2005.

Goncalo Tabuada. Une structure de catégorie de modeles de Quillen sur la catégorie des dg-
catégories. C. R. Math. Acad. Sci. Paris, 340(1):15-19, 2005.

Bertrand Toén. Dualité de Tannaka supérieure I: Structures monoidales. MPI preprint, 2000.
Bertrand Toén. Champs affines. Selecta Math. (N.S.), 12(1):39-135, 2006. arXiv
math.AG/0012219.

Bertrand Toén. The homotopy theory of dg-categories and derived Morita theory. Invent.
Math., 167(3):615-667, 2007.

Bertrand Toén and Michel Vaquié. Moduli of objects in dg-categories. Ann. Sci. Ecole Norm.
Sup. (4), 40(3):387-444, 2007.

Jean-Louis Verdier. Des catégories dérivées des catégories abéliennes. Astérisque, (239):xii+253
pp- (1997), 1996. With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis.
Vladimir Voevodsky, Andrei Suslin, and Eric M. Friedlander. Cycles, transfers, and motivic
homology theories, volume 143 of Annals of Mathematics Studies. Princeton University Press,
Princeton, NJ, 2000.

James Wallbridge. Tannaka duality over ring spectra. arXiv:1204.5787v1 [math.AG], 2012.
Zdzistaw Wojtkowiak. Cosimplicial objects in algebraic geometry. In Algebraic K-theory and
algebraic topology (Lake Louise, AB, 1991), volume 407 of NATO Adv. Sci. Inst. Ser. C Math.
Phys. Sci., pages 287-327. Kluwer Acad. Publ., Dordrecht, 1993.



