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Abstract

We present an envelope theorem for establishing first-order conditions in decision
problems involving continuous and discrete choices. Our theorem accommodates
general dynamic programming problems, even with unbounded marginal utilit-
ies. And, unlike classical envelope theorems that focus only on differentiating value
functions, we accommodate other endogenous functions such as default probabilit-
ies and interest rates. Our main technical ingredient is how we establish the differ-
entiability of a function at a point: we sandwich the function between two differenti-
able functions from above and below. Our theory is widely applicable. In unsecured
credit models, neither interest rates nor continuation values are globally differen-
tiable. Nevertheless, we establish an Euler equation involving marginal prices and
values. In adjustment cost models, we show that first-order conditions apply uni-
versally, even if optimal policies are not (S,s). Finally, we incorporate indivisible
choices into a classic dynamic insurance analysis.

Keywords: First-order conditions, discrete choice, unsecured credit, adjustment costs, informal
insurance arrangements.
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 Introduction
First-order conditions are one of the most important tools for studying economic trade-
offs. However, they seem inapplicable to many important markets. Our leading applic-
ation is set in Arellano’s () model of unsecured credit markets, where borrowers
choose between defaulting on their loans and honouring them.¹ e presence of this
discrete choice causes the continuation value to be a non-differentiable function of the
debt choice. But this is not the only problem. When a borrower takes on more debt, he
has a higher incentive to default in the future. is default risk will be reflected in the
interest rate. e borrower’s intertemporal trade-off therefore involves two endogenous
functions of debt: the interest rate and the continuation value. Both functions’ derivatives
should appear in first-order conditions, but neither derivative exists globally.

Previous techniques are inapplicable. Existing envelope theorems,² perturbation and
variational methods do not accommodate non-differentiable interest rates. Moreover,
previous envelope theorems do not simultaneously accommodate the discrete default
choice and the Inada condition involving unbounded marginal utilities.

We present an envelope theorem that addresses these limitations. Consider an op-
timisation objective that is constructed using standard operations³ from a collection of
functions which are either known to be differentiable, or have “differentiable lower sup-
port functions” (explained below). We establish that at optimal choices, (i) this objective
is differentiable, (ii) the constituent functions are differentiable, and (iii) the first-order
condition holds.

In our leading application of unsecured credit markets, the objective is constructed
out of a differentiable utility function and two globally non-differentiable endogenous
functions, namely the continuation value and the interest rate. Small debts trade at the
risk-free rate. But at a particular debt size – the risk-free limit – the interest rate increases
with a kink. When the borrower chooses this kink, first-order conditions do not apply.
At any other optimal debt choice, our theorem establishes that the endogenous functions
are differentiable. e theorem also implies a first-order condition holds: the marginal
benefit of taking on debt includes the marginal interest rate, and the marginal cost is the
marginal continuation value of owing debt. is first-order condition has been used in

¹ismodel is in the tradition of Eaton andGersovitz (). See also Bulow and Rogoff (), Kehoe
and Levine (), Cole andKehoe (), Kletzer andWright (), andCooley,Marimon andQuadrini
(). Recent work includes Aguiar and Gopinath (), Chatterjee, Corbae, Nakajima and Ríos-Rull
(), Hopenhayn and Werning (), Aguiar, Amador and Gopinath (), Hatchondo and Martinez
(), Arellano andRamanarayanan (), Chatterjee and Eyigungor (), andAguiar, Amador, Farhi
and Gopinath ().

² We discuss the important envelope theorems of Mirman and Zilcha (), Benveniste and Scheink-
man (), Dechert andNishimura (), Amir,Mirman andPerkins (),Milgrom and Segal (),
and Cotter and Park () below.

³ e standard operations we consider are addition, multiplication, upper envelopes (maximum), and
function composition.





previous work, but without establishing that the relevant derivatives exist.⁴ We provide
the missing link. is allows us to derive a new economic conclusion: while borrowers
might optimally choose to exhaust their risk-free limits, it is not optimal to exhaust their
(risky) overall limits.

Our envelope theorem involves a novel proof technique which simplifies the logic
from previous envelope theorems.⁵ e main ingredient is our Differentiable Sandwich
Lemma. It establishes that any function F is differentiable at any point c̄ where it is
sandwiched between two differentiable functions from above and below. Specifically, the
lemma applies if the two functions, which we call differentiable upper and lower support
functions U and L, satisfy (i) U(c̄) = F (c̄) = L(c̄), (ii) U(c) ≥ F (c) ≥ L(c) for all
c, and (iii) L and U are differentiable. We do not require any other conditions on F ,
such as continuity. Technically speaking, the rest of the paper is devoted to constructing
appropriate upper and lower support functions. Since our focus is on differentiability at
optimal choices, there is a straightforwardway to a construct differentiable upper support
function for any objective function: the constant function that passes through the max-
ima. For the differentiable lower support functions, we provide several generalisations
of Benveniste and Scheinkman’s () construction in our applications. With these two
constructions in hand, the Differentiable Sandwich Lemma establishes differentiability
of objective functions at optimal choices. Finally, our Reverse Calculus Lemma estab-
lishes that if an objective function is differentiable, then all of its constituent functions
(in particular the continuation value and any other endogenous function) are differenti-
able as well.

We present three additional applications. In our second application, firms have a fixed
cost of adjusting their capital stock (or labour force, prices, etc.) in response to shocks.
Open questions in the literature (discussed below) are: underwhich conditions are (i) op-
timal policies two-sided (S,s), i.e. based on cut-offs such that adjustment occurs only aer
sufficiently good and sufficiently bad shocks, (ii) such cut-offs differentiable functions,
and (iii) optimal adjustments determined by first-order conditions. Most of the literat-
ure simply assumes that these endogenous properties are satisfied without analysing for
whichmodel parameters this is the case.We develop a general model of adjustment costs
that nests most of the previous models.⁶ We then show that the third criterion is always
satisfied, regardless of the first two criteria (on which we do not make any progress). Spe-
cifically, we show that the value function is differentiable at optimal adjustment choices,
even though it is not globally differentiable and even if the optimal adjustment policy is

⁴ As we explain below, Aguiar and Gopinath (), Hatchondo and Martinez (), and Arellano
and Ramanarayanan () discuss such a heuristic first-order condition.

⁵ e proofs of the previous envelope theorems we review are based on directional derivatives – which
may not exist (see Section ).

⁶ See Khan and omas (a), Leahy (), and Caplin and Leahy (). We will discuss in par-
ticular Bar-Ilan (), Caballero and Engel (), Cooper and Haltiwanger (), Gertler and Leahy
(), Khan and omas (b), and Elsby and Michaels ().





not (S,s).
In the third application of our envelope theorem, villagers in an agrarian economy

insure each other against risks such as agricultural output and health shocks. Morten
() observes that in rural India, informal insurance arrangements include tempor-
ary migration to cities.⁷ Her seemingly simple extension of Ligon, omas and Wor-
rall () is complicated because the indivisible migration choice leads the households’
value functions to be neither concave nor differentiable. Nevertheless, we show that they
are differentiable at optimal choices, and the analysis of Ligon et al. () generalises in
a straightforward way. Our new economic result is that even with both continuous and
discrete choices, households perfectly insure against all shocks unless they are so big that
autarky constraints bind. is means that the lumpy migration decision is smoothed out
by reallocating the divisible consumption good.

ese applications indicate our envelope theorem is widely applicable, and is espe-
cially useful when trade-offs involve endogenous functions or discrete choices. e un-
secured credit market analysis can potentially be adapted to any problem involving cut-
off policies, such as whether to accept an offer or to exercise an option. For example,
in stochastic bargaining games, higher offers are more likely to be accepted. Our en-
velope theorem might be used to characterise optimal offers with first-order conditions
involvingmarginal acceptance probabilities. Our theoremmight also be applied to prob-
lems involving discrete choices, such as deciding between work, study, and vacation; mi-
grating or staying; which candidate to vote for; how many children to have; and whether
to get married.⁸

Our envelope theorem is related to several classical theorems. As our fourth applica-
tion, we provide an elementary proof of themost important envelope theorem for recurs-
ive macroeconomics, the Benveniste and Scheinkman () theorem. is theorem ap-
plies to smooth dynamic programming problems in which the value function is concave.
In fact, if the value function is not concave, then the decision maker is locally risk-loving
and can attain a strictly higher pay-off with a suitable lottery. erefore, the theorem is
applicable to dynamic programming problems that accommodate lotteries, even if the
primitives are not concave.⁹ However, the theorem only applies to value functions, but
not to other endogenous functions. eir proof involves a lemma from convex analysis.
Our proof is based on the Differentiable Sandwich Lemma. We construct the top half
of the sandwich using the supporting hyperplane theorem, and retain their construction

⁷emodel we study is in the tradition ofomas andWorrall () and Kocherlakota (), which
only have continuous choices. Other important papers in this literature include Townsend (), Attana-
sio and Ríos-Rull (), and Krueger and Perri ().

⁸ Rust () and Aguirregabiria and Mira () cite many more examples. ese are typically nu-
merical papers in the tradition of Rust (). Our theorem has been applied by Fella () and Iskhakov,
Rust and Schjerning () in the design of numerical dynamic programming algorithms.

⁹ Rogerson () studies a model in which labour is indivisible. is leads workers to play lotteries
over work obligations (or equivalently, over wealth).





for the bottom half.
For smooth but non-convex problems, Dechert and Nishimura () supply an en-

velope theorem in the context of a growth model. Milgrom and Segal (, Corollary
) accommodate discrete choices. eir result is a special case of ours, but their proof
is based on directional derivatives which do not exist in general. ey therefore impose
superfluous conditions of equidifferentiability and bounded derivatives which we drop
without imposing any new conditions. ese conditions are difficult to meet in the pres-
ence of Inada conditions that require unbounded marginal utility.

To our knowledge, Santos () is the only envelope theorem to depart from study-
ing value functions. He provides sufficient conditions for the policy function to be differ-
entiable via twice-differentiability of the value function. Our theorem is a more drastic
departure, as it potentially applies to any endogenous function that might need to be
differentiated in a first-order condition.

is paper is organized as follows: Section  surveys the threats to applying first-order
conditions. Section  presents three lemmas and our envelope theorem. In Section ,
we apply the envelope theorem to study four applications. We conclude in Section .
e appendix presents a technical discussion about the relationship of our technique to
Fréchet subderivatives.

 Threats to First-Order Conditions
is section surveys the threats to the validity of first-order conditions through a series
of examples. All envelope theorems must either assume these threats away, or provide a
reason why they do not occur.

Some envelope theorems, such as Benveniste and Scheinkman (), have diffi-
culties accommodating value functions that are neither concave nor globally differenti-
able. e first example illustrates how such value functions arise when there are discrete
choices. Suppose a worker chooses whether to work (h = 1) or relax (h = 0) based on
his savings level a. He is paid a wagew and his utility is given by u(a+wh, h). His value
of savings, depicted in Figure a, may be written as V (a) = maxh∈{0,1} u(a + wh, h).
At savings level ã, the worker is indifferent between working and relaxing. At this indif-
ference point, there is a discontinuous increase in the marginal value of saving, which is
sometimes called a downward kink. is means the value function is neither differenti-
able nor concave.

e problem becomesmore severe in the finite horizon version of themodel depicted
in Figure b. e worker chooses whether to work in each period. He has many possible
sequences of discrete choices, each of which leads to a kink in the first-period value func-
tion. In other words, kinks from tomorrow’s value function can back-propagate to kinks
in today’s value function. If any of these kinks are optimal choices, then first-order con-
ditions will not be satisfied.
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e proofs of all previous envelope theorems (discussed below) are based on direc-
tional derivatives. But in infinite horizon problems with discrete choices, the value func-
tion’s directional derivatives may fail to exist. is possibility is illustrated abstractly in
the “bouncing ball” function depicted in Figure a, which is the upper envelope of a
countable set of parabolas.¹⁰ is function has directional derivatives everywhere except
at c = 0. In particular, the right directional derivative V1(0+) does not exist because
the slope oscillates between 0 and (

√
2 − 1)2. To avoid this problem, previous envelope

theorems have imposed strong conditions on primitives, such as concavity or bounded
derivatives, to ensure that directional derivatives exist. However, all of these conditions
rule out studying models with discrete choices and unbounded marginal utilities of con-
sumption.

In the first example, the value function was not differentiable because of a downward
kink. Could upward kinks, such as discontinuous jumps downwards in a marginal value,
also threaten first-order conditions? Consider the following example where the worker
pays a progressive wage tax τ(wh) on his labour income wh. e tax is piecewise-linear,
with a jump at income Ĩ so that the aer-tax labour income,wh− τ(wh) has an upward
kink at h̃ = Ĩ/w, depicted in Figure b. His value function may be written as V (a) =
maxh≥0 u(a + wh − τ(wh), h). e choice corresponding with the upward kink, h̃ is
attractive in the sense that the marginal benefit of working a bit beyond this level is low.
e kink is therefore an optimal labour choice at some states.¹¹is means upward kinks
are another threat to the applicability of first-order conditions.

¹⁰ e set of parabolas is {v(·, d)}d∈D where

v (c, d) = − 1

|d|
(c− d)

(
c− d

2

)
and D =

{ s

2n
: s ∈ {−1, 1} , n ∈ N

}
.

¹¹ But it turns out that this value function V does not inherit any kinks from the budget constraint.
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To summarise, establishing first-order conditions requires that the relevant endogen-
ous functions be differentiable at optimal choices. Discrete choices lead to downward
kinks in value functions. In problems with multiple periods, these kinks may multiply.
In infinite horizon problems, even directional derivatives may not exist. More generally,
endogenous functions might exhibit both upward and downward kinks, both of which
threaten the validity of first-order conditions. e following section will establish condi-
tions under which all endogenous functions are differentiable at interior optimal choices.

 Envelope Theorem
is section presents amethod for verifying that first-order conditions are satisfied at op-
timal choices – even when the objective includes endogenous functions. First, we present
and illustrate three lemmas which are the main steps in the method. en, we introduce
the method in the context of a simple example. Finally, we prove a theorem establishing
that this method applies to a wide class of optimisation problems.

. Differentiable Sandwich Lemma
Our first lemma is a general tool for establishing the differentiability of functions, and
is depicted in Figure . Specifically, we establish that a function F is differentiable at c̄
if it is sandwiched between two differentiable functions, from above and below. Figure 
illustrates two examples of differentiable sandwiches.e second example is pathological;
the sandwiched function is discontinuous in every open neighbourhood of the sandwich
point. Nevertheless, in both examples the sandwiched functions are differentiable at the
sandwich point.
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Figure : Differentiable Sandwich Lemma

Definition . We say that F : C → R is differentiably sandwiched between the lower
and upper support functions L,U : C → R at c̄ ∈ C if

(i) L is a differentiable lower support function of F at c̄, i.e. L is differentiable, L(c) ≤
F (c) for all c ∈ C , and L(c̄) = F (c̄), and

(ii) U is a differentiable upper support function ofF at c̄, i.e.U is differentiable,U(c) ≥
F (c) for all c ∈ C , and U(c̄) = F (c̄).

Before stating the lemma,we need to be precise aboutwhat a derivative is. Sincewewould
like to accommodate many continuous choices (such as asset portfolio choices), we use
the standard multidimensional definition of differentiability. is definition is different
from its one-dimensional counterpart to ensure that the chain rule and other calculus
identities are valid.

Definition . A functionF : C → Rwith domainC ⊆ Rn is differentiable at c ∈ int(C)
if there is some row vectorm withm⊤ ∈ Rn such that

lim
∆c→0

F (c+∆c)− F (c)−m∆c

∥∆c∥
= 0. ()

m is called the derivative of F at c, and may be written as F ′(c).

In fact, this definition is almost identical to the case where the domain is a subset of a
Banach space (X, ∥·∥), and all our results and proofs in this paper generalize without
amendment, as discussed in the appendix.¹²

Lemma  (Differentiable Sandwich Lemma). If F is differentiably sandwiched between L
and U at c̄ then F is differentiable at c̄ with F ′(c̄) = L′(c̄) = U ′(c̄).

¹² In Banach spaces, the derivative m is called a “Fréchet derivative” and lies in the topological dual
space X∗ = {m : X → R such that m is linear and continuous}. For our purposes, it is unnecessary to
define a topology on X∗ because all limits are taken in (X, ∥·∥) and R.





Proof. edifference function d(c) = U(c)−L(c) isminimized at c̄.erefore, d′(c̄) = 0
and we conclude L′(c̄) = U ′(c̄).

Letm = L′(c̄) = U ′(c̄). For all ∆c,

L(c̄+∆c)− F (c̄)−m∆c

∥∆c∥

≤ F (c̄+∆c)− F (c̄)−m∆c

∥∆c∥
≤ U(c̄+∆c)− F (c̄)−m∆c

∥∆c∥
. ()

Consider the limits as ∆c → 0. Since L′(c̄) = U ′(c̄) = m, the limits of the first and last
fractions are 0. By Gauss’ Squeeze eorem, we conclude that the limit in the middle is
also 0, and hence that F is differentiable at c̄ with F ′(c̄) = m.

Remark .. e requirement that F : C → R be globally sandwiched between L and U
on all of C can be relaxed. e function F can be restricted to any domain C ′ ⊆ C such
that c̄ ∈ int(C ′). erefore, F only needs to be locally sandwiched betweenL andU for the
Differentiable Sandwich Lemma to apply.

We informally discuss the role of the support functions in the one-dimensional case. If a
function F has a lower support function L, then this rules out “upward kinks” in which
the le derivative is greater than the right derivative. Similarly, if F has an upper support
functionU , then “downward kinks” are ruled out. IfF is fully sandwiched betweenL and
U , then it has neither upward nor downward kinks, and is differentiable. Differentiable
upper and lower support functions are related to Fréchet sub- and superderivatives. We
refer to the appendix for a discussion.

e sandwich approach avoids the use of directional derivatives as they do not exist
in general (see the previous section). Previous envelope theorems imposed assumptions
such as concavity,¹³ Lipschitz continuity,¹⁴ equidifferentiability,¹⁵ or supermodularity¹⁶
to ensure the existence of directional derivatives. But, these assumptions can be avoided
with our method.

. Maximum Lemma
For the Differentiable Sandwich Lemma to be useful, there must be a way to construct
differentiable upper and lower support functions. e following lemma gives a simple
construction – a horizontal line or plane – that is a differentiable upper support function
above the maximum of any function (see Figure ).

¹³Benveniste and Scheinkman ()
¹⁴Clarke ()
¹⁵Milgrom and Segal ()
¹⁶Amir et al. ()





Lemma  (Maximum Lemma). Let ϕ : C → R be a function. If ĉ ∈ int(C)maximises ϕ,
then ϕ has a differentiable upper support function at ĉ.

Proof. U(c) = ϕ(ĉ) has derivative U ′(c) = 0 for all c.

.. c.
ĉ

.

ϕ(c)

.

U(c)

Figure : Maximum Lemma

. Reverse Calculus
Since the construction of a differentiable upper support function is straightforward, it
might seem that establishing first-order conditions merely involves finding a differen-
tiable lower support function. However, there is an additional difficulty. For example,
consider the objective ϕ(c) = F (c) + G(c), where F and G have differentiable lower
support functions f and g. At an optimal choice ĉ, ϕ is differentiable because it is sand-
wiched between U(c) = ϕ(ĉ) and L(c) = f(c) + g(c). is establishes the first-order
condition ϕ′(ĉ) = U ′(ĉ) = 0. However, in most optimisation problems, such a first-
order condition is unhelpful. Economic insights are typically obtained by expanding the
marginal objective ϕ′ to arrive at a first-order condition such asF ′(ĉ)+G′(ĉ) = 0. How-
ever, this expansion is not justified until we can establish F and G are differentiable at
ĉ.

Calculus solves the opposite problem. Calculus involves rules such as “if F and G
are differentiable at c̄, then H(c) = F (c) + G(c) is also differentiable at c̄.” We wish to
show the converse, that because ϕ(c) = F (c) +G(c) is differentiable, both F andG are
differentiable at c̄.

In the above simple addition problem, in factF must be differentiable at ĉ, becauseF
is sandwiched between f andU(c) = ϕ(c)−g(c). A similar sandwich can be constructed
for G. erefore, we can indeed conclude that if ĉ is an interior maximiser of ϕ, then
F ′(ĉ) +G′(ĉ) = 0.

e following lemma generalises this logic to several standard mathematical opera-
tions. It is important because we will need it to establish that all endogenous functions,
included in our first-order conditions, are in fact differentiable.





Lemma  (Reverse Calculus). Suppose F : C → R and G : C → R have differentiable
lower support functions at c̄.

(i) IfH(c) = F (c) +G(c) is differentiable at c̄, then F is differentiable at c̄.

(ii) If H(c) = F (c)G(c) is differentiable at c̄ and F (c̄) > 0 and G(c̄) > 0, then F is
differentiable at c̄.

(iii) If H(c) = max {F (c), G(c)} is differentiable at c̄ and F (c̄) = H(c̄), then F is
differentiable at c̄.

(iv) If H(c) = J(F (c)) and J : R → R are differentiable at c̄ and F (c̄) respectively
with J ′(F (c̄)) ̸= 0, then F is differentiable at c̄.¹⁷

Proof. Let f and g be differentiable lower support functions ofF andG at c̄. For (i)–(iii),
we sandwich F between f and an appropriate differentiable upper support function U
and apply the Differentiable Sandwich Lemma (Lemma ). Appropriate upper support
functions are (i) U(c) = H(c)− g(c), (ii) U(c) = H(c)/g(c), and (iii) U(c) = H(c).

For (iv),F (c) = J−1(H(c)) is differentiable at c̄ by the inverse function theorem and
the chain rule.

ese rules have simple geometric interpretations as illustrated in Figure . e first rule
says that if a differentiable function is the sum of two functions that have no upward
kinks, then they have no downward kinks either.

.. c.

F (c) +G(c)

.
F (c)

.

G(c)

(a) Addition

.. c.

max {F (c), G(c)}

(b) Maximum

Figure : Illustration of the Reverse Calculus Lemma

¹⁷ A generalisation is possible that accommodates J only having a differentiable lower support function.





. Illustration: Indivisible Labour
Our tools above may be applied directly to economic models to establish first-order con-
ditions. We now present a recipe for applying them to an indivisible labour choice prob-
lem. In the next section, we show that the same recipe applies to a general class ofmodels.
e two sections can be read in parallel – as they follow the same logic – albeit in very
different settings.

Problem. Each period, a worker chooses consumption c, savings a′ which bring a re-
turn of θ′a′, and an indivisible labour supply h′ which pays a wage w. e rate of return
on savings θ ∈ {θg, θb} follows a Markov process with transition probability p(θ′|θ).
We assume that the worker’s utility function u(c, h) is differentiable with respect to con-
sumption c for all labour choices h. e worker’s value function is

V (a, θ) = max
c,a′,h

u(c, h) +
∑

θ′∈{θg ,θb}

p(θ′|θ)βV (a′, θ′)

s.t. c+ a′ = θa+ wh and h ∈ {0, 1} .
()

Note that V is neither globally differentiable nor concave due to the presence of the
indivisible labour choice (see Section ). Nevertheless, we will show that V (·, θ) is dif-
ferentiable at optimal choices. First, it will be convenient to reformulate the worker’s ob-
jective as

ϕ(a′; a, θ) = max {u(θa+ w − a′, 1), u(θa− a′, 0)}+
∑
θ′

p(θ′|θ)βV (a′, θ′). ()

Differentiable Lower Support Functions. To apply our envelope theorem, the main
task is to construct differentiable lower support functions for the endogenous functions
V (·, θg) and V (·, θb). To this end, we use a “lazy” value function based on a construction
employed by Benveniste and Scheinkman (). Consider a lazy worker who does not
know his optimal policy functions â′′(a′, θ′) and ĥ′(a′, θ′) for all states (a′, θ′). Rather, he
only knows the optimal choices for a particular state, (ā′, θ̄′), namely ā′′ = â′′(ā′, θ̄′) and
h̄′ = ĥ′(ā′, θ̄′). If he discovers that he is in a different state, (a′, θ′), then he is too lazy to
reconsider his choice and chooses (ā′′, h̄′). is lazy worker’s value function is

L(a′, θ̄′; ā′) = u(θ̄′a′ + wh̄′ − ā′′, h̄′) +
∑
θ′′

p(θ′′|θ̄′)βV (ā′′, θ′′). ()

Since a′ only enters this function in the first term in a simple way, the lazy value function
is differentiable at ā′ with

L1(ā
′, θ̄′; ā′) = u1(θ̄

′ā′ + wh̄′ − ā′′, h̄′). ()





First-Order Conditions. We provide three first-order conditions, all of which hold at
the optimal choices ĉ = ĉ(a, θ) > 0 and â′ = â′(a, θ) > 0. First, we claim that ϕ(·; a, θ)
is differentiable at â′ with

ϕ1(â
′; a, θ) = 0. ()

Second, we claim that then V (·, θg) and V (·, θb) are differentiable at â′ with

u1(ĉ, ĥ(a, θ)) =
∑
θ′

p(θ′|θ)βV1(â′, θ′). ()

Finally, we claim that the Euler equation holds:

u1(ĉ, ĥ(a, θ)) =
∑
θ′

p(θ′|θ)βu1(ĉ′(â′, θ′), ĥ′(â′, θ′)). ()

e recursive first-order condition () involves an endogenous value function,whereas
the Euler equation () does not. ese two first-order conditions are complementary.
e first is based on the dynamic programming notion of focusing on one trade-off at
a time, and is oen more intuitive and well-suited to numerical calculations.¹⁸ On the
other hand, in this particular example, the second first-order condition is simpler in the
sense that it does not involve any endogenous functions. In other applications, such as the
debt application of Section ., both types of first-order conditions include the derivative
of an endogenous function.

Proof. We show how to apply our tools to establish the results above. First, we estab-
lish the objective ϕ is differentiable at any interior optimal choice â′ = â′(ā, θ̄). We
apply Lemma  by sandwiching ϕ(·; ā, θ̄) between a horizontal upper support function
(Lemma ) and a differentiable lower support function based on the lazy worker con-
struction,

ψ(a′; ā, θ̄) = u(θā+ wĥ(ā, θ̄)− a′, ĥ(ā, θ̄)) +
∑
θ′

p(θ′|θ̄)βL(a′, θ′; â′). ()

is establishes that the first-order condition

ϕ1(â
′(ā, θ̄); ā, θ̄) = 0

is well-defined and holds for all (ā, θ̄).
Second, we expand this first-order condition. We must establish that V (·, θg) and

V (·, θ′b) are differentiable before including their derivatives in the first-order conditions.
We repeatedly apply Lemma  to prove in turn that the following functions are differen-
tiable functions of a′ at â′:

¹⁸ Fella () and Iskhakov et al. () apply our theorem to generalize the endogenous grid method
by Carroll ().





(i) max {u(θa+ w − a′, 1), u(θa− a′, 0)} and
∑

θ′ p(θ
′|θ)βV (a′, θ′),

(ii) p(θ′ = θg|θ)βV (a′, θg) and p(θ′ = θb|θ)βV (a′, θb),

(iii) V (a′, θg) and V (a′, θb).

Since all of these functions are differentiable at â′, standard rules of calculus imply the
first-order condition ().

Finally, we establish the Euler equation (). By Lemma , the derivatives of the endo-
genous functions V (·, θg) and V (·, θb) coincide with those of their lower support func-
tions. erefore, we may substitute the derivative of the lower support functions () into
() to obtain the Euler equation.

Discussion. We are not aware of any other envelope theorem for establishing the re-
cursive first-order condition (). Even though we established that the value functions
are differentiable at the optimal choices, they are neither globally concave nor globally
differentiable. On the other hand, the Euler equation () in this illustration can be ob-
tained without using our method. Since â = â′(a, θ) maximises the differentiable func-
tion ψ(·; a, θ), the first-order condition ψ1(ĉ; a, θ) = 0 holds, and implies (). erefore,
the role of our envelope theorem – like other envelope theorems – is to establish first-
order conditions involving endogenous functions.

ere are three important antecedents of our approach for one-dimensional continu-
ous choice spaces (i.e. when C = R). However, all of them make use of le and right
derivatives – which do not exist in general (see Section ) – rather than differentiable
sandwiches to prove that the value function is differentiable at optimal choices. Dechert
and Nishimura (, Corollary ) and Amir et al. (, Lemma .) supply specialized
results in the context of non-convex growth models, the latter by assuming supermodu-
larity.¹⁹ Milgrom and Segal (, Corollary ) applies more generally than these earlier
results and accommodates discrete choices without any topological or monotonicity as-
sumptions. However, as discussed in the introduction, it imposes superfluous require-
ments of equidifferentiability and bounded derivatives to ensure that le and right deriv-
atives exist.²⁰ is impedes their theorem from being applied to dynamic programming
problems with unbounded marginal utilities.

Another approach by Morand, Reffett and Tarafdar () applies the envelope the-
oremofClarke () to non-convex andnon-smooth dynamic programming programs.
Similar to Clarke (), they impose local Lipschitz continuity. is paper is weakly re-
lated to our approach in that they useDini derivatives (see the appendix). All of the above
envelope theorems only apply to value functions and not to other endogenous functions.

¹⁹ e supermodularity approach has recently been applied by Menzio, Shi and Sun () to a discrete
choice problem in a model of non-degenerate distribution of money holdings.

²⁰ Cotter and Park () establish an envelope theorem for smooth dynamic programming problems
with non-concave utility functions using the approach of Milgrom and Segal ().





. Theorem
Our recipe presented above applies generally. We now show that if an objective is con-
structed out of endogenous functions using standardmathematical operations, then those
functions’ derivatives may be included in first-order conditions provided that they have
differentiable lower support functions.

To establish this result, we must be more precise about what it means to construct a
function out of other functions. In the illustration above, the objective ϕ(·; a, θ) is con-
structed from the three endogenous functions a′ 7→ −a′, V (·, θG), and V (·, θB) using
four operations: function addition, function multiplication, function composition, and
taking the upper envelope of a set of functions. We define an envelope algebra as the set
of all functions thatmay be constructed from a set of (endogenous) functions. Our defin-
ition is recursive to accommodate the idea that once we construct a function, we can use
that function to construct other functions.

Let F(C) be the set of functions with domain C and co-domain R.

Definition . We say E ⊆ F(C) is an envelope algebra if:

(i) F +G ∈ E for all F,G ∈ E ,

(ii) FG ∈ E for all F,G ∈ E with F,G : C → R++,

(iii) H(c) = maxG∈G G(c) is in E for all G ⊆ E provided it is well-defined, and

(iv) J ◦ F ∈ E for all F ∈ E and all differentiable J : R → R with J1 : R → R++.

Definition . e generated envelope algebra E(F) is the smallest envelope algebra gen-
erated by F ⊆ F(C) that contains F .

For our purposes, the envelope algebra consists of all of the functions we can construct
out of the endogenous functionsF . In the illustration above,F = {a′ 7→ −a′, V (·, θg), V (·, θb)}
and E(F) is an infinite set of functions. In particular, ϕ(·; a, θ) ∈ E(F) for all (a, θ).

e following lemma establishes that if all of the endogenous functionsF have differ-
entiable lower support functions, then so do all of the functions constructed out of them.
In particular, this means that the objective ϕ(·; a, θ) has a differentiable lower support
function.

Lemma . Let F ⊆ F(C) be a set of functions that have a differentiable lower support
function at c̄ ∈ int(C). en every F ∈ E(F) has a differentiable lower support at c̄.

Now, we turn our attention to applying the Reverse Calculus Lemma (Lemma ). is
process begins with the knowledge that the objective ϕ is differentiable, and proceeds
to establish that its components are also differentiable. erefore, the recursion must
proceed in the opposite direction from before. Moreover, some components may not be





locally relevant for the objective if that component is not on the upper envelope. For ex-
ample, the worker’s effort choice is irrelevant if he decides to stay at home. We call the
relevant components the active envelope set.

Definition . Fix any (E , ϕ, c̄) such that E is an envelope algebra, ϕ ∈ E , and c̄ ∈ C . We
define the active envelope setA(E , ϕ, c̄) as the smallest setA ⊆ E such that

(i) ϕ ∈ A.

(ii) If F,G ∈ E and F +G ∈ A, then F,G ∈ A.

(iii) If F,G ∈ E and F,G : C → R++ and FG ∈ A, then F,G ∈ A.

(iv) If F ∈ G ⊆ E andH(c) = supG∈G G(c) is inA and F (c̄) = H(c̄), then F ∈ A.

(v) If J ◦ F ∈ A where J : R → R is differentiable and J1 : R → R++, then F ∈ A.

Finally, we can state ourmain result. Informally speaking, the theorem says the following.
Suppose an objective function ϕ is constructed out of functions, all of which have differ-
entiable lower support functions. en, at any interior optimal choice, (i) the objective
and the relevant constituent functions are differentiable, and (ii) a first-order condition
holds. In the illustration above, the theorem establishes that the endogenous functions
V (·, θg) and V (·, θb) are differentiable at any optimal choice â′.

eorem  (Envelope eorem). Let F ⊆ F(C) be a set of functions that have a differ-
entiable lower support function at ĉ ∈ int(C). If ϕ ∈ E(F) and ĉ ∈ arg maxc∈C ϕ(c),
then (i) every function in the active function set A(E(F), ϕ, ĉ) is differentiable at ĉ, and
(ii) ϕ1(ĉ) = 0.

Proof. Since ϕ ∈ E(F) and the envelope algebra E(F) is generated from functions with
differentiable lower support functions at ĉ, Lemma  implies that ϕ has a differentiable
lower support function at ĉ. Since ĉmaximises ϕ, Lemma  establishes that ϕ has a differ-
entiable upper support function at the maximum ĉ. erefore, ϕ is sandwiched between
two differentiable functions, so Lemma  implies that it is differentiable at ĉ. Moreover,
ϕ′(ĉ) coincides with the derivative of its upper support function, which is .

We prove by induction that every function in the active set A = A(E(F), ϕ, ĉ) is
differentiable at ĉ. We set A1 = {ϕ}. To construct An+1, we examine eachH ∈ An. For
each part of Lemma , we select appropriate functionsF andG from E(F), and conclude
that F is differentiable at ĉ. We do this for every possible combination of F and G, and
include each such F in An+1. We repeat this a countable number of times, and observe
that A = ∪∞

n=1An.

Remark .. Active functions share their derivatives with their lower support functions. It
is oen easier to calculate the derivatives of endogenous functions by differentiating their
lower support functions.





eorem establishes themethod from Section . applies to a wide class of optimisation
problems. In the next section, we apply themethod to three important problems inwhich
first-order conditions previously seemed inapplicable. While the general setting of the
theorem is quite abstract, the method itself is quite intuitive. erefore, we find it clearer
to repeat the logic of applying the lemmas each time rather than applying the abstract
theorem.

 Applications

. Unsecured Credit
Our first application is about unsecured debt contracts where borrowers may decide to
either repay in full or to default.We focus onmarkets without collateral such as sovereign
debt markets. e punishment for default is exclusion from the credit market thereaer.
Nevertheless, default occasionally occurs so interest paid by the borrower must com-
pensate for the default risk.²¹ For this reason, the interest charged is non-linear and de-
termined by a recursive relationship with the borrower’s value function. If the interest
rates are low, then the borrower’s value of honouring debt contracts is high because
rolling over debt is cheap. Conversely, if the borrower’s value of repaying is high tomor-
row, then the default risk today is low. is recursive relationship determines interest
rates as a function of loan size and the credit limit.

e borrower’s decision problem is poorly behaved for two related reasons. First, the
discrete repayment choice leads to jumps in the marginal value of owing debt. Second,
following marginal changes in debt, these jumps lead to kinks in the default risk and
hence kinks in the interest rate. In other words, neither the value function nor the budget
constraint are globally differentiable. Nevertheless, we apply our envelope theorem to
establish that both endogenous functions – the value function and the interest rate –
are differentiable at optimal debt choices (except for choices at the endogenous risk-free
credit limit). Hence, first-order conditions apply and we can establish an Euler equation
involving a marginal interest rate and a marginal continuation value. We then apply our
envelope theorem to characterise the borrower’s credit limit and reach our conclusion
that the borrower never exhausts his endogenous credit limit.

We build on the unsecured credit analysis by Arellano () which is in the tradi-
tion of Eaton and Gersovitz (). Arellano carefully analyses it theoretically and nu-
merically. She also sketches a Laffer curve for the debt choice, but – without first-order
conditions – does not characterise borrower behaviour along it. e following three pa-
pers apply some Euler equations, with the first explicitly acknowledging that they lack
justification for differentiating the interest rates with respect to loan size. We provide a

²¹ Default need not be inefficient compared to risk-free debt, as it implements risk-sharing.





justification. Aguiar and Gopinath () dropped a detailed discussion of their heur-
istic (but now verified) Euler equation from their  working paper version. Similarly,
we verify the heuristic Euler equations that Arellano and Ramanarayanan () use to
compare maturity structures of loans. Finally, Hatchondo and Martinez () discuss
an Euler equation, implicitly assuming differentiability of interest rates. None of these
papers use first-order conditions to investigate credit limits, nor deduce our result that
borrowers never exhaust their credit limits.

Model. Arisk-averse borrower has a differentiable utility functionu anddiscount factor
β ∈ (0, 1).eborrower’smarginal value of consumption at zero is infinite, i.e. limc→0+ u1(c) =
∞. Every period, the borrower receives an endowment x which is independently and
identically distributed with density f(·) on the support [xmin, xmax]. We assume the bor-
rower’s endowment is bounded away from zero, i.e. xmin > 0. To smooth out endowment
shocks, the borrower may take out loans from a lender with deep pockets. We focus our
attention on debt contracts of the following form. e borrower offers to pay a lender b′
in the following period, but only promises to honour this debt obligation if the endow-
ment tomorrow, x′, lies in the set H ′. us, a debt contract consists of (b′, H ′), both of
which are chosen by the borrower. e lender is risk-neutral, discounts time at the same
rate, and is therefore willing to pay β

∫
H′ f(x

′) dx′b′ in return for the promise. If the bor-
rower defaults, he is excluded from credit markets thereaer. We also accommodate an
additional exogenous sanction of s ≥ 0 units of consumption every period for default-
ing, which reflects the difficulty of settling non-financial transactions without credit.²²
e borrower’s autarky value aer defaulting is

Waut(x) = u(x− s) + β

∫
[xmin,xmax]

Waut(x
′)f(x′)dx′. ()

e lender only agrees to the contract (b′, H ′) if the borrower has an incentive to
honour the promise for the proposed endowmentsH ′. Specifically, the borrower’s value
of repaying b′ at an honour endowment x′ ∈ H ′, denotedWhon(b

′, x′), should not be less

²² Exogenous sanctions are oen included in unsecured credit models, so we include them to show
the generality of our technique. Without them, Bulow and Rogoff () show that exclusion from credit
markets alone is an insufficient punishment for enforcing debt contracts if the borrower can make private
investments.





than the autarky valueWaut(x). e borrower’s value of honouring debts is therefore²³

Whon(b, x) = max
c,b′,H′

u(c) + β

∫
H′
Whon(b

′, x′)f(x′)dx′ + β

∫
[xmin,xmax]\H′

Waut(x
′)f(x′)dx′,

s.t. c+ b = x+

[
β

∫
H′
f(x′) dx′

]
b′,

Whon(b
′, x′) ≥ Waut(x

′) for all x′ ∈ H ′,
b′ ≤ bponzi.

()

e last constraint rules out Ponzi schemes and the bponzi parameter may be arbitrarily
large.

Reformulation. Wereformulate this problembymaking two simplifications. First, Arel-
lano (, Proposition ) established that because x is , the honour setH ′ chosen by
the borrower is determined by a cut-off rule y(·) so that the borrower honours his debt at
state (b′, x′) if and only if x′ ≥ y(b′). In other words, the borrower only ever chooses debt
contracts of the form (b′, H ′) = (b′, [y(b′), xmax]), so debt contracts are characterised by
b′ alone. is means we may denote the price of debt q(b′) as a function of b′. Second, it
is convenient to work with the net value functionW (b, x) = Whon(b, x)−Waut(x). e
reformulated problem becomes

W (b, x) = max
b′≤bponzi

u(x+ q(b′)b′ − b)− u(x− s) + βV (b′), ()

where

V (b′) =

∫
[y(b′),xmax]

W (b′, x′)f(x′)dx′, (a)

q(b′) = β[1− F (y(b′))], (b)

y(b′) =


xmin ifW (b′, xmin) > 0,

xmax ifW (b′, xmax) < 0,

min {x′ ∈ [xmin, xmax] : W (b′, x′) = 0} otherwise.
(c)

In this reformulation, the borrower’s only choice is his future debt obligation b′. We de-
note optimal policy functions by b̂′(b, x).²⁴

e objective () has two endogenous functions, q and V , which we will show are
not globally differentiable. e value function has downward kinks at states of indiffer-
ence between honouring and defaulting, as in the value function of the indivisible labour

²³ We mention some technicalities: (i) the borrower should be constrained to choosing a measurable
honour set, and (ii) the Bellman operator is well-defined for continuous value functions.

²⁴ e borrower might be indifferent between several optimal policies.





choice illustration. Moreover, we have no a priori knowledge of the differentiability of
the debt price. We will construct differentiable lower support functions for q and V and
hence show that they both do not exhibit upward kinks at any choice, with one exception:
e debt price exhibits an upward kink at the risk-free credit limit.
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Figure : e default cut-off rule

Differentiable Lower Support Functions. eproblem of constructing a differentiable
lower support function for the debt price q(·) is equivalent to that of constructing a dif-
ferentiable upper support function for the cut-off rule y(·), illustrated in Figure a. For
debts below some threshold b∗, the borrower always honours his obligations, so the cut-
off y(·) is constant and hence differentiable on [−∞, b∗). At each debt level b̄′ > b∗, we
now construct a differentiable upper support function for y(·). We consider a lazy bor-
rower that – as a consequence of his laziness – undervalues honouring debts, and hence
uses a higher cut-off than y(·). Specifically we consider a lazy borrower who incorrectly
anticipates the state to be (b′, x′) = (b̄′, y(b̄′)), i.e. he anticipates his state will be on the
cut-off. In unanticipated states, he chooses his debt to be b̂′′(b̄′, y(b̄′)) independently of
the realized endowment x′. His consumption is adjusted by the differences from the an-
ticipated endowment and debt. is lazy borrower’s net value function is

L(b′, x′; b̄′) = u(x′ − b′ + q(b̄′′)b̄′′)− u(x′ − s) + βV (b̄′′). ()

Since the lazy borrower undervalues honouring debts, his honour cut-off ȳ(·; b̄′) im-
plicitly defined by

L(b′, ȳ(b′; b̄′); b̄′) = 0 ()

provides an upper support function for the cut-off y(·) at b̄′, depicted in Figure b. Since
the lazy borrower’s value function is differentiable, the implicit function theorem implies





that ȳ(·; b̄′) is differentiable with y1(b̄′; b̄′) > 1 for all b̄′ > b∗.²⁵
us far, we have established that the slope of the cut-off y(·) is zero approaching

the risk-free limit b∗ from the le, but greater than one approaching b∗ from the right.
erefore, the cut-off has a downward kink at b∗, so it has no differentiable upper support
function at this point. is means we have established:

Lemma . At every b̄′ ̸= b∗, there exists a differentiable upper support function ȳ(·; b̄′) for
y(·), and hence a differentiable lower support function q(·; b̄′) for q(·). Moreover, y(·) has
an downward kink at b∗ with 0 = y′(b∗−) < 1 < y′(b∗+).

To construct a differentiable lower support function for V , we begin by constructing a
differentiable lower support function forW (b′, x′). However, this time, we use a different
lazy borrower’s value function from the one used to construct (). is time, the lazy
borrower correctly anticipates x′, but incorrectly anticipates b′ to be b̄′. He takes on a debt
of b̄′′(x′) = b̂′′(b̄′, x′) independently of his previous obligation of b′. His value function is

M(b′, x′; b̄′) = u(x′ − b′ + q(b̄′′(x′))b̄′′(x′))− u(x′ − s) + βV (b̄′′(x′)). ()

is means that,

V (b′; b̄′) =

∫ xmax

ȳ(b′;b̄′)

M(b′, x′; b̄′)f(x′) dx′ ()

is a lower support function for V at b̄′. We would like to establish that V (·; b̄′) is differen-
tiable. First,M(·, x′; b̄′) is continuously differentiable for all (x′, b̄′). Second, we note that
without loss of generality, wemay assume some optimal policy b̂′′(·, ·) is measurable, and
hence the resulting lazy policy b̄′′(·) is also measurable.²⁶ ird, the measurability of the
lazy policy implies thatM1(b

′, ·; b̄′) is measurable for all (b′, b̄′). Moreover, it is possible
to show thatM1(b

′, ·; b̄′) is uniformly bounded for all b′ in some open neighbourhood of
b̄′. Hence the Leibniz rule for differentiating under the integral sign implies that V (·; b̄′)
is differentiable at b′ = b̄′ with²⁷

V 1(b
′; b̄′) =

∫ xmax

ȳ(b′;b̄′)

M1(b̄
′, x′; b̄′)f(x′) dx′. ()

is means we have established:

Lemma . At every b̄′, there exists a differentiable lower support function V(·; b̄′) for V .
²⁵ Apply the implicit function theorem on the lazy borrower’s value function to get

ȳ1(b̄
′; b̄′) =

u1(c̄′(b̄
′, y(b̄′)))

u1(c̄′(b̄′, y(b̄′)))− u1(x′ − s)
> 1.

²⁶ See for example theMeasurableMaximumeorem in Aliprantis and Border (,eorem .).
²⁷ See for example Weizsäcker (, eorem .).





First-Order Conditions. We can now return to the original problem (). If b̂′ is an
optimal debt choice at the state (b, x), then it maximises

ϕ(b′; b, x) = u(x− b+ q(b′)b′)− u(x− s) + βV (b′). ()

Using q(·; b̄′) and V (·; b̄′), we can construct a differentiable lower support for this object-
ive at any b̄′. By the Differentiable Sandwich Lemma (Lemma ), the borrower’s objective
is differentiable at the optimal debt choice b̂′. Moreover, by repeatedly applying the Re-
verse Calculus Lemma (Lemma ), we deduce that q and V are differentiable at b̂′. We
conclude:

Corollary . Suppose b̂′(·, ·) is an optimal policy function, fix any state (b, x), and set
b̂′ = b̂′(b, x). If b̂′ ̸= b∗, then the following first-order condition holds and the endogen-
ous functions q and V that appear in it are differentiable at b̂′:

u1(ĉ(b, x))(q(b̂
′) + q1(b̂

′)b̂′) = βV1(b̂
′) = β

∫ xmax

y(b̂′)

u1(ĉ(b̂
′, x′))f(x′) dx′, ()

where ĉ(b, x) = x− b+ q(b̂′(b, x))b̂′(b, x).

eborrower equates themarginal benefit of owing debtwith themarginal cost.emar-
ginal benefit consists of the marginal utility of consumption times the marginal revenue
from promising an extra unit to the lender. e marginal cost consists of the expected
marginal utility of the foregone consumption when repaying the following period (when
the endowment shock is above the default cut-off).
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Credit Limits. We now turn our attention to the borrower’s behaviour near the credit
limit. e amount the lender is willing to pay, q(b′)b′ in return for a promise of b′ is not
an increasing function. is is because there are two types of empty promises: b′ = 0,
and b′ so large it is never honoured. e borrower’s return on promises therefore follows
a Laffer curve, depicted in Figure a. e borrower’s credit limit is the maximum of this
curve, q(b∗∗)b∗∗, where

b∗∗ = arg max
b′

q(b′)b′. ()

If b∗∗ > b∗, then we have already constructed a differentiable lower support function for
q, so the Differentiable Sandwich Lemma (Lemma ) together with the Reverse Calculus
Lemma (Lemma ) imply that q is differentiable at b∗∗ with

q(b∗∗) + q1(b
∗∗)b∗∗ = 0. ()

Substituting this into the Euler equation (), we see that the marginal benefit of taking
on debt at b∗∗ is zero, while the marginal cost is positive. erefore, we conclude

Corollary . For any given model primitives, either

(i) the overall and risk-free credit limits coincide, i.e. b∗∗ = b∗, or

(ii) the overall credit limit is higher and exhausting it is suboptimal, i.e. b∗∗ > b∗ and
b̂′(b, x) < b∗∗ for all states (b, x).

is conclusion is a logical generalisation of behaviour in Aiyagari’s () model. Both
here and there, the borrower reaches the risk-free credit limit with positive probability. In
the model we study, the overall credit limit is potentially higher, as the borrower has the
additional possibility of taking out risky loans. However, behaviour near the two credit
limits is strikingly different. Below the risk-free limit, the interest rate 1/q(b′) remains
constant as the loan size q(b′)b′ increases. Above the risk-free limit, the interest rate in-
creases as the borrower takes on more debt and increases the default risk, as depicted in
Figure b.is difference accounts for why borrowersmight exhaust their risk-free limit,
but not their overall limit.

Arellano (, Figure ) plots a similar Laffer curve as in Figure a. Possibly for
computational reasons, her curve is smooth and does not depict the upward kink of the
Laffer curve at the risk-free limit, b∗. She does not apply first-order conditions along the
Laffer curve.

Final Remarks. Despite our results regarding first-order conditions, credit limits, and
the Laffer curve, some questions remain. First, we do not know if the Laffer curve is
single-peaked. Second, the  shock assumption was important for Arellano () to
establish that the default policy is a cut-off rule. More generally, persistent shocks cause





interest rates to depend on the shock in addition to the size of the loan, which is crucial for
understanding how credit markets operate when borrowers are distressed. Nevertheless,
we believe our analysis can be generalised. Chatterjee et al. (,eorem ) established
that persistent shocks lead to two-sided cut-off rules. We conjecture that it is possible to
construct differentiable support functions for the two cut-offs, and use this to construct
a differentiable upper support function for the repayment probability. Finally, we believe
that first-order conditions will be central to exploring extensions of the model to study
issues such as partial default and optimal term structure.

. Adjustment Costs
Firms are slow to adjust prices, labour forces, and capital stocks in reaction to changes
in market conditions. One explanation for this is that firms face adjustment costs such
as fixed costs or other non-convex costs. ere is a large literature investigating how
shocks propagate in the presence of adjustment costs and whether or not adjustment
costs amplify shocks; see the surveys by Khan and omas (a), Leahy (), and
Caplin and Leahy (). However, most of this literature is purely empirical, because
the theory of adjustment costs faces two important obstacles. One is the complexity of
optimal policy functions. Both theoretical and empirical analysis has only been tractable
thus far when optimal polices involve smooth cut-off rules for determining when adjust-
ments take place.²⁸ e other is the difficulty in deriving recursive first-order conditions,
as the value of adjustment is not differentiable in general. Caballero and Engel ()
use shocks that enter linearly into the production function to smooth out the kinks in
the value function. Under this specific structure, they are able to take first-conditions to
characterise optimal adjustments. To make this operational, they conjecture that adjust-
ments follow a smooth two-sided (S, s) policy, but only verify this numerically.²⁹ Gertler
and Leahy () study a quadratic approximation of the firm’s objective function in
which the non-differentiable terms in the continuation value of adjustment vanish and
optimal policies are smooth two-sided (S, s). ey establish low error bounds for this
approximation for an appropriate range of adjustment cost and shock parameters. Elsby
and Michaels () use first-order conditions under the conjecture that the optimal ad-
justment policy is a smooth two-sided (S, s) policy, also without providing sufficient con-
ditions on primitives for this conjecture to hold. For the purposes of illustration, Cooper
andHaltiwanger (, Section .) andKhan andomas (b, Appendix B) provide
derivatives only in the absence of fixed costs; we show these derivatives hold generally.
An alternative approach is to assume that information arrives gradually over continu-
ous time; see Harrison, Sellke and Taylor (), Stokey (), and Golosov and Lucas

²⁸Specifically, we say that a policy is a smooth two-sided (S, s) policy if (i) for every capital (or labour or
price) level, the set of shocks for which the firm makes an adjustment is an interval and (ii) the upper and
lower end points of this interval are differentiable functions of the capital level.

²⁹ Caballero and Engel (, Footnote )





().
e fundamental problem is that if a firm invests more today, then it might defer

subsequent investment longer. us a small change in today’s choice may lead to a lumpy
change in a later choice, giving a non-differentiable and non-concave value of investment.
We show that at optimal adjustment choices, the value function is differentiable so that
recursive first-order conditions are applicable. We require only very weak assumptions
on the primitives. In particular, our result remains true even when optimal policies are
not two-sided (S, s) (see for example Bar-Ilan, ).

Model. In a general formulation, a firm is endowed with a capital stock k and shock z.
Shocks evolve according to a Markov process with conditional distribution P (z′|z). In
each period, the firm’s flow profit is π(k, z); for example π(k, z) = pf(k, z)− rk where
p is output price, f is the production function, and r is the rental rate of capital. e
firm pays an adjustment cost c(k′, k, z); non-adjustment is costless. We assume the flow
profit π(·, z) is differentiable for all z, and that the adjustment cost c(·, ·, z) function is
differentiable at all points (k, k′, z) such that k′ ̸= k. For example, this accommodates
the pure fixed-cost function, c(k′, k, z) = I(k′ ̸= k). e firm’s value before adjusting
its capital stock at state (k, z) is V (k, z). Its value aer adjusting its capital stock to k′ is
W (k′, z). ese two value functions are related by the following two Bellman equations:

V (k, z) = max
k′

π(k, z)− c(k′, k, z) + βW (k′, z), (a)

W (k′, z) =

∫
V (k′, z′) dP (z′|z). (b)

Our goal is to establish the first-order condition for the capital choice k′

c1(k
′, k, z) = βW1(k

′, z) ()

and to derive a formula for the marginal value of investment W1(k
′, z) at the optimal

choice k′ = k̂′(k, z). If there is a fixed cost of an adjustment, then this formula will only
be satisfied when the agent makes an adjustment, i.e. at shocks z lying in the optimal
adjustment set

Â(k) =
{
z : k̂′(k, z) ̸= k

}
. ()

Differentiable Lower Support Functions. We construct a differentiable lower support
function for the value function V by considering a lazy manager who knows the optimal
policy when he begins with a familiar capital stock of k = k̄. e obvious lazy manager
policy of sticking to the same capital choice when k ̸= k̄ is not useful here, because it
leads to a discontinuous lazy value function.³⁰ Instead, we consider a lazy manager who

³⁰is obvious lazymanagermakes an extra adjustment even if the capital stock is only slightly different
from the familiar level.





uses the familiar adjustment set and adjustment level for unfamiliar capital stocks, i.e. he
waits until he draws a shock z ∈ Â(k̄) and adjusts to k̂′(k̄, z). ereaer, his choices
coincide with the rational manager. His value function is

L(k, z; k̄) = π(k, z) +

{
β
∫
L(k, z′; k̄) dP (z′|z) if z ̸∈ Â(k̄),

−c(k̂′(k̄, z), k, z) + βW (k̂′(k̄, z), z) if z ∈ Â(k̄).
()

It is straightforward to calculate the lazy manager’s marginal value of capital, because the
capital stock k does not affect any subsequent choices:³¹

L1(k, z; k̄) = π1(k, z) +

{
β
∫
L1(k, z

′; k̄) dP (z′|z) if z ̸∈ Â(k̄),

−c2(k̂′(k̄, z), k, z) if z ∈ Â(k̄).
()

First-Order Conditions. If k̂′ is an optimal choice at the state (k, z), then k̂′ maximises

ϕ(k′; k, z) = π(k, z)− c(k′, k, z) + βW (k′, z). ()

By substituting in () and (b), we may construct a differentiable lower support func-
tion for ϕ(·; k, z) at k̂′. Lemma  provides a differentiable upper support function, so
Lemma  establishes the following corollary.

Corollary . If making an adjustment is optimal at state (k, z), i.e. z ∈ Â(k), then the
investment valueW is differentiable in capital at (k̂′(k, z), z) and

c1(k̂
′(k, z), k, z) = βW1(k̂

′(k, z), z) = β

∫
L̃1(k̂

′(k, z′), z′) dP (z′|z), (a)

where L̃1(k, z) = π1(k, z) +

{
β
∫
L̃1(k, z

′) dP (z′|z) if z ̸∈ Â(k),

−c2(k̂′(k, z), k, z) if z ∈ Â(k).
(b)

e first equation says that themarginal adjustment cost should equal themarginal value
of investment, which is the same for both rational and lazy managers. e second equa-
tion says that the marginal value of increasing investment equals the expected marginal
increase in profit until the next adjustment plus the marginal decrease in the subsequent
adjustment cost. We have thus shown that first-order conditions are generally valid even
if the optimal adjustment policies are not (S,s). In other words, we have established that
the applicability of first-order conditions is not an obstacle to the theoretical analysis of
the implications of adjustment costs to prices, labour forces, and capital stocks. e only
remaining obstacle is understanding when optimal policies are (S,s).

³¹ e lazy manager’s marginal value follows from the chain rule applied to (i) the expected discounted
profit as a function of all state-contingent capital choices, holding adjustment times fixed, and (ii) the lazy
capital choices as a function of initial capital k only.





. Social Insurance
Governments run public health, unemployment and disability insurance programs, and
private companies offer insurance contracts. ese are constrained by frictions such as
hidden information, adverse selection, andmoral hazard. Informal insurance ariseswithin
well-connected families and communities when they can partially overcome these fric-
tions. ere is a large literature studying informal insurance, and the interaction of in-
formal insurance with other forms of insurance.³² In the dynamic insurance models of
omas and Worrall (, ) and Kocherlakota (), the main issue is how cross-
subsidisationmay be self-enforcing. Agents with good luck subsidise those with bad luck
in return for promises of future payments and insurance.ese papers study smooth con-
vex environments in which the Benveniste and Scheinkman () theorem provides a
formula for themarginal cost ofmaking promises.³³ However, some important insurance
problems involve non-smooth settings. We focus on a setting similar to that of Morten
(), which is an extension of Ligon et al.’s () model of self-enforcing dynamic
insurance. Villagers share risk among themselves by both sharing divisible output and
sending some members of the community to find temporary work in cities. e tempor-
ary migration decisions are inherently discrete as they involve a fixed cost of moving to
the city and back. Other examples of indivisible items in village economies include live-
stock, medical treatments, agricultural land (due to high legal costs), and houses. is
environment is non-smooth and non-concave, so the marginal cost of promises does not
exist globally. Nevertheless, our envelope theorem applies and allows us to characterise
optimal insurance policies in terms of the marginal cost of promises. Optimal policies
involve sharing risk through allocating indivisible temporary work obligations; divisible
consumption is then allocated to smooth out the marginal utility of consumption across
states.

Model. Consider the following dynamic risk-sharing game between two households
h ∈ {1, 2}. Each period begins with a Markov shock s ∈ S with transition function
p(s′|s). e shock determines each household’s endowment of a divisible consumption
good, Ch(s). e aggregate endowment is C(s) = C1(s) + C2(s). In addition, each
household may produce M units of the consumption good from temporary migrant
work in a city. We write dh = 1 if the household migrates, and dh = 0 otherwise. We
assume that the utility from consumption u(·, dh) is differentiable, and that the marginal
utility approaches infinity as consumption approaches zero. e autarky value of each

³² Apart from the papers we discuss, Townsend (), Attanasio and Ríos-Rull (), and Krueger
and Perri () are important papers.

³³ Kocherlakota () mistakenly claims his value function is differentiable. Koeppl () amends his
Bellman equation along the lines of omas and Worrall (). See also Ljungqvist and Sargent (,
Chapter ), and Rincón-Zapatero and Santos (, Section .) for further discussion.





household is

V aut
h (s) = max

dh
u(Ch(s) +Mdh, dh) + β

∑
s′

p(s′|s)V aut
h (s′). ()

Before investigating the social insurance arrangements with autarky constraints, we
present the social planner’s problem with Negishi weights η1 and η2:

W (s) =max
c1,d1

η1u(c1, d1) + η2u(c2, d2) + β
∑
s′∈S

p(s′|s)W (s′) (a)

where c1(s) + c2(s) = C(S) + (d1 + d2)M. (b)

e first-order condition with respect to c1 gives the Borch () equation

u1(c1, d1)

u1(c2, d2)
=
η2
η1
. ()

is means that aer the social planner allocates the migration decisions, she adjusts the
consumption good until the planner’s marginal rate of substitution between the house-
holds is equal to the ratio of Negishi weights at all states and dates.

Now, we add in autarky constraints to study the optimal incentive-compatible social
insurance contract. e value function for household  can be formulated recursively in
terms of a principal-agent problem in which household  acts as an insurer and is able
to promise future utility to household . is promised utility is a state variable, and has
a corresponding promise-keeping constraint. Both households can leave the contract at
any time, so there is an autarky constraint for each of them.

V (s, v2) = max
c1,d1,d2,v′2(s

′)
u(c1, d1) + β

∑
s′∈S

p(s′|s)V (s′, v′2(s
′))

s.t. (PK₂) u(c2, d2) + β
∑
s′∈S

p(s′|s)v′2(s′) = v2,

(A₁-s′) V (s′, v′2(s
′)) ≥ V aut

1 (s′) for all s′ ∈ S,
(A₂-s′) v′2(s

′) ≥ V aut
2 (s′) for all s′ ∈ S,

()

where c2 = C(s) + (d1 + d2)M − c1.

Differentiable Lower Support Functions. We construct a lower support function of V
using the lazy insurer’s value function as follows. At a familiar promised utility v̄2, the
lazy insurer knows the optimal migration allocation and future promised utilities, which
we denote d̄1 and v̄′2(·). e lazy insurer makes these familiar choices even at unfamiliar
promised utilities v2 ̸= v̄2, and only adjusts consumption of the consumption good c1





in order to satisfy the promise-keeping constraint (PK₂). us, the lazy insurer’s value
function is

L(s, v2) = u(c1(v̄
′
2), d̄1) + β

∑
s′

p(s′|s)V (s′, v̄′2(s
′)), ()

where c1(v̄′2) is defined implicitly by (PK₂).e lazy insurer’smarginal value of promising
utility v̄2 to the other household is

Lv2(s, v̄2) = u1(c1(v̄
′
2), d̄1)

dc1(v̄
′
2)

dv2
= −u1(c̄1, d̄1)

u1(c̄2, d̄2)
, ()

where dc1/dv2 was calculated with the implicit function theorem.

First-Order Conditions. It is tempting to apply our envelope theorem to the choices
of all promised utilities v′2(·). However, some of these choices may be boundary choices,
i.e. at some states s′, one of the autarky constraints (A₁-s′) or (A₂-s′) may bind. Tech-
nically speaking, if any choice is on the boundary, then the choice vector is a boundary
choice. Our solution is to focus on interior choices by considering each choice separately.
Suppose (d̂1, v̂′2(·)) are optimal choices at state s. If v̂′2(s′) is an interior optimal choice
at state s′, then this choice maximises

ϕ(v′2; d̂1, s
′) = u(c1(v

′
2), d̂1) + βp(s′|s)V (s′, v′2), ()

where c1(·) is the same function defined above in terms of the promise-keeping con-
straint (PK₂). Notice that the terms for the other future states were dropped, as they are
unaffected by the choice of v′2. We may now apply the logic from Section . (which is
summarised in eorem ).

Corollary . Fix some state s′, and suppose that

(i) (ĉ1, ĉ2, d̂1, d̂2, v̂
′
2(·)) are optimal choices at (s, v2),

(ii) no autarky constraints bind for the choice of v̂′2(s′) for state s′, and

(iii) (ĉ′1, ĉ
′
2, d̂1, d̂2)) are optimal choices at (s′, v̂′2(s′)).

en the value function V (s′, ·) is differentiable at v̂′2(s′) with

− u1(ĉ1, d̂1)

u1(ĉ2, d̂2)
= Vv2(s

′, v̂′2(s
′)) = −u1(ĉ

′
1, d̂

′
1)

u1(ĉ′2, d̂
′
2)
. ()





Discussion. is equation is the Borch () equation which characterises perfect in-
surance – the social planner’s marginal rate of substitution is equated across states and
time periods. is means we have shown that with both divisible and indivisible choices,
there is perfect insurance between households at all states and times forwhich the autarky
constraints are lax. When an autarky constraint binds, the Negishi weights are adjusted
and perfect insurance continues until an autarky constraint binds in the future.is gen-
eralises the conclusion drawn byomas andWorrall ()when indivisible choices are
absent.

. Benveniste-Scheinkman Envelope Theorem
Our approach leads to an elementary proof of the Benveniste and Scheinkman ()
envelope theorem. is theorem establishes global differentiability of the value function
in convex settings (without any discrete choices).

Problem . Consider the following dynamic programming problem:

V (c) = sup
c′∈{c̄′:(c,c̄′)∈Γ}

u(c, c′) + βV (c′), ()

where the domain of V is C . We assume that (i) Γ is a convex subset of C × C , (ii) u is
concave, and (iii) u(·, c′) and u(c, ·) are differentiable, respectively.

Corollary  (Benveniste-Scheinkman eorem). If ĉ′ is an optimal choice at state c ∈
int({c̄ : (c̄, ĉ′) ∈ Γ}), then V is differentiable at c with V1(c) = u1(c, ĉ

′).

Proof. V is concave because u is concave and Γ is convex. Hence, the supporting hyper-
plane theorem can be applied to the hypograph of V to construct a linear upper support
function U that touches V at c. We construct the differentiable lower support function
L(c) = u(c, ĉ′) + βV (ĉ′). Lemma  delivers the conclusions.

e Differentiable Sandwich Lemma in our proof plays a similar role as Rockafellar
(,eorem .) in the original proof of Benveniste and Scheinkman ().³⁴ Con-
cavity implies the existence of a differentiable upper support function andBenveniste and
Scheinkman use a lazy agent’s value function as a differentiable lower support function.
Mirman and Zilcha (, Lemma ) provide a one-dimensional antecedent based on
directional derivatives rather than the sandwich approach.

³⁴ We show that Rockafellar’s result contains a superfluous concavity assumption; the lower support
function in the sandwich need not be concave.





 Conclusion
All envelope theorems have a sandwich idea at their core. Previous proofswere structured
around sandwiches of inequalities of directional derivatives. By restructuring around
sandwiches of differentiable upper and lower support functions, we gain two things. First,
we do not require any of the strong technical conditions from previous envelope theor-
ems, and can accommodate primitives with Inada conditions. Second and more import-
antly, our approach potentially applies to any type of endogenous functions that might
need to be differentiated in a first-order condition.

Our method gains us a straightforward way of mixing and matching different con-
structions of upper and lower halves of sandwiches. We used five constructions through-
out, namely (i) horizontal lines above maxima, (ii) supporting hyperplanes above con-
cave functions, (iii) reverse calculus, (iv) lazy value functions below rational value func-
tions, and (v) lazy cut-off rules. Of these, only the reverse calculus construction is truly
unprecedented. e power of our approach derives from the ability to combine these
constructions. For example, the unsecured credit application uses all but the support-
ing hyperplane construction. ere are also other possibilities that we did not explore.
Decision makers can be “lazy” in ways that lead to upper support functions, such as be-
ing lazily optimistic about future opportunities. In bargaining games, a lower support
function for one player’s value function leads to an upper support function for the other
player’s value function.

To conclude, our newapproach reveals that trade-offswhich previously seemedpoorly
behaved in fact have smooth structures within them that lead to first-order characterisa-
tions of optimal decisions.

A Support Functions and Subdifferentials
e notion of a differentiable lower support function generalises the classic ideas from
convex analysis of supporting hyperplanes and subdifferentials. In this appendix, we es-
tablish a tight equivalence between differentiable lower support functions and Fréchet
subdifferentials.ese were once seen as a promising way to generalise the classical tech-
niques of convex optimisation described by Rockafellar () beyond convex settings.
However, according to Kruger (), these were abandoned because of “rather poor
calculus” as Fréchet subdifferentials do not sum, i.e. ∂F (f + g)(x) ̸= ∂Ff(x) + ∂Fg(x).
In light of our developments, we believe that Fréchet subdifferentials may have other
applications to optimisation theory.

Suppose (X, ∥·∥) is a Banach space and C ⊆ X .

Definition . A function f : C → R is Fréchet subdifferentiable at c̄ if there is some





m∗ ∈ C∗ such that

lim inf
∆c→0

f(c̄+∆c)− f(c̄)−m∗∆c

∥∆c∥
≥ 0. ()

Such an m∗ is called a Fréchet subderivative of f at c̄, and the set of all subderivatives is
called the Fréchet subdifferential of f at c̄, denoted ∂Ff(c̄). Definitions for Fréchet super-
differentiable, superderivatives, and superdifferentials are analogous.

eorem . m∗ is a Fréchet subderivative of f : C → R at c̄ if and only if f has a
differentiable lower support function L at c̄ such that L1(c̄) = m∗.

Proof. If L is such a differentiable lower support function, then L1(c̄) = m∗, i.e.

lim
∆c→0

L(c̄+∆c)− f(c̄)−m∗∆c

∥∆c∥
= 0. ()

Since f(c̄+∆c) ≥ L(c̄+∆c) for all ∆c, it follows that

lim inf
∆c→0

f(c̄+∆c)− f(c̄)−m∗∆c

∥∆c∥
≥ 0 ()

and hencem∗ is a Fréchet subderivative of f at c̄.
Conversely, suppose thatm∗ is a subderivative of f at c̄. We claim that

L(c) = min {f(c), f(c̄) +m∗(c− c̄)} ()

is a differentiable lower support function of f at c̄. By construction, L is a lower support
function. Moreover, the function U(c) = f(c̄)+m∗(c− c̄) is a differentiable upper sup-
port function of L at c̄; by the first part of the theorem, U1(c̄) = m∗ is a superderivative
of L at c̄. On the other side,m∗ is a subderivative of L at c̄ because

lim inf
∆c→0

L(c̄+∆c)− f(c̄)−m∗∆c

∥∆c∥

= min
{
0, lim inf

∆c→0

f(c̄+∆c)− f(c̄)−m∗∆c

∥∆c∥

}
()

≥ 0.

erefore, L is differentiable at c̄ with L1(c̄) = m∗.

Lemma  then becomes a classic result.

Lemma . Ifm∗ is a Fréchet subderivative of f : C → R at c̄ andM∗ is a superderivative
of f at c̄, then f is differentiable at c̄ with f ′(c̄) = m∗ =M∗.
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